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Abstract: The prototypical chalcogenide perovskite, BaZrS3 (BZS), with its direct bandgap of
1.7–1.8 eV, high chemical stability, and strong light–matter interactions, has garnered significant
interest over the past few years. So far, attempts to grow BaZrS3 films have been limited mainly to
physical vapor deposition techniques. Here, we report the fabrication of BZS thin films via a facile
aqueous solution route of polymer-assisted deposition (PAD), where the polymer-chelated cation
precursor films were sulfurized in a mixed CS2 and Ar atmosphere. The formation of a single-phase
polycrystalline BZS thin film at a processing temperature of 900 ◦C was confirmed by X-ray diffraction
and Raman spectroscopy. The stoichiometry of the films was verified by Rutherford Backscattering
spectrometry and energy-dispersive X-ray spectroscopy. The BZS films showed a photoluminescence
peak at around 1.8 eV and exhibited a photogenerated current under light illumination at a wave-
length of 530 nm. Temperature-dependent resistivity analysis revealed that the conduction of BaZrS3

films under the dark condition could be described by the Efros–Shklovskii variable range hopping
model in the temperature range of 60–300 K, with an activation energy of about 44 meV.

Keywords: chemical solution deposition; chalcogenide; perovskite; polymer-assisted deposition

1. Introduction

Perovskite is a compositionally diverse class of materials with a prototypical formula
of ABX3, where A and B are positively charged cations and X is a negatively charged
ion. The crystal structure of perovskites consists of corner-sharing [BX6] octahedra, where
the A cation sits in the cubo-octahedral void between the octahedra. Oxide and halide
perovskites have been extensively studied for their multifunctional properties, such as
ferroelectricity, ferromagnetism, superconductivity, ionic conductivity, catalytic activity,
and semiconductive, as well as optoelectronic properties [1–12]. The ideal structure of a
perovskite ABX3 is cubic, where the geometry and symmetry of the crystal structure are
affected by the relative size of the comprising ions.

Recently, chalcogenide perovskites have emerged as a new class of semiconducting
materials that have demonstrated promising electronic and optical properties with pos-
sible applications in optoelectronics, thermoelectrics, and infrared optics [13–31]. These
perovskite compounds are much more stable than their lead halide counterparts are. The
compositions of chalcogenide perovskites that have been widely studied so far are com-
posed mainly of earth-abundant and non-toxic elements [32,33]. Chalcogenide perovskite
BaZrS3 (BZS), as depicted in Figure 1a for the crystal structure, has received the most
attention [15–22,32,34–37], since it possesses high absorption coefficients near the band
edge and long recombination lifetimes. These properties make chalcogenide perovskites
promising candidates for photovoltaic applications [18,20,21,32]. Developing scalable pro-
cedures for the deposition of thin films of such materials is integral to both fundamental
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studies of optoelectronic and charge transport properties and the ultimate applications of
chalcogenide perovskites for electronic and optical devices.
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Figure 1. Schematic illustrations of (a) crystal structure of perovskite BaZrS3, (b) the polymer (such
as PEI) in the solution binds to the metal ions (such as Ba) through electrostatic attraction, hydrogen
bonding, and/or covalent bonding, and (c) the major stages of PAD deposition process to synthesize
BaZrS3 films.

