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our bounds along with several examples of codes whose sum of distances closely follows 
the upper bound.
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1. Introduction: sum of distances and related problems

1.1. Problem statement and overview of results

Let CN = {z1, . . . , zN } be a set of N points (code) on the unit sphere Sn−1 in Rn . Denote by τn(CN ) = ∑N
i, j=1 ‖zi − z j‖

the sum of pairwise distances between the points in CN and let τ (n, N) = supCN
τn(CN ) be the largest attainable sum of 

distances over all sets of cardinality N . The problem of estimating τ (n, N) was introduced by Fejes Tóth [29] and it has 
been studied in a large number of follow-up papers, [32,10]. The main body of results in the literature are concerned with 
the asymptotic regime of fixed n and N → ∞. In particular, it is known that

cN1− 1
n−1 � W (Sn−1)N2 − τ (n, N) � C N1− 1

n−1 , (1)

where W (Sn−1) = ∫∫ ‖x − y‖dσn(x)dσn(y) is the average distance on the sphere, σn is the normalized (surface area) mea-
sure on the sphere, and c, C are some positive constants that depend only on n. The upper bound in (1) is due to Alexander 
[1] for n = 3 and Stolarsky [48] for higher dimensions, and the lower bound was proved by Beck [6]. Kuijlaars and Saff 
[37] extended these results to bounds on the s-Riesz energy of spherical sets for all s > 0, and Brauchart et al. [17] com-
puted next terms of the asymptotics; see also Ch. 6 in a comprehensive monograph by Borodachov et al. [11] for a recent 
overview.

In this paper we adopt a different view, allowing both the dimension n and the cardinality N to increase in a certain 
related way. The main emphasis of this work is on obtaining explicit lower and upper bounds on the sum of distances of 
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a spherical set CN for N ∼ δnα , for certain δ and 0 < α � 2. Upper bounds apply uniformly for all spherical sets, while to 
derive lower bounds we need to assume that the minimum pairwise distance is bounded from below (otherwise the sum 
of distances can be made arbitrarily small). If the minimum distance is large, then the neighbors of a point are naturally 
placed on or near the orthogonal subsphere (the “equator”), and the distance to them is about 

√
2. This suggests that the 

main term in the asymptotic expression for the sum of distances is 
√

2N2, and it is easy to obtain a bound of the form 
τ (n, N) �

√
2N2(1 + o(1)), as shown below in Sec. 1.2.

Our main results are related to refinements of this claim. Using linear programming, we derive lower and upper bounds 
for the sum of distances of codes of small size. For a number of code families, the sum of distances behaves as 

√
2N2, and 

the bound is asymptotically tight. We compute lower-order terms in a number of examples, including codes obtained from 
equiangular line sets, spherical embeddings of strongly regular graphs (two-distance tight frames), and spherical embeddings 
of some classes of small-size binary codes. Numerical calculations, some of which we include, confirm that the sum of 
distances of these codes follows closely the upper bound.

1.2. Sum of distances and Stolarsky’s invariance

The sum of distances in a spherical code enjoys several links with other problems in geometry of spherical sets. One of 
them is related to the theory of uniform distributions on the sphere. A sequence of spherical sets (CN )N is called asymptot-
ically uniformly distributed if for every closed set A ⊂ Sn−1

lim
N→∞

|CN ∩ A|
N

= σn(A).

To quantify the proximity of a sequence of sets CN to the uniform distribution on Sn−1, define the quadratic discrepancy4 of 
CN :

D L2(CN) :=
1∫

−1

∫
Sn−1

∣∣∣ 1

N

N∑
j=1

1C(x,t)(z j) − σn(C(x, t))
∣∣∣2dσn(x)dt, (2)

where C(x, t) = {y ∈ Sn−1 : (x · y) � t} is a spherical cap of radius arccos t centered at x. A classic result states that a sequence 
of sets CN is asymptotically uniformly distributed if and only if limN→∞ D L2 (CN ) = 0; see, e.g., [11, Theorem 6.1.5]. A 
fundamental relation between τn(CN ) and D L2 (CN ) states that the sum of these two quantities is a constant that depends 
only on N and n. Namely,

cn D L2(CN) = W (Sn−1) − 1

N2
τn(CN), (3)

where cn = (n − 1)
√

π�((n − 1)/2)/�(n/2) is a universal constant that depends only on the dimension of the sphere. This 
relation was proved by Stolarsky [48] and is now known as Stolarsky’s invariance principle. The average distance on the sphere 
is given by 

∫ π
0 2 sin(θ/2) sinn−1 θdθ/ 

∫ π
0 sinn−1 θdθ , which evaluates to

W (Sn−1) = 2n−1�(n/2)2

√
π�(n − 1/2)

= √
2 − 1

4
√

2n
+ O (n−2).

Since D L2(CN ) � 0, the following bound is immediate: for any code CN ⊂ Sn−1

τn(CN) � N2
(√

2 − 1

4
√

2n
+ O (n−2)

)
. (4)

This inequality forms a particular case of a well-known fact that the average of a radial negative-definite kernel over a 
subset of the sphere is at most the average over the entire sphere. It also forms a very particular case of a recent general 
result in [14, Theorem 3.1].

Remarks.

1. On account of (3), the problem of maximizing the sum of distances is equivalent to minimizing the quadratic discrep-
ancy, i.e., the sum of distances serves as a proxy for uniformity: a set of N points on the sphere is “more uniform” if 
the sum of pairwise distances is large for its size.

4 More precisely, the discrepancy is defined as (DL2 (CN ))1/2, and it is called the spherical cap discrepancy, as there are also other types of discrepancy on 
the sphere.
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2. Sequences (CN ) with average distance 
√

2(1 + o(1)) are asymptotically uniformly distributed. As we have already 
pointed out, many sequences of codes satisfy this condition; moreover, as shown below, spherical codes obtained from 
the binary Kerdock and dual BCH codes match the second term in (4), implying a faster rate of convergence to the limit.

3. Extensions and generalizations of Stolarsky’s invariance were proposed in recent works [18,9,8,46,47,4]. In particular, [4]
studied quadratic discrepancy of binary codes, deriving explicit expressions as well as some bounds. Below in Sec. 4, we 
point out that this problem is closely related to the sum-of-distances problem in the spherical case, and translate our 
results on bounds to the binary case. This link also motivates studying the asymptotic regime of n → ∞ for spherical 
codes because this is the only possible asymptotics in the binary space.

1.3. Details of our approach

Viewing the distance ‖x − y‖ as a two-point potential on the sphere, we can relate the problem of estimating τ (n, N)

to the search for spherical configurations with the minimum potential energy. References [37], [17], [11], and many others 
adopt this point of view, considering the energy minimization for general classes of potential functions on the sphere. A 
line of works on energy minimization, initiated by Yudin [52,36] and developed by Cohn and Kumar [24], uses the linear 
programming bounds on codes to derive results about optimality as well as lower bounds on the energy of spherical 
codes. Extending the approach of earlier works by Yudin and Levenshtein [39,41], the authors of [24] proved optimality of 
several known spherical codes for all absolutely monotone potentials5 and called such codes universally optimal. In particular, 
denoting t = t(x, y) = x · y, we immediately observe that the potential L(t) = −‖x − y‖ = −√

2(1 − t) fits in this scheme 
since 2 + L(t) is absolutely monotone, and thus all the known universally optimal codes are maximizers of the sum of 
distances.

