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Coordinated responses to environmental stimuli are critical for multicellular organisms.
To overcome the obstacles of cell-to-cell heterogeneity and noisy signaling dynamics
within individual cells, cells must effectively exchange information with peers. However,
the dynamics and mechanisms of collective information transfer driven by external
signals are poorly understood. Here we investigate the calcium dynamics of neuronal
cells that form confluent monolayers and respond to cyclic ATP stimuli in microfluidic
devices. Using Granger inference to reconstruct the underlying causal relations between
the cells, we find that the cells self-organize into spatially decentralized and temporally
stationary networks to support information transfer via gap junction channels. The
connectivity of the causal networks depends on the temporal profile of the external
stimuli, where short periods, or long periods with small duty fractions, lead to reduced
connectivity and fractured network topology. We build a theoretical model based on
communicating excitable units that reproduces our observations. The model further
predicts that connectivity of the causal network is maximal at an optimal communi-
cation strength, which is confirmed by the experiments. Together, our results show
that information transfer between neuronal cells is externally regulated by the temporal
profile of the stimuli and internally regulated by cell-cell communication.

calcium dynamics | neuron dynamics | intercellular communication | temporal stimuli

Sensing and responding to chemical signals is of fundamental importance to living sys-
tems. For single cells, chemosensing is achieved by specialized receptors, which recognize
molecules (ligands) in the microenvironment of cells (1, 2). Such interactions trigger a
cascade of intracellular events, which regulate the functional responses of cells, such as
motility (3), differentiation (4), and gene expression (4, 5). However, many chemosensing
architectures determine the ligand concentration from time-integrated information, such
as receptor-ligand binding and dissociation times (6, 7). As such, dynamic external
stimuli can present a challenge to cell sensing. For instance, oscillatory stimuli may be
misinterpreted by cells, as external and internal time scales interfere in the signaling
dynamics (8).

In multicellular organisms, chemosensing is rarely accomplished by isolated single
cells. Instead, collective chemosensing by communicating cells leads to rich dynamics
that may be necessary to encode complex information (9). In collective chemosensing,
environmental signals can induce specific single-cell dynamics that are regulated by cell-
cell communication (10). For instance, we and other groups have shown that when
chemosensing pathways support bifurcating signaling dynamics, cell-cell communication
can shift the bifurcation boundary, so that the resulting cell response reflects both the
external signal as well as the degree of communication (11, 12).

Collective chemosensing can be manifested as orchestrated multicellular dynamics,
such as intercellular synchronization. Synchronized cellular dynamics have been observed
in cardiac tissues (13), endothelium (14), and in the hypothalamic suprachiasmatic
nucleus (15). Synchronization often requires strong external stimuli and efficient cell—cell
communication to offset the intrinsic and extrinsic noise in the dynamics of individual
cells (16).

Alternatively, collective chemosensing may induce a group of communicating cells to
self-organize into networks that support asymmetric interactions and directed information
flow. In particular, environmental stimuli facilitate the emergence of leader, follower, and
pacemaker cells such as in beating cardiac tissues (17), in social amoebae that form fruiting
bodies (18), and in the neuronal regulation of circadian rhythms (19). However, the
hierarchical organization is often obscured by fluctuations of single-cell dynamics and
requires sophisticated data analysis to reconstruct the underlying network. Information-
theoretic metrics, such as Granger inference (20) and its nonparametric form of transfer
entropy (21), have been instrumental in elucidating the intercellular wiring hidden from
direct observations (22). Despite its biological significance, the underlying mechanisms,
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upstream control, and downstream function of collective
chemosensing are still far from fully understood.

In this study we combine quantitative experiments and compu-
tational modeling of excitable cells to investigate the emergence of
information-bearing networks when monolayers of neuronal cells
sense extracellular ATP (adenosine triphosphate). We examine the
calcium dynamics of KTaR cells, a neuronal cell line we derived
from KNDy (Kisspeptin, neurokinin B, and dynorphin) neurons
within the arcuate nucleus of an adult female mouse (23). We
show that under periodic stimuli a group of interacting cells forms
a directed causal network which maintains dynamic equilibrium
over consecutive cycles of stimuli. The network characteristics
depend not only on the level of communication between cells
but also on the temporal profile of the external driving. Together,
we demonstrate that temporal signals from the environment
instruct the self-organization and communication dynamics of a
multicellular system.