Compared to the ease of the low-temperature chemical solution deposition of hybrid-
halide perovskites such as MAPbI3, the deposition of chalcogenide perovskites is compli-
cated by several factors. The significant difference between the vapor pressures of cations
and the sulfide anion poses a synthetic difficulty for the most commonly used thin film
growth techniques. Moreover, the synthesis of chalcogenide perovskites such as BZS often
involves the use of H2S, a toxic, flammable, and corrosive gas [19,35,36]. Cation-to-anion
stoichiometry can also be difficult to maintain since the higher temperatures needed for the
crystallization of perovskite can lead to sulfide vacancies in the grown crystal lattice [22].
So far, two-step approaches have been widely used to synthesize BZS films, where either
BaZrO3 or Ba-Zr metal thin films were first deposited by physical vapor deposition such
as pulsed laser deposition or sputtering, and the as-deposited films were subsequently
sulfurized in a reactive or sulfur-containing atmosphere such as CS2 to form polycrys-
talline BZS thin films [17,22,26,35,38]. Recently, in situ one-step deposition of BZS films
has been demonstrated by pulsed laser deposition and molecular beam epitaxy, both of
which enabled epitaxial films using H2S gas as a sulfurizing reagent [19,36]. It should be
also noted that Ravi et al. reported the synthesis of BZS films by forming colloidal BZS
nanocrystals using a solid-state reaction route, and then functionalizing the surface of BZS
nanocrystals to achieve their colloidal dispersions [34]. More recently, BaZrS3 nanoparticles
were synthesized by a thermal decomposition mechanism in the organic solvent [39].

Chemical solution deposition (CSD) has been extensively investigated as a tool to
deposit both metal-oxide and hybrid–halide perovskite films, since this cost-effective
technique offers the advantages of an easy set-up and the ability to coat large areas. Polymer-
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assisted deposition (PAD), a CSD technique with unique chemistry to prepare precursor
solutions, has been remarkably demonstrated as a very powerful method to grow high-
quality thin films including oxides, nitrides, and carbides [40–46]. In this report, we present
the first demonstration of the growth of a sulfide BZS perovskite thin film using an aqueous
PAD process.

2. Materials and Methods

In the PAD process, the water-soluble polymer such as polyethylenimine (PEI) binds
directly with the metal ions in the solution [43–46]. Figure 1b shows an example of the
covalent linkage between the PEI and the Ba2+, where Ba2+ is bound to PEI as an ethylene-
diaminetetraacetic acid (EDTA) complex. The process flow diagram of the PAD method
to grow BZS films, as illustrated in Figure 1c, mainly includes the following three stages.
(1) Individual aqueous solutions of polymer–metal precursors (where the metal cation
is bound to polymer) are first prepared. These solutions are then mixed at appropriate
ratios to ensure fine control over their stoichiometry. It is noted that the viscosity and the
metal loading of the precursor solution can be diluted or concentrated simply by adding or
removing water in the solution, where the solutions are shelf-stable over several months
and insensitive to air. The use of such chemistry by the PAD process may avoid many
challenges such as the solubility of metal precursors, chemical compatibility of the metal
precursors with each other and the chosen solvent, and their reactivity upon mixing based
on other chemical solution deposition approaches. (2) The polymer–metal precursor so-
lution can be coated onto substrates using standard solution deposition methods such
as spin casting. (3) The coated precursor films can then be subjected to a post-annealing
process to depolymerize the polymer in the precursor film, and then annealed in a reactive
atmosphere at an appropriate temperature to crystallize the film.

2.1. Precursor Synthesis and BZS Film Growth

The chemistry and detailed procedures to prepare aqueous precursors by PAD can be
found in the relevant articles [43–46]. The solution of cation Zr4+ bound with polymer was
prepared by adding 8.4 g of ZrCl4 slowly into a flacon tube containing 15 g of PEI aqueous
solution (50 wt%) from Acros Organics™ (Geel, Belgium). The solution was further diluted
by adding 32 mL of ultrapure water, where the solution was stirred continuously until it
was clear. The solution was filtered by Amicon™ ultrafiltration with a PM 10 membrane.
Inductively coupled plasma-atomic emission spectroscopy (ICP-ES) showed that the final
solution had a Zr4+ cation concentration of 106 mM. ICP-ES analysis was conducted using
Thermo Scientific iCAP 6000 Inductively Coupled Plasma Optical Emission Spectrome-
ter. Detailed procedures to conduct ICP-ES analysis are presented in the Supplementary
Information.

