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Abstract— Evaluating the performance of autonomous vehi-
cles (AV) and their complex AI-driven functionalities to high
precision under naturalistic conditions remains a challenge,
especially when the failure or dangerous cases are rare. Rarity
does not only require an enormous sample size for a naive
method to achieve high confidence residual risk estimation,
but it can also cause serious risk underestimation issues that
is hard to detect. Meanwhile, the state-of-the-art rare safety-
critical event evaluation approach that comes with a correctness
guarantee can compute an upper bound for the true risk under
certain conditions, which limits its practical uses. In this work,
we propose Deep Importance Sampling (Deep IS) framework
that utilizes a deep neural network to obtain an efficient less
biased risk estimate, with an efficiency that is on par with that
of the state-of-the-art method. In the numerical experiment
evaluating the misclassification rate of a traffic sign classifier,
Deep IS only needs 1/40-th of the samples required by a naive
sampling method to achieve 10% relative error. Furthermore,
the estimate produced by Deep IS is 10 times less conservative
compared to the risk upper bound and only off by at most 10%
difference to the true target. This efficient deep-learning-based
IS procedure promises a highly efficient method to deal with
often high-dimensional functional safety problems with rare
naturalistic failure cases that are prevalent in AV domains.

I. INTRODUCTION

Synthesis of artificial intelligence (AI), transportation sci-
ences, and robotics have shown enormous potentials in the
development of safe and efficient intelligent transportation
systems. Autonomous vehicles (AVs), for instance, are now
driving alongside human drivers on public roads [1], relying
on various sensors, actuators, and complex algorithms to
handle various tasks including perception, decision making,
and controls. AI enables efficient processing of large streams
of input data, supplying its predictions to downstream tasks
that actualize driving maneuvers [2]. While the results have
been promising and appealing under normal and common
scenarios, it remains a challenge to get a precise and accurate
estimate of the residual risk of AVs under whole naturalistic
situations, particularly because failures and safety-critical
scenarios are uncommon and rare [3]–[5]. Safety assurance
thus emerges as the forefront issue to solve in order to reap
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the full potentials of AVs, such as improved road safety and
reduced traffic congestion at scale [6], [7].

One important element of safety assurance is a rigorous
evaluation framework prior to deployment. The rigor in
evaluation methods plays a huge role in ensuring that not
only the evaluated system passed the minimum safety bar
(e.g. safer than human driver), but also the precision and
uncertainties of the evaluation results are properly taken into
consideration. Addressing evaluation uncertainty is particu-
larly important for AV applications since the failure rate is
tiny (e.g. 1.26 fatal cases per 100 million miles of driving
[8]), but comes with serious consequences [9], thus should
not be ignored.

In this regard, traditional evaluation methods are in-
sufficient, even for functional evaluation of AVs. Formal
verification [10], scenario-based approaches [11], [12], or
function-based approaches [13] are limiting the test scope
and could not capture the full complexity and stochasticity of
the interactions between AV and its environments to maintain
tractability. Even the more recent evaluation approaches,
such as shadow testing, staged introduction, field tests, and
simulations, are also subject to their limitations. Shadow
testing approach [14] could only compare the similarity
between AI decisions and human decisions, which are not
always the safest. Staged introduction (e.g. geofencing [15])
only suits testing up to SAE Level 4 autonomy [13], [16].
Finally, naturalistic field operational test, despite its highest
testing fidelity and popularity, is well-known to be very ex-
pensive and inefficient, requiring billions of miles to achieve
meaningful statistical significance to estimate rare dangerous
or fatal cases [17]. Its computer-simulated counterparts are
also subject to the same problem, requiring a huge number of
replications that blow up very quickly as the failures become
rarer.

Earlier works have been proposed to deal with AV testing
inefficiencies due to the rarity of the failure cases. Acceler-
ated Monte Carlo methods based on Importance Sampling
(IS) have been proposed in [18]–[21] with orders of mag-
nitude of efficiency improvement. However, these methods
can only deal with relatively low-dimensional problems and
requires some level of information of the underlying systems.
Adversarial environment generator for IS design constructed
using reinforcement learning is proposed in [22], but lacks
efficiency guarantee. A framework called Deep-PrAE with
efficiency guarantee and suitable for black-box systems is
proposed in [23], but can only compute a risk upper-bound,
hence less useful for evaluations that aim to select the safest
design or estimate the residual risk of an AV prototype.



