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SUMMARY
Multicellular synchronization is a ubiquitous phenomenon in living systems. However, how noisy and hetero-
geneous behaviors of individual cells are integrated across a population towardmulticellular synchronization
is unclear. Here, we study the process of multicellular calcium synchronization of the endothelial cell mono-
layer in response to mechanical stimuli. We applied information theory to quantify the asymmetric informa-
tion transfer between pairs of cells and defined quantitative measures to how single cells receive or transmit
informationwithin amulticellular network. Our analysis revealed thatmulticellular synchronizationwas estab-
lished by gradual enhancement of information spread from the single cell to the multicellular scale. Synchro-
nization was associatedwith heterogeneity in the cells’ communication properties, reinforcement of the cells’
state, and information flow. Altogether, we suggest a phenomenological model where cells gradually learn
their local environment, adjust, and reinforce their internal state to stabilize the multicellular network archi-
tecture to support information flow from local to global scales toward multicellular synchronization.
INTRODUCTION

Synchronized multicellular dynamics is the basis of many critical

physiological processes, such as the rhythmic beating of cardi-

omyocytes, planar cell polarity, and brain activities. The human

endothelium, for instance, consists of a staggering over one tril-

lion endothelial cells, which constantly monitor environmental

cues such as shear stress, in order to collectively regulate the

vasculature tone (Davies, 2009; Wolinsky, 1980). However, a

fundamental question remains elusive: how synchronization in

the group emerges from the interactions of individual cells,

each making stochastic decisions based on noisy cues from

their local environment?

A major challenge toward establishing multicellular synchroni-

zation lays at how single cells translate environment information

to intracellular signaling responses (Perkins and Swain, 2009).

Signaling in cells often rely on low copy numbers of proteins

(Huang et al., 2007) and diffusion limited intracellular transport

(Brangwynne et al., 2009). These effects, often considered

intrinsic noises, lead to variable single-cell signaling dynamics

even in response to identical external stimuli (Elowitz et al.,

2002; Swain et al., 2002). Cell-to-cell variation, or intercellular

heterogeneity, is present even for cells originating from the

same genetic background, also complicates our understanding

of multicellular synchronization processes. Such cell-to-cell vari-
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ation, or non-genetic intercellular heterogeneity, may arise from

differences in gene expression levels (also terms as extrinsic

noise), alternative splicing, as well as post-translation modifica-

tions (Bintu et al., 2016; Elowitz et al., 2002; Gut et al., 2018; Ng

et al., 2018; Raj and van Oudenaarden, 2008). Intercellular het-

erogeneity implies that individual cells take different states or

phenotypes, which may be related with intrinsic noises such as

by varying the copy number of receptors to modulate the prob-

ability of activation (Young et al., 2008). Intercellular heterogene-

ity also modulates the propensity of cells to interact with their

peers, as the communication between cells depends on special-

ized molecular channels such as gap junctions (Calderón and

Retamal, 2016; Nicholson and Bruzzone, 1997). However, it is

not known whether non-genetic intercellular heterogeneity can

play a constructive role in information transfer between cells in

multicellular systems. As such, we ask whether some cells within

a group function as leaders or followers, promoting the spread of

information through the group, whereas others act individually,

and whether such heterogeneity is important for the synchroni-

zation of multicellular dynamics.

Previously, we demonstrated that cell-cell communication

through gap junctions (Fujii et al., 2017) modulated ATP-induced

calcium signaling in monolayers of fibroblast cells (Sun et al.,

2012). Tuning the levels of intercellular communications, by vary-

ing cell densities, by inserting weakly communicating cells, and
ber 21, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 711
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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by pharmacologically inhibiting gap junctions, controlled the

temporal coordination of calcium signaling in neighboring cells

(Potter et al., 2016; Sun et al., 2012). Others have also highlighted

the role of local gap-junction-mediated cell-cell communication

in functional multicellular connectivity of neural progenitor cells

at the vascular interface (Lacar et al., 2011), in neural stem cell

reactivation in the blood-brain barrier (Spéder and Brand,

2014), in neural progenitors cell proliferation during embryonic

development (Malmersjö et al., 2013), and in coordinated fate

decisions (Ho et al., 2021).

To elucidate how information transfer between single cells is

integrated to synchronize population-level cellular responses,

we study the physiological process where monolayers of endo-

thelial cells collectively sense and respond to external shear

stress. Endothelial cells line the interior surface of blood vessels

and form a monolayer that experiences varying levels of shear

stress from blood flow (Hill et al., 2010; Yin et al., 2007). Upon

changing the flow rate (e.g., during acute wound), endothelial

cells detect the change in shear stress, inform other cells such

as smooth muscle cells, and adjust their internal signaling

accordingly. Central to the cascade of events, shear stress leads

to downstream ATP activation that modulates calcium signaling

at the subcellular scale (Faehling et al., 2002; Kohn et al., 1995;

Rubanyi and Vanhoutte, 1988). As a group, the endothelial cells

must coordinate their signaling dynamics to achieve a coherent

and collective response. Specifically, intercellular calcium levels

are synchronized via gap-junction-mediated cell-cell communi-

cation (Kumar and Gilula, 1996; Sun et al., 2012). Such synchro-

nized calcium signaling is instrumental in modulating reepitheli-

alization, angiogenesis, and extracellular matrix remodeling,

which are essential processes in wound repair (Aihara et al.,

2013; Eming et al., 2014; Handly and Wollman, 2017; Lee

et al., 2019; Shannon et al., 2017).

In this study, we developed an integrated experimental-

computational approach to quantitatively evaluate the roles

that single cells take during the emergence of multicellular syn-

chronization. Using this platform, we identified three key func-

tions whereby single cells contribute to collective information

processing that ultimately leads to multicellular synchronization.

Division of labor, where single cells take differentiated functional

roles in collective information processing; cell memory, where

single cells maintain and reinforce their specified functional roles

in cell-cell communication in response to repeated external

stimuli; and information flow, where the information gradually

propagates spatially from the scale of single cells to eventually

synchronize the collective.

RESULTS

Endothelial cells in a monolayer adapt their calcium
dynamics in response to external shear stress
We employed a microfluidics system that can precisely control

the temporal profile of the shear stress that the cells experience

(Figure 1A, top). We grew confluent monolayers of human

umbilical vascular endothelial cell (HUVEC) cells on the bottom

surface of the flow channels (Figure 1A, bottom). A computer in-

terfaced flow switch regulated input pressure to induce smooth

flow profiles in the microfluidic channel as verified by particle im-

age velocimetry (Figure 1B). The shear-stress-induced calcium
712 Cell Systems 13, 711–723, September 21, 2022
signal of the HUVEC cells was imaged with the fluorescent cal-

cium indicator Calbryte-520 at single-cell resolution (Figure 1A,

inset; VideoS1).Wemanuallymarked each cell center (Figure 1A,

inset), recorded the intracellular calcium signal as a time series of

fluorescent intensity for every cell, and verified that the magni-

tude of the cell’s calcium signal correlated with the magnitude

of the applied flow shear stress (Figure 1C; STAR Methods).

This setting enabled us to investigate the collective mechano-

sensing of HUVEC cells to fluid shear stresses, a scenario that

mimics the physiological function of the endothelium.

Upon exposing the cells to a step-like increase in shear stress

to 0.2 Pa, which is similar to those that an endothelial cell expe-

riences during acute bleeding (Albuquerque et al., 2000), the

variability in the cells’ temporal derivative of their calcium signal

(termed calcium dynamics, annotated cRi ðtÞ; STAR Methods)

increased and then gradually reduced until the cells adapted to

the external stress and converged to a steady state (Figure 1D).