Similarly, the solution of cation Ba2+ bound with polymer PEI was prepared by adding
1.52 g of Ba(NO3)2 into a clear solution of 1.7 g of EDTA and 1.7 g of PEI (50 wt% a.q.) in
25 mL of ultrapure water. ICP-ES analysis after purification by Amicon filtration showed
that the final solution had a Ba2+ cation concentration of 143 mM. It is noted that filtration
used in the PAD process enables the removal of non-coordinated cations and anions [44–46],
preventing precipitation, and therefore, yielding a homogeneous solution at the molecular
level for a homogeneous coating.

The final precursor solution used for spin coating was prepared by mixing the in-
dividual cation precursors in proportion to maintain 1:1 stoichiometry by taking 0.5 mL
of the Ba-PEI solution and 0.67 mL of the Zr-PEI solution to obtain 1.17 mL of 61 mM
solution with respect to the Ba and Zr cations. This polymer-chelated cation solution was
spin-coated on plasma-treated c-cut sapphire substrates at 6000 rpm for 60 s. The coated
substrates were then thermally treated in a quartz tube furnace that was purged with Ar
and kept under a continuous argon flow. To depolymerize the polymers in the as-coated
precursor films and to avoid the formation of bubbles on the film surface and voids in the
bulk of the films, the furnace was heated to 550 ◦C at a rate of 1 ◦C/min. The samples
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were then ramped (50 ◦C/min) to a temperature of 900 ◦C, and we held at this temperature
for three hours under the flow of CS2 carried by Ar gas at 30 standard cubic centimeters
per min. The annealing process is schematically illustrated in Figure 1c. The furnace was
allowed to cool to room temperature naturally by turning off the power supply to the
furnace after the thermal treatment process. The annealing temperature was chosen to
ensure the decomposition of CS2 to enable the proper sulfurization of the thin films.

2.2. Characterization of Structure and Chemical Composition of the BZS Films

The structure of the BZS films after sulfurization in a CS2-Ar atmosphere was character-
ized by X-ray diffraction (XRD) using an X’Pert PANalytical MRD PRO X-ray diffractometer
with Cu Ka radiation (λ = 1.54 Å). The surface morphology of the films was inspected
by scanning electron microscopy (SEM) using a Focused Ion Beam Scanning Electron Mi-
croscope (FIB-SEM)—Carl Zeiss AURIGA CrossBeam with an Oxford energy-dispersive
X-ray system. The chemical composition of the films was characterized by Rutherford
backscattering spectrometry (RBS) and energy-dispersive X-ray spectroscopy. The RBS was
conducted on a 3 MV NEC Pelletron tandem accelerator at Los Alamos National Laboratory.
The 2.3 MeV 4He+ was used to maximize the mass resolution without getting into the
non-Rutherford cross-section region for elements in the film and substrate. A silicon surface
barrier detector was mounted at 167 degrees in reference to the beam direction to collect
backscattered He particles. The total accumulated charge used was 2 µC.

2.3. Raman Spectra, Photoluminescence, and Photocurrent Measurements of the BZS Films

Room-temperature Raman and Photoluminescence (PL) spectra of the BZS films were
measured using a Renishaw inVia Raman microscope with a 1200 L/mm grating and
50× objective lens. The laser wavelength was 514 nm for the Raman and the PL spectra
measurements.

To measure the photocurrent of the BZS films, uniform illumination from a 530 nm
precision light-emitting diode (LED) spotlight (Mightex, Toronto, ON, Canada) with an
output power of about 38 mW was shined on the surface of the films. The light source
provides a uniform illumination spot with a diameter of 22 mm at a working distance of
10 cm from the surface of the BZS sample. The photocurrent measurements were taken
using an Agilent E4890 precision LCR meter with an applied DC bias of 100 mV on the
sample surface.

2.4. Temperature-Dependence of Resistance Measurements

The temperature-dependent resistance of the BZS samples was measured using the di-
rect current resistance setup in a Physical Property Measurement System (PPMS, Quantum
Design). A square shape sample was wired in a four-probe geometry using indium metal
wires with a direct current applied through two of the probes, while the other two probes
were used to measure the voltage.