In this work, we adopt the use of a deep learning classifier
to design IS from [23], but aiming at outputting an estimator
that is closer to the true target. This is particularly important
for evaluating AV perception systems since object detec-
tion and classification algorithms are customarily complex
and ranked based on their prediction accuracy (or corre-
spondingly their misclassification rate), often really close
to one another. In this situation, the upper bound of the
misclassification rate is far less meaningful compared to the
true misclassification rate as a basis for selecting the best
algorithms to implement on AVs.

To achieve this, we propose Deep Importance Sam-
pling (Deep IS) framework. We combine the versatility
and strength of deep learning models to approximate high-
dimensional complex sets and the rigor and efficiency of IS
for rare-event simulation to match the level of complexity
of the evaluated system. Numerical experiments on the
evaluation of a traffic sign classifier (that deals with 32 by 32
image, i.e. 1,024 input dimensions) show the potential of the
method, requiring 50 times smaller sample size compared to
Monte Carlo to achieve 10% relative error on a target of an
order 10�6.

In sum, our contribution is twofold. First, we propose
a handy and practical framework to design an efficient
importance sampler for large-dimensional evaluation prob-
lems. Second, we achieve similar level of efficiency per-
formance with the state-of-the-art method and even extend
it to compute a less biased estimator for the target risk.
These contributions allow us to devise a robust method
that can evaluate the performance of AV functionalities to
a high degree of precision even under rare failure cases.
Furthermore, the method can bring us closer to evaluating
the safety of the intended functionality (SOTIF) of AV as a
system.

II. PROBLEM FORMULATION

Our evaluation task deals with estimating the failure
probability of AV perception systems (usually deals with
high-dimensional input). The notion of failure here means
the perception system fails to provide a correct interpretation
of its surrounding environment under naturalistic conditions.
A similar notion of evaluation tasks that focuses on AV
decision-making modules (usually deals with inputs that
are low or moderately high dimensional, depending on the
fidelity of the evaluated AV model) are available in [18],
[20], [22]. By being “naturalistic”, we mean the environment
behavior, represented by a multivariate random variable X 2
Rd, follows certain natural randomness. We model it using
a probability distribution p. The set of failure events given
an AV model, say S ⇢ Rd, is a subset of all realizations
that leads to AV making incorrect predictions. In terms
of AV traffic sign classifier, such set may contain traffic
sign classes with low representations in the training set
or traffic sign images that have been perturbed heavily by
noise (see illustration in Fig. 1). Note that even a high-
performing classifier might still make incorrect predictions
on such examples, due to its low occurrence during training.
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Fig. 1. Illustration of rare-event failure cases in AV traffic sign classifier.
In this case, the rare failure subsets may contain traffic sign images that
are likely misclassified by a trained deep learning classifiers, e.g. traffic
signs with low representation in the training set or common signs subjected
to very noisy perturbations. Despite the low likelihood of these dangerous
cases, it could cause safety issue if occurred during deployment.

Extra efforts such as data augmentation and robust training
methods might help reduce such failures to a certain extent,
but the problem could persist. To account for the fact that
the set might shrink as the classifier becomes more robust
(e.g. through data augmentation [24] or robust training [25]),
we parameterize the failure set with some parameter rarity �,
(hence written as S�), emphasizing how the shrinkage might
change the rarity of observing failure cases.

With this setting, the above goal of functional evaluation
can be formulated as estimating the failure rate

µ = P(X 2 S�) = EX⇠p[1X2S� ], (1)

where 1⇠ is the indicator function with value 1 if the state-
ment ⇠ is true and 0 otherwise, and the expectation is taken
with respect to naturalistic distribution p. Thus, µ represents
the probability that the AV encounters failure cases under the
naturalistic randomness of its operational design domains.
This notion of safety is helpful because it allows ranking the
alternative designs during the design process and comparing
the residual risk of the selected classifier with that of human
perception.

Evaluation Goal and Sample Size Requirement

The sample size requirement is related to the target con-
fidence level of our estimator µ̂n that uses n samples to
estimate µ. Since µ can be tiny, the error between µ̂ and
µ should be measured relatively (i.e. using relative error
instead of absolute error). This is important since µ̂ is only
meaningful to make decisions about the performance if the
error is small enough relative to the target µ.