Results

Periodic Stimuli Drive the Formation of Multicellular In-
formation Network in Dynamic Equilibrium. In order to
understand the collective dynamics of communicating cells under
periodic stimuli, we employ a microfluidic device as shown in
Fig. 1A. A computer-interfaced flow switch alternates growth
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Fig. 1. Experimental setup to uncover the underlying self-organization of
KTaR cell monolayers. (A) A schematic showing the microfluidics device to
deliver alternate growth medium (GM) and ATP solution (ATP) to a confluent
monolayer of KTaR cells. (Inset) A fluorescent Ca®* image of a monolayer of
KTaR cells. (B) Typical calcium responses R(t) of KTaR cells to cyclic ATP stimuli
at a period of 200 s. Heterogeneity among the cells leads to fluctuations in the
magnitude and temporal delay of the calcium dynamics. (C and D) An example
of reconstructed multicellular network via Granger inference. Direction of
arrows point from a causal cell to its affected cells. Each node corresponds
to the location of a cell in the field of view. The node are compositely colored
by leader (red channel) and follower (blue) scores in C and authority and hub
scores in D. See also S/ Appendix, section S2e.
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medium and ATP solution into the cell culture chamber, where
a confluent monolayer of KTaR cells sense the ATP stimuli (see
SI Appendix, section Sla—c for more details of device and cell
characterization). To detect cellular response, we preload the cells
with a calcium indicator (Calbryte, AAT Bioquest) and record the
fluorescent calcium images at single-cell resolution at 1 Hz for
over 15 min.

KTaR cells recognize extracellular ATP with purigenic recep-
tors, which trigger IP3-mediated release of Ca?* from endoplas-
mic reticulum stores into the cytoplasm, as well as calcium influx
from extracellular space (24) (SI Appendix, section Slc and d).
While overall, the relative change of intensity [R;(¢), where i
is the cell index] follows the temporal profile of ATP stimuli,
individual cells show variable phase delays to the global driving
signal (Fig. 1B; see also ST Appendix, section S2).

To quantify if the asynchronous responses of individual cells en-
code information transfer, we employ Granger inference (25, 26)
to construct a directed graph that represents the causal influence
between cells. Qualitatively, Granger inference designates a time
series C' as causing a second time series £ if the combined history
of both {C, E'} is significantly more predictive of time series F/
than E’s own history alone. Because the rapid flow effectively
washes away secreted factors (12, 27) and because KTaR cells
do not grow extended axons in our culture condition, we focus
on nearest-neighbor cells where gap junctional communication is
dominant (28) (S Appendix, section Slc).

As we have shown previously, the time-derivative of fluorescent

calcium intensity R;(t) has the benefit of being independent of
the basal intensity while still measuring communication effects

(11, 12). We have further confirmed that { R;(¢)} are stationary
time series (S/ Appendix, section S2a) and therefore suitable for
the application of Granger inference (26).

For each nearest-neighbor pair, we calculate the statistical sig-
nificance of Granger difference (25) using the time series from
a particular cycle. If higher than a threshold (95% confidence),
an edge from the causal cell to the affected cell is drawn (see
SI Appendix, section S2b for more details). Fig. 1 C and D show
an example of a reconstructed causal network, where each node
represents the location of a cell in the field of view, and the arrows
show direction of causality.

