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In brief

We quantitatively characterized the
process of mechanically stimulated
multicellular calcium synchronization. By
applying Granger causality and network
analysis to live movies, we revealed that
increased connectivity, heterogeneity,
and memory at the cellular scale
facilitated the emergence of
synchronization across a multicellular
network by gradual transition from local
to global information spread.
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SUMMARY

Multicellular synchronization is a ubiquitous phenomenon in living systems. However, how noisy and hetero-
geneous behaviors of individual cells are integrated across a population toward multicellular synchronization
is unclear. Here, we study the process of multicellular calcium synchronization of the endothelial cell mono-
layer in response to mechanical stimuli. We applied information theory to quantify the asymmetric informa-
tion transfer between pairs of cells and defined quantitative measures to how single cells receive or transmit
information within a multicellular network. Our analysis revealed that multicellular synchronization was estab-
lished by gradual enhancement of information spread from the single cell to the multicellular scale. Synchro-
nization was associated with heterogeneity in the cells’ communication properties, reinforcement of the cells’
state, and information flow. Altogether, we suggest a phenomenological model where cells gradually learn
their local environment, adjust, and reinforce their internal state to stabilize the multicellular network archi-

tecture to support information flow from local to global scales toward multicellular synchronization.

INTRODUCTION

Synchronized multicellular dynamics is the basis of many critical
physiological processes, such as the rhythmic beating of cardi-
omyocytes, planar cell polarity, and brain activities. The human
endothelium, for instance, consists of a staggering over one tril-
lion endothelial cells, which constantly monitor environmental
cues such as shear stress, in order to collectively regulate the
vasculature tone (Davies, 2009; Wolinsky, 1980). However, a
fundamental question remains elusive: how synchronization in
the group emerges from the interactions of individual cells,
each making stochastic decisions based on noisy cues from
their local environment?

A major challenge toward establishing multicellular synchroni-
zation lays at how single cells translate environment information
to intracellular signaling responses (Perkins and Swain, 2009).
Signaling in cells often rely on low copy numbers of proteins
(Huang et al., 2007) and diffusion limited intracellular transport
(Brangwynne et al., 2009). These effects, often considered
intrinsic noises, lead to variable single-cell signaling dynamics
even in response to identical external stimuli (Elowitz et al.,
2002; Swain et al., 2002). Cell-to-cell variation, or intercellular
heterogeneity, is present even for cells originating from the
same genetic background, also complicates our understanding
of multicellular synchronization processes. Such cell-to-cell vari-
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ation, or non-genetic intercellular heterogeneity, may arise from
differences in gene expression levels (also terms as extrinsic
noise), alternative splicing, as well as post-translation modifica-
tions (Bintu et al., 2016; Elowitz et al., 2002; Gut et al., 2018; Ng
et al., 2018; Raj and van Oudenaarden, 2008). Intercellular het-
erogeneity implies that individual cells take different states or
phenotypes, which may be related with intrinsic noises such as
by varying the copy number of receptors to modulate the prob-
ability of activation (Young et al., 2008). Intercellular heterogene-
ity also modulates the propensity of cells to interact with their
peers, as the communication between cells depends on special-
ized molecular channels such as gap junctions (Calderén and
Retamal, 2016; Nicholson and Bruzzone, 1997). However, it is
not known whether non-genetic intercellular heterogeneity can
play a constructive role in information transfer between cells in
multicellular systems. As such, we ask whether some cells within
a group function as leaders or followers, promoting the spread of
information through the group, whereas others act individually,
and whether such heterogeneity is important for the synchroni-
zation of multicellular dynamics.

Previously, we demonstrated that cell-cell communication
through gap junctions (Fujii et al., 2017) modulated ATP-induced
calcium signaling in monolayers of fibroblast cells (Sun et al.,
2012). Tuning the levels of intercellular communications, by vary-
ing cell densities, by inserting weakly communicating cells, and
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by pharmacologically inhibiting gap junctions, controlled the
temporal coordination of calcium signaling in neighboring cells
(Potteretal., 2016; Sun et al., 2012). Others have also highlighted
the role of local gap-junction-mediated cell-cell communication
in functional multicellular connectivity of neural progenitor cells
at the vascular interface (Lacar et al., 2011), in neural stem cell
reactivation in the blood-brain barrier (Spéder and Brand,
2014), in neural progenitors cell proliferation during embryonic
development (Malmersjo et al., 2013), and in coordinated fate
decisions (Ho et al., 2021).

To elucidate how information transfer between single cells is
integrated to synchronize population-level cellular responses,
we study the physiological process where monolayers of endo-
thelial cells collectively sense and respond to external shear
stress. Endothelial cells line the interior surface of blood vessels
and form a monolayer that experiences varying levels of shear
stress from blood flow (Hill et al., 2010; Yin et al., 2007). Upon
changing the flow rate (e.g., during acute wound), endothelial
cells detect the change in shear stress, inform other cells such
as smooth muscle cells, and adjust their internal signaling
accordingly. Central to the cascade of events, shear stress leads
to downstream ATP activation that modulates calcium signaling
at the subcellular scale (Faehling et al., 2002; Kohn et al., 1995;
Rubanyi and Vanhoutte, 1988). As a group, the endothelial cells
must coordinate their signaling dynamics to achieve a coherent
and collective response. Specifically, intercellular calcium levels
are synchronized via gap-junction-mediated cell-cell communi-
cation (Kumar and Gilula, 1996; Sun et al., 2012). Such synchro-
nized calcium signaling is instrumental in modulating reepitheli-
alization, angiogenesis, and extracellular matrix remodeling,
which are essential processes in wound repair (Aihara et al.,
2013; Eming et al.,, 2014; Handly and Wollman, 2017; Lee
et al., 2019; Shannon et al., 2017).

In this study, we developed an integrated experimental-
computational approach to quantitatively evaluate the roles
that single cells take during the emergence of multicellular syn-
chronization. Using this platform, we identified three key func-
tions whereby single cells contribute to collective information
processing that ultimately leads to multicellular synchronization.
Division of labor, where single cells take differentiated functional
roles in collective information processing; cell memory, where
single cells maintain and reinforce their specified functional roles
in cell-cell communication in response to repeated external
stimuli; and information flow, where the information gradually
propagates spatially from the scale of single cells to eventually
synchronize the collective.

RESULTS

Endothelial cells in a monolayer adapt their calcium
dynamics in response to external shear stress

We employed a microfluidics system that can precisely control
the temporal profile of the shear stress that the cells experience
(Figure 1A, top). We grew confluent monolayers of human
umbilical vascular endothelial cell (HUVEC) cells on the bottom
surface of the flow channels (Figure 1A, bottom). A computer in-
terfaced flow switch regulated input pressure to induce smooth
flow profiles in the microfluidic channel as verified by particle im-
age velocimetry (Figure 1B). The shear-stress-induced calcium
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signal of the HUVEC cells was imaged with the fluorescent cal-
cium indicator Calbryte-520 at single-cell resolution (Figure 1A,
inset; Video S1). We manually marked each cell center (Figure 1A,
inset), recorded the intracellular calcium signal as a time series of
fluorescent intensity for every cell, and verified that the magni-
tude of the cell’s calcium signal correlated with the magnitude
of the applied flow shear stress (Figure 1C; STAR Methods).
This setting enabled us to investigate the collective mechano-
sensing of HUVEC cells to fluid shear stresses, a scenario that
mimics the physiological function of the endothelium.

Upon exposing the cells to a step-like increase in shear stress
to 0.2 Pa, which is similar to those that an endothelial cell expe-
riences during acute bleeding (Albuquerque et al., 2000), the
variability in the cells’ temporal derivative of their calcium signal

(termed calcium dynamics, annotated ﬁ?(t); STAR Methods)
increased and then gradually reduced until the cells adapted to
the external stress and converged to a steady state (Figure 1D).

tmax R: ()

ftmax +400 o_ (t)
We defined the adaptation rate as 1 — (W , Where

Rj (tmax)

aFAm)(t) is the population-level standard deviation of single-cell

calcium dynamics I/?\,-(t) at time t, and tpa = argmaxagm(t) is
t i

the time of the peak variability in calcium dynamics (STAR
Methods; Figure 1E). The adaptation rate is a non-parametric
measurement for the speed that the multicellular system adapts
to the external stress. When a system rapidly synchronizes,
adaptation rate approaches one. Conversely, if a system main-
tains a large deviation between the dynamics of individual cells,
adaptation rate is close to zero. In general, higher adaptation rate
implies faster multicellular adaptation to the external stress (Fig-
ure 1E, black curve adapts faster than blue curve). The endothe-
lial monolayer adapted to increasing levels of shear stress
ranging from 0.1 to 1.6 Pa (Figures 1F and S1, parametric expo-
nential model), demonstrating the robustness of the multicellular
system in adaptation to varying physiological-relevant levels of
external mechanical stimuli (Charbonier et al., 2019). Altogether,
these results suggested that the cells gradually adapted despite
the vast variability in single-cell calcium response at the onset of
shear stress.

The interplay between information flow, heterogeneity,
and multicellular adaptation

We hypothesized that integrating and propagating information
from the local scale, between single cells, to the global scale
drove the adaptation of an inherently heterogeneous multicel-
lular system to external mechanical stimuli. To investigate this
hypothesis, we defined quantitative measures for cell-cell
communication. If two cells communicate, we expect the past
calcium dynamics of one cell to contain information regarding
the future calcium dynamics of the other cell. Defined in this
way, cell-cell communications can be bidirectional and asym-
metric—cell A can influence its neighbor B differently from how
cell B influences A (Figure 2A). To quantify asymmetric cell-cell
communication, we used Granger causality (Granger, 1969)
(GC), a classic statistical method from the field of information
theory to infer cause-effect relationships between cell pairs
from their fluctuating calcium dynamics. Granger causality
uses linear regression to quantify the extent to which the
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Figure 1. Collective calcium signaling of mechanosensing as a model to investigate the emergence of multicellular synchronization at the
single-cell resolution

(A) In a typical experiment, a monolayer of HUVEC was cultured in a microfluidic device where fluid flow applied shear stress on the cells. Top: schematics of the
setup. The input pressure that drives a laminar flow in the single-channel microfluidics is controlled by a computer interface. The pressure is regulated in real time
via a proportional-integral-derivative (PID) loop consisting of a pressure regulator and a flow sensor. Bottom: a monolayer of HUVEC loaded with the fluorescent
calcium indicator Calbryte-520 as a readout of the cellular response to flow shear stress. Scale bars, 50 um. Inset: manual annotation of single cells.

