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Abstract
We develop continuous/discontinuous discretizations for high-order differential operators
using the Galerkin Difference approach. Grid dispersion analyses are performed that indi-
cate a nodal superconvergence in the �2 norm. A treatment of the boundary conditions is
described that ultimately leads to moderate growth in the spectral radius of the operators
with polynomial degree, and in general the norms of the Galerkin Difference differentia-
tion operators are significantly smaller than those arising from standard elements. Lastly,
we observe that with the use of the Galerkin Difference space, the standard penalty terms
required for discretizing high-order operators are not needed. Numerical results confirm the
conclusions of the analyses performed.

Keywords Difference methods · Galerkin methods · Interior penalty methods · Galerkin
differences

1 Introduction

High order derivative operators play an important role in modeling a variety of physical
phenomena, e.g.mechanical beams and plates [1], fluids [2, 3], optics [4], and solidmechanics
[5]. The finite element discretization of such operators leads to challenges associated with
the higher minimal regularity required by weak formulations. Researchers have pursued a
number of different strategies to construct stable approximation schemes. A well-known
example of a conforming element is the C1 Argyris element [6] for the biharmonic operator.
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However, the generalization of conforming elements to higher order derivatives requires the
construction of new and likely more complicated finite element spaces. A second approach
is to used mixed elements, e.g. the biharmonic equation can be reduced to two second order
equations as in [7, 8]. However, mixed finite element methods still require care so that the
so-called inf-sup conditions are satisfied, as needed to guarantee convergence [8, 9]. Most
relevant to the present work are nonconforming methods which require additional terms at
element boundaries incorporating the influence of discontinuities in the derivatives. Examples
include methods for fourth and sixth order elliptic boundary value problems based onC0 test
and trial spaces [10, 11].

In this work, we develop methods for arbitrary even order spatial operators based on
C0 Galerkin Difference basis functions. Although the spatial derivative approximations are
applicable to elliptic and parabolic problems, we are particularly interested in applying the
method to equations that support traveling wave solutions. In this case, as is well-known,
higher order methods can be more efficient for challenging problems involving propagation
over many wavelengths. We claim that the proposed Galerkin Difference methods have a
number of distinct advantages relative to standard C0 elements for problems with high order
derivatives. Most importantly, the norms of the discrete derivative operators grow mildly
as the method order is increased, in sharp contrast the standard methods. In addition, we
observe nodal superconvergence at roughly double the design order, in analogy with results
obtained for local discontinuousGalerkin approximations to the biharmonic operator [12, 13]
and for Galerkin Difference methods in other settings [14, 15]. Interestingly, as previously
demonstrated for second-order wave equations in [15], interior penalty terms are not required
to stabilize the method. This leads to a different and somewhat simpler weak formulation
than used in [10, 11].

The structure of this manuscript is as follows. Section 2 reviews the construction of theC0

Galerkin Difference basis functions. Section 3 demonstrates the construction of approxima-
tions to arbitrary even order derivative operators. Fourier methods are employed to establish
the stability and superconvergence of the schemes for problems in all space or with periodic
boundary conditions. In Sect. 4 we describe the direct enforcement approach to implementing
boundary conditions developed in [16] and demosntrate experimentally that the resulting dis-
cretizations are stable and that the spectral radii of the approximations do not grow too rapidly
with approximation order. Finally, Sect. 5 uses the Euler-Bernoulli beam equation as a pro-
totypical high order differential equation and discusses the application of the discretization,
important implementation details, and numerical results.

2 Galerkin Difference Basis Functions

Similar to some prior Galerkin Difference discretizations, the construction used here is based
on the space of piecewise continuous polynomial interpolants defined on a grid [14, 16–18].
Unlike prior work in continuous GD, however, the space here is non-conforming due to
insufficient smoothness in derivatives of the interpolant. To fully understand the method, it
is therefore appropriate to briefly review the derivation of the C0 Galerkin Difference basis
functions. The discussion follows that of [14]. On an interval (a, b) let xk = a + kh where
h = (b − a)/N is the mesh size. Galerkin Difference functions associated with this mesh
are certain continuous piecewise degree-p polynomials which we will denote by uh and
which are defined via an interpolation procedure. The basis functions are the result of using
Lagrange interpolation to represent an element of the Galerkin Difference space. For the
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piecewise degree p Galerkin Difference functions, set p = 2q − 1 and take the 2q-point
stencil xk−q+1, . . . , xk+q . The representation of uh on the interval Ik+1/2 = [xk, xk+1] is
then given by

uh(x) =
k+q∑

j=k−q+1

u jLk, j (x), (1)

where Lk, j (x) is the Lagrange basis function

Lk, j (x) =
∏

k−q+1≤m≤k+q
m �= j

x − xm
x j − xm

. (2)

Each coefficient u j then contributes to (i.e. is a coefficient in) the interpolation performed on
2q consecutive intervals, and determining the contribution of each coefficient can be viewed
as computing the basis function corresponding to that coefficient. Thus, we may associate a
basis function of width 2q (corresponding to its radius of contribution) to each x j . Moreover,
on a uniform grid these basis functions are obviously translation invariant. For example, the
basis function for p = 3 is

φ
(3)
j (ξ j ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ξ j+3h)(ξ j+2h)(ξ j+h)

6h3
−2h < ξ j ≤ −h

− (ξ j+2h)(ξ j+h)(ξ j−h)

2h3
−h < ξ j ≤ 0

(ξ j+h)(ξ j−h)(ξ j−2h)

2h3
0 < ξ j ≤ h

− (ξ j−h)(ξ j−2h)(ξ j−3h)

6h3
h < ξ j ≤ 2h

0 else

(3)

where ξ j = x − x j and x j is the center of the basis function. Similarly, the basis function
for p = 5 is

φ
(5)
j (ξ j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ j+5h)(ξ j+4h)(ξ j+3h)(ξ j+2h)(ξ j+h)

120h5
−3h < ξ j ≤ −2h

− (ξ j+4h)(ξ j+3h)(ξ j+2h)(ξ j+h)(ξ j−h)

24h5
−2h < ξ j ≤ −h

(ξ j+3h)(ξ j+2h)(ξ j+h)(ξ j−h)(ξ j−2h)

12h5
−h < ξ j ≤ 0

− (ξ j+2h)(ξ j+h)(ξ j−h)(ξ j−2h)(ξ j−3h)

12h5
0 < ξ j ≤ h

(ξ j+h)(ξ j−h)(ξ j−2h)(ξ j−3h)(ξ j−4h)

24h5
h < ξ j ≤ 2h

− (ξ j−h)(ξ j−2h)(ξ j−3h)(ξ j−4h)(ξ j−5h)

120h5
2h < ξ j ≤ 3h

0 else.