After reconstructing the directed graph, we have calculated
the leader scores (number of outgoing edges) and follower scores
(number of incoming edges) for each cell. The leader/follower
scores distribute randomly in space (Fig. 1C), indicating the
absence of centralized organization. Indeed, we find the nodes
generally have very low authority and hub scores as measured by
Kleinberg centrality (29) (Fig. 1D), and the networks come with
small Estrada heterogeneity index (30, 31) (<0.1; ST Appendix,
section S2¢). Also, there are few closed loops in the networks
(~=4% of edges form loops; SI Appendix, section S2d), indicating
asuppression of feedthrough information relays, presumably by
cell—cell communication noises (32). These observations suggest
that cyclic external stimuli trigger information transfer between
communicating KTaR cells. Although heterogeneity among the
cells prevents fully synchronized responses, the cells are able to
self-organize into a decentralized causal network.

Having established methods to reconstruct the underlying
networks of cells performing collective chemosensing, we first
examine the evolution of the network structure over consecutive
cycles of ATP stimuli (see also S7 Appendix, section S3a). To this
end, we compute P, qq4, the rate (probability per cycle) of adding a
new edge; Pge;, the rate of deleting an existing edge; and Ppy,, the
rate of flipping the direction of an existing edge (Fig. 24). We find
~60% of edges are deleted from one stimulus cycle to the next,
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Fig. 2. Dynamic evolution of the multicellular networks driven by cyclic ATP
stimulation. (A) An example multicellular network rewires between two con-
secutive cycles. The cells are exposed to 50 M ATP at a period of 120 s. (/nsets)
Three types of rewiring events governed by their respective rates (probabilities
per cycle): removing an edge (Pg), adding a new edge (P,q4), and flipping the
direction of an existing edge (Py,). See also S/ Appendix, section S3f. (B) The
rates for removing, adding, and flipping an edge at various driving periods T.
Cyan indicates T = 20 s, magenta indicates T = 120 s, and yellow indicates
T = 200 s. For a given period, the rates do not depend on ATP concentration
(SI Appendix, section S3b). (C) Scatterplot showing the numbers of added (E,qq4)
and removed (E4) edges between consecutive cycles normalized by the total
number of nearest neighbors (E:). Here colors represent the driving period
as in B. Different symbols represent ATP concentration. Circle indicates 10 uM,
triangle indicates 50 uM, and upside-down triangle indicates 100 uM.

while a new edge would emerge from ~30% of the unconnected
neighbor cell pairs (Fig. 2B). Among existing edges, less than 10%
of them will flip direction in the next cycle, indicating a memory
effect that stabilizes the causal relation between cell pairs.

Although the values of {Pgaqd, Paei, Prip} do not depend
on the concentrations of ATP (SI Appendix, section S3b), nor
the local connectivity (S/ Appendix, section S3¢), we find that
at a period of 20 s all three rates are smaller compared with
larger periods (Fig. 2B). In all conditions, the network remains
approximately stationary as the number of new edges matches the
number of removed edges over consecutive cycles (Fig. 2C; see
also ST Appendix, section S3d). Taken together, these observations
show that cyclic ATP stimuli drive monolayers of KTaR cells into
networks that maintain their dynamic equilibrium.

Temporal Profiles of External Stimuli Controls Multicellular
Network Connectivity. After showing the multicellular network
to be stationary, we investigate whether the degree of network
connectivity depends on the spatial relations between cells. We
calculate the edge probability Peqge, which is defined as the
number of edges divided by the number of nearest neighbors.
In particular, we compare the edge probability of the original
networks (directly obtained from experiments) and ones obtained
by randomizing the original networks. The randomization is done
by shuffling the time series of 10% of the cells with another
10% cells in the same experiment: R; <=> R, where i # j are
randomly chosen pairs. The randomized data encode identical
driving signal to the original data. We find that for all experi-
ments, even a 10% partial randomization significantly dilutes the
edges (Fig. 34), and Pcg4e can be reduced by as much as 20%
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(Fig. 3 A, Inset). The result highlights the locality of cell—cell
interaction, which is consistent with gap junction—mediated in-
formation flow between nearby cells.