(B) Particle image velocimetry verified that the regulated input pressure produces a smooth flow profile in the microfluidics channel.

(C) Cells respond to step increase in the flow shear stress. Relative intensity is the relative change of the fluorescence intensity from the basal-cell level (STAR
Methods). Colored lines: individual cell calcium responses. Black line: mean response of over 400 cells in the field of view. Dashed horizontal lines indicate the
time interval of 0, 0.2, and 0.3 Pa shear stress, correspondingly.

(D) Multicellular calcium dynamics is synchronized over time in response to external mechanical stimuli. The flow shear stress is applied from the onset of imaging
(t = 0). The calcium dynamics of each cell was represented by the time-derivative of its relative fluorescent intensity. Black: mean calcium Ri(t) dynamics; green:
standard deviation. Top inset: mean (black) and standard deviation (green) of single-cell calcium-relative intensity (STAR Methods) over time. Bottom inset:
standard deviation of calcium dynamics over time.

(E) Depiction of the adaption rate measure overlayed on the plot of the standard deviation of calcium dynamics overtime. There are two solid lines; the black
represents faster adaptation compared with blue. Adaptation rate of the black/blue solid line is one minus the ratio between the area under the curve for 400 s (200
frames, purple/yellow + purple area), and the area of the rectangle whose height is set by the maximum variations of individual cell dynamics (yellow + orange +
purple area). See STAR Methods for full description.

(F) Multicellular adaption rate for increasing shear stress levels. Each observation represents a biological replica. n = 47 biological replicates: n =6 (0.1 Pa), n =13
(0.2 Pa),n=8(0.6 Pa), n=10 (1 Pa), and n = 10 (1.6 Pa).
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Figure 2. Correlating information flow, collective hectrogeneity, and local heterogeneity in single-cell information transfer and multicellular
adaptation

(A) Schematics of cell-cell communication. Generic estimation of the asymmetric mutual influence between a pair of cells from their fluctuating time series. The
influence of cell i on cell j is defined as the extent to which the past signal of cell i improves the prediction of cell j’s signal beyond the past signal of j alone and is
determined using the pairwise asymmetric Granger causality statistical test.

(B) Visualization of the spatial single-cell heterogeneity of the degree rank (in-degree + out-degree). The color scale is linear.

(C) Heterogeneity in degree rank distribution. The kernel density estimation (KDE) of the degree rank distributions of 10 null models that considered random
shuffling of GC edges while preserving the probability for an edge (green) versus the experimentally observed degree rank distribution (red). The raw distribution
(input to KDE) is shown in Figure S3A, with Rinku index ~29 versus ~25 for the observed and null model correspondingly.

(D) Example of collective (top) and local (bottom) heterogeneities for three different network structures. Networks are ordered from left-to-right according to their
heterogeneity levels measured with (Jacob et al., 2017) (collective) and (Estrada, 2010) (local). Graph (I) node degree ranks are (2, 2, 2, 2, 2, and 2): local het-
erogeneity = 0, and collective heterogeneity = 0. Graph (Il) node degree ranks are (1, 4, 2, 2, and 3): local heterogeneity = 0.38, collective heterogeneity = 1.
Graph (lll) node degree ranks are (1, 1, 1, 1, and 4): local heterogeneity = 1, collective heterogeneity = 0.59. See STAR Methods for full details.

(E) Pairwise associations between two heterogeneity measures (local heterogeneity, collective heterogeneity), adaptation rate, and GC edge probability. Edge
color represents the level of association, as quantified by the magnitude of correlation coefficients. Color scale is linear. Note that some edges reflect positive
correlations (e.g., collective heterogeneity — GC edge probability), whereas others reflect negative correlations (e.g., local heterogeneity —adaptation rate). n =23
biological replicates, across shear stress levels, that passed the stationarity criterion were considered to calculate correlations. See full data (with signed cor-
relations) in Figure S4.
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prediction of values in one time series can be improved by
including information from another time series. This provides
us with an established framework to extract feedback and
feedforward relations from pairwise variables’ fluctuating time
series.

To avoid spurious cause-effect relations, Granger causality re-
quires the time series being analyzed to be stationary, i.e., fluc-
tuating signals with a consistent mean and variability. Therefore,
we excluded experiments where less than 85% of the cells
passed two stationary tests (Kwiatkowski-Phillips-Schmidt-
Shin [Kwiatkowski et al., 1992] and Augmented Dickey-Fuller
[Cheung and Lai, 1995]; Figure S2A; STAR Methods), and in
the remaining experiments, we analyzed only the cells that
passed both stationary tests. When one cell’s calcium dynamics
significantly contributed to the accurate prediction of another
cell’s signal, we defined a directed GC edge from the first cell
to the other (STAR Methods). For every cell in the monolayer,
we calculated the degree rank as a measurement for the cell’s
involvement in influencing or being influenced by cells in its local
vicinity—cells with topological distance up to two (nearest
neighbor cells and next-to-nearest neighbor cells; STAR
Methods; Figures S2B and S2C). Cells took different roles in
the multicellular communication network as indicated by the
spatial heterogeneity in their degree ranks (Figure 2B), which
was higher than a null model that considered random shuffling
of GC edges (Figures 2C, S3A, and S3B; STAR Methods) and
was only associated very weakly with the number of cell neigh-
bors (Figure S2D).

To quantitatively explore the role of heterogeneity in the cells’
degree rank, we correlated four metrics that characterized adap-
tation, information flow, and collective and local heterogeneities
respectively. (1) The adaptation rate measures the dynamics of
the multicellular adaptation to external mechanical stimuli (Fig-
ure 1E). (2) The GC edge probability, or P(GC edge), is the
probability of a GC edge from all potential edges, a proxy for
the overall information flow within the multicellular network. (3)
The collective heterogeneity is a measurement for the variability
of the cells’ degree ranks (Jacob et al., 2017). The collective het-
erogeneity is calculated directly from the network’s degree dis-
tribution and provides a normalized measure that is independent
of the network’s topology and size (Figure S3B; see STAR
Methods for full details). For example, a network in which all
the nodes having the same degree is considered completely ho-
mogeneous, whereas a more complex network such as scale
free that has a degree distribution approximates as a power
law (Amaral et al., 2000) is considered a more heterogeneous
network (Figure 2D, top). (4) The local heterogeneity, or the Es-
trada index, measures the degrees differences between all pairs
of communicating cells capturing the heterogeneity in the local
network’s structure (Estrada, 2010) (see STAR Methods for full
details). The Estrada index is equal to zero for regular networks,
where all neighboring cells have the same degree, and equal to
one for star graphs (Figure 2D, bottom). The observed local
heterogeneity of all experiments spatially shuffled the cells’
neighbors while preserving the same degree rank (STAR
Methods), implying higher local homogeneity (Figure S3C).
Thus, in response to step-like increase in shear stress, the multi-
cellular network was characterized by collective heterogeneity
and local homogeneity.
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We pooled together the 23 experiments across the shear
stress range of 0.1-1.6 Pa and correlated the four measurements
(Table S1). Collective heterogeneity was correlated with the GC
edge probability, whereas the local heterogeneity was negatively
associated with the adaptation rate as well as with the GC edge
probability. The pairwise correlations are depicted in Figure 2E
and detailed in Figure S4. Cumulatively, our results suggest a
transition from local to global scales in the multicellular network
organization. Rapid adaptation is associated with local homoge-
neity but has a marginal correlation with the collective heteroge-
neity. Active information flow is associated with both collective
and local homogeneities in communication. The scale-depen-
dent dynamics suggest propagation and integration of informa-
tion from nearby cells into a decentralized network architecture,
a mechanism we further investigate.

Gap-junction-mediated multicellular synchronization to
periodic mechanical stimuli

After characterizing the communication networks exhibited by
endothelial cell monolayers to shear stress, we asked if the
network could be trained to adapt to time-dependent external
stimuli. To this end, we extended our assay to multiple rounds
of repeated mechanical stimuli (Video S2). By treating each
round as an independent cycle and comparing single-cell re-
sponses across cycles, we could focus on the evolution of syn-
chronization in the multicellular system (Figure 3A; STAR
Methods). We found that the HUVEC monolayer reinforced syn-
chronization as observed by the gradual decrease in the stan-
dard deviation of the cells’ calcium dynamics 5 (t) (Figure 3B).

To confirm the role of intercellular communication in multicellular
synchronization, we inhibited gap junctions or reduced cell den-
sity (STAR Methods). In both cases, the multicellular network
failed to effectively synchronize (Figures 3C, 3D, S5A, and S5B).
Synchronization coincided with a gradual increase of the infor-
mation flow, i.e., the cell’s mean GC edge probability (Figure 3E)
and with the collective heterogeneity (Figure 3F) in intercellular
communication. These relations were not measured upon gap-
junction inhibition and sparser cell seeding (Figures 3E, 3F, S5C,
S5D, and S6). We did not observe a clear pattern in the local homo-
geneity measure (Figure S7). These results, summarized in
Table S2, indicate that the multicellular network gradually synchro-
nizes to cycles of external mechanical stimuliin a local mechanism
that is consistent with gap-junction mediated communication.

Functional cell memory: Cells maintain their states in
the communication network and reinforce them

over time

To characterize the asymmetric communication roles that single
cells take during the multicellular synchronization, we calculated
for each cell the transmission score and the receiver score as
measures for being influential or influenced by cells in its local vi-
cinity (up to topological distance of two). We defined the trans-
mission score as the probability of outgoing GC edges and the
receiver score as the probability of ingoing GC edges (Figure 4A;
STAR Methods). The observed trend of improved synchroniza-
tion coincided with a gradual increase of the (population) mean
receiver and transmission scores over time (Figure 4B; Videos
S3 and S4).

Cell Systems 13, 711-723, September 21, 2022 715
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Figure 3. Information flow and collective heterogeneity are associated with multicellular synchronization to periodic mechanical stimuli. The
shear stress was applied from the onset of the experiment (t = 0)

(A) Depiction of the periodic mechanical stimuli experiment setup that included 13 cycles of continuous shear stress in 10 biological replicates (STAR Methods).
(B) Multicellular calcium dynamics is synchronized over time to periodic external mechanical stimuli. In total, there are 13 cycles. Black: mean calcium dynamics;
green: standard deviation; red dashed lines: shear stress onsets. Inset: standard deviation of calcium dynamics over time.