(4)

Basis functions for various values of p are plotted in Fig. 1, and there are a number
of interesting properties to note. The basis functions decay rapidly away from ξ j = 0,
and as a result the off-diagonal elements of the mass and stiffness matrices will also decay
rapidly. Of particular interest inwhat follows, although the derivatives of these basis functions
contain singularities at element interfaces (e.g. discontinuities in the first derivative), the left
and right limits of the derivatives are well-defined. At element interfaces, these left and
right limits differ for all odd-order derivatives, but interestingly they are equal for all even-
order derivatives (including the undifferentiated basis itself which is continuous). The short
argument establishing this fact is given in the Proof of Lemma 1.
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Fig. 1 At left are plots of the C0 Galerkin Difference basis functions for p = 3, 5, 7, 9, along with the sinc
function that is the limit as p → ∞. The right plot shows the difference between sinc and the various basis
functions

3 Discretization of High Order Derivatives

Because the basis described in Sect. 2 spans a subspace of C0, we are motivated to pur-
sue an interior penalty method for higher-order derivative approximation as proposed for
elliptic problems using standard elements in [10, 11]. To simplify the presentation, rather
than beginning with time-dependent PDEs in multiple space dimensions, consider the simple
ODE given by

∂2m

∂x2m
u = w, (5)

defined over someΩ = (a, b), with suitable boundary conditions imposed at the endpoints of

the interval x = a, b. For notational convenience,wewill use the convention that ∂2m

∂x2m
u can be

expressed as ∂2mu, and for cases with a fixed integer derivative we may also use subscripts
to indicate derivatives, e.g. ∂3u = uxxx . The assumption of even order in (5) is taken so
that resulting discrete operator can easily be made adjoint consistent, which is apparently
important for recovering the superconvergence often observed with Galerkin Difference
methods. Nevertheless, extensions to odd-order derivatives may be pursued using the ideas
from [19]. Note that the simplifying assumptions of time independence and 1D are made
for purely pedagogical reasons. Application to time dependent problems will be described in
Sect. 5, and will use a standard method-of-lines technique with a spectral-deferred correction
time integrator. Higher dimensional problems will also be described in Sect. 5 and will
use a tensor-product construction similar to previous work on Galerkin Differences, e.g.
[15, 17]. The remainder of this section is dedicated to defining the C0 Galerkin Difference
discretization of Eq. (5), and analyzing its stability properties. A dispersion analysis will
be performed for various derivative orders demonstrating that, away from the boundaries,
the scheme exhibits superconvergence. In addition we note the uniform boundedness of the
spectrum of the derivative operators with increasing degree p. This is in sharp contrast with
standard finite elements where the spectral radius grows rapidly with degree.
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3.1 Symmetric C0 Galerkin DifferenceMethod

In what follows, the standard definitions of the one dimensional jump [[·]] and average {{·}}
operators are adopted, as in [20], and given by

[[v]] = v(x+) − v(x−), {{v}} = 1

2

(
v(x+) + v(x−)

)
, (6)

where v(x+) = limε→0, ε>0 v(x + ε), and v(x−) = limε→0, ε>0 v(x − ε). As mentioned
above, for Galerkin Difference basis functions there is no jump in even derivatives across
element boundaries, and so any jump terms involving those derivatives will vanish. For now
the imposition of boundary conditions is neglected, with relevant discussion delayed until
Sect. 4.1.

Derivation of theweak form now follows the standard procedure. First, assuming a smooth
solution u, Eq. (5) ismultiplied by a test functionφ which is continuous and piecewise smooth
on the grid. Integration over the domain then gives

∫

Ω

φ∂2mu dx =
∫

Ω

φw dx . (7)

Recalling the notation Ik+1/2 = (xk, xk+1) for the elements, the integral is rewritten as a
sum over elements, and integration by parts is applied m times in each element, where φ is
smooth over each interval. With this approach, the boundary terms at a node xk are given by

−
m−1∑

j=1

(−1) j∂ j̄ u
[[

∂ jφ
]]

, j̄ = 2m − j − 1. (8)

Since u is assumed to be smooth, its value can be replaced by its average. The boundary
terms can then be symmetrized by adding terms proportional to the jumps of derivatives of
u, which vanish for smooth solutions, leading to

−
m−1∑

j=1

(−1) j
[{{

∂ j̄ u
}} [[

∂ jφ
]]

+
[[

∂ j u
]] {{

∂ j̄φ
}}]

. (9)

This process yields a well-defined bilinear form in the broken Sobolev space consisting of
functions in H1 whose restriction to each element are in Hs , s > 2m − 1/2. Specializing to
theGalerkinDifference space, and exploiting the fact, demonstrated in the Proof of Lemma 1,
that the jumps of all even derivative terms vanish yields the Galerkin approximation
∫

Ω

φhw dx = (−1)m
∑

k

∫

Ik+1/2

∂muh ∂mφh dx

+
∑

k

�m/2�∑

j=1

[{{
∂2(m− j)uh

}} [[
∂2 j−1φh

]]
+
[[

∂2 j−1uh
]] {{

∂2(m− j)φh
}}]

x=xk
,

(10)

where �m/2� denotes the integer part of m/2. Note that continuity of even derivatives for
functions in the GD space implies that any averaging operators in (10) take two identical
arguments, although the notation is retained for clarity. We hypothesize that for a uniform
grid this discretization has a nodal truncation error O(h2p+2−2m). This would imply that
for all-space or periodic problems the method when combined with an appropriate time-
stepping scheme would exhibit convergence at the superconvergent rate of O(h2p+2−2m) in
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the �2 norm.1 See, for example, Theorem 10.1.4 in [21]. This prediction is supported by the
dispersion analyses which is presented below. Further, this observed rate is a generalization
of those found in [14, 15, 19]. For finite domain problems, boundary closures (discussed in
Sect. 4.1) will lower the convergence rate, though the high-order local truncation error of the
method will be beneficial for improving accuracy.

3.2 Positivity of the Bilinear Form

In contrast to the usual interior penalty methods, we find that no additional penalty terms
beyond those arising in the integration by parts, and any symmetrizing terms, need to be
introduced to guarantee positivity of the bilinear form. Ignoring boundary closures this fact
can be proved using Fourier techniques; we demonstrate experimentally in Sect. 4.1 that they
are still not needed in the presence of boundaries using the closures we propose. Consider the
problem posed on R, although one could alternately consider a finite periodic domain with
u(x + (b − a)) = u(x) (see Remark 1). Suppose that uh is in the Galerkin Difference space
and decays rapidly enough so that uh ∈ L2. Positivity of the discrete bilinear form follows
from the following theorem.

Theorem 1 Let uh ∈ L2(R) be a degree p Galerkin Difference function associated with a
uniform mesh in R with h > 0, and suppose m ≤ p+1

2 . Then

∞∑

k=−∞

∫

Ik+1/2

(
Dmuh

)2
dx

+ 2(−1)m
∞∑

k=−∞

�m/2�∑

j=1

[{{
∂2(m− j)uh

}} [[
∂2 j−1uh

]]]

x=xk
> 0. (11)

Proof Obviously the terms involving integrals over the elements are nonnegative. Therefore
consider the jump terms. As described, for example, in [21], grid functions can be repre-
sented by bandlimited Fourier transforms and �2 inner products computed in terms of these
transforms by Parseval’s lemma. Thus

(−1)m
∞∑

k=−∞

[{{
∂2(m− j)uh

}} [[
∂2 j−1uh

]]]

x=xk

= (−1)m

2πh

∫ π/h

−π/h
ρ̂2(m− j)(ξ)ζ̂2 j−1(ξ)|û(ξ)|2dξ, (12)

where the real-valued functions ρ̂2(m− j) and ζ̂2 j−1 are the symbols of the difference operators
which produce, respectively,

{{
∂2(m− j)uh

}}
and

[[
∂2 j−1uh

]]
on the grid and û is the Discrete

Fourier transform of the grid function defined by the values of uh on the grid. Note this is not
the Fourier transform of the Galerkin Difference function uh . That the form is nonnegative
then follows from Lemma 1 shown below. To establish positivity we note that for the form
to be zero, uh restricted to each element would need to be a polynomial of degree less than
m. However, for p ≥ 2m − 1, a simple argument shows that such an element of the Galerkin
Difference space must be a global polynomial of degree less than m. In particular, given
a particular element Ik+1/2, the polynomial of degree less than m − 1 in its neighboring

1 We use the convention that �2 denotes the discrete- L2 norm.
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elements Ik−1/2, Ik+3/2, will be uniquely defined by the data in their common interpola-
tion stencils with Ik+1/2. Since global polynomials are not elements of L2(R) the result is
established. 
�
Remark 1 In the periodic case the form will be zero for constant functions, but positive
otherwise.

