
31

SPARKs: Succinct Parallelizable Arguments of Knowledge

NAOMI EPHRAIM and CODY FREITAG, Cornell Tech, USA

ILAN KOMARGODSKI, Hebrew University and NTT Research, Israel

RAFAEL PASS, Cornell Tech, USA

We introduce the notion of a Succinct Parallelizable Argument of Knowledge (SPARK). This is an argument of
knowledge with the following three eficiency properties for computing and proving a (non-deterministic,
polynomial time) parallel RAM computation that can be computed in parallel timeT with at most p processors:

— The prover’s (parallel) running time is T + polylog(T · p). (In other words, the prover’s running time is
essentially T for large computation times!)

— The prover uses at most p · polylog(T · p) processors.
— The communication and verifier complexity are both polylog(T · p).

The combination of all three is desirable, as it gives a way to leverage a moderate increase in parallelism in
favor of near-optimal running time. We emphasize that even a factor two overhead in the prover’s parallel
running time is not allowed.

Our main contribution is a generic construction of SPARKs from any succinct argument of knowledge
where the prover’s parallel running time is T · polylog(T · p) when using p processors, assuming collision-
resistant hash functions. When suitably instantiating our construction, we achieve a four-round SPARK for
any parallel RAM computation assuming only collision resistance. Additionally assuming the existence of a
succinct non-interactive argument of knowledge (SNARK), we construct a non-interactive SPARK that also
preserves the space complexity of the underlying computation up to polylog(T · p) factors.

We also show the following applications of non-interactive SPARKs. First, they immediately imply del-
egation protocols with near optimal prover (parallel) running time. This, in turn, gives a way to construct
verifiable delay functions (VDFs) from any sequential function. When the sequential function is also memory-
hard, this yields the first construction of a memory-hard VDF.

CCS Concepts: • Theory of computation → Computational complexity and cryptography; Crypto-
graphic protocols;

Additional Key Words and Phrases: Succinct arguments, parallelization, non-interactive

This is a major revision of a paper with the same title that was published in the proceedings of EUROCRYPT 2020 [33].
This work was supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,
NSF Award DGE-1650441, and DARPA Award HR00110C0086. Ilan Komargodski is supported in part by an Alon Young
Faculty Fellowship and by an ISF grant (No. 1774/20). This research is based upon work supported in part by the Ofice of
the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-
020700006.
Authors’ addresses: N. Ephraim, C. Freitag, and R. Pass, Cornell Tech, New York, NY, 10044; emails: {nephraim, cfreitag,
rafael}@cs.cornell.edu; I. Komargodski, Hebrew University and NTT Research, Jerusalem, 9190401, Israel; email: ilank@
cs.huji.ac.il.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0004-5411/2022/10-ART31 $15.00
https://doi.org/10.1145/3549523

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

https://orcid.org/0000-0003-3469-6002
https://orcid.org/0000-0002-6307-204X
https://orcid.org/0000-0002-1647-2112
https://orcid.org/0000-0001-7440-5690
mailto:permissions@acm.org
https://doi.org/10.1145/3549523

31:2 N. Ephraim et al.

ACM Reference format:
Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2022. SPARKs: Succinct Parallelizable Ar-
guments of Knowledge. J. ACM 69, 5, Article 31 (October 2022), 88 pages.
https://doi.org/10.1145/3549523

1 INTRODUCTION

Interactive proof systems, introduced by Goldwasser, Micali, and Rackoff [36], are one of the most
fundamental concepts in theoretical computer science. Such systems consist of a prover who is able
to convince a verifier of the validity of some statement if and only if it is true. The “if” direction is
called completeness and the “only if” direction is called soundness. Proof systems where soundness is
only guaranteed to hold for eficient (i.e., polynomial-time) provers are called argument systems.

We focus on succinct argument systems for NP: argument systems where the total communi-
cation is essentially independent of the size of the verification circuit of the language and even
shorter than the statement. Since their introduction [15, 41, 44], succinct argument systems have
drawn significant attention due to their appealing eficiency properties. Nowadays they are widely
implemented and used in various systems, most notably in numerous blockchain platforms.

One aspect of such argument systems that has been the center of many recent works (e.g.,
References [18, 25, 38, 57] to name a few) is prover eficiency. Consider the application of suc-
cinct arguments to delegating (possibly non-deterministic) computation, where a prover performs
some expensive computation and then uses a succinct argument to convince an eficient verifier of
the validity of the output. If computing a proof takes much longer than the computation (even, say, a
multiplicative factor of two), then this would cause a significant delay making the system useless
in various realistic settings. This is particularly relevant for computations that are already incredibly
time-consuming, or for applications like verifiable delay functions where the overhead of the prover
directly impacts security. This motivates the following question:

Is it possible to compute a proof in parallel
to the computation while incurring no additional delay?