(C) Gap junctions are required for multicellular synchronization. The calcium dynamics fail to synchronize following gap-junction inhibition. Representative of two
experiments. Black: mean calcium dynamics; green: standard deviation; red dashed lines: shear stress onsets. Inset: standard deviation of calcium dynamics
over time.

(D) Multicellular calcium dynamics synchronized over time for control (red) (Pearson coefficient = —0.7067, p value < 0.007) but not for gap-junction inhibited
(cyan) monolayers (Pearson coefficient = 0.6442, p value < 0.0325).

(E) Information flow increased over time for control (red) (Pearson coefficient = 0.9054, p value < 0.0000207) but not for gap-junction inhibited (cyan) monolayer
(Pearson coefficient = —0.3726, p value < 0.25898).

(F) Collective heterogeneity increased over time for control (red) (Pearson coefficient = 0.8836, p value < 0.000062) but not for gap-junction inhibited (cyan)

monolayer (Pearson coefficient = —0.2376, p value < 0.4818).

We next asked to what extent the communication properties
of cells were intrinsic cellular properties. To this end, we corre-
lated single cells’ transmission and receiver scores across the
repeated mechanical stimulus cycles while testing the null hy-
pothesis that these scores were assigned randomly between
consecutive cycles. We found that single cells’ transmission
and receiver scores were strongly correlated between consecu-
tive stimulus cycles and that this correlation, which could not be
explained by the autonomous cells’ response to the external me-
chanical stimuli (Figure S9), gradually increased as cells under-
went additional stimulus cycles (Figures 4C and S8A). Measuring
single-cell correlation between larger temporal gaps of 2-4 cy-
cles did not show a dramatic diminishing pattern, suggesting

716 Cell Systems 13, 711-723, September 21, 2022

that the cellular memory is stable for timescales of at least
4-8 min, which is beyond the timescale required for the multicel-
lular system to recover (Figure S8B). These results suggest that
cells maintain and gradually reinforce memory regarding their
role in the multicellular communication network at the timescales
relevant for collective synchronization.

Stability in single-cell communication state and
increased information flow lead to enrichment of highly
communicating cells coinciding with the establishment
of synchronization

We next aimed to characterize how single-cell communication
properties and memory contribute to multicellular synchronization.
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(A) The transmission and the receiver scores were calculated as the probability for a significant outgoing (respectively, ingoing) Granger causality edge at to-
pological distance of up to two (nearest [yellow polygons] and next-to-nearest neighbor cells [green polygons]). For example, the red cell in the center has a total
of 15 neighbors, 5 in topological distance 1 (yellow) and 10 in topological distance 2 (green). The transmission score of the red cell is 3(outgoing edges)/15 and

receiver score is 3(ingoing edges)/15.

(B) The mean transmission and receiver scores increased over the cycles. Shown are the cells that are color coded according to their transmission (top, blue) and

receiver (bottom, red) scores. The color scale is linear.

(C) Cells transmission and receiver scores were correlated across consecutive cycles (solid lines), reinforced over time (Pearson coefficient = 0.7512, p < 0.0001),
and were a local cell property as validated with permutation analysis—shuffling the cells in the next cycle and calculating correlation (dashed line, see STAR
Methods). p value for the significance of the memory < 0.001 (except the first cycle: p value of transmission and receiver score 0.021 and 0.15 correspondingly,

and the third cycle’s transmission score p value of 0.017; Figure S8A).

First, we normalized the transmission and receiver scores across
the population and cycles by calculating the respective Z
score—the number of standard deviations away from the mean
(Figure 5A; STAR Methods). The normalized scores allowed com-
parison of cell communication properties across different cyclesin
the same experiment as well as between different experiments.
Next, we partitioned the normalized transmission-receiver space
into five regions and empirically assigned the cells to states ac-
cording to the region they occupied. Individual cells, whose cal-
cium dynamics were independent of cells in their local vicinity,
have normalized transmission and receiver scores both below
—0.5; common cells, with average communication properties;
leader cells, with high transmission scores (transmissionscore > 0.5
and receiver score < 0.5); follower cells, with high receiver score
(receiver score > 0.5 and transmission score < 0.5); and communi-
cation hub cells, characterized by both transmission and receiver
normalized scores above 0.5 (Figure 5A; STAR Methods). This
data-driven partitioning defined five distinct states that cells take
in terms of information transfer in the multicellular communication
network and enabled us to follow their evolution throughout the

synchronization process (Figures 5B and 5C; Videos S5 and S6).
The combined effect of the increasing information flow and cell
memory led to a gradual increase in the fraction of cells actively
participating in communication: followers, leaders, and communi-
cation hubs, along with decreased fraction of cells with reduced
level of communication: common and individual (Figure 5C).

To follow the dynamic trajectory of single cells between
communication states, we analyzed the probability of transition-
ing from one state to another in consecutive cycles. In particular,
we computed the enrichment factor—transition probabilities be-
tween any two states and normalized the quantity by the fully
random transition probabilities (STAR Methods; Figure S10). As
expected from our earlier observation of functional memory (Fig-
ure 4C), we found that cells tended to maintain their states or
“similar” states, as reflected by self-transition enrichment factors
above one (Figures 5D and S10). Generally, single cells followed a
temporal trajectory from the states characterized with less
communication capacity to states with increased communication
(Figure 5D; showing edges only for enrichment factors >1). We
also found symmetric transition folds between the follower and
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Figure 5. Cells’ communication states, state transitions, and enrichment of communication hubs

(A) Kernel density estimate plot visualization of the normalized transmission and receiver score over the cycles (blue gradient contours). Left: partitioning of the Z
score normalized transmission-receiver space to five regions (blue dashed lines); each cell (yellow dot) was assigned to a group or “state” (red text) according to
the region they resided at. Individual: transmission and receiver Z score < —0.5, common: transmission Z score in the range of (—0.5, 0.5) and receiver Z
score < 0.5 or receiver Z score in the range of (—0.5, —0.5) and transmission Z score < 0.5. Leader: transmission Z score > 0.5 and receiver Z score < 0.5. Follower:
receiver Z score > 0.5 and transmission Z score < 0.5. Hub: transmission and receiver Z score > 0.5.

(B) Visualizing the cells’ communication states over the cycles with color code.
(C) Fraction of cells at each communication state over the cycles.

(D) Enrichment factors of cellular-state transition. Depiction of the single-cell transitions between states that were enriched beyond the expected values of a null model.
The null model was based on the marginal distribution of the states (Figure S10; STAR Methods). Shown are edges with fold increase over 1 (linear color code).

leader states, and the transition from communication hub to the
follower/leader state was enriched compared to the opposite
transition to a communication hub (Figures 5D and S10).

We next focused our attention to the fraction of cells taking the
“communication hub” role. Low fraction of communication hubs
at the onset of the experiment rapidly increased to become a
frequent state in later cycles (Figure 5C), coinciding with the
gradual increase in information flow (Figure 4B). Moreover,
the communication hub state was found to be much more stable
than other states or transitions (2.4-fold dwell probability
compared with a fully random process), underpinning their rapid
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spread in the population (Figure 5C). Altogether, increased infor-
mation flow along with stable functional memory led to enrich-
ment of communication hubs that contribute to effective spread
of information in the multicellular network.

Information gradually propagates from the (local) single
cell to the (global) multicellular scale

Our data suggest that multicellular synchronization is associated
with various single-cell properties such as communication
state and memory. This led us to the hypothesis that the syn-
chronization process is driven by effectively propagating
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Figure 6. Gradual local to global transition in information spreading

(A) Main panel: the observed versus permuted Granger causality edge probability, P(GC edge), over the cycles. Upper left: the mean observed versus mean
permuted neighbor cross correlation over the cycles. For both panels, the red horizontal line is the experimental observation, whereas each blue dot is the result of
one of ten independent spatial cell permutations. Bottom right inset: experimental GC edge probability subtracted from the mean permuted GC edge probability
using the same data as in the main panel. Through cycles 0 to 12, Pearson coefficient = 0.94, p value < 0.0001.

(B) In the main panel, each dot represents the Pearson correlation between the topological distances of pairs of cells to the corresponding GC edge probability ina
given cycle. Through cycles 0-12, Pearson coefficient = 0.964, p value < 0.0001. *** p value < 0.0001, * p value < 0.05, for Pearson correlation significance test.
Insets show the P(GC edge) as a function of the topological distance between cell pairs for the first (bottom right) and last (top left) cycles. For this analysis, we
randomly selected for each cell at each topological distance at most ten neighboring cells due to computational cost and performed FDR multiple hypotheses

correction (see STAR Methods for full details).

information from the local scale (between single cells) to the
global (collective) scale. To test this hypothesis, we measured
to what extent local cell properties explained the information
flow in the multicellular network. First, we computed the neigh-
boring pair cross correlation coefficients for direct observations
and spatially permuted data. We found that the spatial permuta-
tion always decreased the cross correlation; therefore, cross
correlation was maintained as a local cell property throughout
the experiment even in the presence of common external stimuli
(Figure 6A, upper-left inset). Spatial permutation decreased the
GC edge probability in early cycles but increased the edge prob-
abilities in later cycles (Figure 6A, main panel and the lower-right
inset). These results indicate that once neighboring cells reach
sufficient synchronization, their ability to influence each other is
less effective than cell pairs far apart. We validated these obser-
vations more systematically by correlating the topological dis-
tance between pairs of cells to their GC edge probability
(STAR Methods). This analysis established that at the onset of
the experiment, the information flow is dominated by local cell-
cell interactions and is gradually transitioning to the global scale
as the multicellular network synchronizes (Figure 6B).

DISCUSSION

The emergence of robust multicellular behaviors from heteroge-
neous single-cell dynamics is a poorly understood but funda-

mentally important phenomenon in living systems (Zinner et al.,
2020). Here, we provide insights into bridging the scales be-
tween local cell-cell communication and global multicellular
synchronization. This was achieved by measuring asymmetric
information transfer at single-cell resolution in multicellular
monolayers under externally applied mechanical stimuli. By em-
ploying Granger causality to systematically quantify the commu-
nication of a cell with other cells in their local environment, we
defined for each cell its capacity to transmit and to receive infor-
mation in the multicellular communication network. Our method
relies on local pairwise analysis of cell dynamics and defines
single-cell communication properties without requiring explicit
construction of the network or committing to a specific network
architecture. This model-free data-driven approach can be
applied to a broad set of biological systems from synchronized
beating of cardiomyocytes (Nitsan et al., 2016), intercellular
communication through the microenvironment (Nahum et al.,
2022), brain activity (Seth et al., 2015), molecular signaling (Go-
glia et al., 2020), and coordinated cell migration (Malinverno
etal., 2017).