While the results of [24] apply to specific spherical codes, a suite of universal bounds on the potential energy was 
derived in recent papers of Boyvalenkov, Dragnev, Hardin, Saff, and Stoyanova [13–16]. While the bounds can be written 
in a general form relying on the Levenshtein formalism, explicit expressions are difficult to come by. We derive an explicit 
form of the first few bounds in the Levenshtein hierarchy and evaluate them for the families of spherical codes mentioned 
above, limiting ourselves to the potential L(t). Our approach can be summarized as follows. Given an absolutely monotone 
potential h, define the minimum h-energy over all spherical sets of size N by

Eh(n, N) := inf
CN

Eh(CN),

where Eh(CN ) =∑N
i, j=1 h(zi · z j). This quantity is bounded from below as follows:

Eh(n, N) � N2
k−1+ε∑

i=0

ρih(αi), (5)

where the positive integer k, the value ε ∈ {0, 1}, and the real parameters (ρi, αi), i = 0, 1, . . . , k − 1 + ε, are functions of 
N and n as explained in [14] and in Section 5 below. The bound (5) was called a universal lower bound (ULB) in [14]. For 
given k and ε we obtain a degree-m bound, m = 2k − 1 + ε, where the term “degree” refers to the degree of the polynomial 
used in the corresponding linear programming problem. The bound of degree m applies to the values of code cardinality in 
the segment D∗(n, m) � N < D∗(n, m + 1), where D∗(n, m) := (n+k−2+ε

n−1

) + (n+k−2
n−1

)
comes from the Delsarte, Goethals and 

Seidel’s bound [26] for the minimum possible cardinality of spherical τ -designs on Sn−1. The first few segments are as 
follows:

[2,n), [n + 1,2n), [2n,n(n + 3)/2), [n(n + 3)/2,n(n + 1)), [n(n + 1),n(n2 + 6n + 5)/6).

The results of [14] also imply the optimal choice of the polynomial, so the bounds we obtain cannot be improved by 
choosing a different polynomial of degree � m. The bound (5) will be expressed below in terms of n and N for m = 1, 2, 
and 3.

Similarly, it is possible to bound the h-energy from above under the condition that the maximum inner product s
between distinct vectors in CN is fixed, or, allowing n and N to grow, satisfies the condition lim supn→∞ s < 1. Note that if 
n increases then so does N , and the relation between them affects the asymptotic expressions. Consider the quantity

Eh(n, N, s) := sup {Eh(CN) : x · y � s, x, y ∈ CN , x �= y} ,

i.e., the supremum of h-energy of spherical codes of fixed dimension, cardinality, and minimum separation. Universal up-
per bounds (UUBs) for Eh(n, N, s) were derived in [16]. To this end, the linear programming functional f0|CN | − f (1) is 
minimized on the set of polynomials

5 A potential h(t) : [−1, 1] →R is called absolutely monotone if for every n � 0 the derivative h(n)(t) exists and is nonnegative for all t .
3
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{
f (t) =

deg( f )∑
i=0

f i P (n)
i (t) : f (t) � h(t), t ∈ [−1, s]; f i � 0, i � 1

}
,

where P (n)
i (t) are the Gegenbauer polynomials (normalized by P (n)

i (1) = 1). In [16], the authors use a specific choice of the 
polynomials f (t) for fixed n, N , and s as explained in Section 5. This leads to the bound

Eh(n, N, s) �
(

N

N1
− 1

)
N f (1) + N2

k−1+ε∑
i=0

ρih(αi), (6)

where this time the parameters (ρi, αi) are functions of the dimension n and the minimum separation s, and N1 = Lm(n, s), 
m = 2k − 1 + ε, is the corresponding Levenshtein bound (see Sec. 5 for additional details). The bound (6) will be expressed 
below in terms of n, N , and s for m = 1, 2, and 3.

While in this paper our focus is on codes of small size, a recent general result in [15] (Theorem 7 and Corollary 1) 
implies the following asymptotic bound for the sum of distances:

τn(CN) �
√

2N2 − N3/2

4
√

2
(1 + o(1)),

which is applicable, in particular, for all N such that D∗(n, 2l) � N < D∗(n, 2l + 1), l � 1.

2. Bounds

General bounds on energy of spherical codes obtained earlier in [14] and [16] apply to the sum of distances, although 
obtaining explicit expressions is not immediate. In this section we list the lower and upper bounds on the sum of distances 
obtained from the general results in the cited works, deferring the proof to Sec. 5. We limit ourselves to the first three 
bounds in the sequence of lower and upper bounds, noting that even in this case, the resulting expressions are unusually 
cumbersome.

2.1. Upper bounds

The following bounds on the maximum sum of distances of a spherical code in n dimensions hold true:

τ (n, N) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1(n, N) := N
√

2N(N − 1) (a)

τ2(n, N) := N
(
2N(N − n − 1) + (N − 2)

√
2nN(n − 1)(N − 2)

)
Nn + N − 4n

(b)

τ3(n, N) := N

√
2N(nA1 + 2(N − n − 1)2 B1)

n2(n − 1)2 + 4n(N − n − 1)(N − 2n)
(c)

(7)

where the first bound applies for 2 � N � n +1, the second for n +1 � N � 2n, the third for 2n � N � n(n +3)/2, and where

A1 = Nn3 + (2N − 1)n2 − (N − 1)(7N − 2)n + (N − 1)2(2N + 3), (8)

B1 =√
n(n − 1)N(N − n − 1). (9)

Bound (7a) is attained by the simplex code, bound (7b) is attained by the biorthogonal code, and bound (7c) is at-
tained by all codes that meet the 3rd Levenshtein bound6 [41, p. 620]. Due to (3), these codes have the smallest quadratic 
discrepancy among all codes of their size.

In the asymptotics of n → ∞ bounds (7a) and (7b) yield

τ1(n, N) = √
2N2 − N√

2
+ O (1) if N ∼ δn,0 < δ � 1, (10)

τ2(n, N) = √
2N2 − 2

(
1 − δ − 1 − 3δ/2√

2

)
N + O (1) if N ∼ δn,1 � δ � 2. (11)

6 All the known codes attaining Levenshtein bounds are listed in [40, Table 9.1]. There are two infinite series of codes as well as three sporadic examples 
that meet the 3rd bound. Some of these codes, originating from strongly regular graphs, were discovered in [23] which established a condition for them to 
meet the 3rd Levenshtein bound; see [40] for the details of this connection.
4
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Note that the bound (11) is slightly tighter than (10) because of a larger second term, which is greater than 1√
2

for all δ > 1. 
The bound (11) is also uniformly better than (4) for all N = δn, δ ∈ [1, 2].

The bound (7c) is valid for N � n(n + 3)/2. Writing N ∼ δnα , we note that its asymptotic behavior depends on α. For 
instance, for N = δn2 we obtain

τ3(n, N) = √
2N2 −

√
2δ

8
N3/2 + O (N). (12)

Here the order of the second term of the asymptotics coincides with the bound obtained from the average distance (4)
while the constant factor is better for all δ > 1.

2.2. Lower bounds

Let CN be a spherical code in n dimensions, and assume that the minimum distance between distinct points zi , z j ∈ CN

is bounded from below, i.e., that zi · z j � s for some s ∈ [−1, 1). Denote by τn(N, s) = infCN τn(CN ) the smallest possible sum 
of distances for such codes. We have

τn(N, s) �τ (i)(n, N, s), i = 1,2,3, (13)

where the bound

τ (1)(n, N, s) = N(N − 1)
√

2(1 − s), (14)

is applicable in (13) for N ∈ [2, n + 1] and s ∈ [−1/(N − 1), −1/n], the bound

τ (2)(n, N, s) = N
(
2N(1 − ns2) − 2n(1 − s2) + (n − 1)

√
2(1 − s)

)
n(1 − s2)

, (15)

is applicable for n + 1 � N � 2n and s ∈
[

N−2n
n(N−2)

,0
]

, and the bound

τ (3)(n, N, s) = N
[
2N(1 + 2s + ns2)C4

√
A6 − A5

(
(1 − s)(1 + ns)A4 + B4

√
(1 − s)B5

)]
n(1 − s)(1 + 2s + ns2)2C4

√
2B5

, (16)

is applicable for 2n � N � n(n + 3)/2 and

s ∈
[√

n2(n − 1)2 + 4n(N − n − 1)(N − 2n) − n(n − 1)

2n(N − n − 1)
,

√
n + 3 − 1

n + 2

]
, (17)

where the notation in (16) is as follows:

A2 = (1 + ns)5(1 − s) + (n − 1)2((n + 1)s + 2),

B2 = (n − 1)
√

(1 − s)(1 + ns)((n + 1)s + 2)

A4 = n(n + 2)(n + 3)s4 + 2(3n2 + 13n + 8)s3 + 2(n2 + 12n + 23)s2 + 2(2n2 + 5n + 17)s + 9n + 3,

B4 = 2(n − 1)((n + 1)s + 2)((n − 2)s2 − 2ns − 1),

C4 = 2n(n + 2)s3 − (n2 − 5n − 2)s2 − 6ns − n − 5,

A5 = N(1 − ns2) − n(1 − s)((n + 1)s + 2),

B5 = (n + 1)s + 2

1 + ns
,

A6 = (1 − s)(A2 + 2(1 + ns)2 B2)

1 + ns
.