Suppose that we aim to achieve ✏ relative error w.r.t. µ
with high confidence and use n samples Z1, · · · , Zn where
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Fig. 2. Illustration of Deep IS Framework.

Zi = 1Xi2S� . Then, we need the sample size n to ensure

P(|µ̂n � µ| > ✏µ)  �, (2)

where � is our target confidence level (e.g., � = 5%). By
applying Markov inequality, we obtain that the sample size
n must satisfy

n � Var(Zi)

µ2�✏2
. (3)

This value of n is prohibitively large when µ is tiny, raising
the well-known rare-event challenge in AV safety evaluations
[19].

Importance Sampling (IS) Approaches
IS has been successfully applied to improve sampling

efficiency for rare-event problems [26]. The main idea is
to bias the probability measure toward the regions of failure
events. This is realized by generating more failure samples
from another distribution p̃ (instead of p), and outputs the
sample average weighted by the likelihood ratio L = dp

dp̃ .
The critical part of this approach is to carefully select the
proposal distribution p̃ so that the resulting estimate attains
a small relative error (RE), computed as

RE(µ̂n) =
Std(µ̂n)

E[µ̂n]
⇥ 100%, (4)

i.e. the ratio between the standard deviation of an estimator
to its mean. Given that an estimator µ̂n is unbiased, RE
quantifies its uncertainty in estimating the target with sample
size n. A certifiably efficient estimator is one that requires
minimal n to attain a reasonably small RE (e.g. 10% or 20%),
regardless how small the target µ is.

One known algorithm to realize this is to use a mixture
model that accounts for the most likely scenarios that cover
all the local modes of dangerous sets. Such most likely
scenarios are called dominating point [27], [28]. Dominating-
point-based IS has been adopted by earlier work in this
direction under various settings. In [29], the authors derived
an efficient IS distribution for the evaluation of simple lane-
change AV scenarios, an improvement to the earlier work
[18] that uses heuristic approaches. In [19], the authors
extended the approach to deal with a dynamic system with
unimodal parametric class and evaluated car-following sce-
narios. The relaxation is proposed using a simple parametric
class to include piecewise models in [30], [31] and Gaussian
mixture models in [20] with theoretical guarantees provided
in [32]. [23] applies the idea for black-box systems, solving

for the dominating points of a neural network approximation,
and computes an upper bound for the failure probability of
a simple AV model system with an efficiency guarantee.
The limitation of existing studies is that they all focus on
developing methods for relatively low-dimensional decision-
making algorithms usually based on control theories and
decision trees which have been lagged by the increasingly
complex AI algorithms, e.g. basic longitudinal and lateral
control [33], [34]. Larger systems are addressed in [22]
at the cost of the level of rigor. Here, we combine these
approaches and propose Deep IS framework that achieves
a high-efficiency boost and suits to evaluate AV perception
functionality.

III. DEEP IS FRAMEWORK

The key ingredient of Deep IS is the versatile use of a
deep learning classifier to approximate the failure set S� .
We illustrate the framework in Fig. 2 as a series of six-step
procedure.

We assume to have collected a dataset of size n1 that
is representative enough and can be used for learning the
overall shape of failure set (Step 1). Methods that could
generate dangerous or safety-critical scenarios are helpful
for this step (e.g. [35], [36]), though they are often computa-
tionally expensive. As a cheaper alternative, we use learning
methods, leveraging the versatility of deep neural networks
to learn complex decision boundary. The learning procedure
trains a deep neural net g for classification/set learning task
(Step 2), extracting prior information from dataset Dn1 =
{(Xi, Yi)}n1

i=1 that consists of normal cases (Yi = 0) and
failure cases (Yi = 1), where Yi = 1Xi2S� , i = 1, 2, · · · , n1.
Our goal in this step is to train the parameter of g so that
the positive prediction region

Ŝ� = {x : g(x) � 0} (5)

provides an approximation for the failure set S� . Here,
we assume Dn1 is representative enough and the training
procedure is proper, so that Ŝ� ⇡ S� .