We showed that the cells were actively communicating with
one another locally and that physical cell-cell contacts via gap
junctions were required for multicellular synchronization. These
conclusions were supported by multiple lines of evidence
throughout our study. First, we reported that gap junctions and
sufficient cell confluence were required for multicellular
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synchronization (Figure 3B versus Figures 3C or S5; Table S2).
Second, we demonstrated that both local and collective hetero-
geneities depended on the spatial organization of cells in their vi-
cinity (Figure S3). Third, we found that the activation time, a cell’'s
autonomous response to the external stress, was not associated
with the transmission or receiver score (Figure S9A), which
would also be conflicting with the gradual increase fraction of
communication hubs (which are both leaders and followers).
Forth, cells “remembered” and reinforced their roles in the multi-
cellular communication network over time, as a local, spatially
dependent property (Figures 4C and S8) but did not “remember”
their activation time in previous cycles (Figure S9B). Fifth,
neighbor pair cross correlation was a local cell property
throughout the experiment (Figure 6A). Together, our data estab-
lished the decoupling of the local cell-cell communication from
the external stimuli and established that the emergence of multi-
cellular synchronization required gap-junction-mediated local
cell-cell communication.

Our data reveal that single cells take different roles in cell-cell
communication (“division of labor”), which we defined as
communication states in the context of collective mechanosens-
ing. Cells gradually reinforce their state (“functional cell mem-
ory”) and increase the connectivity (“information flow”) in the
multicellular network. These three mechanisms work in concert
to facilitate the emergence of multicellular synchronization. Our
results suggest that although cell heterogeneity expands the dy-
namic range of mechanoresponses, functional memory stabilizes
the dynamics against intrinsic and extrinsic noise and that infor-
mation flow sustains and reinforces the multicellular dynamics.

We found that heterogeneity in cells’ communication proper-
ties were associated with improved convergence to synchroni-
zation (Figures 2E and 3F). We also observed that the fractions
of cells at each functional state, excluding individuals, became
more balanced through periodic cycles (Figure 5C), in agreement
with our conclusion that heterogeneity constructively contrib-
utes to the synchronization of a noisy multicellular system.
Heterogeneity among cells could arise from stochastic gene
expression levels, signaling kinetics, physiological states such
as cell cycle, and/or microenvironmental cues (Cheng et al.,
2015; Gut et al., 2018; Gut et al., 2015; Hasenauer et al., 2011;
Muldoon et al., 2020; Paszek et al., 2010; Tay et al., 2010).
Although our data do not exclude a particular source of hetero-
geneity, the alteration of cellular communication state at a short
timescale (~10 min) suggests pathway kinetics, such as the
cross-talk between gap junction and mechanotransduction,
may be important factors to determine both local and global
heterogeneities.

Previous studies have reported multiple sources of microenvi-
ronment-dependent cell memory. For instance, cells can
remember past mechanical properties of their substrate, which
influence their differentiation (Yang et al., 2014). Cells can also
sense changes in their extracellular signal by remembering
past extracellular stimulation via a receptor-mediated mecha-
nism (Lyashenko et al., 2020), and past growth-promoting stimuli
can affect cells’ future signaling responses (Spinosa et al., 2019).
In the context of collective cell migration, a recent study showed
that cells remembered their polarized state independently of
cell-cell junctions (Jain et al., 2020), and another study revealed
associative memory of electric field and chemoattractant at
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stimuli in a unicellular organism migration patterns (De la Fuente
et al., 2019). In our study, single-cell memory of communication
properties contributes to the temporal evolution of the multicel-
lular network to its synchronized state. The dissociation between
a cell’s activation time and its functional role in information pro-
cessing underpins the dynamic nature of memory, which is also
consistent with the unidirectional evolution of the multicellular
network (Figures 5 and 6). Although further investigations are
required to reveal the molecular mechanisms of the cellular
memory, we suspect that slow gap-junction turnover, as well
as the cyclic perturbations that kept calcium dynamics from fully
relaxation, may contribute to the reinforced functional role
of cells.

Our study reveals a self-organized multicellular network that
supports information flow from local to global scales. Such
information may be carried by two main signaling mechanisms,
juxtacrine (contact-dependent) and autocrine (secreted-depen-
dent) (Fancher and Mugler, 2017). A juxtacrine channel allows
a cell to establish conversation with its (physically touching)
immediate neighbors without interference from extracellular
space. For HUVEC cells, such communication can be realized
by gap junctions (Okamoto et al., 2017). On the other hand, an
autocrine channel allows a cell to broadcast its information
through diffusive messengers in the extracellular space. For
HUVEC cells, stress-triggered ATP release and ATP-induced
calcium dynamics constitute an autocrine pathway (Yamamoto
et al., 2011). Although both mechanisms could contribute to
the information flow within the multicellular network, we suggest
gap-junction and contact-dependent signaling as the dominant
mechanism (Figure 3B versus Figures 3C or S5). Although a
recent study suggested that positive feedback of a diffusive
signaling mechanism can drive accelerated, long-range informa-
tion transmission (Dieterle et al., 2019), the external flow in our
system is likely to rapidly dilute the diffusive messenger (Gregor
etal., 2010). The contact-dependent information flow hypothesis
is also supported by our previous studies where we demon-
strated that blocking gap junctions or inserting weakly commu-
nicating cells impaired the information flow (Potter et al., 2016;
Sun et al., 2012).

Altogether, our results suggest the following phenomenolog-
ical model for multicellular synchronization. Cells are gradually
“learning” the local network structure around them (heterogene-
ity), adjusting their internal state, reinforcing it (memory), and
thus stabilizing the network architecture. This stabilized network
structure reduces conflicting communication interferences and
thus promotes enhanced spread of information from the local
to the global scale to eventually synchronize the group.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
® RESOURCE AVAILABILITY
O Lead contact
O Materials availability
O Data and code availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS



Cell Systems

O Cell culture
e METHOD DETAILS
Microfluidics
Applying controlled shear stress on the cells
Live cell imaging
Measuring single cell calcium signaling
Measuring adaptation rate in “step” experiments
Measuring multicellular calcium adaption using a para-
metric exponential model
Measuring synchronization in “cycle” experiments
Granger causality
Stationarity test
Pairwise calibration of the lag order
Granger causality statistical test
Measuring collective heterogeneity
Measuring local heterogeneity
Calculating the transmission and receiver scores
Partitioning the normalized transmission-
receiver space
Measuring information flow
Enrichment factor of cellular state transitions
Measuring cell memory
Activation Time
Correlating the topological distance between pairs of
cells to their GC-edge probability
Data

o

OO0OO0OO0OO0OO0OO0OO0O0 O O0OO0O0O0

0 O O0OO0O0

O

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
cels.2022.07.002.

ACKNOWLEDGMENTS

This work was supported by the Israeli Council for Higher Education (CHE) via
Data Science Research Center, Ben-Gurion University of the Negev, Israel (to
A. Zaritsky), by the Wellcome Leap Delta Tissue program (to A. Zaritsky), and
by the National Institute of General Medical Sciences grant R35GM138179 (to
B.S.). G.L. is supported by National Science Foundation grant PHY-1844627.
Part of this research was conducted at the Northwest Nanotechnology Infra-
structure, a National Nanotechnology Coordinated Infrastructure site at Ore-
gon State University that is supported in part by the National Science Founda-
tion (grant NNCI-1542101) and Oregon State University. We thank Kevin Dean
for critically reading the manuscript. A record of this paper’s transparent peer
review process is included in the supplemental information.

AUTHOR CONTRIBUTIONS

A. Zaritsky and B.S. conceived the study. G.L. and K.C. designed the experi-
mental assay and performed all experiments. A. Zamir developed analytic
tools, analyzed, and interpreted the data. A. Zamir, B.S., and A. Zaritsky
drafted the manuscript. B.S. and A. Zaritsky mentored the authors. All the au-
thors wrote and edited the manuscript and approved its content.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests.

Received: October 2, 2020
Revised: January 14, 2021
Accepted: July 7, 2022

Published: August 2, 2022

¢? CellPress

OPEN ACCESS

REFERENCES

Aihara, E., Hentz, C.L., Korman, A.M., Perry, N.P.J., Prasad, V., Shull, G.E.,
and Montrose, M.H. (2013). In vivo epithelial wound repair requires mobiliza-
tion of endogenous intracellular and extracellular calcium. J. Biol. Chem.
288, 33585-33597.

Akaike, H. (1970). Statistical predictor identification. Ann. Inst. Stat. Math. 22,
203-217.

Akaike, H. (1973). Information theory and an extension of the maximum likeli-
hood principle. In Proceedings of the 2nd International Symposium on
Information, bn petrow (f. Czaki (Akadémiai Kiado)).

Albuquerque, M.L., Waters, C.M., Savla, U., Schnaper, H.W., and Flozak, A.S.
(2000). Shear stress enhances human endothelial cell wound closure in vitro.
Am. J. Physiol. Heart Circ. Physiol. 279, H293-H302.

Amaral, L.A., Scala, A., Barthelemy, M., and Stanley, H.E. (2000). Classes of
small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149-11152.

Barrett, A.B., Barnett, L., and Seth, A.K. (2010). Multivariate Granger causality
and generalized variance. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 817,
041907.

Bintu, L., Yong, J., Antebi, Y.E., McCue, K., Kazuki, Y., Uno, N., Oshimura, M.,
and Elowitz, M.B. (2016). Dynamics of epigenetic regulation at the single-cell
level. Science 351, 720-724.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita.
Pubbl. R Ist. Super. Sci. Econ. Commericiali Firenze 8, 3-62.

Brangwynne, C.P., Koenderink, G.H., MacKintosh, F.C., and Weitz, D.A.
(2009). Intracellular transport by active diffusion. Trends Cell Biol 19, 423-427.

Calderdn, J.F., and Retamal, M.A. (2016). Regulation of connexins expression
levels by microRNAs, an update. Front. Physiol. 7, 558.

Charbonier, F.W., Zamani, M., and Huang, N.F. (2019). Endothelial cell mecha-
notransduction in the dynamic vascular environment. Adv. Biosyst. 3,
€1800252.