(18)

Remarks.

1. Note that expression (14) yields a trivial bound on the sum of distances, assuming that every pair of code points is at 
distance 

√
2(1 − s). It is included for completeness because it follows by optimizing the linear polynomial in the linear 

programming problem.
2. The bounds (14)–(16) are proved for s in the specified intervals above but are valid at least for slightly larger s (by 

continuity). For example, the bound (14) is valid for all s. The lower limits for s are determined from the inequality 
N1 � N and the upper limits are the same as for the Levenshtein bound Lm(n, s) (see in Sec. 5 for more details).

3. Using Mathematica, we can compute asymptotic behavior of τ (3)(n, N, s) for n → ∞. Since it depends on s, we do not 
include general expressions, leaving this for the examples.
5
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3. Examples of codes of small size

In this section we consider several families of spherical codes that attain the asymptotic extremum of the sum of dis-
tances. We focus on sets with a small number of distinct distances because the sum of distances is easier to compute, and 
because their cardinalities fit the range of the parameters used to derive the bounds in the previous section. We consider 
three types of objects, families of equiangular lines, strongly regular graphs, and binary codes. General introductions to their 
properties are found in [31, Ch. 11], [19], and [43], respectively.

3.1. Equiangular lines

A family of M equiangular lines in Rn with common inner product s defines a spherical code CN with N = 2M vectors, 
each of which has inner product s with M − 1 other vectors and −s with their opposites. The sum of distances in CN equals

τn(CN) =
N∑

i, j=1

‖zi − z j‖ = N((M − 1)(
√

2 − 2s + √
2 + 2s) + 2)

= N2

√
2
(
√

1 − s + √
1 + s) + O (N). (19)

For small s we can write 
√

1 − s + √
1 + s = 2 − s2

4 + O (s4), so for M = �(n2) the sum of distances will be close to the 
value 

√
2N2 given by the bound (12). Example 1 below illustrates this claim.

Examples.

1. Constructions with M = �(n2). There are several constructions of large-size sets of equiangular lines, starting with De 
Caen’s family [25]; see also [33]. In all these constructions s → 0, and thus the sum of distances equals τn(CN ) =√

2N2(1 + o(1)), showing that such families yield asymptotically optimal spherical codes. For instance, De Caen’s family 
yields codes CN with the parameters

n = 3 · 22r−1 − 1, N = 4

9
(n + 1)2, s = 1

2r + 1
, r � 1,

and we find from (19) that

τn(CN) = √
2N2 − 1

4
√

2
N3/2 + O (N5/4).

At the same time, on account (12) and (16) any sequence of codes CN with N ∼ 4
9 n2 and s ∼

√
3

2n satisfies

√
2N2 − 1

5
√

2
N7/4 − O (N3/2) � τn(CN) �

√
2N2 − 1

6
√

2
N3/2 + O (N)

(computations for the lower bound performed with Mathematica). We give examples of the bounds on the sum of 
distances of de Caen’s codes and of its true value for the first few values of r.

r n N Upper bound τ3(n, N) τn(CN ) Lower bound τ (3)(n, N, s)

3 95 4096 2.369344 · 107 2.368643 · 107 2.341901 · 107

4 383 65536 6.0719880 · 109 6.071317 · 109 6.036098 · 109

5 1535 1048576 1.5548171 · 1012 1.554765 · 1012 1.550113 · 1012

6 6143 16777216 3.9805762.1014 3.980539 · 1014 3.974463 · 1014

7 24575 268435456 1.0190430 · 1017 1.019041 · 1017 1.018254 · 1017

2. Below by Ms(n) we denote the maximum number of equiangular lines in n dimensions with inner product s. It is 
known [38] that M1/3(n) = 2(n − 1). Taking N = 4(n − 1) for a given n, we obtain a spherical code CN with sum of 
distances equal to

τn(CN) = N((M − 1)(
√

4/3 +√
8/3) + 2) = N2 1 + √

2√
3

(1 + o(1)).

The constant factor in this expression is approximately 1.39. A more detailed calculation shows that

lim
n→∞

τn(CN) = (
√

6(
√

2 − 1))−1 ≈ 0.9856.

τ3(n, N)

6
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3. Further, by [44], M1/5(n) = 
3(n − 1)/2� for all sufficiently large n. This set of lines yields a spherical code with sum 
of distances τn(CN ) = N2((

√
2 + √

3)/
√

5)(1 + o(1)) ≈ 1.407N2, which is again very close to (12). It is not difficult to 
check that

lim
n→∞

τn(CN)

τ3(n, N)
=
(√

2 + √
3
)

/
√

10 ≈ 0.9949.

4. A recent paper by Jiang and Polyanskii [34] shows that M1/(1+2
√

2)
(n) = 3n/2 + O (1), yielding a spherical code of size 

N = 3n + O (1). For this code, the constant factor in (19) equals

1√
2

(√
1 − 1

1 + 2
√

2
+
√

1 + 1

1 + 2
√

2

)
≈ 1.40189.

In the limit of n → ∞, the sum of distances satisfies τn(CN )/τ3(n, N) → 0.991.

More examples can be generated relying on constructions of equiangular line sets of size O (n3/2) based on Taylor graphs 
and projective planes [38]. Recent additions to the literature include new upper bounds and exact asymptotics of the size 
of equiangular line sets with fixed inner product s [2,30,35].

3.2. Strongly regular graphs and tight frames

Here we consider the sum-of-distances function for spherical codes obtained from strongly regular graphs (SRG). A k-
regular graph on v vertices is strongly regular if every pair of adjacent vertices has a common neighbors and every pair 
of nonadjacent vertices has c common neighbors. Below we use the notation SRG(v, k, a, c) when we need to mention the 
parameters explicitly.

The spectral structure of SRGs is well known; see for instance [21, p. 118], [23], or [28, Sec. 9.4] (the last two references 
highlight the relation between spherical codes and SRGs and more generally, association schemes). The adjacency matrix of 
an SRG has three eigenspaces that correspond to the eigenvalues k, r1, r2. Let � = (a − c)2 + 4(k − c), then the eigenvalues 
other than k have the form

r1 = 1

2
(a − c + √

�), r2 = 1

2
(a − c − √

�),

and the dimensions of the corresponding eigenspaces are

n1,2 = 1

2

(
v − 1 ± (v − 1)(c − a) − 2k√

�

)
, (20)

where we write n1,2 to refer to both eigenspaces at the same time.
Spherical embeddings of SRGs were introduced by Delsarte, Goethals, and Seidel [26], Example 9.1. To obtain a spherical 

code from an SRG, assign vectors of the standard basis of Rv to the vertices, and then project the basis on an eigenspace 
of the graph. In particular, using the eigenspace Wr1 that corresponds to r1, we obtain a spherical code in Rn1 with N = v
points and inner products

s1 = r1

k
, s2 = − 1 + r1

v − 1 − k
. (21)

A similar procedure for r2 yields a spherical code in Rn2 with v points and inner products

s1 = − 1 + r2

v − 1 − k
, s2 = r2

k
, (22)

where in both cases s1 � 0 > s2. We again reference [28, Sec. 9.4] for the details and [3] for a short proof.
The distribution of distances in the obtained spherical codes does not depend on the point zi ∈ CN . If the code is 

obtained by projecting on Wr1 , then the number of neighbors of a point with inner product r1/k is k, and if it is obtained 
by projecting on Wr2 , then the number of neighbors of a point with inner product r2/k is k. Thus, in both cases, the number 
of neighbors with the remaining value of the inner product is N − k − 1.