Next, we solve for the set of dominating points Â� of Ŝ�

(Step 3). To find all the dominating points, we iteratively
solve an optimization problem that minimizes the rate func-
tion I of the naturalistic distribution p over the portion of
Ŝ� not covered by the local region of any previously found
dominating point. For Gaussian p = N(�,⌃) (i.e. a Gaussian
distribution with mean � and covariance ⌃), the objective to



minimize is

I(x) = (x� �)T⌃�1(x� �). (6)

The constraints in this case are

g(x) � 0 (7)

(x† � �)T⌃�1(x� x†) < 0, 8x† 2 Â� . (8)

Constraint (7) ensures that the solution lies in the positive
prediction region of g while (8) ensures that the current
iteration search only on the space not covered by the dom-
inating points found in earlier iterations. See Alg. 1 for a
reference on how this is implemented iteratively. A more
general formulation that goes beyond Gaussian p is available
in the literature, for instance, the formulation in [23].

Next, we construct our proposal Gaussian mixture model
(Step 4)

p̃ =
1

|Â� |

X

a2Â�

N(a,⌃). (9)

This serves a weighted sampling model with larger likelihood
surrounding the dominating points. Finally, we perform final
sampling, collecting n2 samples and their label Dn2 =
{(X̃i, Ỹi)}n2

i=1 (Step 5) and compute Deep IS estimator (Step
6)

µ̂DeepIS =
1

n2

n2X

i=1

L(X̃i)Ỹi, (10)

where

L(X̃i) =
�(X̃i;�,⌃)

1
|Â� |

P
a2Â�

�(X̃i; a,⌃)
, (11)

Ỹi = 1X̃i2S�
, and �(·,�,⌃) is the density of Gaussian dis-

tribution with mean � and covariance ⌃. The full algorithm
for Deep IS framework is summarized in Alg. 1.

Algorithm 1 Deep IS
1: SET LEARNING WITH n1 SAMPLES:
2: Train classifier with + prediction Ŝ� = {x : g(x) � 0}

3: DOMINATING SET W.R.T. p = N(�,⌃) AND Ŝ� :
4: Initiate Â�  ;,X  Ŝ�

5: While X 6= ;:
6: Solve the optimization problem

x⇤ = argmin
x

(x� �)T⌃�1(x� �) (12)

s.t. g(x) � 0,

(x† � �)T⌃�1(x� x†) < 0, 8x† 2 Â�

7: Update Â�  Â� [ {x⇤}
8: Update X  X \x†2Â�

{x : (x†��)T⌃�1(x�x†) <
0}

9: COMPUTING ESTIMATOR WITH n2 SAMPLES:
10: Sample X̃1, · · · , X̃n2 from p̃ = 1

|Â� |

P
a2Â�

N(a,⌃)

11: Compute L(X̃i) =
�(X̃i;�,⌃)

1
|Â� |

P
a2Â�

�(X̃i;a,⌃)

12: Compute µ̂DeepIS = 1
n2

Pn2

i=1 L(X̃i)1X̃i2S�

Practical Choices for a Tractable Optimization Problem
We note here that the architecture of g has a practical

consequence in iteratively solving (12). While it is desirable
to get the most accurate model g, more complex model
classes lead to more complex approximation Ŝ� , thus a much
harder optimization problem in Step 3. Since an efficient IS
proposal requires a mixture model that accounts for all of the
dominating points of Ŝ� , we need to ensure that the resulting
problem is tractable.

To ensure this, we choose g to be feed-forward ReLU-
activated deep neural nets. The main reason is the availability
of an efficient mixed integer program formulation for a ReLU
neural network in the literature [37], [38]. For this choice of
g, the resulting approximation Ŝ� is a union of polytopes
and its boundary is piecewise linear.

In particular, suppose we use L-layer deep neural net
with ReLU activation functions, and the i-th layer outputs
of ReLU are denoted as

si = max{WT
i si�1 + bi, 0}, (13)

where Wi’s and bi’s are the weight and bias parameters of
g. Then, we can represent the constraint g(x) � 0 in (12)
can be replaced by

sL � 0, (14)
si WT

i si�1 + bi +M(1� zi), i = 1, · · · , L (15)
si �WT

i si�1 + bi, i = 1, · · · , L (16)
si Mzi, i = 1, · · · , L (17)
si � 0, i = 1, · · · , L (18)
zi 2 {0, 1}mi , i = 1, · · · , L (19)
s0 = x. (20)

Constraint (14) ensures positive prediction region. Constraint
(15)-(18) represent the ReLu operator. Finally, constraint (19)
and (20) handle binary requirement and original data input
x on layer 0, respectively. Furthermore, mi is the number
of nodes in i-th layer, and M is some practical upper-bound
value. The problem size with this formulation grows linearly
to the network size (the number of integer variables is equal
to the number of neurons and the number of constraints
is roughly four times the number of neurons). We seek to
extend the model to include CNN architecture in the future
works.