We defined the adaptation rate as 1 �
 R tmax + 400

tmax
sbRi ðtÞðtÞ

400� sbRi ðtmax Þ

!
, where

sbRi ðtÞ
ðtÞ is the population-level standard deviation of single-cell

calcium dynamics cRi ðtÞ at time t, and tmax = argmax
t

sbRi ðtÞ
ðtÞ is

the time of the peak variability in calcium dynamics (STAR

Methods; Figure 1E). The adaptation rate is a non-parametric

measurement for the speed that the multicellular system adapts

to the external stress. When a system rapidly synchronizes,

adaptation rate approaches one. Conversely, if a system main-

tains a large deviation between the dynamics of individual cells,

adaptation rate is close to zero. In general, higher adaptation rate

implies faster multicellular adaptation to the external stress (Fig-

ure 1E, black curve adapts faster than blue curve). The endothe-

lial monolayer adapted to increasing levels of shear stress

ranging from 0.1 to 1.6 Pa (Figures 1F and S1, parametric expo-

nential model), demonstrating the robustness of the multicellular

system in adaptation to varying physiological-relevant levels of

external mechanical stimuli (Charbonier et al., 2019). Altogether,

these results suggested that the cells gradually adapted despite

the vast variability in single-cell calcium response at the onset of

shear stress.

The interplay between information flow, heterogeneity,
and multicellular adaptation
We hypothesized that integrating and propagating information

from the local scale, between single cells, to the global scale

drove the adaptation of an inherently heterogeneous multicel-

lular system to external mechanical stimuli. To investigate this

hypothesis, we defined quantitative measures for cell-cell

communication. If two cells communicate, we expect the past

calcium dynamics of one cell to contain information regarding

the future calcium dynamics of the other cell. Defined in this

way, cell-cell communications can be bidirectional and asym-

metric—cell A can influence its neighbor B differently from how

cell B influences A (Figure 2A). To quantify asymmetric cell-cell

communication, we used Granger causality (Granger, 1969)

(GC), a classic statistical method from the field of information

theory to infer cause-effect relationships between cell pairs

from their fluctuating calcium dynamics. Granger causality

uses linear regression to quantify the extent to which the



Figure 1. Collective calcium signaling of mechanosensing as a model to investigate the emergence of multicellular synchronization at the

single-cell resolution

(A) In a typical experiment, a monolayer of HUVEC was cultured in a microfluidic device where fluid flow applied shear stress on the cells. Top: schematics of the

setup. The input pressure that drives a laminar flow in the single-channel microfluidics is controlled by a computer interface. The pressure is regulated in real time

via a proportional–integral–derivative (PID) loop consisting of a pressure regulator and a flow sensor. Bottom: a monolayer of HUVEC loaded with the fluorescent

calcium indicator Calbryte-520 as a readout of the cellular response to flow shear stress. Scale bars, 50 mm. Inset: manual annotation of single cells.

(B) Particle image velocimetry verified that the regulated input pressure produces a smooth flow profile in the microfluidics channel.

(C) Cells respond to step increase in the flow shear stress. Relative intensity is the relative change of the fluorescence intensity from the basal-cell level (STAR

Methods). Colored lines: individual cell calcium responses. Black line: mean response of over 400 cells in the field of view. Dashed horizontal lines indicate the

time interval of 0, 0.2, and 0.3 Pa shear stress, correspondingly.

(D) Multicellular calcium dynamics is synchronized over time in response to external mechanical stimuli. The flow shear stress is applied from the onset of imaging

(t = 0). The calcium dynamics of each cell was represented by the time-derivative of its relative fluorescent intensity. Black: mean calcium Ri(t) dynamics; green:

standard deviation. Top inset: mean (black) and standard deviation (green) of single-cell calcium-relative intensity (STAR Methods) over time. Bottom inset:

standard deviation of calcium dynamics over time.

(E) Depiction of the adaption rate measure overlayed on the plot of the standard deviation of calcium dynamics overtime. There are two solid lines; the black

represents faster adaptation comparedwith blue. Adaptation rate of the black/blue solid line is oneminus the ratio between the area under the curve for 400 s (200

frames, purple/yellow + purple area), and the area of the rectangle whose height is set by the maximum variations of individual cell dynamics (yellow + orange +

purple area). See STAR Methods for full description.

(F) Multicellular adaption rate for increasing shear stress levels. Each observation represents a biological replica. n = 47 biological replicates: n = 6 (0.1 Pa), n = 13

(0.2 Pa), n = 8 (0.6 Pa), n = 10 (1 Pa), and n = 10 (1.6 Pa).
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Figure 2. Correlating information flow, collective hectrogeneity, and local heterogeneity in single-cell information transfer and multicellular

adaptation

(A) Schematics of cell-cell communication. Generic estimation of the asymmetric mutual influence between a pair of cells from their fluctuating time series. The

influence of cell i on cell j is defined as the extent to which the past signal of cell i improves the prediction of cell j’s signal beyond the past signal of j alone and is

determined using the pairwise asymmetric Granger causality statistical test.

(B) Visualization of the spatial single-cell heterogeneity of the degree rank (in-degree + out-degree). The color scale is linear.

(C) Heterogeneity in degree rank distribution. The kernel density estimation (KDE) of the degree rank distributions of 10 null models that considered random

shuffling of GC edges while preserving the probability for an edge (green) versus the experimentally observed degree rank distribution (red). The raw distribution

(input to KDE) is shown in Figure S3A, with Rinku index �29 versus �25 for the observed and null model correspondingly.

(D) Example of collective (top) and local (bottom) heterogeneities for three different network structures. Networks are ordered from left-to-right according to their

heterogeneity levels measured with (Jacob et al., 2017) (collective) and (Estrada, 2010) (local). Graph (I) node degree ranks are (2, 2, 2, 2, 2, and 2): local het-

erogeneity = 0, and collective heterogeneity = 0. Graph (II) node degree ranks are (1, 4, 2, 2, and 3): local heterogeneity z 0.38, collective heterogeneity z 1.

Graph (III) node degree ranks are (1, 1, 1, 1, and 4): local heterogeneity = 1, collective heterogeneity z 0.59. See STAR Methods for full details.

(E) Pairwise associations between two heterogeneity measures (local heterogeneity, collective heterogeneity), adaptation rate, and GC edge probability. Edge

color represents the level of association, as quantified by the magnitude of correlation coefficients. Color scale is linear. Note that some edges reflect positive

correlations (e.g., collective heterogeneity—GC edge probability), whereas others reflect negative correlations (e.g., local heterogeneity—adaptation rate). n = 23

biological replicates, across shear stress levels, that passed the stationarity criterion were considered to calculate correlations. See full data (with signed cor-

relations) in Figure S4.

ll
OPEN ACCESS Article

714 Cell Systems 13, 711–723, September 21, 2022



ll
OPEN ACCESSArticle
prediction of values in one time series can be improved by

including information from another time series. This provides

us with an established framework to extract feedback and

feedforward relations from pairwise variables’ fluctuating time

series.

To avoid spurious cause-effect relations, Granger causality re-

quires the time series being analyzed to be stationary, i.e., fluc-

tuating signals with a consistent mean and variability. Therefore,

we excluded experiments where less than 85% of the cells

passed two stationary tests (Kwiatkowski-Phillips-Schmidt-

Shin [Kwiatkowski et al., 1992] and Augmented Dickey-Fuller

[Cheung and Lai, 1995]; Figure S2A; STAR Methods), and in

the remaining experiments, we analyzed only the cells that

passed both stationary tests. When one cell’s calcium dynamics

significantly contributed to the accurate prediction of another

cell’s signal, we defined a directed GC edge from the first cell

to the other (STAR Methods). For every cell in the monolayer,

we calculated the degree rank as a measurement for the cell’s

involvement in influencing or being influenced by cells in its local

vicinity—cells with topological distance up to two (nearest

neighbor cells and next-to-nearest neighbor cells; STAR

Methods; Figures S2B and S2C). Cells took different roles in

the multicellular communication network as indicated by the

spatial heterogeneity in their degree ranks (Figure 2B), which

was higher than a null model that considered random shuffling

of GC edges (Figures 2C, S3A, and S3B; STAR Methods) and

was only associated very weakly with the number of cell neigh-

bors (Figure S2D).