Combining (20), (21), and (22), we obtain

Proposition 3.1. Projecting an SRG(v, k, a, c) on the eigenspace Wθ , θ = r1, r2 results in a spherical code in Rn1,2 of size N = v whose 
sum of distances equals

τn1,2
(CN) = N

(√
2k(k − θ) +√

2(N − 1 − k)(N + θ − k)
)

, (23)

where θ = r1 or r2 as appropriate.
7
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Remark. Families of spherical codes considered below attain sums of distances that can be written in the form τn(CN ) =√
2N2(1 + o(1)). A sufficient condition for this is that the eigenvalues are small compared to N , as can be seen upon 

rewriting (23) in the form

τni (CN) = √
2N2

(√k(k − θ)

N2
+
√

(N − k − 1)(N − k + θ)

N2

)
.

As long as θ/N = o(N), as is the case in the examples below, the main term of the asymptotic expression will be 
√

2N2.
Spherical codes obtained from SRGs have an additional property of forming tight frames for Rn1 or Rn2 . Recall that a 

spherical code CN = {z1, . . . , zN } forms a tight frame for Rd if 
∑N

i=1(x · zi)
2 = A‖x‖2 for any x ∈ Rn , where A is a constant. A 

necessary and sufficient condition for the tight frame property to hold is the equality [7]

N∑
i, j=1

(zi · z j)
2 = N2

n
. (24)

In the frame theory literature the sum on the left-hand side of (24) is called the frame potential [50].
It turns out that all two-distance tight frames are obtained as spherical embeddings of SRGs [5,49].

Examples. The families of graphs considered below are taken from the online database [20].

1. Graph of points on a quadric in PG(2m, q). The parameters of the SRG are

v = q2m − 1

q − 1
, k = q(q2m−2 − 1)

q − 1
, a = q2(q2m−4 − 1)

q − 1
+ q − 1, c = q2m−2 − 1

q − 1
,

and the eigenvalues are r1,2 = ±qm−1 − 1. Spherical embeddings of this graph give tight frames in dimensions (20)

n1,2 = 1

2
(N − 1 ± qm) ≈ 1

2
(N ± √

N),

which is easily seen since 
√

� = 2qm−1. The size of the code CN = CN (r1) is N = v and the sum of distances is 
computed from (23) and equals

τn1(CN) = N
√

2(qm + 1)
[qm−1 − 1

q − 1

√
q(qm−1 + 1) + q

3m−2
2

]
.

Taking m → ∞, we compute

τn1(CN) = √
2N2 − 5

4
√

2
N + O (1). (25)

Since in this case N ≈ 2n1 − 2
√

2n1, the appropriate bound to look at is τ2(n, N) with δ = 2. The second term of the 
sum of distances in (25) is approximately −0.884N while the second term in (11) is −2(

√
2 − 1)N ≈ −0.828N .

Likewise, the projection on the eigenspace Wr2 gives a spherical code CN = CN (r2) whose sum of distances equals

τn2(CN) = N
√

2(qm − 1)
[qm−1 + 1

q − 1

√
q(qm−1 − 1) + q

3m−2
2

]
.

For large m this behaves as 
√

2N2 − 5
4
√

2
N + O (1), exhibiting similar behavior as the code in dimension n1.

2. Graph of points on a hyperbolic quadric in PG(2m − 1, q). The parameters of the SRG are

v = q2m−1 − 1

q − 1
+ qm−1, k = q(q2m−3 − 1)

q − 1
+ qm−1, a = k − q2m−3 − 1, c = k/q, (26)

and the eigenvalues are r1 = qm−1 − 1 and r2 = −qm−2 − 1. Using (26), we obtain that the dimensions of the spherical 
embeddings of this graph are

n1 = q(qm−2 + 1)(qm − 1)

q2 − 1
, n2 = q2(q2m−2 − 1)

q2 − 1

and thus, n1 ≈ N/(q + 1), n2 ≈ Nq/(q + 1). The sum of distances in CN (r1) is found to be

τn1(CN) = N
√

2q(qm−1 + 1)
[qm−1 − 1

√
qm−2 + 1 + q

3m
2 −2

]
.

q − 1

8
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For large m we obtain τn1 (CN ) = √
2N2 − q+4

4
√

2
N − O (1). At the same time, from the bound (7c) we obtain an upper 

estimate of the form 
√

2N2 − O (N), giving the second term of the same order, although with a smaller constant factor.
Turning to the code CN obtained by projecting on the eigenspace Wr2 , we find that

τn2(CN) = N
√

2(qm − 1)
[qm−2 + 1

q − 1

√
q(qm−1 − 1) + q

3m
2 −2

]
,

yielding τn2(CN ) = √
2N2 − 4q−1

4q
√

2
N − O (1), with similar conclusions in regards to asymptotics of the upper bound.

Remark. It is known [7] that N2/n is the smallest value of the frame potential in over all (n, N) spherical codes. Thus, two-
distance tight frames form spherical codes in Rn that have asymptotically maximum sum of distances while also minimizing 
the frame potential.

3.3. Spherical embeddings of binary codes

Infinite sequences of asymptotically optimal spherical codes can be obtained by spherical embeddings of binary codes. 
Let CN ⊂ Xn = {0, 1}n be a binary code of length n and cardinality N , and denote by Aw = 1

N #{a, b ∈ C : dH (a, b) = w} the 
average number of neighbors of a code vector at Hamming distance w . The (n + 1)-tuple (A0 = 1, A1, . . . , An) is called 
the distance distribution of the code CN . For a vector x ∈ Xn denote by x̃ the n-dimensional real vector given by x̃i =
(−1)xi /

√
n, i = 1, . . . , n, and let C̃N ⊂ Sn−1 be the spherical embedding of the code CN . Since ‖x̃ − ỹ‖ = 2

√
dH (x, y)/n, the 

sum of distances in C̃N can be written as

N∑
i, j=1

‖z̃i − z̃ j‖ = 2N√
n

n∑
w=0

Aw
√

w. (27)

Using this correspondence, we give several examples of asymptotically optimal families of spherical codes.

3.3.1. Sidelnikov codes
In [45, Thm. 7], Sidelnikov constructed a class of binary linear codes Cr , r � 1 with the parameters n = 24r−1

2r+1 , N = 24r . 
The distance distribution of the codes has two nonzero components (in addition to A0 = 1):

w1 = 24r−1 − 22r−1

2r + 1
, Aw1 = 24r − n − 1,

w2 = 24r−1 + 23r−1

2r + 1
, Aw2 = n.

Let us compute the sum of distances of the spherically embedded Sidelnikov codes. Using (27), we obtain

2N√
n
(Aw1

√
w1 + Aw2

√
w2)) = √

2
(

N2 − 1

8
N5/4 − 7

16
N − 13

128
N3/4

)
+ O (N1/2).