Having demonstrated that the short-range intercellular com-
munication is manifested by the edge probability, we now ex-
amine what aspects of the external signal control the network
connectivity. To this end we systematically vary the ATP concen-
tration [ATP] and period of stimuli T'. We find P4, increases
dramatically when the driving period increases from 20 to 120 s
and plateaus without further changing when the driving period
is further increased to 200 s (Fig. 3B). At long driving periods,
the edge probability falls in the range of 0.3 to 0.5, corresponding
to two to three edges per cell (on average, each cell has six nearest
neighbors). On the other hand, the network characteristics do not
depend on the ATP concentration over the physiological range of
10 to 100 uM (33) (Fig. 3 B, Inser).

To further compare the self-organized structure of multicellular
networks at varying driving signals, we compute the percolation
degree N = (k?)/(k). N is the average degree (i.e., total number
of edges to a node) of a node if the node is linked to another node.
When N > 2, the network is above the percolation threshold
and features large connected components (clusters). When N <
2, the network is below the percolation threshold and consists
of many small clusters (34). We find when the driving period
equals 20 s, the percolation degree is less than 2 (Fig. 3C). A
typical network in this case (Fig. 3 C, Top Right Inset) indeed
shows fractured topology where none of the clusters contain
more than 20% of the cells in the field of view. In contrast,
at larger driving period the percolation degree is greater than 2
(Fig. 3C) such that a typical network is dominated by a single
large cluster (Fig. 3 C, Bottom Right Inset). These results show
that there exists a time scale dependence of the external driving
signal that dictates the underlying information flow of collective
sensing. At a small driving period, KTaR cells form a loosely
connected, fractured network. Conversely at large driving periods,
highly connected and percolating networks emerge thanks to the
elevated information flow between cells. These two distinct types
of multicellular organization are induced by the temporal profiles
of the driving signal, rather than the concentration of the stimuli.

To understand the mechanisms by which temporal signals
drive the emergence of multicellular networks, we developed
a mathematical model of communicating excitable cells. Each
cell is modeled using a reduced form of the Hodgkin—Huxley
model (35), which is widely accepted to replicate neuronal
dynamics. Specifically, because the most probable experimental
nearest-neighbor number is six, we model cells on a six-neighbor
triangular lattice as in Fig. 44 (adding neighbor number variability
to the same degree as that observed in experiments does not
significantly affect our results; S/ Appendix, section S4). Within
each cell, two chemical species interact (Fig. 4A4), which is
the minimum needed for excitable dynamics (36): X, which
represents calcium abundance, and Y, which represents a slower
recovery variable. The following minimal reactions are chosen
to produce excitations: X activates both itself (37, 38) (Fig. 44,
first two reactions) and Y (third reaction), while Y represses X
(fourth reaction). Both X and Y degrade spontaneously (first
and fifth reactions), and X is exchanged between neighboring
cells to model the gap junction communication (sixth reaction).
Transforming the rate equations of this model into a standard
form (SI Appendix, section S4) makes clear that the dynamics are
specified by 1) a characteristic molecule number z., 2) a time
scale separation € between X and Y, and 3) an external field &
that tunes the system among four regimes: stable dynamics at low
molecule number, excitable dynamics, oscillatory dynamics, and
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Fig. 3. Multicellular network connectivity is regulated by the period of ATP stimulation. (A) The edge probability of original experimental data and the change
of edge probability AP,qe. after randomization. In a particular experiment the randomization is done by switching the calcium dynamics of 10% of randomly
selected cell pairs in the same field of view. (/Inset) Histogram of the relative change of edge probability after randomization. (B) The dependence of edge
probability with respect to driving period. (Inset) The dependence of edge probability with respect to ATP concentration. (C) The dependence of percolation
degree (k%) / (k) with respect to driving period. Here k represents the degree of the (undirected) network. (Top Inset) The dependence of percolation strength
with respect to ATP concentration. (Right Insets) Maps of clusters in two typical experiments (T = 20 s and T = 120 s). Nodes are colored by the size of clusters
they belong to. Here the normalized cluster size is defined as the ratio between the number of cells in the cluster to the total number of cells in the field of view.
See also S/ Appendix, section S3f. In B and C, colors of symbols represent the driving period. Cyan indicates T = 20 s, magenta indicates T = 120 s, and yellow
indicates T = 200 s. The types of symbols represent ATP concentration: circle indicates 10 uM, triangle indicates 50 uM, and upside-down triangle indicates
100 uM. Statistical comparisons are done with ANOVA. **P < 0.01, ***P < 0.001; n.s., not significant.