Cheng, Z., Taylor, B., Ourthiague, D.R., and Hoffmann, A. (2015). Distinct sin-
gle-cell signaling characteristics are conferred by the MyD88 and TRIF path-
ways during TLR4 activation. Sci. Signal. 8, ra69.

Cheung, Y.-W., and Lai, K.S. (1995). Lag order and critical values of the
Augmented Dickey-Fuller test. J. Bus. Econ. Stat. 13, 277-280.

Davies, P.F. (2009). Hemodynamic shear stress and the endothelium in cardio-
vascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16-26.

De la Fuente, I.M., Bringas, C., Malaina, I., Fedetz, M., Carrasco-Pujante, J.,
Morales, M., Knafo, S., Martinez, L., Pérez-Samartin, A., Lépez, J.l., et al.
(2019). Evidence of conditioned behavior in amoebae. Nat. Commun.
10, 3690.

Dieterle, P., Min, J., Irimia, D., and Amir, A. (2019). Dynamics of diffusive cell
signaling relays. bioRxiv. https://doi.org/10.1101/2019.12.27.887273.
Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic
gene expression in a single cell. Science 297, 1183-1186.

Eming, S.A., Martin, P., and Tomic-Canic, M. (2014). Wound repair and regen-
eration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6.
Estrada, E. (2010). Quantifying network heterogeneity. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 82, 066102.

Faehling, M., Kroll, J., Féhr, K.J., Fellbrich, G., Mayr, U., Trischler, G., and
Waltenberger, J. (2002). Essential role of calcium in vascular endothelial
growth factor A-induced signaling: mechanism of the antiangiogenic effect
of carboxyamidotriazole. FASEB J 16, 1805-1807.

Fancher, S., and Mugler, A. (2017). Fundamental limits to collective concentra-
tion sensing in cell populations. Phys. Rev. Lett. 778, 078101.

Fujii, Y., Maekawa, S., and Morita, M. (2017). Astrocyte calcium waves prop-
agate proximally by gap junction and distally by extracellular diffusion of
ATP released from volume-regulated anion channels. Sci. Rep. 7, 13115.
Goglia, A.G., Wilson, M.Z., Jena, S.G., Silbert, J., Basta, L.P., Devenport, D.,
and Toettcher, J.E. (2020). A live-cell screen for altered Erk dynamics reveals
principles of proliferative control. Cell Syst 70, 240-253.e6.

Cell Systems 13, 711-723, September 21, 2022 721



https://doi.org/10.1016/j.cels.2022.07.002
https://doi.org/10.1016/j.cels.2022.07.002
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref1
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref1
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref1
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref1
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref2
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref2
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref3
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref3
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref3
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref4
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref4
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref4
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref5
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref5
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref6
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref6
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref6
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref7
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref7
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref7
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref8
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref8
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref9
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref9
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref10
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref10
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref11
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref11
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref11
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref12
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref12
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref12
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref13
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref13
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref14
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref14
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref15
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref15
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref15
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref15
https://doi.org/10.1101/2019.12.27.887273
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref17
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref17
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref18
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref18
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref19
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref19
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref20
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref20
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref20
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref20
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref21
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref21
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref22
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref22
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref22
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref23
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref23
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref23

¢? CellPress

OPEN ACCESS

Granger, C.W.J. (1969). Investigating causal relations by econometric models
and cross-spectral methods. Econometrica 37, 424-438.

Gregor, T., Fujimoto, K., Masaki, N., and Sawai, S. (2010). The onset of collec-
tive behavior in social amoebae. Science 328, 1021-1025.

Gut, G., Herrmann, M.D., and Pelkmans, L. (2018). Multiplexed protein maps
link subcellular organization to cellular states. Science 367, eaar7042.

Gut, G., Tadmor, M.D., Pe’er, D., Pelkmans, L., and Liberali, P. (2015).
Trajectories of cell-cycle progression from fixed cell populations. Nat.
Methods 12, 951-954.

Gutman, I., Furtula, B., and Katani¢, V. (2018). Randi¢ index and information.
AKCE Int. J. Graphs Comb. 15, 307-312.

Hampel, F.R. (1974). The influence curve and its role in robust estimation.
J. Am. Stat. Assoc. 69, 383-393.

Handly, L.N., and Wollman, R. (2017). Wound-induced Ca2+ wave propagates
through a simple release and diffusion mechanism. Mol. Biol. Cell 28,
1457-1466.

Hannan, E.J., and Quinn, B.G. (1979). The determination of the order of an au-
toregression. J. R. Stat. Soc. B Methodol. 47, 190-195.

Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., and
Allgéwer, F. (2011). Identification of models of heterogeneous cell populations
from population snapshot data. BMC Bioinformatics 72, 125.

Hill, L.M., Gavala, M.L., Lenertz, L.Y., and Bertics, P.J. (2010). Extracellular
ATP may contribute to tissue repair by rapidly stimulating purinergic receptor
X7-dependent vascular endothelial growth factor release from primary human
monocytes. J. Immunol. 785, 3028-3034.

Ho, K.Y.L., Khadilkar, R.J., Carr, R.L., and Tanentzapf, G. (2021). A gap-junc-
tion-mediated, calcium-signaling network controls blood progenitor fate deci-
sions in hematopoiesis. Curr. Biol. 37, 4697-4712.e6.

Huang, B., Wu, H., Bhaya, D., Grossman, A., Granier, S., Kobilka, B.K., and
Zare, R.N. (2007). Counting low-copy number proteins in a single cell.
Science 315, 81-84.

Jacob, R., Harikrishnan, K.P., Misra, R., and Ambika, G. (2017). Measure for
degree heterogeneity in complex networks and its application to recurrence
network analysis. R. Soc. Open Sci. 4, 160757.

Jain, S., Cachoux, V.M.L., Narayana, G.H.N.S., de Beco, S., D’Alessandro, J.,
Cellerin, V., Chen, T., Heuzé, M.L., Marcq, P., Mege, R.M., et al. (2020). The
role of single cell mechanical behavior and polarity in driving collective cell
migration. Nat. Phys. 76, 802-809.

Kohn, E.C., Alessandro, R., Spoonster, J., Wersto, R.P., and Liotta, L.A. (1995).
Angiogenesis: role of calcium-mediated signal transduction. Proc. Natl. Acad.
Sci. USA 92, 1307-1311.

Kumar, N.M., and Gilula, N.B. (1996). The gap junction communication chan-
nel. Cell 84, 381-388.

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., and Shin, Y. (1992). Testing the
null hypothesis of stationarity against the alternative of a unit root: how sure are
we that economic time series have a unit root? J. Econ. 54, 159-178.

Lacar, B., Young, S.Z., Platel, J.C., and Bordey, A. (2011). Gap junction-medi-
ated calcium waves define communication networks among murine postnatal
neural progenitor cells. Eur. J. Neurosci. 34, 1895-1905.

Lee, Y., Kim, M.T., Rhodes, G., Sack, K., Son, S.J., Rich, C.B., Kolachalama,
V.B., Gabel, C.V., and Trinkaus-Randall, V. (2019). Sustained Ca®* mobiliza-
tions: a quantitative approach to predict their importance in cell-cell commu-
nication and wound healing. PLoS ONE 74, e0213422.

Levenberg, K. (1944). A method for the solution of certain non-linear problems
in least squares. Q. Appl. Math. 2, 164-168.

Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis
(Springer Science and Business Media).

Lyashenko, E., Niepel, M., Dixit, P.D., Lim, S.K., Sorger, P.K., and Vitkup, D.
(2020). Receptor-based mechanism of relative sensing and cell memory in
mammalian signaling networks. eLife 9, e50342.

Malinverno, C., Corallino, S., Giavazzi, F., Bergert, M., Li, Q., Leoni, M.,
Disanza, A., Frittoli, E., Oldani, A., Martini, E., et al. (2017). Endocytic reawak-
ening of motility in jammed epithelia. Nat. Mater. 76, 587-596.

722 Cell Systems 13, 711-723, September 21, 2022

Cell Systems

Malmersjo, S., Rebellato, P., Smedler, E., Planert, H., Kanatani, S., Liste, I.,
Nanou, E., Sunner, H., Abdelhady, S., Zhang, S., et al. (2013). Neural progen-
itors organize in small-world networks to promote cell proliferation. Proc. Natl.
Acad. Sci. USA 110, E1524-E1532.

Muldoon, J.J., Chuang, Y., Bagheri, N., and Leonard, J.N. (2020).
Macrophages employ quorum licensing to regulate collective activation. Nat.
Commun. 711, 878.

Nahum, A., Koren, Y., Ergaz, B., Natan, S., Goren, S., Kolel, A., Jagadeeshan,
S., Elkabets, M., Lesman, A., and Zaritsky, A. (2022). Inference of long-range
cell-cell mechanical communication from ECM remodeling fluctuations.
Preprint at bioRxiv. https://doi.org/10.1101/2020.07.30.223149.

Ng, K.K., Yui, M.A., Mehta, A,, Siu, S., Irwin, B., Pease, S., Hirose, S., Elowitz,
M.B., Rothenberg, E.V., and Kueh, H.Y. (2018). A stochastic epigenetic switch
controls the dynamics of T-cell lineage commitment. Elife 7, 318675.

Nicholson, S.M., and Bruzzone, R. (1997). Gap junctions: getting the message
through. Curr. Biol. 7, R340-R344.

Nitsan, I., Drori, S., Lewis, Y.E., Cohen, S., and Tzlil, S. (2016). Mechanical
communication in cardiac cell synchronized beating. Nat. Phys. 12, 472-477.

Okamoto, T., Kawamoto, E., Takagi, Y., Akita, N., Hayashi, T., Park, E.J.,
Suzuki, K., and Shimaoka, M. (2017). Gap junction-mediated regulation of
endothelial cellular stiffness. Sci. Rep. 7, 6134.

Paszek, P., Ryan, S., Ashall, L., Sillitoe, K., Harper, C.V., Spiller, D.G., Rand,
D.A., and White, M.R. (2010). Population robustness arising from cellular het-
erogeneity. Proc. Natl. Acad. Sci. USA 107, 11644-11649.