3. Results

As can be seen from Figure 2, the XRD θ-2θ scans show the formation of single-
phase polycrystalline perovskite BaZrS3 film on the c-plane sapphire substrate. All the
discernible diffraction peaks of the film match well with the standard peak positions of BZS,
where the BZS is crystallized in a distorted perovskite structure of the orthorhombic Pnma
space group retrieved from the PDF (powder diffraction file) card ICDD 00-015-0327. No
additional peaks were observed, suggesting that the films synthesized by PAD were phase
pure chalcogenide perovskite. The surface of BZS films processed at such an annealing
temperature showed the morphology of a connected network of crystals (see Figure S1,
Supplementary Information). The composition of the as-fabricated films was determined
by Rutherford backscattering spectrometry (RBS). The atomic ratios were determined to
be 1:1.03:3.02 (within 5% errors), which is very similar to the ideal Ba:Zr:S ratio of 1:1:3. It
is noted that the atomic ratio measured from an energy-dispersive X-ray is similar to the
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compositions obtained by RBS (see Figure S2, Supplementary Information). The BZS film
thickness was estimated to be 83 nm from the fitting to the RBS spectrum. This value was
very similar to the film thickness (~76 nm) estimated from the XRD full width at the half
maximum (~0.112◦) of the BZS (201) diffraction peak.
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Figure 2. (a) XRD θ− 2θ scan of the as prepared single phase BZS thin film synthesized by a polymer-
assisted deposition, where the experimental data are shown in blue, and the peak positions from PDF
card ICDD 01-073-0847 are shown as stick patterns in gray. The high intensity peak corresponds to the
(0006) c-plane sapphire substrate. (b) RBS spectra (2.3 MeV 4He+) of the as prepared BZS film. The
film thickness was estimated to be 83 nm. The atomic ratio of Ba:Zr:S was found to be 1.00:1.03:3.02
by fitting the RBS spectra. Small amount of other elements such as Ar (355 channel) and potentially
Zn or Cu (418 channel) from the RBS spectrum may come from the contamination during the process.
The atomic ratios are within 5% errors based on RBS analysis.

The Raman spectrum of the BZS film synthesized by PAD is illustrated in Figure 3a.
Five major peaks can be observed between wavenumbers 50 and 400 cm−1, which are
identified as B1

1g, A4
g, B6

2g, B4
1g, and B5

1g modes. As illustrated in Figure 3b, the PL spectrum
of the film shows a broad peak centered around 1.8 eV, with a width of ~200 meV. Both the
Raman and PL measurements of the BZS films prepared by PAD are in good agreement
with prior reports of BaZrS3 with the Pnma structure [17,22,26,47–49].
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Figure 3. (a) Raman and (b) PL spectra of the BaZrS3 film measured at 300 K. The sharp spikes from
the PL spectra come from the sapphire substrate. The black line shows the smoothed curve derived
from the average of the experimental results.

The BZS films synthesized by PAD show a noticeable photogenerated current, as
illustrated in Figure 4a. Given that the bandgap of BZS is at around 1.8 eV, we used a
530 nm LED to illuminate the BZS film. Figure 4a shows the time-dependent current of the
BZS film by turning the LED on and off, where the BZS film was biased at 0.1 V at room
temperature in the dark. As can be seen from Figure 4a, an increase in the current was
detected due to the photogenerated carriers in the BZS film under illumination.
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Figure 4. (a) Photogenerated current of BZS films illuminated by an LED at an excitation wavelength
of 530 nm, an output power of about 38 mW, and 0.1 V bias measured at room temperature. (b) Tem-
perature dependence of resistivity measured using a four-probe configuration. (c) Linear fit of the
experimental data using an Arrhenius model. A divergence of the fitting starts at a temperature
lower than 220 K. (d) Linear fit of experimental data using an E-S variable range hopping model at
temperatures lower than 220 K. The red and green circles are used to show the experimental data at
temperatures above and below 220 K, respectively.