stable dynamics at high molecule number (Fig. 44). The standard
form is akin to the FitzHugh—Nagumo model (39, 40), which is a
reduced representation of more complex excitation models such as
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Fig. 4. Mathematical model of collective excitable dynamics. (A) Each cell in
a triangular lattice contains a calcium variable subject to positive and negative
feedback reactions (via a slower recovery variable) to enable excitations
and exchange reactions to enable nearest-neighbor communication. (B) An
excitable cell (cell 1, h > h¢) can induce a nonexcitable cell (cell 2, h > h¢)
to excite with a delay via cell-cell communication. (C) Fraction of nearest
neighbors with causal edges (edge probability) increases and saturates with
stimulus period in model. Here the presence of an edge is determined by
the delay between neighbors’ excitations (S/ Appendix, section S4). (D) Edge
probability decreases for small or large duty fraction (fraction of period for
which stimulus is on) in (Left) model and (Right) experiments. Experiments are
done with 50 uM ATP at a period of 120 s. In D and E, Left, error bars are SD
over 100 simulations of eight cycles.
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the Tang—Othmer (41) and Hodgkin—Huxley (35) models. Here
we focus on the transition between the stable low and excitable
regimes at h = h. and the effects of communication on this
transition.

Modeling ATP as setting the value of the field &, we find
that communication between an excitable cell (h > h.) and a
nonexcitable cell (A < h.) can induce an excitation in the nonex-
citable cell (Fig. 4B), albeit with a delay. Indeed, applying Granger
inference to stochastic simulations (42) of the model, we find
that the excitable cell “Granger-causes” the nonexcitable cell in
this case. For simplicity, in larger networks we take the peak
delay between neighboring cells as a proxy for the Granger metric
when determining edges, as we find that the two are correlated
in the simulations (S Appendix, section S4). We then investigate
networks of similar size to the experimental viewing window (we
find that network size does not significantly affect our results;
SI Appendix, section S4c). Field strengths h are drawn from a
normal distribution centered just above h., such that slightly more
than half of cells are excitable from the stimulus alone.

In these model networks we find that the edge probability
increases and then saturates with the driving period (Fig. 4C).
This finding is consistent with the experiments (Fig. 3B), which
validates the model. The intuitive reason is that when the driving
period is shorter than the excitation time scale, cells are still in
the recovery phase and cannot respond, which reduces causal
information. This intuition continues to hold if the on- and off-
times are not constant but instead drawn from an exponential
distribution (S/ Appendix, section S4d). This intuition also holds
when fixing the period but varying the duty fraction: if either the
on- or off-portion of the cycle is too brief, the edge probability
is reduced (Fig. 4 D, Leff). Varying the duty fraction in the
experiments, we see that this prediction is upheld (Fig. 4 D, Right),
in further support of the model.

External and Internal Time Scales Jointly Regulate the Structure
of Multicellular Information Networks. Having investigated the
relationship between the external driving and intracellular ex-
citation time scales, we now use the model to investigate the
effects of changing the strength of intercellular communication.
Upon varying the cell-cell coupling constant g over 4 decades,
we find that stronger communication leads to a higher fraction of
cells exhibiting an excitable response, > z. (Fig. 5A4). Evidently,
for sufficiently strong communication, all nonexcitable cells can

pnas.org


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202204119/-/DCSupplemental
https://doi.org/10.1073/pnas.2202204119

Downloaded from https://www.pnas.org by "OREGON STATE UNIVERSITY, LIBRARY SERIALS" on September 26, 2022 from IP address 128.193.152.8.