To quantitatively explore the role of heterogeneity in the cells’

degree rank, we correlated four metrics that characterized adap-

tation, information flow, and collective and local heterogeneities

respectively. (1) The adaptation rate measures the dynamics of

the multicellular adaptation to external mechanical stimuli (Fig-

ure 1E). (2) The GC edge probability, or P(GC edge), is the

probability of a GC edge from all potential edges, a proxy for

the overall information flow within the multicellular network. (3)

The collective heterogeneity is a measurement for the variability

of the cells’ degree ranks (Jacob et al., 2017). The collective het-

erogeneity is calculated directly from the network’s degree dis-

tribution and provides a normalized measure that is independent

of the network’s topology and size (Figure S3B; see STAR

Methods for full details). For example, a network in which all

the nodes having the same degree is considered completely ho-

mogeneous, whereas a more complex network such as scale

free that has a degree distribution approximates as a power

law (Amaral et al., 2000) is considered a more heterogeneous

network (Figure 2D, top). (4) The local heterogeneity, or the Es-

trada index, measures the degrees differences between all pairs

of communicating cells capturing the heterogeneity in the local

network’s structure (Estrada, 2010) (see STAR Methods for full

details). The Estrada index is equal to zero for regular networks,

where all neighboring cells have the same degree, and equal to

one for star graphs (Figure 2D, bottom). The observed local

heterogeneity of all experiments spatially shuffled the cells’

neighbors while preserving the same degree rank (STAR

Methods), implying higher local homogeneity (Figure S3C).

Thus, in response to step-like increase in shear stress, the multi-

cellular network was characterized by collective heterogeneity

and local homogeneity.
We pooled together the 23 experiments across the shear

stress range of 0.1–1.6 Pa and correlated the fourmeasurements

(Table S1). Collective heterogeneity was correlated with the GC

edge probability, whereas the local heterogeneity was negatively

associated with the adaptation rate as well as with the GC edge

probability. The pairwise correlations are depicted in Figure 2E

and detailed in Figure S4. Cumulatively, our results suggest a

transition from local to global scales in the multicellular network

organization. Rapid adaptation is associated with local homoge-

neity but has a marginal correlation with the collective heteroge-

neity. Active information flow is associated with both collective

and local homogeneities in communication. The scale-depen-

dent dynamics suggest propagation and integration of informa-

tion from nearby cells into a decentralized network architecture,

a mechanism we further investigate.
Gap-junction-mediated multicellular synchronization to
periodic mechanical stimuli
After characterizing the communication networks exhibited by

endothelial cell monolayers to shear stress, we asked if the

network could be trained to adapt to time-dependent external

stimuli. To this end, we extended our assay to multiple rounds

of repeated mechanical stimuli (Video S2). By treating each

round as an independent cycle and comparing single-cell re-

sponses across cycles, we could focus on the evolution of syn-

chronization in the multicellular system (Figure 3A; STAR

Methods). We found that the HUVEC monolayer reinforced syn-

chronization as observed by the gradual decrease in the stan-

dard deviation of the cells’ calcium dynamics sbRi ðtÞ
ðtÞ (Figure 3B).

To confirm the role of intercellular communication in multicellular

synchronization, we inhibited gap junctions or reduced cell den-

sity (STAR Methods). In both cases, the multicellular network

failed to effectively synchronize (Figures 3C, 3D, S5A, and S5B).

Synchronization coincided with a gradual increase of the infor-

mation flow, i.e., the cell’s mean GC edge probability (Figure 3E)

and with the collective heterogeneity (Figure 3F) in intercellular

communication. These relations were not measured upon gap-

junction inhibition and sparser cell seeding (Figures 3E, 3F, S5C,

S5D,andS6).Wedidnotobserve aclear pattern in the local homo-

geneity measure (Figure S7). These results, summarized in

TableS2, indicate that themulticellular networkgradually synchro-

nizes to cycles of externalmechanical stimuli in a localmechanism

that is consistent with gap-junction mediated communication.
Functional cell memory: Cells maintain their states in
the communication network and reinforce them
over time
To characterize the asymmetric communication roles that single

cells take during the multicellular synchronization, we calculated

for each cell the transmission score and the receiver score as

measures for being influential or influenced by cells in its local vi-

cinity (up to topological distance of two). We defined the trans-

mission score as the probability of outgoing GC edges and the

receiver score as the probability of ingoing GC edges (Figure 4A;

STAR Methods). The observed trend of improved synchroniza-

tion coincided with a gradual increase of the (population) mean

receiver and transmission scores over time (Figure 4B; Videos

S3 and S4).
Cell Systems 13, 711–723, September 21, 2022 715



Figure 3. Information flow and collective heterogeneity are associated withmulticellular synchronization to periodicmechanical stimuli. The

shear stress was applied from the onset of the experiment (t = 0)

(A) Depiction of the periodic mechanical stimuli experiment setup that included 13 cycles of continuous shear stress in 10 biological replicates (STAR Methods).

(B) Multicellular calcium dynamics is synchronized over time to periodic external mechanical stimuli. In total, there are 13 cycles. Black: mean calcium dynamics;

green: standard deviation; red dashed lines: shear stress onsets. Inset: standard deviation of calcium dynamics over time.

(C) Gap junctions are required for multicellular synchronization. The calcium dynamics fail to synchronize following gap-junction inhibition. Representative of two

experiments. Black: mean calcium dynamics; green: standard deviation; red dashed lines: shear stress onsets. Inset: standard deviation of calcium dynamics

over time.

(D) Multicellular calcium dynamics synchronized over time for control (red) (Pearson coefficient = �0.7067, p value < 0.007) but not for gap-junction inhibited

(cyan) monolayers (Pearson coefficient = 0.6442, p value < 0.0325).

(E) Information flow increased over time for control (red) (Pearson coefficient = 0.9054, p value < 0.0000207) but not for gap-junction inhibited (cyan) monolayer

(Pearson coefficient = �0.3726, p value < 0.25898).

(F) Collective heterogeneity increased over time for control (red) (Pearson coefficient = 0.8836, p value < 0.000062) but not for gap-junction inhibited (cyan)

monolayer (Pearson coefficient = �0.2376, p value < 0.4818).
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We next asked to what extent the communication properties

of cells were intrinsic cellular properties. To this end, we corre-

lated single cells’ transmission and receiver scores across the

repeated mechanical stimulus cycles while testing the null hy-

pothesis that these scores were assigned randomly between

consecutive cycles. We found that single cells’ transmission

and receiver scores were strongly correlated between consecu-

tive stimulus cycles and that this correlation, which could not be

explained by the autonomous cells’ response to the external me-

chanical stimuli (Figure S9), gradually increased as cells under-

went additional stimulus cycles (Figures 4C and S8A). Measuring

single-cell correlation between larger temporal gaps of 2–4 cy-

cles did not show a dramatic diminishing pattern, suggesting
716 Cell Systems 13, 711–723, September 21, 2022
that the cellular memory is stable for timescales of at least

4–8 min, which is beyond the timescale required for the multicel-

lular system to recover (Figure S8B). These results suggest that

cells maintain and gradually reinforce memory regarding their

role in themulticellular communication network at the timescales

relevant for collective synchronization.

Stability in single-cell communication state and
increased information flow lead to enrichment of highly
communicating cells coinciding with the establishment
of synchronization
We next aimed to characterize how single-cell communication

propertiesandmemorycontribute tomulticellular synchronization.



Figure 4. Functional cell memory is reinforced over time

(A) The transmission and the receiver scores were calculated as the probability for a significant outgoing (respectively, ingoing) Granger causality edge at to-

pological distance of up to two (nearest [yellow polygons] and next-to-nearest neighbor cells [green polygons]). For example, the red cell in the center has a total

of 15 neighbors, 5 in topological distance 1 (yellow) and 10 in topological distance 2 (green). The transmission score of the red cell is 3(outgoing edges)/15 and

receiver score is 3(ingoing edges)/15.