At the same time, the bounds (12) and (7c) imply that for any sequence of codes CN with N as above and s = 1 − 2w1/n

√
2N2 − 1

2
√

2
N7/4 − O (N11/8) � τn(CN) �

√
2
(

N2 − 1

8
N5/4 − 7

16
N − 5

128
N3/4

)
+ O (N1/2),

and so as r → ∞ the true value agrees with the upper bound in the first three terms. The first few values of the sum of 
distances together with the bounds of Sec. 2 are shown in the table below.

r n N Upper bound τ3(n, N) τn(CN ) Lower bound τ (3)(n, N, s)

1 5 16 345.4941208 345.4941208 345.4941208

2 51 256 92338.0198 92334.5230 91959.9016

3 455 4096 2.371820900 · 107 2.371817158 · 107 2.369984979 · 107

4 3855 65536 6.0737748 · 109 6.0737745 · 109 6.073097678 · 109

5 31775 1048576 1.554937673 · 1012 1.554937671 · 1012 1.554914842 · 1012

The relative difference between the upper bound and the true value for r = 5 is about 10−9, and the upper and lower 
bounds on the sum of distances are also rather close.
9
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We next discuss some families of spherical codes obtained from binary codes of cardinality N ≈ n2 that share the 
following common property: they have a small number of nonzero distances concentrated around n/2. Since the factor √

w ≈
√

n
2 for large n can be taken outside the sum in (27), and since the nonzero coefficients Aw add to N − 1, all such 

families satisfy

τn(CN) ∼ √
2N2(1 + o(1)),

differing only in the lower terms of the asymptotics.

3.3.2. Kerdock codes
[43, §15.5]. Binary Kerdock codes form a family of nonlinear codes of length n = 22m, m � 2 and cardinality N = n2. The 

distribution of Hamming distances does not depend on the code point and the nonzero entries (Ai ) are as follows:

A0 = An = 1, A(n±√
n)/2 = n(n/2 − 1), An/2 = 2(n − 1).

From (27), the sum of distances of the spherical Kerdock code equals

τn(C̃N) = √
2N2 − 1

4
√

2
N3/2 + O (N),

which agrees with the bound (4), (12). Note that for general completely monotone potentials, the first-term optimality of 
the Kerdock codes was previously observed in [13].

3.3.3. Dual BCH codes
[43, §15.4]. Let CN be a linear binary BCH code of length n = 2r − 1, r � 3 with minimum distance 5. Suppose that r is 

odd. Then the dual code (CN )⊥ has cardinality N = 22r and distance distribution A0 = 1 and

A n+1
2 ±

√
n+1

2

= n
(n + 1

4
∓

√
n + 1

2
√

2

)
, A n+1

2
= n(n + 3)

2
.

For r even the dual BCH code of length 2r − 1 has distance distribution A0 = 1 and

A n+1
2 ∓√

n+1 = 1

2
n
√

n + 1
(√n + 1

4
± 1

)
, A n+1

2 ∓
√

n+1
2

= 1

3
n
√

n + 1(
√

n + 1 ± 1)

A n+1
2

= n
(n + 1

4
+ 1

)
.

Using (27), we find that the sum of distances in both cases comes out to be

τn((C̃N)⊥) = √
2N2 − 1

4
√

2
N3/2 − O (N).

Note that τn((C̃N )⊥) follows closely the upper bound (4).
Many more similar examples can be given using the known results on binary codes with few weights [43, Ch. 15], 

[22,27,42,51] (this list is far from being complete). At the same time, obviously there are sequences of binary codes (CN )

that yield spherical codes whose sum of distances differs significantly from 
√

2N2. For instance, consider the code CN

formed of 
(n

2

)
vectors of Hamming weight 2, then the pairwise distances are 2 and 4, and a calculation shows that τN (C̃N ) =

(2N)7/4(1 + o(1)).

4. Sum of distances and bounds for quadratic discrepancy of binary codes

An analog of Stolarsky’s identity (3) for the Hamming space Xn = {0, 1}n was recently derived in [4]. For a binary code 
CN ∈Xn define the quadratic discrepancy as follows:

D L2
b (CN) =

n∑
t=0

∑
x∈X

( |B(x, t) ∩ CN |
N

− v(t)

2n

)2
,

where B(x, t) = {y ∈ Xn : dH (x, y) � t} is the Hamming ball centered at x and v(t) = ∑t
i=0

(n
i

)
is its volume. Note that we 

again abuse the terminology since strictly speaking, D L2
b (CN ) is a square of the discrepancy; see also footnote 4 above. We 

use the subscript b to differentiate this quantity from it spherical counterpart defined in (2). To state the Hamming space 
version of Stolarsky’s identity, let us define a function λ :Z →Z. By definition, λ(0) = 0 and for w = 2i, 1 � i � 
n/2�
10
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λ(w − 1) = λ(w) = 2n−w i

(
w

i

)
. (28)

An analog of relation (2) in the binary case has the following form:

D L2
b (CN) = n

2n+1

(
2n

n

)
− 1

N2

N∑
i, j=1

λ(dH (zi, z j)).

The average value of λ(·) over the code can be written in the form

1

N2

N∑
i, j=1

λ(dH (zi, z j)) = 1

N

n∑
w=1

Awλ(w), (29)

where (Aw , w = 1, . . . , n) is the distribution of distances in CN defined above. Thus, the value of discrepancy of the code is 
determined once we know the average “energy” for the potential λ, denoted 〈λ〉CN . Some estimates of this quantity were 
proved in [4].

In this section we note that the bounds on the sum of distances derived above in Sec. 2 imply bounds on 〈λ〉CN via the 
spherical embedding, and thus also imply bounds on D L2

b . Our results are based on the following simple observation.

Proposition 4.1. Let n be even and let CN ⊂ Xn be a binary code and let C̃N ⊂ Sn−1 be its spherical embedding. We have

〈λ〉CN � 2n−1

N2

√
n

π
τn(C̃N) (30)

Proof. Assume that n is even. From (29) and (28) we obtain

1

N

N∑
i, j=1

λ(dH (zi, z j)) =
∑
w=1

Awλ(w) �
n/2∑
i=1

(A2i−1 + A2i)2n
√

i/π

= 2n−1/2

√
π

n/2∑
i=1

(A2i−1 + A2i)
√

2i � 2n

√
π

n∑
w=1

Aw
√

w

where for the first inequality we used the estimate i
(2i

i

)
�

√
i/π 22i , valid for all i. Substituting the value of the sum from 

(27), we obtain the claim. �
With minor differences, this result is also valid for odd n.
Earlier results [4, Thm. 5.2] give several estimates for average value of λ; for instance, for n = 2l − 1, l even

〈λ〉CN � λ(l)(1 − 1

2N
).

Using this inequality and estimating the binomial coefficient, we obtain

〈λ〉CN � 2n−l l

2

(
l

l/2

)
� 2n−1/2

√
l

π
, (31)

valid for all odd n. While in [4] inequality (28) is proved by linear programming in the Hamming space, similar estimates 
are also obtained from (30) and the upper bounds (7a)-(7c) (for N in the range of their applicability), and they largely 
coincide with earlier results. For instance, using (30) and a bound of the form (12) with N = δn2, we obtain 〈λ〉CN �
2n− 1

2

√
n
π (1 − O (N−1/2)), which is only slightly inferior to (31).

In summary, spherical embeddings of binary codes give an alternative way of proving lower bounds for their quadratic 
discrepancy.

5. Proofs of the bounds

In this section, we prove the bounds on the sum of distances stated in Sec. 2, using the energy function Eh(n, N) with 
h(t) = L(t) = −√

2(1 − t) (the negative distance). Accordingly, the upper and lower bounds of Sec. 2 exchange their roles. 
All the derivatives L(i)(t), i � 1, are defined and positive in [−1, 1) and limt→1− L(i)(t) = +∞; L(t) + 2 is nonnegative and 
increasing in [−1, 1], and thus L(t) is absolutely monotone up to an additive constant. Thus, L(t) fits the frameworks for 
ULB and UUB from [14] and [16], respectively (the possible ULB application was mentioned already in the introduction of 
[14]).
11
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5.1. Derivation of the necessary parameters

Here we explain the choice of the parameters in the Levenshtein framework used to derive the bounds.
The parameters k, ε, m = 2k − 1 + ε, and (ρi, αi), i = 0, 1, . . . , k − 1 + ε, originate in the paper of Levenshtein [40] (see 

also [41, Section 5]), where the author used them to establish optimality of his bound on the size of codes (see Theorem 
5.39 in [41]).