Lemma 1 The symbols ρ̂2(m− j) and ζ̂2 j−1, j = 1, . . . , �m/2� are real and satisfy
(−1)m ρ̂2(m− j)ζ̂2 j−1 ≥ 0. (13)

Proof To prove the result, the average of the even derivatives and jump of the odd deriva-
tives will be represented using standard finite difference operators D0, D+ and D−. We
first show that there are no jumps in the even derivatives of the Galerkin difference
functions at a node xk . To do so, express the interpolants on intervals (xk−1, xk) and
(xk, xk+1) in Newton form, respectively as Qk(x) + cL Rk(x), and Qk(x) + cR Rk(x) with
Rk(x) = ∏k+q−1

m=k−q+1(x − xm) and Qk(x) the degree p − 1 = 2q − 2 interpolant of the
data at the nodes (xk−q+1, . . . , xk+q−1). Since Rk(x) is odd with respect to xk , all of its
even derivatives vanish at xk and so the left and right limits of these derivatives agree. These
derivatives are thus simply the maximal order central difference approximation using the
p-point stencil extending from xk−(p−1)/2 to xk+(p−1)/2. Dropping the index k for notational
simplicity, the average of even derivatives can thus be written

(−1)r
{{

∂2r uh
}}

= (−1)r (D+D−)r

p−1
2 −r∑

j=0

αr , j
(
h2D+D−

) j
uh . (14)

for r a positive integer. To compute the coefficients αr , j , and ultimately the symbol ρ̂2r , recall
that

D+D−eiξ x = − 4

h2
sin2 ηeiξ x , η = ξh/2. (15)

Setting z = sin η so that ξ = 2
h arcsin z, the symbol of the difference formula (14) maximizes

the order of approximation to ξ2r , and so

4r

h2r
(arcsin z)2r + O(z p+1) = 4r

h2r
z2r

p−1
2 −r∑

j=0

αr , j (−1) j4 j z2 j . (16)

Now recall the Maclaurin series expansion for arcsin z, which gives

ξ = 2

h
arcsin z = 2

h

∞∑

n=0

(2n − 1)!!
(2n)!!

z2n+1

2n + 1
. (17)

The essential features of this series which will be used are that only odd powers of z appear,
and all coefficients multiplying powers of z are positive. Substituting this expansion into (16)
the gives

4r

h2r

⎛

⎜⎝

p−1
2 −r∑

n=0

(2n − 1)!!
(2n)!!

z2n+1

2n + 1

⎞

⎟⎠

2r

+ O(z p+1) = 4r

h2r
z2r

p−1
2 −r∑

j=0

αr , j (−1) j4 j z2 j . (18)
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Since all terms on the left-hand-side of (18) have positive coefficients, all terms on the right-
hand-side must also have positive coefficients and so αr , j (−1) j > 0. Thus

(−1)r ρ̂2r = 4r

h2r
z2r

p−1
2 −r∑

j=0

αr , j (−1) j4 j z2 j ≥ 0. (19)

Now consider the jump in an odd derivative
[[
∂2 j−1uh

]]
. The left and right limits can be

written as corrections to the central difference approximation on the p-point stencil, which
has the form

D2 j−1,central = D0 (D+D−) j−1

p−1
2 − j∑

j=0

β j, j
(
h2D+D−

) j
. (20)

Similar to above, the coefficients β j, j are computed by considering the symbols in Fourier
space. To that end recall

D0e
iξ x = i

2

h
cos η · sin ηeiξ x = i

2

h

√
1 − z2zeiξ .

Maximizing the order of approximation in (20) to (iξ)2 j−1 then leads to

i(−1) j−1 2
2 j−1

h2 j−1 (arcsin z)2 j−1 + O(z p)

= i(−1) j−1 2
2 j−1

h2 j−1 z
2 j−1

√
1 − z2

p−1
2 − j∑

j=0

β j, j (−1) j4 j z2 j . (21)

Cancelling like terms and using the fact that
√
1 − z2 = O(1) for z 
 1 yields

(arcsin z)2 j−1

√
1 − z2

+ O(z p) = z2 j−1

p−1
2 − j∑

j=0

β j, j (−1) j4 j z2 j . (22)

Because the expansion (17) for arcsin z, as well as the expansion for 1/
√
1 − z2

1√
1 − z2

=
∞∑

n=0

(2n − 1)!!
2nn! z2n (23)

contains strictly positive coefficients, the terms on the right-hand-side of (22) must also have
positive coefficients. Therefore β j, j (−1) j > 0.

Now the left and right approximations to the derivative can be written as the central
approximation (20) plus a one-sided approximation to the first missing term in the expansion
of the central difference formula:

h p+1−2 jβ j, p+1
2 − j∂

p.

Therefore the difference formulas from the right (+ sign) and left (− sign) are

D2 j−1,central + h p+1−2 jβ j, p+1
2 − j D±(D+D−)

p+1
2 − j .

Since D+ − D− = hD+D−, the jump is given by

h p+2−2 jβ j, p+1
2 − j (D+D−)

p+1
2 ,
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and its symbol is

(−1) j ζ̂2 j−1 = (−1)
p+1
2 − jβ j, p+1

2 − j

4
p+1
2

h2 j−1 z
p+1 ≥ 0. (24)

Finally using (19) and (24) together implies

(−1)m ρ̂2(m− j)ζ̂2 j−1 =
(
(−1)m− j ρ̂2(m− j)

) (
(−1) j ζ̂2 j−1

)
≥ 0. (25)

This completes the proof. 
�

3.3 Dispersion Analysis

The Fourier methods used above also enable the analysis of the dispersion errors of the
method away from boundaries. Suppose that the coefficients in the mass, stiffness, and lift
matrices for the GD discretization (10) based on p-th degree polynomial interpolation are
given by M (p)

γ , K (2m,p)
γ , and F (2m,p)

γ for γ = −p . . . p, respectively. Then the action of the
operator (M (p))−1(K (2m,p) + F (2m,p)) on a grid function u j = exp(iξ x j ) yields the Fourier
symbol of the Galerkin Difference approximation to the 2m-th derivative,

(iξ)2m ≈
∑p

γ=−p

(
K (2m,p)

γ + F (2m,p)
γ

)
exp(iγ η)

∑p
γ=−p M

(p)
γ exp(iγ η)

≡ 1

h2m
S(2m,p)(η) (26)

where ξ is a physical wave number, η = ξh is a grid wave number, and S(2m,p) is used
to denote the symbol of the 2m-th derivative approximation in (10) using degree p basis
functions.