theory experiment
A normalized wavelet score
1
c
RS
©
o
&=
)]
£ o
= Z\; 1
05 =
ol o] £ 05
10~ 1072 10° 0 _
CX~ control KCI
D normalized cluster size
| — 1
0.7 T
N
&)
3
AL % ox
Q)
)
3
W)
0
10=* 1072 10° 0
coupling constant g cx- control KCI
Fig. 5. Collective sensory responses at varying levels of communication. (A)

Model prediction of the fraction of firing cells as the coupling constant g
changes over 4 decades. (B) The fraction of KTaR cells with NWS greater than
0.5 for three cases: cells are treated by 10 uM palmitoleic acid to inhibit gap
junction and exposed to 50uM ATP at a period of 120 s (CX™), untreated
cells are exposed to 50uM ATP at a period of 120 s (control), and cells are
exposed to 30 mM KCI at a period of 120 s (KCl). Error bars represent SD
from 500 bootstrap samples. (Top) The NWS values shown as heat maps.
Horizontal axis of the heat maps represents time, where the black dashed
lines indicate t = 2T = 240 s. NWS values of individual cells are stacked
vertically. See S/ Appendix, section S3 for more details. (C) Model prediction of
the edge probability as the coupling constant g changes over 4 decades. (D) Ex-
perimentally measured edge probability for the same conditions as in B. See
also S/ Appendix, section S3f. Statistical comparisons are done with ANOVA.
**P < 0.01, ***P < 0.001; n.s., not significant. N = 3. Error bars are SD.

be induced to excitation by communication alone. This result
is consistent with our previous report in fibroblast monolayers
that communication can augment the effects of external stim-
uli by modulating the bifurcation threshold of excitable cell
dynamics (12).

To test the model prediction, we devised methods to either
reduce or enhance intercellular communication experimentally
(SI Appendix, section S1). To reduce communication, we treat the
KTaR cells with 10 pM palmitoleic acid, a broad spectrum gap
junction inhibitor (43). To enhance communication, we replace
ATP with KCI as the external stimulus. KCI depolarizes the
KTaR cell membrane, triggering an action potential as well as
intracellular calcium responses (44). As a result, the cells couple
electrically through gap junctions, which is faster compared with
the diffusion-limited molecular exchange.

Unlike in the model where the criterion for excitation is self-
evident (x > z.), in the experiments the criterion must be defined
from the response itself. To this end, we define a normalized
wavelet score (NWS) to quantify the cellular dynamics in the
frequency domain using a time-resolved wavelet transformation
(SI Appendix, section S3). If the calcium dynamics of a cell per-
fectly follows the driving frequency, its NWS equals 1 at all times
(except for boundary effects that affect the beginning and end of
the time series). Otherwise, the NWS will fluctuate between 0 and
1 when irregular response occurs.

PNAS 2022 Vol. 119 No.37 e2202204119

We find that the NWS of cells treated with palmitoleic acid
(abbreviated as CX ™) show significantly stronger fluctuations
compared with untreated cells, whereas the NWS of cells stim-
ulated with KCI quickly reach and stay close to 1 (Fig. 5 B, 7op).
To compare with the model prediction, we calculate the fraction
of cells with an NWS greater than 0.5 at time point t =27 to
avoid boundary effects, where T is the driving period set to be
120 s. Consistent with the model, we find the fraction of cells
with NWS greater than 0.5 is highest for KCI excited cells and
lowest for gap junction—inhibited cells (Fig. 5 B, Boztom).

Interestingly, our model also predicts that the network connec-
tivity reaches a maximum at an optimal coupling constant g and
decreases in either direction from the optimal value (Fig. 5C).
The intuitive reason is that with weak communication, only the
inherently excitable cells are responding, such that causal edges do
not form with nonexcitable cells. Intermediate communication
induces nonexcitable cells to excite with a delay, introducing
new edges. Strong communication synchronizes cells, reducing
causality and removing edges.