Perkins, T.J., and Swain, P.S. (2009). Strategies for cellular decision-making.
Mol. Syst. Biol. 5, 326.

Potter, G.D., Byrd, T.A., Mugler, A., and Sun, B. (2016). Communication
shapes sensory response in multicellular networks. Proc. Natl. Acad. Sci.
USA 113, 10334-10339.

Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochas-
tic gene expression and its consequences. Cell 135, 216-226.

Ray, J., Pinar, A., and Seshadhri, C. (2015). A stopping criterion for Markov
chains when generating independent random graphs. J. Complex Netw. 3,
204-220.

Rubanyi, G.M., and Vanhoutte, P.M. (1988). Calcium and activation of the
release of endothelium-derived relaxing factor. Ann. N. Y. Acad. Sci. 522,
226-233.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6,
461-464.

Scott, D.W. (2015). Multivariate Density Estimation: Theory, Practice, and
Visualization (John Wiley & Sons).

Seth, A.K., Barrett, A.B., and Barnett, L. (2015). Granger causality analysis in
neuroscience and neuroimaging. J. Neurosci. 35, 3293-3297.

Shannon, E.K., Stevens, A., Edrington, W., Zhao, Y., Jayasinghe, A.K., Page-
McCaw, A., and Hutson, M.S. (2017). Multiple mechanisms drive calcium
signal dynamics around laser-induced epithelial wounds. Biophys. J. 7113,
1623-1635.

Spéder, P., and Brand, A.H. (2014). Gap junction proteins in the blood-brain
barrier control nutrient-dependent reactivation of Drosophila neural stem cells.
Dev. Cell 30, 309-321.

Spinosa, P.C., Humphries, B.A., Lewin Mejia, D., Buschhaus, J.M., Linderman,
J.J., Luker, G.D., and Luker, K.E. (2019). Short-term cellular memory tunes the
signaling responses of the chemokine receptor CXCR4. Sci. Signal. 12,
eaaw4204.

Sun, B., Duclos, G., and Stone, H.A. (2013). Network characteristics of collec-
tive chemosensing. Phys. Rev. Lett. 770, 158103.

Sun, B., Lembong, J., Normand, V., Rogers, M., and Stone, H.A. (2012).
Spatial-temporal dynamics of collective chemosensing. Proc. Natl. Acad.
Sci. USA 109, 7753-7758.

Swain, P.S., Elowitz, M.B., and Siggia, E.D. (2002). Intrinsic and extrinsic con-
tributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99,
12795-12800.


http://refhub.elsevier.com/S2405-4712(22)00292-7/sref24
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref24
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref25
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref25
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref26
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref26
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref27
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref27
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref27
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref28
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref28
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref28
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref28
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref29
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref29
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref30
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref30
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref30
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref31
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref31
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref32
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref32
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref32
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref33
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref33
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref33
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref33
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref34
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref34
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref34
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref35
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref35
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref35
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref36
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref36
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref36
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref37
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref37
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref37
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref37
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref38
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref38
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref38
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref39
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref39
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref40
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref40
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref40
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref41
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref41
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref41
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref42
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref42
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref42
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref42
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref42
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref43
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref43
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref44
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref44
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref44
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref45
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref45
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref45
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref46
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref46
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref46
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref47
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref47
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref47
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref47
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref48
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref48
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref48
https://doi.org/10.1101/2020.07.30.223149
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref50
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref50
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref50
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref51
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref51
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref52
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref52
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref53
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref53
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref53
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref54
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref54
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref54
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref55
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref55
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref55
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref56
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref56
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref56
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref57
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref57
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref58
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref58
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref58
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref59
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref59
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref59
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref60
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref60
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref61
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref61
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref62
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref62
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref63
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref63
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref63
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref63
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref64
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref64
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref64
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref65
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref65
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref65
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref65
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref66
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref66
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref67
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref67
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref67
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref68
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref68
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref68

Cell Systems

Tay, S., Hughey, J.J., Lee, T.K., Lipniacki, T., Quake, S.R., and Covert, M.W.
(2010). Single-cell NF-kB dynamics reveal digital activation and analogue in-
formation processing. Nature 466, 267-271.

Wolinsky, H. (1980). A proposal linking clearance of circulating lipoproteins to
tissue metabolic activity as a basis for understanding atherogenesis. Circ. Res.
47, 301-311.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach
(Nelson Education).

Yamamoto, K., Furuya, K., Nakamura, M., Kobatake, E., Sokabe, M., and
Ando, J. (2011). Visualization of flow-induced ATP release and triggering of
Ca®" waves at caveolae in vascular endothelial cells. J. Cell Sci. 124,
3477-3483.

¢? CellPress

OPEN ACCESS

Yang, C., Tibbitt, M.W., Basta, L., and Anseth, K.S. (2014). Mechanical mem-
ory and dosing influence stem cell fate. Nat. Mater. 13, 645-652.

Yin, J., Xu, K., Zhang, J., Kumar, A., and Yu, F.S. (2007). Wound-induced ATP
release and EGF receptor activation in epithelial cells. J. Cell Sci. 120,
815-825.

Young, J.M., Endicott, R.M., Parghi, S.S., Walker, M., Kidd, J.M., and Trask,
B.J. (2008). Extensive copy-number variation of the human olfactory receptor
gene family. Am. J. Hum. Genet. 83, 228-242.

Zinner, M., Lukonin, I., and Liberali, P. (2020). Design principles of tissue orga-
nisation: how single cells coordinate across scales. Curr. Opin. Cell Biol.
67, 37-45.

Cell Systems 13, 711-723, September 21, 2022 723



http://refhub.elsevier.com/S2405-4712(22)00292-7/sref69
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref69
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref69
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref70
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref70
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref70
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref71
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref71
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref72
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref72
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref72
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref72
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref72
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref73
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref73
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref74
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref74
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref74
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref75
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref75
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref75
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref76
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref76
http://refhub.elsevier.com/S2405-4712(22)00292-7/sref76

¢? CellPress

OPEN ACCESS

Cell Systems

STARXMETHODS

KEY RESOURCES TABLE
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Chemicals, peptides, and recombinant proteins

TrypLE Select Life Technologies Cat#12604021
Palmitoleic acid Sigma-Aldrich Cat#76169
Dimethyl sulfoxide >99.9% USP, VWR Cat#BDH1115-4LP

Multi-Compendial, J.T. Baker®

Krayden Dow Sylgard 184 Silicone
Elastometer Kit (1.11b)

Fisher scientific

Cat#NC9285739

EGMTM-2 Endothelial Cell Growth Lonza Cat#CC-3162

Medium-2 BulletKit

ReagentPackTM Subculture Reagents, 100 mL Lonza Cat#CC-5034

Deposited data

Raw and analyzed data This work https://doi.org/10.5281/zenodo.6568945

Raw data of gap-junction inhibition experiments This work https://doi.org/10.6084/m9.figshare.19807399
Raw data of step function This work https://doi.org/10.6084/m9.figshare.19807864.v1
Raw data of step function This work https://doi.org/10.6084/m9.figshare.19807870.v1
Raw data of cyclic pressure This work https://doi.org/10.6084/m9.figshare.19807873.v2
Experimental models: Cell lines

HUVEC - Human Umbilical Vein Endothelial Lonza Cat#C2517A

Cells, Single Donor, in EGM™-2

Software and algorithms

Source code and test data This work https://doi.org/10.5281/zenodo.6589859

Other

Fluorescent calcium dye, Calbryte 520 AAT Bioquest Cat#21130

CMOS camera Hamamatsu Flash 2.8

proportional-integral-derivative Elveflow OB-1

(PID)-regulated pressure pump

flow sensor Elveflow BFS

NE-1000 One Channel Programmable
Syringe Pump

Corning BioCoat Collagen I-coated
Flasks T-25 50/cs

Flow switcher- 2 switch

New Era Pump Systems

VWR

Fluigent

Model#NE-1000

Cat#12777-072

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Assaf Zar-

itsky (assafza@bgu.ac.il).

Materials availability
This study did not generate new materials.

Data and code availability

® Raw imaging data from a few representative experiments (step, cyclic, cyclic with gap junction inhibition), and all the processed
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@ Scripts used to generate the figures presented in this paper are not provided in this paper but are available from the Lead Con-
tact upon request.
® Any additional information required to reproduce this work is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Human Umbilical Vascular Endothelial Cells (HUVEC) were purchased from Lonza and were cultured following the vendor’s instruc-
tions. To prepare samples, cells were detached from culture dishes using TrypLE Select (Life Technologies) and suspended in growth
mediums before being pipetted into the microfluidics devices at cell density of approximately 1800-2000 cells/mm? at 100%
confluence (600-800 cells/mm? at 30%-50% confluence in the lower density experiments) allowing the cells to form monolayers. Af-
ter overnight incubation, fluorescent calcium dye (Calbryte 520, AAT Bioquest) was loaded for 40 minutes prior to imaging. Palmito-
leic acid (Sigma-Aldrich, MO) was used as gap junction inhibitor in our experiments. Palmitoleic acid was first dissolved in DMSO and
then diluted to 10uM in growth medium. Before experiment, cells were treated with 10uM palmitoleic acid for 8 to 12 hours while
seeding into the PDMS device. Then, 10uM palmitoleic acid was added to growth medium used for shear-stree experiments.

METHOD DETAILS

Microfluidics

The organic elastomer polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning) used to create the microfluidic devices was
comprised of a two part mixture - a base and curing agent - that were mixed in a 10:1 ratio, degassed, and poured over a stainless
steel mold before curing at 65°C overnight. Once cured, the microfluidic devices were cut from the mold, inlet/outlet holes were
punched, and the device was affixed to a No. 1.5 coverslip via corona treatment. The cross section of the flow chambers was rect-
angular (2 mm X 1 mm). See Figure 1A for depiction.