3.3.1 Biharmonic Operator

Consider the previously defined variational form (10) as an approximation of the fourth
derivative. For the sake of clarity this can be expressed as
∫

Ω

uxxxxφ
h dx ≈

∑

k

∫

Ik+1/2

uhxxφ
h
xx dx +

∑

k

[{{
uhxx
}} [[

φh
x

]]
+
[[
uhx
]] {{

φh
xx

}}]

x=xk
,

(27)

Note here that to ensure consistency of the operator, p ≥ 3 is assumed.
Values for the coefficients of the mass, stiffness, and lift matrices are given in Table 1,

and the symbols for various polynomial degrees are as follows:

S(4,3) = η4 + 1

720
η8 + 19

15120
η10 + O

(
η12
)

S(4,5) = η4 + 41

86400
η12 − 1847

15966720
η14 + O

(
η16
)

S(4,7) = η4 + 4609559

145297152000
η16 − 54385141

3923023104000
η18 + O

(
η20
)

S(4,9) = η4 + 1357881299

727542466560000
η20 − 5796689608471

5109094217170944000
η22 + O

(
η24
)
.

(28)

As mentioned above, these symbols indicate superconvergence at the rate of 2p − 2 for the
infinite domain problem, in agreement with a general superconvergent rate 2p + 2 − 2m.
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Table 1 Coefficients for the
mass, stiffness, and lift matrices
at interior grid points for the
symmetric interior penalty
approximation to the fourth
derivative (27) with p = 3

γ 0 ±1 ±2 ±3

M(3)
γ

733h
945

257h
1680 − 3h

70
31

15120

K (4,3)
γ

8
3h3

− 3
2h3

0 1
6h3

F(4,3)
γ

20
3h3

− 5
h3

2
h3

− 1
3h3

Fig. 2 Errors in the symbols for the fourth (left) and sixth (right) derivatives. A reference line indicating an
error of 10−6 is displayed for convenience

Of note (and not presented here) is that when the inter-elemental jump terms from the inte-
gration by parts are excluded, the expected order of accuracy according to the dispersion
analysis becomes p − 1, which is consistent with the error estimates and computations
present in [22]. The same is true if the jump terms are included but the symmetrizing terms
are excluded. Hence, the symmetrization is seen to lead to a nodal superconvergence at dou-
ble the asymptotic order. In addition, the discrete symbols are pure real and positive. Figure 2
displays the errors in the symbols, plotted as functions of the number of points per wavelength
(PPW = 2π

η
). This shows that, neglecting the treatment of the boundary conditions, as few

as 16 points per wavelength are required to achieve machine precision accuracy for the 4th
derivative using p = 9, and approximately 7 points is sufficient to achieve a tolerance of
10−6.

We also emphasize the favorable behavior of the derivative approximations as a function
of p. As shown in Fig. 3, the eigenvalues of the Galerkin Difference approximations, which in
the periodic case lie on the plotted curves, never exceed π4h−4. Experiments with even larger
values of p show that this feature is apparently retained for all p. In contrast, one expects
the eigenvalues of standard finite element approximations for fourth derivative operators to
scale like p8. Comparing methods with the same average grid density, that is setting the
element width H = ph to compare with the present GD methods on a grid spacing of h,
one expects the spectral radius (and the norm) of the standard finite element operators to
grow in proportion to p4h−4. This is verified in Table 2, which presents the spectral radii
of the more standard finite element approach proposed in [10]. Precisely, the scheme uses
Gauss-Lobatto nodes and mass lumping, and results are presented for the smallest penalty
parameter for which the spatial operator remains definite. The fourth order growth with p is
clearly observed. Furthermore, for large p the spectral radius of the operators resulting from
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Fig. 3 Symbols for the fourth (left) and sixth (right) derivatives compared with the exact symbol

Table 2 Computed spectral radius ρFEM as a function of p for standard SIPGD approximations to the fourth
derivative with periodic boundary conditions and Gauss-Lobatto nodes.

p 5 7 9 11 13

ρFEM 4.6 × 102 2.0 × 103 5.4 × 103 1.3 × 104 2.5 × 104

ρGD 8.3 × 101 8.8 × 101 9.0 × 101 9.2 × 101 9.3 × 101

ρFEM/π4 4.8 × 100 2.1 × 101 5.6 × 101 1.3 × 102 2.6 × 102

ρFEM/ρGD 5.6 × 100 2.3 × 101 6.2 × 101 1.4 × 102 2.7 × 102

Here the element widths are H = p so the methods have the same grid average grid density as Galerkin
Difference discretizations with h = 1. The ratio ρFEM/π4 illustrates the growth in the spectral radius of the
standard SIPGD scheme in relation to the continuous limit π4 (i.e. the Fourier derivative with two points per
wavelength). Also included is the spectral radius of the GD method with periodic boundary conditions, ρGD .
The ratio ρFEM/ρGD illustrates the improvement in spectral radius for GD vs. the standard SIPGD scheme

standard finite elements are observed to be orders of magnitude larger than the exact value
π4 and the corresponding GD scheme.

3.3.2 Sixth Order Operator

Consider now the variational form (10) as an approximation of the sixth derivative, which
can be expressed as

∫

Ω

∂6uφh dx ≈ −
∑

k

∫

Ik+1/2

uhxxxφ
h
xxx dx

+
∑

k

[{{
uhxxxx

}} [[
φh
x

]]
+
[[
uhx
]] {{

φh
xxxx

}}]

x=xk
. (29)

Here assume for consistency that p ≥ 5. Table 3 shows values for the coefficients in the
mass, stiffness, and lift matrices. Furthermore, the symbols of the operators, again defined
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Table 3 Coefficients for the interior grid points for the mass, stiffness, and lift matrices for the interior penalty
approximation to the sixth derivative for p = 5

γ 0 ±1 ±2 ±3 ±4 ±5

M(5)
γ

455963h
554400

906919h
6652800 − 12421h

207900
59053h
4435200 − 3937h

3326400
313h

4435200

K (6,5)
γ − 687

20h5
211
8h5

− 23
2h5

39
16h5

− 1
8h5

− 1
80h5

F(6,5)
γ − 84

5h5
14
h5

− 8
h5

3
h5

− 2
3h5

1
15h5

in (26), are as follows:

S(6,5) = −η6 + 313

60480
η12 − 443

201600
η14 + O

(
η16
)

S(6,7) = −η6 + 1889

26611200
η16 − 68510773

1307674368000
η18 + O

(
η20
)

S(6,9) = −η6 − 91201

40758681600
η20 + 1114437953

1600593426432000
η22 + O

(
η24
)

S(6,11) = −η6 − 64808934653

196503623737344000
η24 + 86736626469487

374666909259202560000
η26 + O

(
η28
)
.

(30)

These symbols reveal superconvergence of the truncation error at order 2p − 4, again in
agreement with a general superconvergent rate 2p + 2 − 2m. Similar to the case of the 4th
derivative, we note that without the symmetrizing terms the truncation error converges with
order p−1. Furthermore, the symbols here are seen to be pure real and negative. Finally, Fig. 2
shows the errors in the symbols, plotted as functions of the number of points per wavelength
(PPW = 2π

η
). This shows that neglecting the treatment of the boundary conditions, as few

as 10 points per wavelength are required to achieve machine precision accuracy for the sixth
derivative using p = 11, and approximately 6 points is sufficient to achieve a tolerance of
10−6.

We again emphasize the favorable behavior of the GD derivative approximations as a
function of p. As shown in Fig. 3, the eigenvalues of the Galerkin Difference approximations
never exceed π6h−6. In contrast, one expects the sixth order derivative operators for standard
finite element approximations to scale like p12. A before, comparing methods with the same
average grid density, that is setting the element width H = ph to compare with our methods
and a grid spacing of h, one expects the spectral radius (and the norm) of the standard finite
element operators to grow in proportion to p6h−6. This is verified in Table 4, which presents
the spectral radii of the more standard finite element approach proposed in [11]. Precisely,
the scheme uses Gauss-Lobatto nodes and mass lumping, and results are presented for the
smallest penalty parameter for which the spatial operator remains definite. The sixth order
growthwith p is clearly observed. Furthermore, for large p the spectral radius of the operators
resulting from standard finite elements are observed to be orders of magnitude larger than
the exact value π6 and the corresponding GD scheme.