Experiments confirm that the edge probabilities for gap
junction—inhibited monolayers and for KCl excited monolayers
are both lower than the untreated KTaR cells exposed to ATP
stimuli (Fig. 5D). Consistently, typical networks of untreated
cells show characteristics of percolation, while networks under
the other two conditions are evidently fractured (Fig. 5 D,
Inset). These observations suggest that under the control
condition the KTaR monolayers are posed close to the optimal
coupling strength for causal information flow. Inhibiting gap
junction curtails cell-cell communication, reducing network
connectivity, whereas accelerating cell-cell communication leads
to rapid synchronization between neighboring cells, also reducing
information flow. Together, our results demonstrate that the self-
organization of multicellular networks is modulated by the level
of cell-cell communication.

Discussion

A group of interacting cells encodes environmental information
in different forms than single cells do. Revealing the under-
lying principles of collective chemosensing is an essential step
to understanding the rules of life. Here we study the external
ATP-triggered calcium dynamics of neuronal cell monolayers.
We employ microfluidics to deliver alternate ATP solution and
pure growth medium to KTaR-1 cells, a neuronal cell line we
derived from KNDy neurons within the arcuate nucleus of an
adult female mouse. KTaR cells express connexin proteins in
vitro which constitute gap junction channels between adjacent
cells. Using Granger inference, we show that during each ATP—
growth medium cycle, there is asymmetric information flow be-
tween adjacent cells manifested as causal relations between their
intracellular calcium dynamics. As a result, the external stimuli
drive the neuronal cell monolayers to establish directed networks.
These networks display hierarchical structure where leader and
follower cells distribute spatially without any apparent centralized
organization (Fig. 1).

The information networks are highly dynamic from one cycle
of stimuli to the next, while the overall connectivity remains
stationary. For all conditions tested, most structural fluctuations
of the networks manifest as adding or removing edges, whereas
less than 10% of the edges flip directions over consecutive cy-
cles (Fig. 2B). This suggests that the network reconfiguration is
due to stochastic disappearance and reappearance of determin-
istic causal relationships that presumably arise from cell-to-cell
heterogeneity (45). The time evolution of the networks shows
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characteristics of detailed balance. For instance, the number of
edges remains approximately constant (Fig. 2C). The probability
flux in the cellular state space defined by the leader/follower
scores also vanishes (S Appendix, section S2). This is in contrast
to the nonequilibrium stationary states observed in other living
systems, especially in the macroscopic brain dynamics (46). It is
conceivable that higher-order organization in the brain leads to
the emergence of entropy production that is absent at the scale of
locally communicating neuronal cells.

Many neuronal systems demonstrate characteristics of learning
and reinforcement (47). In contrast, we find that under repeated
stimuli, gap junctions mediate a Markovian evolution of KTaR
networks that keeps the system stationary. This is expected as gap
junctions alone have rapid turnover time (48). It will be interesting
for future studies to elucidate the mechanisms by which neuronal
cells stabilize their information exchange dynamics.

We find that the edge probability of the multicellular network
primarily depends on the time scale and is impervious to the
magnitude of external stimuli (Fig. 3). Interestingly, both the
experiments and the theoretical model show that the effective
time scale of the external signal is determined by the lesser of
the on- and off-duty cycles (Fig. 4). It makes sense that short
on-times may be insufficient to trigger excitations (or sustain
neighbor-induced excitations), but this result implies that short
off-times are also insufficient to do so. This is likely a result of
the need for a postexcitation recovery time, which is a generic
property of excitable systems. Indeed, the minimal nature of the
model suggests that our findings on network responses to temporal
signals may be generalized to other multicellular excitable systems.

Our finding that an intermediate communication strength
maximizes causal connectivity (Fig. 5) has implications for in-
formation propagation in multicellular systems. A metaanaly-
sis which compares the coupling constant in the model and
effective diffusivity between cells further validates this idea
(SI Appendix, section S4e). In systems unlike ours, where a stim-
ulus is localized or the medium itself is spatially directed, one ex-
pects that causal information should increase indefinitely with the
communication strength between units. However, in systems like
ours, where neither the stimulus nor the medium break symmetry,
our results highlight an interesting regime where intermediate
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