Applying controlled shear stress on the cells

The microfluidics flow rate was controlled by a proportional-integral-derivative (PID)-regulated pressure pump and was monitored
using an inline flow sensor (Elveflow). To verify the stability of the flow profile we mixed 1 micrometer fluorescent particles in the so-
lution and used particle image velocimetry to quantify the flow rate (Figure 1B). To calculate the shear stress, we approximated the
flow profile in the flow chamber as low-reynolds number pipe flow. We considered the cells in the field of view to experience uniform
shear stress calculated at the center of the flow chamber. This was possible because the imaging window was narrow (470 pm)
compared with the chamber width (1 mm).

In the “step” experiments we exposed the cells to a “step”-like shear stress of 0.1, 0.2, 0.6, 1 or 1.6 Pa for approximately
20 minutes. In the “cycles” experiments we applied multiple rounds of 2 minute long global external periodic mechanical stimuli.
We limited the number of cycles for analysis to 13 at most, because of gradual accumulation of stage drifting and photo-damaging
effects. Further experiments were performed to evaluate single cell calcium signal at the stimulation onset and its relaxation time after
a single pulse (Figure S11).

Live cell imaging

We imaged the calcium dynamics of HUVEC cells using a 20X magnification oil immersion objective lens (for step-stress experi-
ments) and a 10X dry lens (for cyclic-stress experiments, to avoid flow-induced focus drift). The fluorescent images were captured
with a CMOS camera (Hamamatsu Flash 2.8) at 0.5 Hz and 1 sec exposure time. The images were stored as tif files of 960 X 720 pixels
with physical pixel size of 0.65 pm X 0.65 um (20X magnification) or 1.2 um X 1.2 um (10X magnification).

Measuring single cell calcium signaling

We manually annotated every cell center (Figure 1A, inset), and recorded the mean fluorescent intensity of approximately 40 pm?
around the cell’s center as a proxy of the intracellular calcium signal time-series of each cell. We normalized the calcium signal ac-
cording to the approach described in (Sun et al., 2013) (“response curve normalization”). The response curve of each cell was defined
asR(t) = &£ = %;F") where F(t) was calculated as the mean fluorescent intensity at time t, The baseline Fy was calculated as the
mean of the first 5 frames (10 seconds) of F(t) before the mechanical stimulation was turned on. Temporal long-pass filter smoothed
the R(t) time series to reduce the effects of outliers. Temporal smoothing was performed using Python’s lowess function from
statsmodels (statsmodels.nonparametric.smoothers_lowess) with the parameter frac=0.01. R(t) provides us with a dimensionless
measure for the intracellular calcium magnitude relative to the cell’s basal intensity.

To evaluate the change in the calcium signal in response to external mechanical stimulus we derived the cells’ calcium signal in
time: Ri(t) = 9 (t) — (% (t)), where (& (t)) is the mean value of %% (t), and % (t) was calculated by Python’s numpy convolution
operator over the time series with the parameter values mode="same’ and with a five point stencil filter [1, -8, 0, 8, -1] where the result
was divided by constant of 12. A cell’s calcium signal temporal derivative I/?\,-(t) was termed calcium dynamics.
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The differentiation is necessary since both the exchange of IP3 and Ca®* lead to a change of calcium concentration. Hence, the
derivative is quantity directly related with communication (Sun et al., 2013; Sun et al., 2012). In addition, the derivative has properties
such as: independent of basal level of signal, independent of slow systematic errors such as photo bleaching, and stationarity.

Measuring adaptation rate in “step” experiments
The adaptation rate is a non-parametric measurement for the speed that the multicellular system adapts to external stress. We

t) 400
f tmax + o~ (1)

defined the adaptation rate as 1 — (%) , where UE(t)(t) is the population-level standard deviation of single-cell calcium
R (tmax) !
dynamics 7—‘1’7(t) at time t after applying Hampel smooth function (Hampel, 1974) to remove outliers with the parameters of window size
of 10 and threshold of 3¢, and t . = argmaxaa(t) (t) is the time of the peak variability in calcium dynamics (STAR Methods; Figure 1E).
t i

When a system rapidly synchronizes, the adaptation rate approaches one. Conversely, if a system maintains a large deviation be-
tween the dynamics of individual cells, the adaptation rate is close to zero. In general, a higher adaptation rate implies faster multi-
cellular adaptation to the external stress (Figure 1E, black curve adapts faster than blue curve). which measured the ratio between the
area under the curve of (UE, ® (t)) from the peak variability in calcium dynamics over 400 seconds (Figure 1E, the area marked in purple

area or yellow + purple area for black and purple curve accordingly) with respect to the theoretical upper bound where the relative
variability is zero (Figure 1E, the combined areas marked in yellow, orange, and purple).

We choose a temporal window size of 400 seconds (200 frames) since several experiments had late peak times defining an upper
bound on the temporal window (i.e., this was the maximal time-frame without excluding experiments; Table S1).

Measuring multicellular calcium adaption using a parametric exponential model

We devised an exponential parametric model to complement the non-parametric adaption rate measurement. We fitted the expo-
nential model A «x e Xt + C, to the standard deviation curve of the cell’s calcium dynamic using the non-linear least-squares method
(Levenberg-Marquardt algorithm (Levenberg, 1944)). The initial coefficients values were set to A = 0.05, K = 0.01, C = 0. In experi-
ments where the parameters failed to converge, we applied a linear least-squares fit to the logarithm of the signal. The coefficient
K of the fitted model was used as the parametric measure for the adaptation rate.

Measuring synchronization in “cycle” experiments

We defined the asynchronization as a measure to quantify multicellular synchronization that relied on the standard deviation of single cell
—~ ~ n -
calcium dynamics at different time points (R;(t)) in “cycle” experiments. Formally, we defined R(t) = > RT(” where n is the number of
i=0
cells, as the mean calcium dynamic of all the cells at time t and aﬁ(t) (t) function as the standard deviation of the cells’ calcium dynamic.

The mean of UE‘(?) (t) was calculated over the entire cycle time. Low values implied improved synchronization across the entire group.

Granger causality
Granger causality (GC) is a statistical method to quantify the information flow among multiple variables’ time-series (Granger, 1969).
Intuitively, time-series B is said to be "Granger causal" of time-series A, if the variability of A can be better explained by previous
values of B and A, compared to using only previous values of A. Granger causality is an approximation to “transfer entropy” and un-
der the assumption of Gaussian distribution it is exactly equivalent (Barrett et al., 2010).

Formally, given two-time series x;(t) and x;(t), where te Z. The autoregressive model of x; is:

Xi(t) = zp: aXi(t — k) +&(t) (Equation 1)
k=1

Where, p is the lag order, the number of previous observations used for prediction, « is the coefficient of x; and ¢; is the prediction
error at time t. The autoregressive model of x; based also on the previous observations of x; is:

p p
Xi(t) = Y auwxi(t — K)+ Y ouxi(t — k) +g(t) (Equation 2)
k=1 k=1

Where, p is the lag order,« is the coefficient of x;(t — k), a is the coefficient of x;(t — k) and ;(t) is the joint error of x; and x; pre-
dicting x;.

Stationarity test

To avoid spurious causality connection, x; and x; both must comply with a stationary process before applying the granger causality
test. Intuitively, stationary means that the statistical characteristics such as average and variance of a time series are independent of
time. For each cell’s /H:(t) time series we applied two statistical tests for stationarity. First, Kwiatkowski-Phillips—Schmidt-Shin
(KPSS) (Kwiatkowski et al., 1992) tests the null hypothesis of stationarity against the alternative of unit root. Second, Augmented
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Dickey—Fuller (ADF) (Cheung and Lai, 1995) was applied as a complementary test for KPSS and tests the null hypothesis for unit root
against the alternative of stationary. We excluded 24 of the 47 “step” experiments where less than 85% of the cells passed both the
KPSS and the ADF stationary tests with significance of below 0.05 (Figure S2A). From the remaining experiments we considered only
cells with time-series that passed both stationarity statistical tests.

Pairwise calibration of the lag order

Granger Causality is based on linear regression and thus sensitive to the lag order, i.e., the number of past time frames used to make
future predictions. In the context of a time-series, the autoregressive (AR) model is the estimator of the next time point value based on
its own previous values. Higher lag-order reduces the bias but increases the variance while lower lag-order reduces the variance but
increases the bias (Wooldridge, 2016). We selected the lag order, for each cell pair independently, as the minimal lag derived from
four methods: Akaike information criterion (Akaike, 1973), Bayesian information criterion (Schwarz, 1978), Final Prediction Error
(Akaike, 1970) and Hannan-Quinn information criterion (Hannan and Quinn, 1979). The minimum lag was selected to avoid overfitting
without losing information backup by using Portmanteau test which checks for whiteness (i.e, the error does not contain a pattern)
(LUtkepohl, 2005).

Granger causality statistical test

We applied a statistical test to infer granger causality between two 7-?\,-(t) time series x; andx; (denoted, GCy, ) (Granger, 1969). GC
tests the null hypothesis that x;is not contributing to the explained variance of x; (Equation 2) in relation to the model derived solely
from past values of x; (Equation 1). This null hypothesis is rejected when at least one of the coefficients in equation (2) is different from
zero. The statistic is based on the distribution:

SSRRestrr’cted — SSRUnrestricted (T — k) (Equation 3)

F value =
SSR Unrestricted p

Where, SSRpgestricted is the sum of square residuals of the model which take into account only self-previous observation of the random
variable (Equation 1), and SSRunrestricted iS the sum of square residuals of the other model which also takes into account the previous
observation of the second random variable (Equation 2). T is the sample size (number of observations in the time series used for pre-
diction), p is the number of variables which was removed from the unrestricted model, in our case, the lag order, and k is the number
of variables, in our case, twice the lag order. The null hypothesis is rejected when the F, 5, is larger than the F statistic (i.e., F’s critical
value) to conclude that GCy, . x,. We derived the p-value from the F-statistic instead of directly using the F statistic to set up a global
acceptance threshold.

Measuring collective heterogeneity
We measure the collective heterogeneity using the degree distribution of the network (Jacob et al., 2017). The measure characterizes
the variability between the cell’s degrees by measuring the variation of the probability for cells with each degree k, denoted P(k).

IS (4 (k)2

NL ki
numerator is considered only for all k’s such that P(k) # 0. The denominator is the approximate upper bound for N cells. The collective
heterogeneity measure is bounded between 0 and 1 for large networks. H = 0, when all cells have the same degree (minimal het-
erogeneity). H = 1, for a specific network structure when the network’s size converges to infinity, see Jacob et al. (2017) for details. H
could exceed the value of 1 for extremely small networks (see Figure 2D). This measure is skewed for networks containing many
vertices with zero degree because P(k = 0) is high and the probability for other degrees (k #0) is low, maximizing the numerator
(see gap-junction inhibition experiments in Table S2).