(B) Themean transmission and receiver scores increased over the cycles. Shown are the cells that are color coded according to their transmission (top, blue) and

receiver (bottom, red) scores. The color scale is linear.

(C) Cells transmission and receiver scores were correlated across consecutive cycles (solid lines), reinforced over time (Pearson coefficient = 0.7512, p < 0.0001),

and were a local cell property as validated with permutation analysis—shuffling the cells in the next cycle and calculating correlation (dashed line, see STAR

Methods). p value for the significance of the memory% 0.001 (except the first cycle: p value of transmission and receiver score 0.021 and 0.15 correspondingly,

and the third cycle’s transmission score p value of 0.017; Figure S8A).
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First, we normalized the transmission and receiver scores across

the population and cycles by calculating the respective Z

score—the number of standard deviations away from the mean

(Figure 5A; STARMethods). The normalized scores allowed com-

parison of cell communication properties acrossdifferent cycles in

the same experiment as well as between different experiments.

Next, we partitioned the normalized transmission-receiver space

into five regions and empirically assigned the cells to states ac-

cording to the region they occupied. Individual cells, whose cal-

cium dynamics were independent of cells in their local vicinity,

have normalized transmission and receiver scores both below

�0.5; common cells, with average communication properties;

leadercells,withhightransmissionscores(transmissionscore>0.5

and receiver score < 0.5); follower cells, with high receiver score

(receiver score > 0.5 and transmission score < 0.5); and communi-

cation hub cells, characterized by both transmission and receiver

normalized scores above 0.5 (Figure 5A; STAR Methods). This

data-driven partitioning defined five distinct states that cells take

in terms of information transfer in the multicellular communication

network and enabled us to follow their evolution throughout the
synchronization process (Figures 5B and 5C; Videos S5 and S6).

The combined effect of the increasing information flow and cell

memory led to a gradual increase in the fraction of cells actively

participating in communication: followers, leaders, and communi-

cation hubs, along with decreased fraction of cells with reduced

level of communication: common and individual (Figure 5C).

To follow the dynamic trajectory of single cells between

communication states, we analyzed the probability of transition-

ing from one state to another in consecutive cycles. In particular,

we computed the enrichment factor—transition probabilities be-

tween any two states and normalized the quantity by the fully

random transition probabilities (STAR Methods; Figure S10). As

expected from our earlier observation of functional memory (Fig-

ure 4C), we found that cells tended to maintain their states or

‘‘similar’’ states, as reflected by self-transition enrichment factors

above one (Figures 5D andS10). Generally, single cells followed a

temporal trajectory from the states characterized with less

communication capacity to stateswith increased communication

(Figure 5D; showing edges only for enrichment factors >1). We

also found symmetric transition folds between the follower and
Cell Systems 13, 711–723, September 21, 2022 717



Figure 5. Cells’ communication states, state transitions, and enrichment of communication hubs

(A) Kernel density estimate plot visualization of the normalized transmission and receiver score over the cycles (blue gradient contours). Left: partitioning of the Z

score normalized transmission-receiver space to five regions (blue dashed lines); each cell (yellow dot) was assigned to a group or ‘‘state’’ (red text) according to

the region they resided at. Individual: transmission and receiver Z score < �0.5, common: transmission Z score in the range of (�0.5, 0.5) and receiver Z

score < 0.5 or receiver Z score in the range of (�0.5,�0.5) and transmission Z score < 0.5. Leader: transmission Z score > 0.5 and receiver Z score < 0.5. Follower:

receiver Z score > 0.5 and transmission Z score < 0.5. Hub: transmission and receiver Z score > 0.5.

(B) Visualizing the cells’ communication states over the cycles with color code.

(C) Fraction of cells at each communication state over the cycles.

(D) Enrichment factorsof cellular-state transition.Depictionof the single-cell transitionsbetweenstates thatwere enrichedbeyond theexpectedvaluesof a nullmodel.

The null model was based on the marginal distribution of the states (Figure S10; STARMethods). Shown are edges with fold increase over 1 (linear color code).

ll
OPEN ACCESS Article
leader states, and the transition from communication hub to the

follower/leader state was enriched compared to the opposite

transition to a communication hub (Figures 5D and S10).

We next focused our attention to the fraction of cells taking the

‘‘communication hub’’ role. Low fraction of communication hubs

at the onset of the experiment rapidly increased to become a

frequent state in later cycles (Figure 5C), coinciding with the

gradual increase in information flow (Figure 4B). Moreover,

the communication hub state was found to be muchmore stable

than other states or transitions (2.4-fold dwell probability

compared with a fully random process), underpinning their rapid
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spread in the population (Figure 5C). Altogether, increased infor-

mation flow along with stable functional memory led to enrich-

ment of communication hubs that contribute to effective spread

of information in the multicellular network.

Information gradually propagates from the (local) single
cell to the (global) multicellular scale
Our data suggest that multicellular synchronization is associated

with various single-cell properties such as communication

state and memory. This led us to the hypothesis that the syn-

chronization process is driven by effectively propagating



Figure 6. Gradual local to global transition in information spreading

(A) Main panel: the observed versus permuted Granger causality edge probability, P(GC edge), over the cycles. Upper left: the mean observed versus mean

permuted neighbor cross correlation over the cycles. For both panels, the red horizontal line is the experimental observation, whereas each blue dot is the result of

one of ten independent spatial cell permutations. Bottom right inset: experimental GC edge probability subtracted from the mean permuted GC edge probability

using the same data as in the main panel. Through cycles 0 to 12, Pearson coefficient = 0.94, p value < 0.0001.

(B) In themain panel, each dot represents the Pearson correlation between the topological distances of pairs of cells to the corresponding GCedge probability in a

given cycle. Through cycles 0–12, Pearson coefficient = 0.964, p value < 0.0001. *** p value < 0.0001, * p value < 0.05, for Pearson correlation significance test.

Insets show the P(GC edge) as a function of the topological distance between cell pairs for the first (bottom right) and last (top left) cycles. For this analysis, we

randomly selected for each cell at each topological distance at most ten neighboring cells due to computational cost and performed FDR multiple hypotheses

correction (see STAR Methods for full details).
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information from the local scale (between single cells) to the

global (collective) scale. To test this hypothesis, we measured

to what extent local cell properties explained the information

flow in the multicellular network. First, we computed the neigh-

boring pair cross correlation coefficients for direct observations

and spatially permuted data. We found that the spatial permuta-

tion always decreased the cross correlation; therefore, cross

correlation was maintained as a local cell property throughout

the experiment even in the presence of common external stimuli

(Figure 6A, upper-left inset). Spatial permutation decreased the

GC edge probability in early cycles but increased the edge prob-

abilities in later cycles (Figure 6A, main panel and the lower-right

inset). These results indicate that once neighboring cells reach

sufficient synchronization, their ability to influence each other is

less effective than cell pairs far apart. We validated these obser-

vations more systematically by correlating the topological dis-

tance between pairs of cells to their GC edge probability

(STAR Methods). This analysis established that at the onset of

the experiment, the information flow is dominated by local cell-

cell interactions and is gradually transitioning to the global scale

as the multicellular network synchronizes (Figure 6B).

DISCUSSION

The emergence of robust multicellular behaviors from heteroge-

neous single-cell dynamics is a poorly understood but funda-
mentally important phenomenon in living systems (Zinner et al.,

2020). Here, we provide insights into bridging the scales be-

tween local cell-cell communication and global multicellular

synchronization. This was achieved by measuring asymmetric

information transfer at single-cell resolution in multicellular

monolayers under externally applied mechanical stimuli. By em-

ploying Granger causality to systematically quantify the commu-

nication of a cell with other cells in their local environment, we

defined for each cell its capacity to transmit and to receive infor-

mation in the multicellular communication network. Our method

relies on local pairwise analysis of cell dynamics and defines

single-cell communication properties without requiring explicit

construction of the network or committing to a specific network

architecture. This model-free data-driven approach can be

applied to a broad set of biological systems from synchronized

beating of cardiomyocytes (Nitsan et al., 2016), intercellular

communication through the microenvironment (Nahum et al.,

2022), brain activity (Seth et al., 2015), molecular signaling (Go-

glia et al., 2020), and coordinated cell migration (Malinverno

et al., 2017).