3.3.3 Higher Order Operators

To further test the hypothesis of superconvergence at order 2p + 2− 2m, we fix p = 11 and
display below the symbols of the Galerkin Difference approximations for them-th derivative
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Table 4 Computed spectral radius ρFEM as a function of p for standard SIPGD approximations to the sixth
derivative with periodic boundary conditions and Gauss-Lobatto nodes.

p 5 7 9 11 13

ρFEM 6.4 × 104 4.2 × 104 1.8 × 105 5.6 × 105 1.5 × 106

ρFEM/π6 6.7 × 100 4.4 × 101 1.8 × 102 5.8 × 102 1.6 × 103

ρGD 4.6 × 102 6.0 × 102 6.8 × 102 7.3 × 102 7.7 × 102

ρFEM/ρGD 1.4 × 101 7.1 × 101 2.6 × 102 7.7 × 102 2.0 × 103

Here the element widths are H = p so the methods have the same grid average grid density as Galerkin
Difference discretizations with h = 1. The ratio ρFEM/π6 illustrates the growth in the spectral radius of the
standard SIPGD scheme in relation to the continuous limit π6 (i.e. the Fourier derivative with two points per
wavelength). Also included is the spectral radius of the GD method with periodic boundary conditions, ρGD .
The ratio ρFEM/ρGD illustrates the improvement in spectral radius for GD vs. the standard SIPGD scheme

with m = 4, . . . , 11

S(8,11) = η8 − 445365299

111929610240000
η24 + 11060415400747

3193183885731840000
η26 + O

(
η28
)

S(10,11) = −η10 + 560137

6897623040
η24 − 70317997643

1067062284288000
η26 + O

(
η28
)

S(12,11) = η12 − 2140239721

2615348736000
η24 + 50653411

79252992000
η26 + O

(
η28
)

S(14,11) = −η14 + 392251

68428800
η24 − 11204393537

2615348736000
η26 + O

(
η28
)

S(16,11) = η16 − 11129

362880
η24 + 965

44352
η26 + O

(
η28
)

S(18,11) = −η18 + 331

2520
η24 − 281

3200
η26 + O

(
η28
)

S(20,11) = η20 − 61

144
η24 + 85

336
η26 + O

(
η28
)

S(22,11) = −η22 + 11

12
η24 − 33

80
η26 + O

(
η28
)
.

(31)

Clearly the hypothesized convergence rate is supported by the data. Similar results can be
obtained for other p, although the results are omitted here for brevity.

4 Boundary Conditions and Discrete Spectra

The previous section established the basic properties of the GD methods for periodic prob-
lems. Of note are the superconvergence of the dispersion errors, the stability without the
need for penalty parameters, and the boundedness of the spectrum as the order is increased.
Of practical importance is the extent to which these favorable properties are maintained in
the presence of boundaries. Based on prior GD work, we do not necessarily expect that the
methods will converge at double the design order in the presence of boundaries unless com-
patibility boundary closures are used, although, we do expect that small dispersion errors
will allow accurate propagation over many wavelengths. In addition, we will demonstrate
numerically that stability is maintained for the penalty-free formulation and, most impor-
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tantly, that the growth of the eigenvalues with order is mild when we employ what are termed
direct enforcement (DE) boundary closures.

4.1 Enforcement of Boundary Conditions

As in all GD schemes, closures must be applied near domain boundaries since the GD basis
extends over multiple elements. The original approaches described in [14, 17] include extrap-
olation, ghost basis, and compatibility closures. All three make use of so-called ghost points,
which can be viewed as degrees of freedom (DoFs) associated with points located outside
the physical domain.2 In the ghost basis closure these degrees of freedom are simply main-
tained with all other DoFs, and evolved according to the weak-form PDE. In extrapolation
and compatibility closures, algebraic constraint equations are used to relate the DoFs in
the ghost cells to the domain interior, and they are then eliminated from the system. This
results in changes to the basis functions near boundaries and ultimately constrains the space
of Galerkin Difference functions. In [14, 17], the compatibility closure was found to lead
to superior results in terms of operator stiffness and observed global superconvergence, but
the mechanics of the closure can be unwieldy, and the conditions may be difficult to derive
and/or implement in some cases. This is particularly true for high-order operators, such as
those under consideration here, and so in [16] a middle ground approach, deemed direct
enforcement, was devised.

In the DE approach only the leading compatibility conditions, which are simply high-
order accurate discrete representations of the physical boundary conditions, are imposed on
the basis, and all other constraints are simply taken to be high-order extrapolation. DE closure
will be adopted here, and is found to yield remarkably small growth in the spectral radius of
the discretization matrix. For clarity a brief description of the approach is provided below.
Also note that while not pursued herein, it may also be possible to use weak imposition of the
boundary conditions, as is common in the standard interior penalty literature, e.g. [20, 22, 23].
However, preliminary testing for second order partial differential equations (not presented
here) suggests that weak imposition can lead to larger spectral radii for the discretization
matrices, which implies unwanted artificial stiffness. A full analysis of the effects of weakly
imposed boundary conditions is left as a topic for further research.

To describe the DE approach, it is sufficient to consider a specific example, with extension
to other boundary conditions being straightforward. Consider the fourth order derivative
operator with a free boundary condition uxx (x0) = uxxx (x0) = 0 on the left boundary at
x = x0. Now suppose that the GD discretization with p = 7 is used, which would require
the specification or evolution of values at three ghost points. The DE-closure would impose
three constraint equations which are given by centered finite difference discretizations of
uxx (x0) = 0 and uxxx (x0) = 0 using a p-point stencil, and a single order p+1 extrapolation
condition. Specifically these constraints are given by

1

90
u−3 − 3

20
u−2 + 3

2
u−1 − 49

18
u0 + 3

2
u1 − 3

20
u2 + 1

90
u3 = 0 (32a)

1

8
u−3 − u−2 + 13

8
u−1 − 13

8
u1 + u2 − 1

8
u−3 = 0 (32b)

− u−3 + 8u−2 − 28u−1 + 56u0 − 70u1 + 56u2 − 28u3 + 8u4 − u5 = 0 (32c)

2 In fact the ghost DoFs describe aspects of the solution on the domain interior, but it is conceptually useful
to think of them as living outside the domain.
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where u j = uh(x j ), x = x0 + jh. Here, Eq. (32a) specifies a finite difference approximation
to the second derivative, Eq. (32b) specifies the third derivative, and Eq. (32c) specifies the
extrapolation condition. All together (32) specifies three equations for the three unknown
ghost points u−3, u−2, and u−1 in terms of interior data. These constraints are applied to
both the test and trial functions, and in practice are implemented by removing the DoFs from
the discrete system. As shown in [16], the DE boundary closure leads to remarkably mild
growth in the spectral radius and condition number of the complete derivative operator. Also
note that for cases involving a displacement boundary condition u = 0, both the constraint
u0 = 0 and an averaging operator with the same stencil as the difference operators are
applied as constraint equations. In effect this implies a system of 4 equations in 4 unknowns
for the p = 7 case. This approach is observed to yield superior performance in comparison
to only imposing the averaging operator on the boundary. Finally note that the extension of
the DE approach to higher-order derivative boundary conditions with high-order operators
is straightforward.