For each positive integer m = 2k − 1 + ε, where ε ∈ {0, 1} accounts for the parity of m, Levenshtein used the degree m
polynomial

f (n,s)
m (t) = (t − α0)

2−ε(t − αk−1+ε)

k−2+ε∏
i=1

(t − αi)
2

to obtain his universal upper bound Lm(n, s) on the maximal cardinality of a code on Sn−1 with separation s. The numbers 
α0 < α1 < · · · < αk−1+ε belong to [−1, 1) and αk−1+ε = s and α0 = −1 if and only if ε = 1. The polynomial fm can be 
written in the form

f (n,s)
m (t) = (t + 1)ε

(
Pk(t)Pk−1(s) − Pk(s)Pk−1(t)

)2
/(t − s), (32)

where Pi(t) = P
( n−1

2 , n−3
2 +ε)

i (t) is the Jacobi polynomial normalized to satisfy Pi(1) = 1. For small m the zeros αi of fm can 
be easily found.

The quadrature formula

f0 = f (1)

Lm(n, s)
+

k−1+ε∑
i=0

ρi f (αi), (33)

which is exact for all real polynomials f (t) = ∑d
i=0 f i P (n)

i (t) of degree d � m, reveals a strong relation between the Leven-
shtein bounds and the energy bounds, as explained in the next paragraph (for more details, see [14, Section 2.2] and [16, 
Section 3.1]). We also use (33) to calculate the weights ρi ; see, for example, [12], where the formulas for ρi for odd m were 
derived from a Vandermonde-type system. We also note that Lm(n, s) = f (n,s)

m (1)/ f0, where f0 is the constant coefficient of 
f (n,s)
m .

Formula (33) is instrumental in the representation (5) of the ULB for the energy Eh(CN ) and the proof of its optimality 
in [14]. For ULB, we need polynomials that are positive definite (i.e., their Gegenbauer expansions have nonnegative coeffi-
cients) and such that f � h in [−1, 1]. First, m = 2k − 1 + ε is determined by the rule N ∈ [D∗(n, m), D∗(n, m + 1)]. Hermite 
interpolation with f (αi) = h(αi), where the nodes αi , i = 0, 1, . . . , k − 1 + ε arise as the roots of Lm(n, s) = N considered as 
an equation in s, provides an LP polynomial satisfying both requirements [14, Theorem 3.1]. Then the quantity f0N − f (1), 
which gives rise to the ULB, is computed from (33) (applied with Lm(n, s) = N) to give the right-hand side of (5). Note that 
eventually everything is determined by n and N . We will see how it works in practice in Section 5.2.

We next explain the derivation of the universal upper bound (UUB) from [16] (see Section 3.2 in that paper) which is 
based on choice of polynomials

f (t) = −λ f (n,s)
m (t) + gT (t)

for given n, N , and s. As mentioned in the Introduction, the polynomial f (t) has to satisfy f � h for t ∈ [−1, s] and to have 
f i � 0 for i � 1 in its Gegenbauer expansion. To fulfill these conditions, f (n,s)

m (t) is taken to be the degree-m Levenshtein 
polynomial (32), gT (t) interpolates the potential function at the multiset T , which consists of the roots of f (n,s)

m (t) (counted 
with their multiplicities; this means that the degree of gT is m −1) and λ = max{gi/�i : 1 � i � m −1} is a positive constant. 
More specifically, where

f (n,s)
m (t) =

m∑
i=0

�i P (n)
i (t), gT (t) =

m−1∑
i=0

gi P (n)
i (t)

are the Gegenbauer expansions of f (n,s)
m (t) and gT (t), respectively (note that �i > 0 for every i � m [41, Theorem 5.42]). 

The parameter N1 = Lm(n, s) � N , computed for given n and s (the latter determining m uniquely), is used to find the 
parameters ρi and αi exactly as in the ULB part (but with N1 instead of N; for this to work we assume that N1 = Lm(n, s) ∈
[D∗(n, m), D∗(n, m + 1))). Note that the equality N1 = N holds if and only if there exists a universally optimal code of size 
N in n dimensions (in this case, ULB and UUB coincide7). In our computations of UUBs below we first find the Hermite 
interpolant gT (t), then the parameter λ (which already gives f (t)), and finally compute the bound (6).

7 Having said that, we may view the difference between the ULB and UUB as a measure of how far the codes are from being universally optimal.
12
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5.2. Lower bounds

Proposition 5.1. For 2 � N � n + 1 we have

E L(n, N) � −τ1(n, N). (34)

For n + 1 � N � 2n, we have

E L(n, N) � −τ2(n, N). (35)

For 2n � N � n(n + 3)/2, we have

E L(n, N) � −τ3(n, N), (36)

where τ1 , τ2 , and τ3 are defined in (7a)-(7c).

These estimates constitute the first three bounds in (5), beginning with expressing the parameters (ρi, αi) as functions 
of the dimension n and cardinality N ∈ [D∗(n, m), D∗(n, m + 1)), m = 1, 2, 3. In all three proofs below we first find the roots 
αi of the Levenshtein polynomial (32) setting Lm(n, s) = N for m = 1, 2, 3, respectively. This is equivalent to solving in s the 
equation Lm(n, s) = N . Then we give the weights ρi , computed by setting suitable polynomials (we used f (t) = 1, t, t2, t3; 
for example f (t) = 1 gives the identity 

∑k−1+ε
i=1 ρi = 1 − 1/N) in the quadrature formula (33).

Proof of (34). For the degree 1 bound (34) we have α0 = −1/(N − 1) and ρ0 = −1/Nα0 = (N − 1)/N . Therefore

E L(n, N) � N2ρ0L(α0) = N(N − 1)L(α0) = −N
√

2N(N − 1). �
Proof of (35). For degree 2 (with k = 1 and ε = 1) we have α0 = −1, α1 = − 2n−N

n(N−2)
, ρ0 = N−n−1

Nn+N−4n and ρ1 = n(N−2)2

N(Nn+N−4n)
. 

Since L(−1) = −2 and L(α1) = −
√

2N(n−1)
n(N−2)

, we obtain that the expression N2(ρ0L(α0) + ρ1L(α1)) from (5) is equal to 
−τ2(n, N) as given in (7b). �
Proof of (36). For the degree-3 lower bound we take k = 2 and ε = 0. By (5) we have

E L(n, N) � N2(ρ0L(α0) + ρ1L(α1)), (37)

where N ∈ [D∗(n, 3), D∗(n, 4)] = [2n, n(n + 3)/2], and

α0,1 = −n(n − 1) ± √
D

2n(N − n − 1)
, D = n2(n − 1)2 + 4n(N − n − 1)(N − 2n),

are the roots of the quadratic equation n(N − n − 1)s2 + n(n − 1)s + 2n − N = 0 obtained from the equality L3(n, s) = N . 
Further, the weights ρ0 and ρ1 satisfy the formulas

ρ0N = 1 − α2
1

α0(α
2
1 − α2

0)
, ρ1N = 1 − α2

0

α1(α
2
0 − α2

1)

(note that the numerators resemble the potential L(t) computed for α0, α1; this will make our expressions symmetric). In 
the sequel, we use the following symmetric expressions for α0 and α1

α0 + α1 = − n − 1

N − n − 1
, α0α1 = − N − 2n

n(N − n − 1)
, α2

0 − α2
1 = (n − 1)

√
D

n(N − n − 1)2
,

(1 − α0)(1 − α1) = (n − 1)N

n(N − n − 1)
, (1 + α0)(1 + α1) = (n − 1)(N − 2n)

n(N − n − 1)
.