We showed that the cells were actively communicating with

one another locally and that physical cell-cell contacts via gap

junctions were required for multicellular synchronization. These

conclusions were supported by multiple lines of evidence

throughout our study. First, we reported that gap junctions and

sufficient cell confluence were required for multicellular
Cell Systems 13, 711–723, September 21, 2022 719
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synchronization (Figure 3B versus Figures 3C or S5; Table S2).

Second, we demonstrated that both local and collective hetero-

geneities depended on the spatial organization of cells in their vi-

cinity (Figure S3). Third, we found that the activation time, a cell’s

autonomous response to the external stress, was not associated

with the transmission or receiver score (Figure S9A), which

would also be conflicting with the gradual increase fraction of

communication hubs (which are both leaders and followers).

Forth, cells ‘‘remembered’’ and reinforced their roles in themulti-

cellular communication network over time, as a local, spatially

dependent property (Figures 4C and S8) but did not ‘‘remember’’

their activation time in previous cycles (Figure S9B). Fifth,

neighbor pair cross correlation was a local cell property

throughout the experiment (Figure 6A). Together, our data estab-

lished the decoupling of the local cell-cell communication from

the external stimuli and established that the emergence of multi-

cellular synchronization required gap-junction-mediated local

cell-cell communication.

Our data reveal that single cells take different roles in cell-cell

communication (‘‘division of labor’’), which we defined as

communication states in the context of collective mechanosens-

ing. Cells gradually reinforce their state (‘‘functional cell mem-

ory’’) and increase the connectivity (‘‘information flow’’) in the

multicellular network. These three mechanisms work in concert

to facilitate the emergence of multicellular synchronization. Our

results suggest that although cell heterogeneity expands the dy-

namic rangeofmechanoresponses, functionalmemory stabilizes

the dynamics against intrinsic and extrinsic noise and that infor-

mation flow sustains and reinforces the multicellular dynamics.

We found that heterogeneity in cells’ communication proper-

ties were associated with improved convergence to synchroni-

zation (Figures 2E and 3F). We also observed that the fractions

of cells at each functional state, excluding individuals, became

more balanced through periodic cycles (Figure 5C), in agreement

with our conclusion that heterogeneity constructively contrib-

utes to the synchronization of a noisy multicellular system.

Heterogeneity among cells could arise from stochastic gene

expression levels, signaling kinetics, physiological states such

as cell cycle, and/or microenvironmental cues (Cheng et al.,

2015; Gut et al., 2018; Gut et al., 2015; Hasenauer et al., 2011;

Muldoon et al., 2020; Paszek et al., 2010; Tay et al., 2010).

Although our data do not exclude a particular source of hetero-

geneity, the alteration of cellular communication state at a short

timescale (�10 min) suggests pathway kinetics, such as the

cross-talk between gap junction and mechanotransduction,

may be important factors to determine both local and global

heterogeneities.

Previous studies have reported multiple sources of microenvi-

ronment-dependent cell memory. For instance, cells can

remember past mechanical properties of their substrate, which

influence their differentiation (Yang et al., 2014). Cells can also

sense changes in their extracellular signal by remembering

past extracellular stimulation via a receptor-mediated mecha-

nism (Lyashenko et al., 2020), and past growth-promoting stimuli

can affect cells’ future signaling responses (Spinosa et al., 2019).

In the context of collective cell migration, a recent study showed

that cells remembered their polarized state independently of

cell-cell junctions (Jain et al., 2020), and another study revealed

associative memory of electric field and chemoattractant at
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stimuli in a unicellular organism migration patterns (De la Fuente

et al., 2019). In our study, single-cell memory of communication

properties contributes to the temporal evolution of the multicel-

lular network to its synchronized state. The dissociation between

a cell’s activation time and its functional role in information pro-

cessing underpins the dynamic nature of memory, which is also

consistent with the unidirectional evolution of the multicellular

network (Figures 5 and 6). Although further investigations are

required to reveal the molecular mechanisms of the cellular

memory, we suspect that slow gap-junction turnover, as well

as the cyclic perturbations that kept calcium dynamics from fully

relaxation, may contribute to the reinforced functional role

of cells.

Our study reveals a self-organized multicellular network that

supports information flow from local to global scales. Such

information may be carried by two main signaling mechanisms,

juxtacrine (contact-dependent) and autocrine (secreted-depen-

dent) (Fancher and Mugler, 2017). A juxtacrine channel allows

a cell to establish conversation with its (physically touching)

immediate neighbors without interference from extracellular

space. For HUVEC cells, such communication can be realized

by gap junctions (Okamoto et al., 2017). On the other hand, an

autocrine channel allows a cell to broadcast its information

through diffusive messengers in the extracellular space. For

HUVEC cells, stress-triggered ATP release and ATP-induced

calcium dynamics constitute an autocrine pathway (Yamamoto

et al., 2011). Although both mechanisms could contribute to

the information flow within the multicellular network, we suggest

gap-junction and contact-dependent signaling as the dominant

mechanism (Figure 3B versus Figures 3C or S5). Although a

recent study suggested that positive feedback of a diffusive

signalingmechanism can drive accelerated, long-range informa-

tion transmission (Dieterle et al., 2019), the external flow in our

system is likely to rapidly dilute the diffusive messenger (Gregor

et al., 2010). The contact-dependent information flow hypothesis

is also supported by our previous studies where we demon-

strated that blocking gap junctions or inserting weakly commu-

nicating cells impaired the information flow (Potter et al., 2016;

Sun et al., 2012).

Altogether, our results suggest the following phenomenolog-

ical model for multicellular synchronization. Cells are gradually

‘‘learning’’ the local network structure around them (heterogene-

ity), adjusting their internal state, reinforcing it (memory), and

thus stabilizing the network architecture. This stabilized network

structure reduces conflicting communication interferences and

thus promotes enhanced spread of information from the local

to the global scale to eventually synchronize the group.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
Human Umbilical Vascular Endothelial Cells (HUVEC) were purchased from Lonza and were cultured following the vendor’s instruc-

tions. To prepare samples, cells were detached from culture dishes using TrypLE Select (Life Technologies) and suspended in growth

mediums before being pipetted into the microfluidics devices at cell density of approximately 1800-2000 cells/mm2 at 100%

confluence (600-800 cells/mm2 at 30%-50% confluence in the lower density experiments) allowing the cells to form monolayers. Af-

ter overnight incubation, fluorescent calcium dye (Calbryte 520, AAT Bioquest) was loaded for 40 minutes prior to imaging. Palmito-

leic acid (Sigma-Aldrich, MO) was used as gap junction inhibitor in our experiments. Palmitoleic acid was first dissolved in DMSO and

then diluted to 10uM in growth medium. Before experiment, cells were treated with 10uM palmitoleic acid for 8 to 12 hours while

seeding into the PDMS device. Then, 10uM palmitoleic acid was added to growth medium used for shear-stree experiments.

METHOD DETAILS

Microfluidics
The organic elastomer polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning) used to create the microfluidic devices was

comprised of a two part mixture - a base and curing agent - that were mixed in a 10:1 ratio, degassed, and poured over a stainless

steel mold before curing at 65�C overnight. Once cured, the microfluidic devices were cut from the mold, inlet/outlet holes were

punched, and the device was affixed to a No. 1.5 coverslip via corona treatment. The cross section of the flow chambers was rect-

angular (2 mm X 1 mm). See Figure 1A for depiction.