One final point about boundary condition imposition is that two applications of integration
by parts produces boundary terms in the weak-form operator, e.g.

BT s = −uxxx (x0)φ(x0) − uxx (x0)φx (x0), (33)

where x0 is a point on the boundary. The DE closure does not directly enforce constraints on
the derivatives and instead only enforces approximations to derivatives. Therefore, boundary
terms, such as those in (33), should be included in the weak form discretization with values
of the derivatives being defined by the underlying piecewise interpolant. Failure to do so may
lead to reduced convergence rates.

As a specific experiment we consider the computed spectra for approximations to the
fourth derivative operator on the interval (0, 10) with h = 0.1. Time-domain simulations
using these operators will be shown in Sect. 5. Here we consider two cases corresponding to
fixed and free boundary conditions:

u(0) = ux (0) = 0, uxx (10) = uxxx (10) = 0, (34)

and sliding and simply supported boundary conditions:

ux (0) = uxxx (0) = 0, u(10) = uxx (10) = 0. (35)

We first note that positivity without the imposition of penalty terms was maintained in
these experiments. Normalized spectral radii as a function of p for the boundary condition
(34) are shown in Table 5. It is also interesting to probe the stiffness of the discrete operator by
comparing the spectral radius of the discretization matrix to the spectrum of the continuous
operator restricted to wave numbers supported on the grid. For the lower order methods,
p = 5 and p = 7, the discretization is somewhat less stiff than the continuous problem,
while for higher order methods the spectral radius grows moderately. The growth for the
present scheme is slightly more severe than the growth observed for the GD-DSpline scheme
in [16]. However, a comparison with Table 2 shows that the growth is much milder than
what we observe for standard elements and periodic boundary conditions. Note also that the
spectral radius of the discrete operator for this computation is dominated by the free boundary
condition.

Results for boundary conditions (35), displayed in Table 6, are similar. Here the spectral
radius of the discrete operator is dominated by the simply supported boundary. As the order
of accuracy increases, the simply supported and sliding boundary conditions are generally
less stiff than those of the fixed and free case due to the fact that the free boundary condition
introduces the most artificial stiffness among the set considered.
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Table 5 Normalized spectral
radii, ρ(p)h4/π4, of the
discretized operators for various
p using N = 100 for the fixed
and free boundary conditions

p 5 7 9 11 19

ρ(p)h4/π4 .8484 .8976 1.6981 2.2901 8.0137

Table 6 Normalized spectral
radii of the discretized operators
with N = 100 for the simply
supported and sliding boundary
conditions at various orders p,
ρ(p)h4/π4

p 5 7 9 11 19

ρ(p)Δx4/π4 .8496 .8998 1.5625 2.6562 5.3146

4.2 Extension to Complex Domains

In the experiments shown below we restrict attention to simple domains. However, though
beyond the scope of the current work, we emphasize that it is straightforward to apply the
Galerkin Difference discretizations in more complex settings using the techniques described
in [17, 18]. Specifically, we would use multiblockmapped grids, which can simply be viewed
as large macroelements, possibly combined with small unstructured grid components where
the methods proposed in [10, 11] could be applied. As each grid component can be simply
viewed as a (possibly quite large) element, fluxes across interelement boundaries follow
directly from the weak formulation. (It is possible that penalty parameters would have to be
introduced at these boundaries.) Of course if unstructured grid components are employed it
could be advantageous to use some local time stepping strategy to overcome the artificial
stiffness of the standard SIPGD elements at high order.

To be concrete, consider a mapping x = X(r , s), y = Y (r , s) with (r , s) residing in a
rectangular reference domain.Derivatives and integrals appearing in theweak formare simply
expressed in the (r , s) coordinates where the Galerkin Difference space is defined as before.
The procedure is completely analogous to the use of reference elements in standard finite
element constructions. In this case, and for problems with variable coefficients in general, the
mass and stiffness matrices remain banded but lose the tensor-product structure. For implicit
time stepping schemes and the direct solver used in the numerical experiments below this
would not lead to increased complexity, though we could have developed specialized fast
solvers exploiting the matrix structure in our simple cases.

5 Application to the Euler-Bernoulli Beam and Kirchoff-Love Plate

As a physically motivated application of the proposed Galerkin Difference approximations
to PDEs with high order derivative operators, consider the time evolution of thin solid bodies.
In particular, the linear (infinitesimal) deflection of a one-dimensional solid beam or two-
dimensional solid plate is governed by

ρutt = −∇2 (D∇2u
)
, (36)

where u is the displacement of the beam, ρ is the density, and D > 0 is the flexural rigidity. In
one space dimension, this is the Euler-Bernoulli beam equation, and in two space dimensions,
this is the Kirchoff-Love plate equation. At any point along the physical boundary of the
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domain, two boundary conditions are required; typically two conditions from among the
displacement and the first through third derivatives are specified.

It will suffice to provide a detailed description of the scheme and boundary closures in 1D,
with extension to multiple space dimensions being accomplished using tensor product basis
functions as in [15–17]. Using the symmetric interior penalty Galerkin Difference approach,
the variational form corresponding to (36) in one space dimension is given by
∫

Ω

ρuttφdx = −
∫

Ω

Duxxφxx − D
∑

k

[{{uxx }} [[φx ]] + [[ux ]] {{φxx }}]x=xk + BT s, (37)

where BT s refers to boundary terms occurring at the physical boundary of the domain; these
will be discussed in the next section. Equation (37) can be rewritten in matrix form as

ρM (p)uhtt = D(K (4,p) + F (4,p))uh + BT s, (38)

where the coefficients of the mass matrix M (p), the stiffness matrix K (4,p), and the lift
matrix F (4,p) are given, for example, in Table 1 for the case of p = 3. For standard C0 finite
element spaces, Eq. (37) must be augmented by including appropriate penalty terms to ensure
coercivity, and was analyzed in [22]. However, due to the unique features of the Galerkin
Difference space used here, stability of (37) is ensured without the need for additional penalty
terms, see Theorem 1, and the analysis of [22] can therefore be applied directly to (37).
Furthermore, the dispersion analysis in Sect. 3.3.1 demonstrates that away from the boundary,
a nodal superconvergence is expected, and will be observed for the �2 norm.

5.1 Spectral Deferred Correction Time Stepping Scheme

For the sake of completeness, the time stepping scheme used to generate numerical results
is now briefly discussed. The method, and discussion, follow closely from [16, 24]. Due
to the fact that the eigenvalues of the bi-harmonic operator grow as ∼ h−4, explicit time
stepping of the discrete form of (36) will lead to a time step restriction Δt ∝ h2, and it is
therefore natural to consider implicit time discretizations that may enable larger time steps,
e.g.Δt ∝ h. To leverage the large body of existingwork for implicit time integration, consider
the first-order-in-time formulation Eq. (36)

[
u
v

]

t
=
[

v

−∇2(D∇2u)

]
=
[
0 1
L 0

] [
u
v

]
, (39)

where Lu ≡ −∇2(D∇2u), and v = ut can be considered the velocity of the beam. Since the
RHS of (36) is a negative definite operator, the equivalent first-order temporal formulation
(39) will have purely imaginary eigenvalues. Furthermore, the proposed GD scheme will
retain these properties, and so to ensure a favorable stability time step restriction such as
Δt ∝ h, the integration scheme should be A-stable. In addition, high temporal accuracy
is required so that the observed accuracy in numerical computations will be that of the
spatial operator rather than that of the time-stepping scheme. To that end, a Spectral Deferred
Correction (SDC) time stepping scheme is used.