Our task is to express the bound (37) via n and N . Using the above equalities, we obtain

E L(n, N) � N(ρ0N L(α0) + ρ1N L(α1))

= −N

(
(1 − α2

1)
√

2(1 − α0)

α0(α
2
1 − α2

0)
+ (1 − α2

0)
√

2(1 − α1)

α1(α
2
0 − α2

1)

)

= − n2N(N − n − 1)3

(n − 1)(N − 2n)
√

D

(
α1(1 − α2

1)
√

2(1 − α0) − α0(1 − α2
0)
√

2(1 − α1)
)

.

13
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Consider the expression S = α1(1 − α2
1)

√
2(1 − α0) − α0(1 − α2

0)
√

2(1 − α1). We compute

S2

2
= (n − 1) (A − B) N

n(N − n − 1)
,

and thus

S =
√

2(A − B)(n − 1)N

n(N − n − 1)
,

where we have denoted

A = (n − 1)(N − 2n)2[Nn3 + (2N − 1)n2 − (N − 1)(7N − 2)n + (N − 1)2(2N + 3)]
n2(N − n − 1)5

and

B = −2(n − 1)(N − 2n)2√(n − 1)N

(n(N − n − 1))5/2
.

Therefore

E L(n, N) � −nN(N − n − 1)2

(N − 2n)
√

D

√
2(A − B)nN(N − n − 1)

n − 1
.

Performing simplifications under the square root, we obtain

2(A − B)nN(N − n − 1)

n − 1
= 2nN(N − n − 1)

(
(N − 2n)2 A1

n2(N − n − 1)5
+ 2(N − 2n)2√N(n − 1)

n5/2(N − n − 1)5/2

)

= 2N(N − 2n)2

n4(N − n − 1)4

(
n3 A1 + 2

√
N(n − 1)n5(N − n − 1)5

)

= 2N(N − 2n)2

n2(N − n − 1)4

(
nA1 + 2(N − n − 1)2 B1

)
with A1 and B1 as in (8) and (9), respectively. Upon substituting this back into the bound for E L(n, N), we obtain

E L(n, N) � − N
√

2N(nA1 + 2(N − n − 1)2 B1)√
D

,

establishing the bound (36) with τ3(n, N) as in (7c). �
5.3. Upper bounds

In this section we prove bounds (14)-(16), deriving an explicit form of the first three universal upper bounds for CN (n, s)
codes from [16] for L(t) as functions of n, N and s. In addition to the parameters (ρi, αi) as explained above (but now related 
to N1 = Lm(n, s) instead of N), we need to find the polynomial gT (t), then the real parameter λ and finally the polynomial 
f (t) as explained in the last paragraph of Section 5.1. Recall again that because of the sign change, the inequalities (14)-(16)
are inverted.

Proposition 5.2. For N ∈ [2, n + 1] and s ∈ [−1/(N − 1), −1/n], we have

E L(n, N, s) � −τ (1)(n, N, s). (38)

For N ∈ [n + 1, 2n] and s ∈ [(N − 2n)/n(N − 2), 0], we have

E L(n, N, s) � −τ (2)(n, N, s). (39)

For N ∈ [2n, n(n + 3)/2] and s ∈
[√

n2(n−1)2+4n(N−n−1)(N−2n)−n(n−1)
2n(N−n−1)

,
√

n+3−1
n+2

]
, we have

E L(n, N, s) � −τ (3)(n, N, s) (40)

where the quantities τ (1), τ (2), τ (3) are defined in (14)-(16) above.
14
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Remark 5.1. We set upper limits for s in all three cases as suggested implicitly by the framework in [16]. The bounds are 
valid beyond these limits but most likely they can be improved by polynomials of higher degrees.

Proof of (38). For fixed n, N ∈ [2, n + 1] and s ∈ [−1/(N − 1), −1/n], we consider the degree 1 UUB

E L(n, N, s) � N

(
N

L1(n, s)
− 1

)
f (1) + N2ρ0L(s),

where the parameters are as follows: L1(n, s) = (s − 1)/s =: N1 is the first Levenshtein bound,

f (t) = −λ f (n,s)
1 (t) + gT (t) = −λ(t − s) + gT (t)

is our linear programming polynomial, and α0 = s, ρ0 = −1/N1s = 1/(1 − s) are Levenshtein’s parameters corresponding to 
s (i.e., to N1). The polynomial gT (t) is constant and is found from gT (s) = L(s). Then λ = 0 and f (t) = L(s) give the bound

E L(n, N, s) �
(

N

N1
− 1

)
N L(s) + N2ρ0L(s) = N(N − 1)L(s). �

Remark 5.2. As already observed, this bound is straightforward upon estimating all terms in the energy sum E L(CN ) by the 
constant L(s).

Proof of (39). For fixed n, N ∈ [n + 1, 2n] and s ∈ [(N − 2n)/n(N − 2), 0], we consider the degree 2 UUB following the 
derivation in [16]

E L(n, N, s) � N

(
N

L2(n, s)
− 1

)
f (1) + N2(ρ0L(α0) + ρ1L(α1)), (41)

where the parameters are defined as follows: N1 := L2(n, s) = 2n(1 − s)/(1 − ns) is the second Levenshtein bound,

f (t) = −λ f (n,s)
2 (t) + gT (t) = −λ(t + 1)(t − s) + gT (t)

is our linear programming polynomial (to be described below), and

α0 = −1, α1 = s, ρ0 = N1 − n − 1

N1n + N1 − 4n
, ρ1 = n(N1 − 2)2

N1(N1n + N1 − 4n)

are the Levenshtein parameters corresponding to s (compare with the parameters in the proof of (35)).
The polynomial gT (t) with T = {−1, s}, i.e. gT (−1) = L(−1), gT (s) = L(s), becomes

gT (t) = L(s) − L(−1)

1 + s
t + L(s) + sL(−1)

1 + s
= (2 − √

2(1 − s))t − 2s − √
2(1 − s)

1 + s
.

The coefficient λ is chosen to make f1 = 0 in the Gegenbauer expansion f (t) = f2 P (n)
2 (t) + f1 P (n)

1 (t) + f0 (this choice is 
unique). This gives λ = 2−√

2(1−s)
1−s2 and

f (t) = − (2 − √
2(1 − s))t2 − 2s2 + √

2(1 − s)

1 − s2
,

whence f (1) = −2.
Therefore, (41) gives

E L(n, N, s) � N

(
N

N1
− 1

)
(−2) + N2

(
(N1 − n − 1)(−2)

N1n + N1 − 4n
+ n(N1 − 2)2(−√

2(1 − s))

N1(N1n + N1 − 4n)

)
,

implying (39). �
Proof of (40). For fixed n, N , and s as in the condition (17), we derive the degree 3 UUB

E L(n, N, s) � N

(
N

L3(n, s)
− 1

)
f (1) + N2(ρ0L(α0) + ρ1L(α1)), (42)

where the parameters are defined as follows:

N1 := L3(n, s) = n(1 − s)((n + 1)s + 2)

2
1 − ns

15
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is the third Levenshtein bound,

f (t) = −λ f (n,s)
3 (t) + gT (t) = −λ(t − α0)

2(t − s) + gT (t)

is the linear programming polynomial to be found, and

α0 = −n(n − 1) − √
D1

2n(N1 − n − 1)
= − 1 + s

1 + ns
, α1 = −n(n − 1) + √

D1

2n(N1 − n − 1)
= s,

D1 = n2(n − 1)2 + 4n(N1 − n − 1)(N1 − 2n) = n2(n − 1)2(1 + 2s + ns2)2

(1 − ns2)2
,

ρ0 = 1 − α2
1

N1α0(α
2
1 − α2

0)
= (1 + ns)3

n((n + 1)s + 2)(1 + 2s + ns2)
,

ρ1 = 1 − α2
0

N1α1(α
2
0 − α2

1)
= n − 1

n(1 − s)(1 + 2s + ns2)
,

are the Levenshtein’s parameters corresponding to s (note that they are also shown to depend on n and s only).
The ULB part ρ0L(α0) + ρ1L(α1) in (42) can be found as in the proof of (36) but with N1 instead of N . Explicitly, this 

means that

ρ0L(α0) + ρ1L(α1) = − 1

N1

√
2N1(nA1 + 2(N1 − n − 1)2 B1)

D1
,

where A1 and B1 are as in (8) and (9), respectively, but with N1 instead of N , and D1 as above (so D1 has the same form 
as D , but with N1 instead of N). We obtain

E L(n, N, s) � N

N1

⎛
⎝(N − N1) f (1) − N

√
2N1(nA1 + 2(N1 − n − 1)2 B1)

D1

⎞
⎠ . (43)

In order to rewrite (43) in terms of n and s, we first write the ULB part in terms of n and s by using the above expressions, 
i.e.