Applying controlled shear stress on the cells
The microfluidics flow rate was controlled by a proportional–integral–derivative (PID)-regulated pressure pump and was monitored

using an inline flow sensor (Elveflow). To verify the stability of the flow profile we mixed 1 micrometer fluorescent particles in the so-

lution and used particle image velocimetry to quantify the flow rate (Figure 1B). To calculate the shear stress, we approximated the

flow profile in the flow chamber as low-reynolds number pipe flow. We considered the cells in the field of view to experience uniform

shear stress calculated at the center of the flow chamber. This was possible because the imaging window was narrow (470 mm)

compared with the chamber width (1 mm).

In the ‘‘step’’ experiments we exposed the cells to a ‘‘step’’-like shear stress of 0.1, 0.2, 0.6, 1 or 1.6 Pa for approximately

20 minutes. In the ‘‘cycles’’ experiments we applied multiple rounds of 2 minute long global external periodic mechanical stimuli.

We limited the number of cycles for analysis to 13 at most, because of gradual accumulation of stage drifting and photo-damaging

effects. Further experiments were performed to evaluate single cell calcium signal at the stimulation onset and its relaxation time after

a single pulse (Figure S11).

Live cell imaging
We imaged the calcium dynamics of HUVEC cells using a 20X magnification oil immersion objective lens (for step-stress experi-

ments) and a 10X dry lens (for cyclic-stress experiments, to avoid flow-induced focus drift). The fluorescent images were captured

with a CMOS camera (Hamamatsu Flash 2.8) at 0.5 Hz and 1 sec exposure time. The images were stored as tif files of 960 X 720 pixels

with physical pixel size of 0.65 mm X 0.65 mm (20X magnification) or 1.2 mm X 1.2 mm (10X magnification).

Measuring single cell calcium signaling
We manually annotated every cell center (Figure 1A, inset), and recorded the mean fluorescent intensity of approximately 40 mm2

around the cell’s center as a proxy of the intracellular calcium signal time-series of each cell. We normalized the calcium signal ac-

cording to the approach described in (Sun et al., 2013) (‘‘response curve normalization’’). The response curve of each cell was defined

asRðtÞ = DF
F = ðFðtÞ�F0Þ

F0
, where FðtÞwas calculated as the mean fluorescent intensity at time t, The baseline F0 was calculated as the

mean of the first 5 frames (10 seconds) of FðtÞ before the mechanical stimulation was turned on. Temporal long-pass filter smoothed

the R(t) time series to reduce the effects of outliers. Temporal smoothing was performed using Python’s lowess function from

statsmodels (statsmodels.nonparametric.smoothers_lowess) with the parameter frac=0.01. R(t) provides us with a dimensionless

measure for the intracellular calcium magnitude relative to the cell’s basal intensity.

To evaluate the change in the calcium signal in response to external mechanical stimulus we derived the cells’ calcium signal in

time:cRi ðtÞ = dRi

dt ðtÞ � CdRi

dt ðtÞD, where CdRi

dt ðtÞD is the mean value of dRi

dt ðtÞ, and dRi

dt ðtÞ was calculated by Python’s numpy convolution

operator over the time series with the parameter values mode=’same’ and with a five point stencil filter [1, -8, 0, 8, -1] where the result

was divided by constant of 12. A cell’s calcium signal temporal derivativecRi ðtÞ was termed calcium dynamics.
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The differentiation is necessary since both the exchange of IP3 and Ca2+ lead to a change of calcium concentration. Hence, the

derivative is quantity directly related with communication (Sun et al., 2013; Sun et al., 2012). In addition, the derivative has properties

such as: independent of basal level of signal, independent of slow systematic errors such as photo bleaching, and stationarity.

Measuring adaptation rate in ‘‘step’’ experiments
The adaptation rate is a non-parametric measurement for the speed that the multicellular system adapts to external stress. We

defined the adaptation rate as 1 �
 R tmax +400

tmax
sbRi ðtÞðtÞ

400� sbRi ðtmax Þ

!
, where sbRi ðtÞ

ðtÞ is the population-level standard deviation of single-cell calcium

dynamicscRi ðtÞ at time t after applying Hampel smooth function (Hampel, 1974) to remove outliers with the parameters of window size

of 10 and threshold of 3s, and tmax = argmax
t

sbRi ðtÞ
ðtÞ is the time of the peak variability in calcium dynamics (STARMethods; Figure 1E).

When a system rapidly synchronizes, the adaptation rate approaches one. Conversely, if a system maintains a large deviation be-

tween the dynamics of individual cells, the adaptation rate is close to zero. In general, a higher adaptation rate implies faster multi-

cellular adaptation to the external stress (Figure 1E, black curve adapts faster than blue curve). whichmeasured the ratio between the

area under the curve of (sbRi ðtÞ
ðtÞ) from the peak variability in calcium dynamics over 400 seconds (Figure 1E, the areamarked in purple

area or yellow + purple area for black and purple curve accordingly) with respect to the theoretical upper bound where the relative

variability is zero (Figure 1E, the combined areas marked in yellow, orange, and purple).

We choose a temporal window size of 400 seconds (200 frames) since several experiments had late peak times defining an upper

bound on the temporal window (i.e., this was the maximal time-frame without excluding experiments; Table S1).

Measuring multicellular calcium adaption using a parametric exponential model
We devised an exponential parametric model to complement the non-parametric adaption rate measurement. We fitted the expo-

nential model A � e�Kt +C, to the standard deviation curve of the cell’s calcium dynamic using the non-linear least-squares method

(Levenberg-Marquardt algorithm (Levenberg, 1944)). The initial coefficients values were set to A = 0.05, K = 0.01, C = 0. In experi-

ments where the parameters failed to converge, we applied a linear least-squares fit to the logarithm of the signal. The coefficient

K of the fitted model was used as the parametric measure for the adaptation rate.

Measuring synchronization in ‘‘cycle’’ experiments
Wedefined theasynchronizationasameasure toquantifymulticellular synchronization that reliedon thestandarddeviationof singlecell

calciumdynamics at different timepoints (cRi ðtÞ) in ‘‘cycle’’ experiments. Formally, we defined bRðtÞ =
Pn
i = 0

bRi ðtÞ
n , where n is the number of

cells, as themean calciumdynamic of all the cells at time t and sbRi ðtÞ
ðtÞ function as the standard deviation of the cells’ calciumdynamic.

The mean of sbRi ðtÞ
ðtÞwas calculated over the entire cycle time. Low values implied improved synchronization across the entire group.

Granger causality
Granger causality (GC) is a statistical method to quantify the information flow among multiple variables’ time-series (Granger, 1969).

Intuitively, time-series B is said to be "Granger causal" of time-series A, if the variability of A can be better explained by previous

values of B and A, compared to using only previous values of A. Granger causality is an approximation to ‘‘transfer entropy’’ and un-

der the assumption of Gaussian distribution it is exactly equivalent (Barrett et al., 2010).

Formally, given two-time series xiðtÞ and xjðtÞ, where t˛Z. The autoregressive model of xi is:

xiðtÞ =
Xp
k = 1

akxiðt � kÞ+ εiðtÞ (Equation 1)

Where, p is the lag order, the number of previous observations used for prediction, ak is the coefficient of xi and εi is the prediction

error at time t. The autoregressive model of xi based also on the previous observations of xj is:

xiðtÞ =
Xp
k = 1

aikxiðt � kÞ+
Xp
k = 1

ajkxjðt � kÞ+ εijðtÞ (Equation 2)

Where, p is the lag order,aik is the coefficient of xiðt � kÞ, ajk is the coefficient of xjðt � kÞ and εijðtÞ is the joint error of xi and xj pre-

dicting xi.

Stationarity test
To avoid spurious causality connection, xi and xj both must comply with a stationary process before applying the granger causality

test. Intuitively, stationary means that the statistical characteristics such as average and variance of a time series are independent of

time. For each cell’s cRi ðtÞ time series we applied two statistical tests for stationarity. First, Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) (Kwiatkowski et al., 1992) tests the null hypothesis of stationarity against the alternative of unit root. Second, Augmented
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Dickey–Fuller (ADF) (Cheung and Lai, 1995) was applied as a complementary test for KPSS and tests the null hypothesis for unit root

against the alternative of stationary. We excluded 24 of the 47 ‘‘step’’ experiments where less than 85% of the cells passed both the

KPSS and the ADF stationary tests with significance of below 0.05 (Figure S2A). From the remaining experiments we considered only

cells with time-series that passed both stationarity statistical tests.