Precisely, we employ here a backward Euler-like method3 in a defect correction iter-
ation that ultimately yields a high-order accurate result. As is typical in method-of-lines
formulations, after spatial discretization all degrees of freedom are arranged into a vector

3 We use the term “backward Euler-like” since at its core the low-order scheme is actually a discretization of
a Picard integral formulation, although the resulting scheme may be identical to backward-Euler.
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of unknowns, here called y, and the associated ODE system can be succinctly expressed
y′ = Ay, whereA is the discretization matrix. Note that at present we employ direct methods
to solve the linear system required to formAy, although it may be possible to take advantage
of the Kronecker structure for increased efficiency.

Temporal integration starting from t = tn with initial condition y(tn) = yn yields the
Picard formulation of the ODE system

y(t) = yn +
∫ t

tn
Ay(τ ) dτ. (40)

We approximate the integral by a Gauss-Radau scheme and carry out the standard SDC
interations with the backward Euler method used to compute the defect corrections. For the
computations to follow, we take 10 Gauss-Radau nodes and 30 correction steps, which yields
a 19-th order accurate A-stable time integration scheme; see [16].

5.2 Numerical Results for the Euler Bernoulli Beam

To demonstrate properties of the proposed numerical method, we adopt similar tests to those
presented in [16]. Because the same test cases are simulated with the same grid parameters,
direct comparison of the two methodologies is possible. To that end, consider the solution to
Eq. (36) in one space dimension with ρ = D = 1 on the domain x ∈ (0, L) and boundary
conditions to be specified in the coming example computations. To derive exact solutions,
assume separable solutions of the form u(x, t) = g(t) f (x). Substitution into the PDE then
yields

fxxxx − λ4 f = 0, (41)

where λ is the constant from separation of variables and f satisfies the same boundary
conditions as u(x, t) at x = 0, L . Upon specification of BCs, the spatial eigenfunctions are
determined, and subsequently the exact solution can be found. For additional details of the
derivation refer to [16]. Details of the various exact solutions are given as the test cases
are presented in the following subsections. In what follows, all of the reported errors are

computed in the �2 norm, ‖u‖�2h
=
√

1
h

∑
j∈j u2j , and all time stepping is done using the

previously described SDC scheme.

5.2.1 Cantilever Beam (Fixed and Free Boundary Conditions)

First consider the classical case of a cantilever beam that is affixed at the left end and free at
the right end. The boundary conditions describing this situation are u(0, t) = ux (0, t) = 0
and uxx (L, t) = uxxx (L, t) = 0. Taking L = 10, and λ = .65π , one can use separation of
variables to give an exact solution as

u(x, t) = cos(λ2t) (cos(λx) − cosh(λx) + S (sinh(λx) − sin(λx))) , (42)

where S ≈ 0.9999999972924051, a value correct up to the limitations of double precision.
For reference, the initial condition is plotted in Fig. 4, and the solution simply oscillates as
a standing wave with increasing time. As in [16], numerical approximations of the solution
are computed to a final time t f = 3, a time which does not correspond to a node or anti-node
of the standing-wave oscillation.

Results will be presented for the GD scheme with p = 5 : 2 : 13. Note that the notation
a : s : b is MATLAB-style for a list starting at a and incrementing by s to b. Convergence
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Fig. 4 Left: Initial condition for cantilever beam. Right: Convergence study for various order schemes defined
by p as well as reference lines indicating O(h p+1)

results are shown in Fig. 4 for N = 20 : 5 : 100 with h = L/N . While the dispersion error
analysis of Sect. 3.3 indicates that the error for the domain interior isO(h2p−2) for degree p
basis functions, the finite difference stencil for the 3rd derivative used in the direct enforce-
ment boundary closure has errorO(h p−3), and a reduction in error is therefore expected. The
observed convergence rate in Fig. 4 is rather close toO(h p+1), as indicated by the reference
lines. This rate is consistent with the prediction for energy stable finite difference schemes,
as presented in [25], assuming certain conditions on the null space of the difference operators
hold. We believe these follow from our direct enforcement boundary closures, but we do not
have a general proof. In addition, comparison of the errors presented here to those shown in
[16] reveal that the two schemes’ behavior is very similar, although the present scheme has
relaxed the requirements of C1 continuity, and is therefore arguably simpler to implement.

5.2.2 Simply Supported and Sliding Boundary Conditions

Now consider a beamwith sliding and simply supported boundary conditions, i.e. ux (0, t) =
uxxx (0, t) = 0 and u(L, t) = uxx (L, t) = 0. Again taking L = 10 and λ = .65π , the exact
solution is

u(x, t) = cos(λ2t) cos(λx). (43)

Figure 5 shows the initial condition, as well as convergence results at t f = 3 for
N = 20 : 5 : 100 with h = L/N . Similar to the previous case, a reduction of order
from the dispersion analysis is Sect. 3.3 is expected due to the use of lower-order accurate
finite difference stencils in the direct enforcement boundary closure. As before, convergence
rates of O(h p+1) are observed in all cases except p = 5. It is likely that this is simply
fortuitous, since the solution consists of pure sinusoids for which the two direct enforcement
boundary closure equations for p = 5 are in fact spectrally accurate. As a result, for this test
case the superconvergent O(h2p−2) is observed. For higher p, the addition of extrapolation
equations at the boundary disrupts this behavior. In comparing the present results to those
from the GD D-Spline formulation in [16], we observe comparable accuracy aside from the
fortuitously accurate p = 5 case.
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Fig. 5 Left: Initial condition for a beam with simply supported boundary at x = 0 and sliding boundary at
x = L . Right: Convergence study for various order schemes defined by p as well as reference lines indicating
O(h p+1)

5.3 Numerical Results for Kirchhoff-Love Plate

Exact solutions for the 2D Kirchhoff-Love plate are often more difficult to express in closed
form than are those of the 1D beam equations. Nevertheless, for certain combinations of
boundary conditions, the eigenfunctions remain sinusoids (similar to the case of simple and
sliding BCs in Sect. 5.2.2), and these cases therefore make sensible numerical tests. For
example consider the case of a 2D plate that is simply supported on two adjoining sides and
sliding on the other two adjoining sides. The boundary conditions for this case are given by

u(x, 0) = uyy(x, 0) = 0 (44a)

ux (0, y) = uxxx (0, y) = 0 (44b)

u(L, y) = uxx (L, y) = 0 (44c)

uy(x, L) = uyyy(x, L) = 0, (44d)

where here the size is taken to be L = 9π/2. In this case the exact solution is given by

u(x, y, t) = cos(kx x) sin(ky y) cos((k
2
x + k2y)t), (45)

where kx and ky are constrained to be odd integers. Here we take kx = ky = 1 (initial
conditions shown in Fig. 6), and integrate to a final time t f = 3. Computations are performed
for p = 5 : 2 : 13, and grid resolutions defined by Nx = Ny = 10 : 5 : 50. The results of the
�2 convergence study are shown in Fig. 6. The results for p = 7 : 2 : 14 exhibit convergence
at theO(h p+1) rate, as predicted by the analysis in [25] and observed in Sects. 5.2.1 and 5.2.2.
Furthermore, similar to the results presented inSect. 5.2.2, the case of p = 5 appears to exhibit
fortuitous convergence. This is again attributed to symmetry in the exact solution leading
to spectrally accurate difference formulas in the Direct Enforcement boundary closure, and
ultimately to the observed superconvergent rate O(h2p−2). As a simple check, Fig. 7 shows
the computed error at the final time t f = 50 for p = 5 and p = 9 using Nx = Ny = 50. In that
figure, the case of p = 5 produces an error that is clearly smooth, and qualitatively resembles
the eigenfunction and exact solution. Such a situation is expected to lead to convergence as
predicted by the dispersion error analysis of Sect. 3.3, which is consistent with the observed
convergence.On the other hand for p = 9, the error is rough and the largest errors are observed
near the boundaries. This is the result of broken symmetries imposed by the extrapolation
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Fig. 6 Left: Eigenfunction and initial condition for the 2D Kirchhoff-Love plate with sliding supports at left
and top, and simple supports at right and bottom. Right: Convergence study for Kirchhoff-Love plate using
p = 5 : 2 : 13, and grid resolutions defined by Nx = Ny = 10 : 5 : 50