IV. NUMERICAL EXPERIMENTS

For our experiment, we consider the traffic sign classi-
fication problem on the German Traffic Sign Benchmark
(GTSRB) dataset [39] which contains about 50,000 images
of traffic signs and labels. We evaluate the performance of
MicronNet [40], one of the state-of-the-art traffic sign classi-
fiers, that achieves 98.7% accuracy on GTSRB benchmarks.
We use traffic sign images sized 32 by 32 pixels.

Our Deep IS framework uses a 4-layer feed-forward
ReLU-activated neural network with 32, 16, 8, and 16
neurons in each layer as g. We construct a training set with
40,000 training data, which correctly classifies correctly- or



Fig. 3. Estimation of traffic sign classifier misclassification rate ( (rarity level � = 3.33 - moderately rare failure cases))

TABLE I
SAMPLE SIZE, DEGREE OF CONSERVATIVENESS, AND ACCELERATION RATE OF NMC, DEEP IS, AND DEEP-PRAE TO ACHIEVE 10% RE

Estimator Rarity level � = 3.33 Rarity level � = 5.0
Sample Size Degree of Conservativeness Acceleration Rate Sample Size Degree of Conservativeness Acceleration Rate

NMC 90,239 1.0 (baseline) 1.0 (baseline) 18,181,798 1.0 (baseline) 1.0 (baseline)
Deep IS 44,204 0.91 2.0 418,983 1.02 43.4
Deep-PrAE 21,203 10.02 4.3 118,370 14.26 153.6

incorrectly-classified unperturbed samples with 96.5% accu-
racy. We then perturb a fixed correctly classified input from
each class with a Gaussian noise sampled from N(0,�2) on
each pixel. The parameter � corresponds to the rarity level
�, where � = 1/�. Similar setting can be found in earlier
work, e.g. [41]. We test two different rarity levels: moderate
(� = 0.3) and extremely rare (� = 0.2), corresponding to
� = 1/0.3 = 3.33 and � = 1/0.2 = 5, respectively. These
settings represent different real-world conditions regarding
how noisy traffic signs are being perceived by AV sensors.

We then run Alg. 1. We implement the sequential search-
ing algorithm with mixed integer program formulation and
use the first 100 dominating points that we obtain (which
takes 72 hours). Due to the high-dimensionality of the input
space and the choice of g, the number of dominating points
in this problem is extremely large (much larger than 100).
As benchmark, we also run Deep-PrAE (the IS-based upper-
bound estimator from [42]) and NMC (naive Monte Carlo).
We summarize the estimated misclassification rates and REs
in Fig. 3 and Fig. 4.

In addition, we report the sample size required by each
algorithm to achieve 10% RE in Table I. From this, we
calculate the acceleration rate of Deep IS and Deep-PrAE,
which is the ratio between NMC sample size (baseline) to
Deep IS or Deep-PrAE sample size. We also report in Table I
the degree of conservativeness (the ratio between the estimate
of Deep IS or Deep-PrAE to that of NMC). Acceleration
rate highlights the efficiency boost obtained by each method,
while degree of conservativeness highlights how close the
output estimator to the true (unbiased) target.

V. DISCUSSIONS

In this section, we discuss our findings in terms of estima-
tor’s conservativeness and sampling efficiency and highlight
the limitation of the current work.

Estimator Conservativeness

We first observe from Fig. 3 (left) that Deep-IS estimator
(solid green line) and NMC (solid red line) converge to
approximately the same value (µ̂ ⇡ 8.6 ⇥ 10�4), showing
that Deep IS provides a close estimate of the target risk.
Meanwhile the Deep-PrAE outputs 8.62 ⇥ 10�3 with n =
100, 000, validating the upper bounds it produces.