Pairwise calibration of the lag order
Granger Causality is based on linear regression and thus sensitive to the lag order, i.e., the number of past time frames used to make

future predictions. In the context of a time-series, the autoregressive (AR) model is the estimator of the next time point value based on

its own previous values. Higher lag-order reduces the bias but increases the variance while lower lag-order reduces the variance but

increases the bias (Wooldridge, 2016). We selected the lag order, for each cell pair independently, as the minimal lag derived from

four methods: Akaike information criterion (Akaike, 1973), Bayesian information criterion (Schwarz, 1978), Final Prediction Error

(Akaike, 1970) and Hannan–Quinn information criterion (Hannan and Quinn, 1979). Theminimum lag was selected to avoid overfitting

without losing information backup by using Portmanteau test which checks for whiteness (i.e, the error does not contain a pattern)

(L€utkepohl, 2005).

Granger causality statistical test
We applied a statistical test to infer granger causality between twocRi ðtÞ time series xi andxj (denoted,GCxj �>xi ) (Granger, 1969). GC

tests the null hypothesis that xj is not contributing to the explained variance of xi (Equation 2) in relation to the model derived solely

from past values of xi (Equation 1). This null hypothesis is rejected when at least one of the coefficients in equation (2) is different from

zero. The statistic is based on the distribution:

Fvalue =
SSRRestricted � SSRUnrestricted

SSRUnrestricted

�
T � k

p

�
(Equation 3)

Where, SSRRestricted is the sum of square residuals of themodel which take into account only self-previous observation of the random

variable (Equation 1), and SSRUnrestricted is the sum of square residuals of the other model which also takes into account the previous

observation of the second random variable (Equation 2). T is the sample size (number of observations in the time series used for pre-

diction), p is the number of variables which was removed from the unrestricted model, in our case, the lag order, and k is the number

of variables, in our case, twice the lag order. The null hypothesis is rejected when the Fvalue is larger than the F statistic (i.e., F’s critical

value) to conclude thatGCxj �> xi . We derived the p-value from the F-statistic instead of directly using the F statistic to set up a global

acceptance threshold.

Measuring collective heterogeneity
Wemeasure the collective heterogeneity using the degree distribution of the network (Jacob et al., 2017). Themeasure characterizes

the variability between the cell’s degrees by measuring the variation of the probability for cells with each degree k, denoted P(k).

Formally, the collective heterogeneity measure is defined as H =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Pkmax

kmin
ð1�PðkÞÞ2

q
ffiffiffiffiffiffiffiffi
1� 3

N

p , where N is the overall number of cells, and the

numerator is considered only for all k’s such thatPðkÞs0. The denominator is the approximate upper bound for N cells. The collective

heterogeneity measure is bounded between 0 and 1 for large networks. H = 0, when all cells have the same degree (minimal het-

erogeneity).H = 1, for a specific network structure when the network’s size converges to infinity, see Jacob et al. (2017) for details. H

could exceed the value of 1 for extremely small networks (see Figure 2D). This measure is skewed for networks containing many

vertices with zero degree because Pðk = 0Þ is high and the probability for other degrees ðk s0Þ is low, maximizing the numerator

(see gap-junction inhibition experiments in Table S2).

We defined the null model for the collective heterogeneity by random shuffling the GC edges (Figure S3A). Formally, given a graph

G and binary assignment of GC edge a : fðvi; vjÞ
�� c vi ˛VðGÞ and vj ˛Nvi ð1Þ WNvi ð2Þg/fa1; .:; asg, where NvðdÞ are the cells at

topological distance d for cell v, ai ˛ f0;1g is a binary edge assignment for all cell pairs at topological distance% 2 from one another

fðvi; vjÞ
�� c vi ˛VðGÞ and vj ˛Nvj ð1Þ WNvj ð2Þg, and s is the number of such pairs. A random permutation was performed by shuffling

the binary assignments. Observed collective heterogeneity was systematically higher than the null model (Figure S3B).

Measuring local heterogeneity
We measure the local heterogeneity using the Estrada’s index measure (Estrada, 2010). The measure focuses on the more local

structural aspect of the network and is based on the Randi�c index score that is commonly used in chemistry for describing the mole-

cule structure (Gutman et al., 2018). In contrast to the global collective heterogeneity that measures, Estrada index is based on the

degree difference between all pairs of neighboring cells, thus capturing the heterogeneity in local network structure. Formally, the

Estrada index is defines as E =

P
i;j ˛E

�
k
� 1
2

i
� k

� 1
2

j

�2

n� 2
ffiffiffiffiffiffiffiffi
n� 1

p , where n is the number of cells and ki is the degree rank of cell i. The Estrada index

is bounded between 0 and 1. E = 0, when all cells have the same degree, and E = 1, for star topological structure, where one node has

a degree of n-1 and the other cells have a degree 1.
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We defined the null model for the local heterogeneity by spatially shuffling the cells’ neighbors while preserving the same degree

rank. We shuffle the cells’ edges by rewiring two edges while preserving their degree. Formally, given two edges ei = ðv1; v2Þ
and ej = ðu1;u2Þ, a single rewiring is transforming ei; ej edges to e0i = ðv1; u2Þ and e0j = ðu1; v2Þ. The rewiring function repeatedl
jEj
2 � log 1

d

m
times where the repeated factor d is 10� 6 following the rule of thumb termination criteria for generating independent

random graph (Ray et al., 2015).

Calculating the transmission and receiver scores
The transmission and the receiver scoreswere calculated as the probability for an outgoing (respectively, ingoing) edge at topological

distance % 2 (nearest and next-to-nearest neighbor), where the topological distance was calculated using the Delaunay

triangulation.

The transmission (denoted Tr) and receiver (denoted Re) scores were calculated independently for each cell ci using its cell neigh-

bours at topological distance one and two Nci ð1Þ WNci ð2Þ: TrðciÞ =
P

cj ˛Nci
ð1ÞWNci

ð2Þ1GCci �>cj

jNci
ð1ÞWNci

ð2Þj and ReðciÞ =

P
cj ˛Nci

ð1ÞWNci
ð2Þ1GCci <� cj

jNci
ð1ÞWNci

ð2Þj .

We treat each cell as an independent observation thus characterizing the role of each cell in the multicellular network without

specifically committing on the exact network edges. To fix spurious edges due to multiple hypothesis testing we applied the strict

Bonferroni correction that defines the edge significance threshold based on the number of edges considered (Bonferroni, 1936).

In our case, with a significance threshold of 0.05 and n - number of potential edges we get a new significance threshold of 0.05/

n. Edges passing this strict statistical test were termed GC edges.

The reason for using topological distances of up to two in calculating the transmission and receiver score is twofold. First, for an-

alytic reasons and second due to irregularity in cell shape. Calculating the transmission and receiver score based on a small number

of neighbors will increase the uncertainty. These neighborhood sizes were determined empirically for sufficient observations for sta-

tistics, and the expected short-range communication between the cells. Topological distance of two is a sweet spot in terms of

reducing the false-positive errors. Specifically, increasing the number of neighbors makes the statistical test for determining GC

edges stricter (from �0.008 for topological distance of one to 0.003 for topological distance of two) because we use Bonferroni

correction to determine statistical significance (Figure S2B). This way, the statistical test also becomes less variable between cells

since the variability in the number of neighbors also decreases.

A second reason for choosing to include next-to-nearest neighbor in the analysis due to the irregular shapes of the cells (Fig-

ure S2C). Gap junctions often connect cells that are next-to-nearest neighbors as defined by Delaunay Triangulation. Nevertheless,

the main results regarding heterogeneity, memory, and local-to-global information propagation held also when considering topolog-

ical distance of size one (Figure S12).