Fig. 7 Left: Error in computed approximation with p = 5 and Nx = Ny = 50 at t f = 3. Right: Error in
computed approximation with p = 9 and Nx = Ny = 50 at t f = 3. For p = 5 the error is clearly smooth,
and qualitatively resembles the eigenfunction and exact solution (see Fig. 6). For p = 9 the error is rough
and largest near the boundaries; a result of symmetries being broken by the extrapolation condition in the
boundary closure

condition in the boundary closure. In this case then the dispersion error analysis of Sect. 3.3
would indicate small truncation error on the domain interior. There would be larger errors
near the boundaries due to the DE closure, and the analysis in [25] would indicateO(h p+1),
again consistent with the observation.

6 Conclusions

In conclusion, we have developed a general approach for constructing coercive Galerkin
Difference approximations to even order differential operators using a symmetric interior
penalty formulation. Superconvergence of the discrete dispersion relation is demonstrated
as well as optimal-order convergence for some standard fourth order problems arising as
models of beams and plates.

Future directions for this research include the development of analagous discretzations of
odd order derivatives and applications to problems in more complex geometry using mapped
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grid blocks and/or hybrid structured-unstructured grids. These are demonstrated in [18] for
Galerkin Difference discretizations of first order hyperbolic systems.

Funding J.W. Banks and B. Brett Buckner were supported in part by contracts from the U.S. Department
of Energy ASCR Applied Math Program, and by a U.S. Presidential Early Career Award for Scientists and
Engineers. T. Hagstrom was supported in part by NSF Grant DMS-2012296. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Data Availability The data generated during and/or analysed during the current study are available from the
corresponding author upon reasonable request.

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

References

1. Meirovitch, L.: Analytical Methods in Vibrations. MacMillan, New York (1967)
2. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizon-

tal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface
au fond. J. Math. Pures Appl. 17, 55 (1872)

3. Korteweg, D.J., de Vries, G.: XLI. On the change of form of long waves advancing in a rectangular canal,
and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 39(240), 422 (1895)

4. Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrodinger equationswith cubic and power
law nonlinearities. Math. Comput. Model. 43(7–8), 802 (2006)

5. Timošenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. Engineering Societies
Monographs, McGraw-Hill, New York (1987)

6. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA Family of Plate Elements for the Matrix Displacement
Method. Aeronaut. J. 72(692), 701 (1968)

7. Cheng, X.L., Han, W., Huang, Hc.: Some mixed finite element methods for biharmonic equation. J.
Comput. Appl. Math. 126(1–2), 91 (2000)

8. Monk, P.: A Mixed Finite Element Method for the Biharmonic Equation. SIAM J. Numer. Anal. 24(4),
737 (1987)

9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. In: Texts in Applied
Mathematics, vol. 15. Springer, New York, NY (1994)

10. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continu-
ous/discontinuous finite element approximations of fourth-order elliptic problems in structural and
continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Com-
put. Methods Appl. Mech. Engrg. 191, 3669 (2002)

11. Gudi, T., Neilan, M.: An interior penalty method for a sixth-order elliptic equation. IMA J. Num. Anal.
31, 1734 (2011)

12. Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential
equations with higher order derivatives. J. Sci. Comput. 72, 761 (2017)

13. Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods
for time-dependent partial differential equations. J. Sci. Comput. 77, 1402 (2018)

14. Banks, J., Hagstrom, T.: On Galerkin difference methods. J. Comput. Phys. 313, 310 (2016)
15. Banks, J.W., Buckner, B.B., Hagstrom, T., Juhnke, K.: Discontinuous-Galerkin Galerkin-Differences for

the Wave Equation in Second-Order Form. SIAM J. Sci. Comput. 43, A1497 (2021)
16. Jacangelo, J., Banks, J.W., Hagstrom, T.: Galerkin Differences for High-Order Partial Differential Equa-

tions. SIAM J. Sci. Comput. 42, B447 (2020)
17. Banks, J., Hagstrom, T., Jacangelo, J.: Galerkin Differences for acoustic and elastic wave equations in

two space dimensions. J. Comput. Phys. 372, 864 (2018)
18. Kozdon, J., Wilcox, L., Hagstrom, T., Banks, J.: Robust approaches to handling complex geometries with

Galerkin difference methods. J. Comput. Phys. 392, 483 (2019)

123



Journal of Scientific Computing (2022) 92 :45 Page 23 of 23 45

19. Hagstrom, T., Banks, J.W., Buckner, B.B., Juhnke, K.: Discontinuous Galerkin Difference methods for
symmetric hyperbolic systems. J. Sci. Comput. 81, 1509 (2019)

20. Rivière, B., Wheeler, M.: Discontinuous finite element methods for acoustic and elastic wave problems.
Contemp. Math. 329, 271 (2003)

21. Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations. Society for Industrial and
Applied Mathematics, Philadelphia, PA (2004)

22. Süli, E., Mozolevski, I.: hp-version interior penalty DGFEMs for the biharmonic equation. Comput.
Methods Appl. Mech. Engrg. 196(13–16), 1851 (2007)

23. Rivière, B.: Discontinuous Galerkin Methods For Solving Elliptic And Parabolic Equations: Theory and
Implementation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2008)

24. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equa-
tions. BIT 40, 241 (2000)

25. Svärd,M., Nordström, J.: On the convergence rates of energy-stable finite-difference schemes. J. Comput.
Phys. 397, 108819 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Continuous/Discontinuous Galerkin Difference Discretizations of High-Order Differential Operators
	Abstract
	1 Introduction
	2 Galerkin Difference Basis Functions
	3 Discretization of High Order Derivatives
	3.1 Symmetric C0 Galerkin Difference Method
	3.2 Positivity of the Bilinear Form
	3.3 Dispersion Analysis
	3.3.1 Biharmonic Operator
	3.3.2 Sixth Order Operator
	3.3.3 Higher Order Operators


	4 Boundary Conditions and Discrete Spectra
	4.1 Enforcement of Boundary Conditions
	4.2 Extension to Complex Domains

	5 Application to the Euler-Bernoulli Beam and Kirchoff-Love Plate
	5.1 Spectral Deferred Correction Time Stepping Scheme
	5.2 Numerical Results for the Euler Bernoulli Beam
	5.2.1 Cantilever Beam (Fixed and Free Boundary Conditions)
	5.2.2 Simply Supported and Sliding Boundary Conditions

	5.3 Numerical Results for Kirchhoff-Love Plate

	6 Conclusions
	References