A1 = (n − 1)2[(1 + ns)5(1 − s) + (n − 1)2((n + 1)s + 2)]
(1 − ns2)3

,

B1 = n(n − 1)
√

(1 − s)(1 + ns)((n + 1)s + 2)

1 − ns2
,

N1 − n − 1 = (n − 1)(1 + ns)

1 − ns2
,

and D1 = D1(n, s) as found above. We find

E L(n, N, s) � N

N1

(
(N − N1) f (1) − (1 − ns2)N

√
2N1(nA1 + 2(N1 − n − 1)2 B1)

n(n − 1)(1 + 2s + ns2)

)

= N

N1

(
(N − N1) f (1) − N

√
2N1(nA2 + 2(1 + ns)2 B2)

n(1 + 2s + ns2)

)

= N

N1

(
(N − N1) f (1) − N

√
2(1 − s)((n + 1)s + 2)(A2 + 2(1 + ns)2 B2)

(1 + 2s + ns2)(1 − ns2)

)
, (44)

where A2 and B2 are as given in (18).
Second, we find f (t) in order to compute f (1). The polynomial gT (t) = at2 + bt + c interpolates L(t) in T = {α0, α0, α1}, 

i.e. g(α0) = L(α0), g′(α0) = L′(α0), and g(α1) = L(α1). Resolving this to find a, b, and c, we obtain the Gegenbauer expan-
sion of f (t) as follows

f (t) = −λ(n − 1)

n + 2
P (n)

3 (t) + (n − 1)(a + λ(2α0 + α1))

n
P (n)

2 (t)

+
(

b − λ((α2
0 + 2α0α1)(n + 2) + 3)

n + 2

)
P (n)

1 (t) + λ(α2
0α1n + 2α0 + α1) + a + cn

n
P (n)

0 (t),
16
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where

a = L(α1) − L(α0) − L′(α0)(α1 − α0)

(α1 − α0)2
,

b = L′(α0)(α
2
1 − α2

0) − 2α0(L(α1) − L(α0))

(α1 − α0)2
,

c = α2
0(L(α1) − L(α0)) − α0α1(α1 − α0)L′(α0) + (α1 − α0)

2L(α0)

(α1 − α0)2
.

According to the rule in Theorem 3.2 from [16], the coefficient λ has to be chosen as max{g1/�1, g2/�2}, which is 
equivalent to the choice between { f1 = 0, f2 < 0} and { f1 < 0, f2 = 0}, respectively. We will prove below that f2 < 0, i.e., 
that the first of these conditions is realized for all n and s under consideration.

The equality f1 = 0 gives

λ = b(n + 2)

(α2
0 + 2α0α1)(n + 2) + 3

= (n + 2)(L′(α0)(α
2
1 − α2

0) − 2α0(L(α1) − L(α0)))

(α1 − α0)2((α2
0 + 2α0α1)(n + 2) + 3)

.

Then

f (1) = −λ(1 − α0)
2(1 − α1) + a + b + c = A3(L(α1) − L(α0)) + B3L(α0) − C3L′(α0)

B3
,

where

A3 = (1 − α0)
2((n + 2)(1 + α0)

2 − n + 1) = (n − 1)((n + 1)s + 2)2((n − 2)s2 − 2ns − 1)

(1 + ns)4
,

B3 = (α1 − α0)
2((α2

0 + 2α0α1)(n + 2) + 3)

= − (1 + 2s + ns2)2(2n(n + 2)s3 − (n2 − 5n − 2)s2 − 6ns − n − 5)

(1 + ns)4
,

C3 = (1 − α0)(1 − α1)(α1 − α0)((n + 2)(α0 + α1 + α0α1) + 3)

= (n − 1)(1 − s)((n + 1)s + 2)(1 + 2s + ns2)((n + 2)s2 + 2s − 1)

(1 + ns)3
.

Therefore

f (1) = ((n + 1)s + 2)
[
(1 − s)(1 + ns)A4 + B4

√
(1 − s)B5

]
(1 + 2s + ns2)2C4

√
2B5

,

where A4, B4, B5 and C4 are as given in Equation (18) in Section 2.
Substituting these parameters into (44) and performing simplifications, we eventually obtain (16):

E L(n, N, s) � N

N1

(
(N − N1) f (1) − N

√
2(1 − s)((n + 1)s + 2)(A2 + 2(1 + ns)2 B2)

(1 + 2s + ns2)(1 − ns2)

)
,

= N(1 − ns2)

n(1 − s)((n + 1)s + 2)

(
A5 f (1)

1 − ns2
− N

√
2(1 − s)((n + 1)s + 2)(A2 + 2(1 + ns)2 B2)

(1 + 2s + ns2)(1 − ns2)

)
,

= N A5((1 − s)(1 + ns)A4 + B4
√

(1 − s)B5)

n(1 − s)(1 + 2s + ns2)2C4
√

2B5
− N2

√
2(1 − s)((n + 1)s + 2)(A2 + 2(1 + ns)2 B2)

n(1 − s)((n + 1)s + 2)(1 + 2s + ns2)
,

= N A5((1 − s)(1 + ns)A4 + B4
√

(1 − s)B5)

n(1 − s)(1 + 2s + ns2)2C4
√

2B5
− N2

√
2(1 − s)(A2 + 2(1 + ns)2 B2)

n(1 − s)(1 + 2s + ns2)
√

B5
,

= N[A5((1 − s)(1 + ns)A4 + B4
√

(1 − s)B5) − 2N(1 + 2s + ns2)C4
√

A6]
n(1 − s)(1 + 2s + ns2)2C4

√
2B5

,

where Ai , Bi , and Ci are as given in (18).
The condition f2 < 0 is equivalent to λ(2α0 + s) + a < 0. This gives the inequality

6B6
√

(1 − s)(1 + ns)((n + 1)s + 2) − C6
< 0,
C4

17
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where

B6 = (n − 2)(n + 1)s2 − 4s − n − 1,

C6 = n3(n + 2)s6 + 3n2(n + 2)s5 − 3n(n2 − n − 2)s4 + 2(3n3 − 6n2 − 8n − 4)s3 +
3(3n2 − 16n − 14)s2 − 3(2n2 + 5n + 18)s − 11n − 13.

We have C4 < 0 since 2n(n + 2)s3 < n + 5 follows for n � 3 and 0 < s < (−1 + √
n + 3)/(n + 2) (just use that s < 1/

√
n + 2). 

It remains to see that 6B6
√

(1 − s)(1 + ns)((n + 1)s + 2) > C6. Since B6 < 0 for 0 < s < (−1 + √
n + 3)/(n + 2), we need to 

prove that C2
6 > 36B2

6(1 − s)(1 + ns)((n + 1)s + 2). This inequality is reduced to an 8-degree polynomial (in s) inequality 
shown to hold true by a computer algebra system. �
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