Note that the variance in the transmission and receiver scores gradually increased over time (Figure S13). This result is in agree-

ment with our results associating collective heterogeneity and synchronization.

Partitioning the normalized transmission-receiver space
The transmission and receiver scores of each cell were normalized across the population to allow direct comparison of single cell

heterogeneity between cycles and between experiments. We calculated the receiver and transmission z-score for each cell ci,

the variation from the mean in units of standard deviations: Tr_norm(ci) = (Tr(ci)-m)/s, where m is the mean transmission score across

the population over all cycles, and s is the standard deviation. The same normalization was applied for the receiver score. Kernel

Density Estimation (Scott, 2015) was used for the visualization of the 2-dimensional normalized transmission and receiver score

space (Figure 5A). We partitioned the normalized transmission-receiver space to five regions, and assigned each cell to one of these

regions. Individual: transmission and receiver z-score < -0.5. Common: transmission z-score in the range of (-0.5, 0.5) and receiver

z-score < 0.5 or receiver z-score in the range of (-0.5, 0.5) and transmission z-score < 0.5. Leader: transmission z-score > 0.5 and

receiver z-score < 0.5. Follower: receiver z-score > 0.5 and transmission z-score < 0.5. Hub: transmission and receiver z-score > 0.5.

The z-score threshold of 0.5 was selected to maintain sufficient number of cells in each role for statistical analysis.

Measuring information flow
GC edge probabilitywas defined as the probability of a GC edge in the experiment. This was calculated as the ratio between the total

number of GC edges and the total number of potential edges in the experiment (defined by topological distance % 2 for each cell).

Because GC edge probability is a proxy for the information flow within the multicellular network, we also used the term information

flow to refer to the GC edge probability in the manuscript text.

Enrichment factor of cellular state transitions
We calculated the enrichment factor, the fold change in the observed transition probabilities of single cells from one state (functional

role) to another cell state in consecutive cycles in relation to a null model derived from the expected transitions based on themarginal

distribution of cells’ functional roles.

First, we constructed the single cell transition matrix trc+1
c ði; j; kÞ (Equation 4), where the ði; j; kÞ bin holds the total number of tran-

sitions of the single cell k˛K between state i and state j in consecutive cycles, c; c+ 1˛C observed throughout an experiment, and

where Sc[k] indicates the state of cell k in cycle c.
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trc+ 1
c ði; j; kÞ =

�
1; Sc½k� = i;Sc+ 1½k� = j
0; else

(Equation 4)

Second, we accumulated all transitions over all cells in the accumulated transition matrix Tði; jÞ (Equation 5).

Tði; jÞ =
XjKj
k = 1

XjCj � 1

c

trc+ 1
c ði; j; kÞ (Equation 5)

Third, we normalized each row of the accumulated matrix Tði; j = 1;.; jSjÞ to compute the Markov transition matrix bT ði; jÞ (Equa-
tion 6), the observed probability for a cell to transition from state i to state j throughout the experiment (Figure S10, top-left).

bT ði; jÞ =
Tði; jÞPjSj
j = 1Tði; jÞ

(Equation 6)

Finally, we calculated the enrichment factor matrix €Tði;jÞ, the fold change in single cell transition from state i to state j in consecutive

cycles in respect to the expected probability from a null model assuming random transitions drawn from the marginal state distribu-

tion Eði; jÞ (Equations 7, 8, and 9; Figure S10, bottom-left and right).

fðiÞ =

PjKj
k = 1

PjCj
c = 11Sc ½k� = iPjSj

j = 1

PjKj
k = 1

PjCj
c = 11Sc ½k� = j

(Equation 7)
Eði; jÞ =
u5outer productu

T

u
; u = ½fði = 1Þ;.; fði = jSjÞ� (Equation 8)
€Tði; jÞ = bT ði; jÞ � 1

Eði; jÞ (Equation 9)

Measuring cell memory
To measure the cell memory we calculated the Pearson correlation of the cells transmission or receiver scores between consec-

utive cycles with step Dt (Dt = 1 in Figure 4C, Dt R 1 in Figure S8B). We evaluated the significance of our results using a

permutation test by shuffling the cells’ spatial locations with over 1000 permutations. The permutation test was performed by

concatenating the vector scores of the cycles c, c+Dt, shuffling the values, splitting back to two vectors, and calculating the ab-

solute Pearson correlation. The p-value was set as the fraction of permutations where the shuffled correlation surpassed the

observed experimental correlation. In this analysis, each stimulus cycle was considered as an independent event, although the

cells’ calcium dynamics (cRi ðtÞ) never reached equilibrium between cycles because the shear stress was periodic and continuous.

We performed an additional experiment with rest time between the applications of shear-stress periodic cycles. Even though the

system did not synchronize well (in a single replicate), positive correlations were measured between cycles, specifically before and

after the idle (i.e., pause in shear stress) cycle providing further evidence that the memory is a cell property that is independent

across cycles (Figure S14).

Activation Time
The activation time of a cell in a given cycle is the time where its calcium dynamics exceeds a threshold value of gwithin a cycle. The

threshold is parametrized by d in the range of 0.1, 0.2 or 0.3 from the calcium dynamics range - the initial value subtracted from the

maximal value within the cycle.

g = bRCi
ðt = 0Þ+ d � 	max

	 bRCi


 � bRCi
ðt = 0Þ


The initial time was shifted by 60 seconds (30 frames) from the onset of the cycle to the time where the mean value of the cells’

calcium dynamics is zero to ensure that the single cell calcium signal is on the rise for the vast majority of the cells.

Correlating the topological distance between pairs of cells to their GC-edge probability
In Figure 6B we correlated the topological distance to the corresponding GC edge probabilities. For each topological distance, for

each cell, we randomly selected ten (or less in topological distances with smaller numbers) cells and calculated the GC statistical test

for each cell pair in both directions. We evaluated the critical value (i.e., p-value correction) using FDR, to correct for multiple hypoth-

esis testing. Finally, we calculated the probability for GC significant edge as the total number of significant edges divided by total

GC tests performed.
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Data
n = 47 biological replicates for the ‘‘step’’ experiments: n = 6 (0.1 Pa), n = 13 (0.2 Pa), n = 8 (0.6 Pa), n = 10 (1 Pa), n = 10 (1.6 Pa). n = 14

biological replicates for the ‘‘cycles’’ experiments: control n = 4 (0.1 Pa) and n = 6 (0.2 Pa), low density n = 2 (0.2 Pa), gap-junction

inhibition n = 2 (0.2 Pa).
e7 Cell Systems 13, 711–723.e1–e7, September 21, 2022


	Emergence of synchronized multicellular mechanosensing from spatiotemporal integration of heterogeneous single-cell informa ...
	Introduction
	Results
	Endothelial cells in a monolayer adapt their calcium dynamics in response to external shear stress
	The interplay between information flow, heterogeneity, and multicellular adaptation
	Gap-junction-mediated multicellular synchronization to periodic mechanical stimuli
	Functional cell memory: Cells maintain their states in the communication network and reinforce them over time
	Stability in single-cell communication state and increased information flow lead to enrichment of highly communicating cell ...
	Information gradually propagates from the (local) single cell to the (global) multicellular scale

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Cell culture

	Method details
	Microfluidics
	Applying controlled shear stress on the cells
	Live cell imaging
	Measuring single cell calcium signaling
	Measuring adaptation rate in “step” experiments
	Measuring multicellular calcium adaption using a parametric exponential model
	Measuring synchronization in “cycle” experiments
	Granger causality
	Stationarity test
	Pairwise calibration of the lag order
	Granger causality statistical test
	Measuring collective heterogeneity
	Measuring local heterogeneity
	Calculating the transmission and receiver scores
	Partitioning the normalized transmission-receiver space
	Measuring information flow
	Enrichment factor of cellular state transitions
	Measuring cell memory
	Activation Time
	Correlating the topological distance between pairs of cells to their GC-edge probability
	Data