The temperature-dependent electrical resistivity of BZS samples is shown in Figure 4b.
The increase in resistivity with decreasing temperature suggests the film behaves as a
semiconductor does. Beyond 60 K, the resistance value exceeded the measurement limit of
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our PPMS setup. The non-linear nature of the resistivity vs. temperature characteristic may
come from two distinct carrier transport mechanisms. In semiconductors, the conductivity
(or resistivity) is normally governed by thermally activated carriers (electron or hole) at
room temperature, where the thermally activated electrical conductivity of semiconducting
materials is often described by the Arrhenius relation,

σ = σ0exp
(
−Ea

kT

)
(1)

where σ0 is a constant, Ea is the activation energy, and k is Boltzmann’s constant. The
electrical resistivity of a material can be expressed as R = 1

σ
l
A , where σ is the electrical

conductivity (reciprocal of electrical resistivity), l is the length of the sample, and A is
the cross-sectional area through which the carrier transport is taking place. By replacing
σ with 1

R
l
A , the modified version of the Arrhenius equation can be written as ln 1

R =

−
(

Ea
k

)
1
T + ln

(
1

R0

)
, where R0 is a constant. The ln(1/R) vs. 1/T plot should exhibit a linear

relationship with a slope of −(Ea/k) and an intercept of ln(1/R0) if thermally activated
Arrhenius-type conduction dominates the conductivity. As shown in Figure 4c, the linear
relationship of ln(1/R) vs. 1/T between 300 K and 220 K suggests the thermally activated
conduction in the range of the mentioned temperatures. The calculated activation energy
for the sample is about 44 meV, which is higher than that of the BZS films previously
reported via the sulfurization of BaZrO3 films [22]. The highly resistive nature of the BZS
film synthesized by PAD suggests a relatively lower carrier concentration that is directly
related to the activation energy at a given temperature. At a temperature lower than 220 K,
Figure 4c clearly shows that the fitting starts deviating from the linear relationship of
ln(1/R) vs. 1/T. This deviation suggests a different conduction mechanism in the low-
temperature region for the BZS films synthesized by PAD. In the low-temperature region,
we find that the Efros–Shklovskii (E-S)-type variable range hopping model can be used to
fit the experimental data, as shown in Figure 4d. This model can be expressed with the
following equation [50],

σES(T) =
σ0ES

T
exp

[
−TES

T

]1/2
(2)

where the E-S model takes into account the coulomb interactions between the localized
electrons at lower temperatures. The characteristic temperature, TES, depends on the
localization length and dielectric constant of the material. As can be seen from Figure 4d,
our experimental data can be best fitted by a linear relationship between ln(T/R) and
1/T−1/2 at temperatures below 220 K. The conductivity of BZS film synthesized by PAD at
low temperatures is consistent with the previously reported charge transport mechanism in
BZS films derived from the sulfurization of BaZrO3 films [22]. Further systematic studies
are needed to identify and quantify the role of crystallinity and stoichiometry of the BZS
thin films on optoelectronic properties derived from various growth techniques.

4. Conclusions

This work sets the stage for developing chalcogenide perovskites as a family of
semiconductor materials using a benign aqueous chemical solution deposition method, i.e.,
polymer-assisted deposition. The polycrystalline BaZrS3 films synthesized by polymer-
assisted deposition show photoluminescence and photo-generated currents similar to those
of the polycrystalline BaZrS3 films deposited by physical vapor deposition. The charge
transport of the demonstrated film was ascertained to follow the E-S variable range hopping
at lower temperatures and Arrhenius thermally activated conduction at temperatures
above 220 K to room temperature. The growth of chalcogenide perovskite BaZrS3 films
by a polymer-assisted deposition not only provides an attractive synthetic route for the
deposition of such a class of semiconductor materials, but it also offers the potential to
impact research on other sulfur- and selenium-containing chalcogenide compounds.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/photonics10040366/s1, Figure S1: SEM image of BaZrS3 film
deposited by polymer-assisted deposition, where the precursor film was annealed at 900 ◦C. Figure S2:
Energy-dispersive X-ray spectrum of a BaZrS3 film grown by polymer-assisted deposition.
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