We defined the null model for the collective heterogeneity by random shuffling the GC edges (Figure S3A). Formally, given a graph
G and binary assignment of GC edge « : {(v;, vj)| ¥ vi € V(G) andv; € Ny (1) UN,,(2)} = {1, ...., s}, where N, (d) are the cells at
topological distance d for cell v, ; € {0, 1} is a binary edge assignment for all cell pairs at topological distance < 2 from one another
{(vi, v,-)| Vv eVV(G)andv; e Ny (1) UNy,(2)}, and s is the number of such pairs. Arandom permutation was performed by shuffling
the binary assignments. Observed collective heterogeneity was systematically higher than the null model (Figure S3B).

Formally, the collective heterogeneity measure is defined as H = , where N is the overall number of cells, and the

Measuring local heterogeneity

We measure the local heterogeneity using the Estrada’s index measure (Estrada, 2010). The measure focuses on the more local
structural aspect of the network and is based on the Randi¢ index score that is commonly used in chemistry for describing the mole-
cule structure (Gutman et al., 2018). In contrast to the global collective heterogeneity that measures, Estrada index is based on the

degree difference between all pairs of neighboring cells, thus capturing the heterogeneity in local network structure. Formally, the
1 1

2 2
Zu cE <kr' _k/'

2
Estradaindex is definesas E = T\/T) where n is the number of cells and k; is the degree rank of cell i. The Estrada index

is bounded between 0 and 1. E = 0, when all cells have the same degree, and E = 1, for star topological structure, where one node has
a degree of n-1 and the other cells have a degree 1.
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We defined the null model for the local heterogeneity by spatially shuffling the cells’ neighbors while preserving the same degree
rank. We shuffle the cells’ edges by rewiring two edges while preserving their degree. Formally, given two edges e; = (v1,V2)
and e; = (u1,u2), a single rewiring is transforming e;, e; edges to €] = (v1, u2) and €; = (us, v2). The rewiring function repeated

[‘25 * log ﬂ times where the repeated factor ¢ is 10~ following the rule of thumb termination criteria for generating independent

random graph (Ray et al., 2015).

Calculating the transmission and receiver scores

The transmission and the receiver scores were calculated as the probability for an outgoing (respectively, ingoing) edge at topological
distance < 2 (nearest and next-to-nearest neighbor), where the topological distance was calculated using the Delaunay
triangulation.

The transmission (denoted Tr) and receiver (denoted Re) scores were calculated independently for each cell ¢; using its cell neigh-
ZoeNc 1)UNg; (2 1GCC,*>C' Zc-eNc.erNc 2‘1GC°r’<’°

Waome]  2ndRe) = FU AL Er

We treat each cell as an independent observation thus characterizing the role of each cell in the multicellular network without
specifically committing on the exact network edges. To fix spurious edges due to multiple hypothesis testing we applied the strict
Bonferroni correction that defines the edge significance threshold based on the number of edges considered (Bonferroni, 1936).
In our case, with a significance threshold of 0.05 and n - number of potential edges we get a new significance threshold of 0.05/
n. Edges passing this strict statistical test were termed GC edges.

The reason for using topological distances of up to two in calculating the transmission and receiver score is twofold. First, for an-
alytic reasons and second due to irregularity in cell shape. Calculating the transmission and receiver score based on a small number
of neighbors will increase the uncertainty. These neighborhood sizes were determined empirically for sufficient observations for sta-
tistics, and the expected short-range communication between the cells. Topological distance of two is a sweet spot in terms of
reducing the false-positive errors. Specifically, increasing the number of neighbors makes the statistical test for determining GC
edges stricter (from ~0.008 for topological distance of one to 0.003 for topological distance of two) because we use Bonferroni
correction to determine statistical significance (Figure S2B). This way, the statistical test also becomes less variable between cells
since the variability in the number of neighbors also decreases.

A second reason for choosing to include next-to-nearest neighbor in the analysis due to the irregular shapes of the cells (Fig-
ure S2C). Gap junctions often connect cells that are next-to-nearest neighbors as defined by Delaunay Triangulation. Nevertheless,
the main results regarding heterogeneity, memory, and local-to-global information propagation held also when considering topolog-
ical distance of size one (Figure S12).

Note that the variance in the transmission and receiver scores gradually increased over time (Figure S13). This result is in agree-
ment with our results associating collective heterogeneity and synchronization.

bours at topological distance one and two N, (1) UN,(2): Tr(c;) =

Partitioning the normalized transmission-receiver space

The transmission and receiver scores of each cell were normalized across the population to allow direct comparison of single cell
heterogeneity between cycles and between experiments. We calculated the receiver and transmission z-score for each cell c;,
the variation from the mean in units of standard deviations: Tr_norm(ci) = (Tr(ci)-p)/o, where p is the mean transmission score across
the population over all cycles, and ¢ is the standard deviation. The same normalization was applied for the receiver score. Kernel
Density Estimation (Scott, 2015) was used for the visualization of the 2-dimensional normalized transmission and receiver score
space (Figure 5A). We partitioned the normalized transmission-receiver space to five regions, and assigned each cell to one of these
regions. Individual: transmission and receiver z-score < -0.5. Common: transmission z-score in the range of (-0.5, 0.5) and receiver
z-score < 0.5 or receiver z-score in the range of (-0.5, 0.5) and transmission z-score < 0.5. Leader: transmission z-score > 0.5 and
receiver z-score < 0.5. Follower: receiver z-score > 0.5 and transmission z-score < 0.5. Hub: transmission and receiver z-score > 0.5.
The z-score threshold of 0.5 was selected to maintain sufficient number of cells in each role for statistical analysis.

Measuring information flow

GC edge probability was defined as the probability of a GC edge in the experiment. This was calculated as the ratio between the total
number of GC edges and the total number of potential edges in the experiment (defined by topological distance < 2 for each cell).
Because GC edge probability is a proxy for the information flow within the multicellular network, we also used the term information
flow to refer to the GC edge probability in the manuscript text.

Enrichment factor of cellular state transitions
We calculated the enrichment factor, the fold change in the observed transition probabilities of single cells from one state (functional
role) to another cell state in consecutive cycles in relation to a null model derived from the expected transitions based on the marginal
distribution of cells’ functional roles.

First, we constructed the single cell transition matrix trs*(i,j, k) (Equation 4), where the (i,j, k) bin holds the total number of tran-
sitions of the single cell k € K between state j and state j in consecutive cycles, ¢, ¢ + 1€ C observed throughout an experiment, and
where S¢[K] indicates the state of cell k in cycle c.
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1, Sclk] =i,Sc1lk] = .
c+1 _ )y Ve 1y ¢
(i,j k) = {07 olse (Equation 4)
Second, we accumulated all transitions over all cells in the accumulated transition matrix T(i,j) (Equation 5).
K| 1Cl-1
)= >0 >t idk) (Equation 5)
k=1 ¢
Third, we normalized each row of the accumulated matrix T(i,j = 1, ..., |S|) to compute the Markov transition matrix 7A'(/',j) (Equa-
tion 6), the observed probability for a cell to transition from state i to state j throughout the experiment (Figure S10, top-left).
T(i,j .
T( ) = P R— () (Equation 6)
Z] =1 T )

Finally, we calculated the enrichment factor matrix f(ij), the fold change in single cell transition from state j to statej in consecutive
cycles in respect to the expected probability from a null model assuming random transitions drawn from the marginal state distribu-
tion E(i,j) (Equations 7, 8, and 9; Figure S10, bottom-left and right).

K] C]

. L Ly 1s =i i
(i) = k=12.c=1"SclK (Equation 7)
S S s -
T
E(i,j) = YBomerpocictll i gy (= |S))] (Equation 8)

u

(Equation 9)

Measuring cell memory

To measure the cell memory we calculated the Pearson correlation of the cells transmission or receiver scores between consec-
utive cycles with step At (At = 1 in Figure 4C, At > 1 in Figure S8B). We evaluated the significance of our results using a
permutation test by shuffling the cells’ spatial locations with over 1000 permutations. The permutation test was performed by
concatenating the vector scores of the cycles c, c+At, shuffling the values, splitting back to two vectors, and calculating the ab-
solute Pearson correlation. The p-value was set as the fraction of permutations where the shuffled correlation surpassed the
observed experimental correlation. In this analysis, each stimulus cycle was considered as an independent event, although the

cells’ calcium dynamics ( ;(t)) never reached equilibrium between cycles because the shear stress was periodic and continuous.
We performed an additional experiment with rest time between the applications of shear-stress periodic cycles. Even though the
system did not synchronize well (in a single replicate), positive correlations were measured between cycles, specifically before and
after the idle (i.e., pause in shear stress) cycle providing further evidence that the memory is a cell property that is independent
across cycles (Figure S14).

Activation Time

The activation time of a cell in a given cycle is the time where its calcium dynamics exceeds a threshold value of y within a cycle. The
threshold is parametrized by ¢ in the range of 0.1, 0.2 or 0.3 from the calcium dynamics range - the initial value subtracted from the
maximal value within the cycle.

= ﬁcl.(t = 0)+0x (max(ﬁci) - ﬁc,(t = 0))

The initial time was shifted by 60 seconds (30 frames) from the onset of the cycle to the time where the mean value of the cells’
calcium dynamics is zero to ensure that the single cell calcium signal is on the rise for the vast majority of the cells.

Correlating the topological distance between pairs of cells to their GC-edge probability

In Figure 6B we correlated the topological distance to the corresponding GC edge probabilities. For each topological distance, for
each cell, we randomly selected ten (or less in topological distances with smaller numbers) cells and calculated the GC statistical test
for each cell pair in both directions. We evaluated the critical value (i.e., p-value correction) using FDR, to correct for multiple hypoth-
esis testing. Finally, we calculated the probability for GC significant edge as the total number of significant edges divided by total
GC tests performed.
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Data

n = 47 biological replicates for the “step” experiments: n=6 (0.1 Pa),n=13(0.2 Pa),n=8(0.6 Pa),n=10(1Pa),n=10(1.6 Pa).n=14
biological replicates for the “cycles” experiments: control n = 4 (0.1 Pa) and n = 6 (0.2 Pa), low density n = 2 (0.2 Pa), gap-junction
inhibition n = 2 (0.2 Pa).
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