This observation repeats in Fig. 4 (left) that deals with an
even smaller misclassification rate (higher rarity parameter
value, � = 5.0 compared to the previous one with � = 3.33).
Deep IS computes a really close estimate (µ̂ = 2.04⇥10�6)
to the target (⇡ 2.0⇥10�6), which is computed using NMC
that we uses an extremely larget number of samples (more
than 18 million samples!). Due to the extreme rarity of the
misclassification rate, NMC only encounters 1 misclassifi-
cation case in the first 100,000 samples, resulting in overly
high estimation variance that is barely informative (Fig. 4
right). This is due to overall smaller noise variance added
to the traffic signs, hence the classifier can identify most of
the traffic signs correctly. Again, Deep-PrAE provide a valid
upper bound (µ̂ = 2.88⇥ 10�5), that is more than 14 times
the value of the target. This shows the ability of Deep IS
estimator to produce a less conservative estimate even under
an extreme rarity problem.

The degrees of conservativeness summarized in Table I
shows Deep IS outputs a much less conservative estimate



Fig. 4. Estimation of traffic sign classifier misclassification rate (rarity level � = 5.0 - extremely rare failure cases)

than Deep-PrAE (about 1/10-th for � = 3.33 and 1/14-
th for � = 5.0). This is a desirable especially for tasks
aiming to estimate the true risk of the system. However, we
note that while Deep IS performs well in these examples,
the correctness certificate of this approach is much weaker
compared to Deep-PrAE with provable efficiency certificate
for an upper-bound. In fact, the degree of conservativeness of
Deep IS estimator flips from being less conservative (0.91)
for � = 3.33 to slightly more conservative (1.02). Further
analysis of Deep IS efficiency guarantee is subject to our
future research.

Sampling Efficiency

We now focus on the right figures in Fig. 3, and Fig. 4,
all highlighting the efficiency of each sampling algorithm.
In Fig. 3 (right), we observe that NMC’s RE shrinks much
slower compared to the other methods, followed by Deep IS
and Deep-PrAE. While it is clear that NMC slow shrinkage is
due to its sampling efficiency, the case for Deep IS is slightly
different. RE computes the uncertainty of the estimator as
a percentage of its estimated value, which means larger
uncertainty (in magnitude) is allowed for larger estimator.
The large relative error of Deep IS in 4 (right) is thus mainly
due to its smaller estimated value compared to the upper
bound that Deep-PrAE estimates.

Regardless, suppose that our goal is to produce an estimate
with 10% maximum RE. Then, for the case � = 3.33, NMC
will terminate after using 90,239 samples, 44,204 samples for
Deep IS, 21,203 samples for Deep-PrAE. For the case � =
5.0, NMC uses more than 18 million samples, 418,983 for
Deep IS, and 118,370 for Deep-PrAE. NMC clearly requires
much larger sample size, followed by Deep IS, and Deep-
PrAE. From the acceleration rate in Table I, we immediately
found that only Deep IS can both obtain relatively unbiased
estimate and accelerate the procedure significantly, to up to
43.4 times (for the traffic sign classification with � = 5).
Deep-PrAE can achieve up to 153.6 acceleration rate, but at
the cost of 14 times more conservative estimate. If the task at
hand requires only an upper-bound for the target, then using

Deep-PrAE appears to be more efficient. However, if the task
demands for a closer-to-target estimate, Deep IS emerges as
the best alternative.

VI. CONCLUSION AND FUTURE OUTLOOK

In this paper, we proposed Deep IS, a practical frame-
work to evaluate AV perception systems under rare-event
failure cases. The proposed approach designs efficient IS
distribution by combining the dominating point machinery
with deep-learning-based rare-event set learning. The key
property that distinguishes our approach with other accel-
erated safety simulation methods is our practicality and
versatility. Leveraging on deep learning classifier and recent
advances in guaranteed upper bound, our approach applies
to generic structure and attains high efficiency improvement
for evaluation tasks dealing with AV perception systems that
handles large-dimensional inputs. The on-par efficiency with
state-of-the-art method and estimates that is closer to the
target promises a highly efficient method to deal with AV
functional safety evaluation problems with rare naturalistic
failure cases. Applications regarding evaluate the safety of
intended functionality of AVs can be carried out using the
proposed framework, which are our goals in the subsequent
work.
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