SPARKs. In this work, we answer the above question afirmatively for any non-deterministic
parallel RAM computation. We introduce succinct parallelizable arguments of knowledge
(SPARKs) where the prover’s running time is “essentially” optimal. More precisely, an interactive
argument (P , V) is a SPARK if instances solvable in (non-deterministic) parallel time T using p
processors can be proven with the following eficiency requirements (ignoring dependence on the
security parameter or statement size):

• The prover’s parallel time is T + polylog(T · p).1 (In other words, the prover’s running time
is essentially T for large computations!)

• The prover uses at most p · polylog(T · p) processors. In other words, the prover preserves
the total work and parallelism of the underlying computation up to polylogarithmic factors.

• The communication and verifier complexity are polylog(T · p).

We note that the third property is standard for succinct arguments. The first two properties stip-
ulate that the running time of a prover, with only a moderate number of parallel processors over
those used by the computation, is optimal—even a factor two overhead in terms of a prover run-
ning time is not allowed. Without the first property, there are existing succinct arguments with
time T · p · polylog(T · p) using only a single processor (e.g., References [11, 14]). Without the

1Only the additive polylog(T · p) term is allowed to additionally depend on the security parameter or statement size.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

https://doi.org/10.1145/3549523

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:3

second property, there are existing constructions with parallel time T + polylog(T · p) but require
roughly T · p processors (e.g., Reference [11]). No prior construction achieves all three properties
simultaneously.

1.1 Our Results

Our results consider succinct arguments for arbitrary non-deterministic polynomial-time PRAM
computation. Specifically, we consider machines M that run in parallel time T when using p pro-
cessors.

Our main contribution is a generic transformation that starts with any succinct argument of
knowledge, and shows how to transform multiplicative prover overhead to only additive overhead.
Specifically, given a succinct argument of knowledge where the prover has α ? multiplicative over-
head (over the depth of the underlying computation) when using p processors, we show how to
obtain an argument with poly(α ?) additive overhead when using roughly p · α ? processors. More
precisely, we prove the following theorem:

Theorem 1.1 (Informal; see Theorems 6.1 and 6.18). Assuming collision-resistant hash func-
tions, any succinct argument of knowledge for NP where the prover runs in parallel time T · α ? when
using p processors can be generically transformed into a succinct argument where the prover runs in
parallel time T + (α ?)2 · polylog(T · p) when using p · α ? · polylog(T · p) processors. Additionally, if the
original argument is non-interactive, then so is the resulting one.

We refer to arguments with multiplicative prover overhead α ? � polylog(T · p) when using p
processors as depth-preserving as they preserve the parallelism and depth of the underlying compu-
tation up to polylog(T ·p) multiplicative factors. It immediately follows that any depth-preserving
succinct argument of knowledge implies a SPARK, assuming collision resistance.

Theorem 1.2 (Informal; see Theorems 7.2 and 7.6). Assuming collision-resistant hash functions,
any depth-preserving succinct argument of knowledge for NP can be generically transformed into a
SPARK. Additionally, if the underlying argument is non-interactive, then so is the resulting SPARK.

By instantiating the underlying succinct arguments in the above theorem, we get the following
main results: First, by using Kilian’s succinct argument [41] with a depth-preserving PCP (which
can be obtained from the PCP of Ben-Sasson et al. [11]), we construct four-round SPARKs based on
the existence of collision-resistant hash functions alone.

Theorem 1.3 (Informal; see Theorem 7.4). Assuming collision-resistant hash functions, there
exists a four-round SPARK for non-deterministic polynomial-time PRAM computation.

We additionally construct SPARKs in the non-interactive setting from a succinct non-
interactive argument of knowledge (SNARK). Specifically, assuming the existence of any
SNARK (not necessarily depth-preserving), we can construct depth-preserving SNARKs based on
the construction of Bitansky et al. [16]. Their SNARK construction also has the property that it is
space-preserving, meaning that the space used to construct the proof is at most a polylog(T · p)
multiplicative overhead over the space of the computation. The resulting SPARK is therefore also
space-preserving, which yields the following theorem:

Theorem 1.4 (Informal; see Theorem 7.8). Assuming collision-resistant hash functions and any
SNARK, there exists a space-preserving, non-interactive SPARK for non-deterministic polynomial-time
PRAM computation.

Model of Computation. We define and build SPARKs for PRAM computations, where our SPARK
prover is also a PRAM machine. While the PRAM model of computation is very expressive in

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:4 N. Ephraim et al.

theory, there is clearly not an exact one-to-one correspondence with real computers. For example,
we do not take into account the performance of caches or other optimizations in modern processors
that can easily result in additional overhead. As such, we view the results in this article as showing
a theoretical feasibility for practical implementations of SPARKs. We next briefly discuss and justify
both the model of computation and the notion of time used in this work. For further details, see
Section 3.1.

Recall that a RAM machine is a Turing machine with random access to its memory string. Be-
tween accesses, the machine applies some transition function to determine its next memory access.
Each access is either a read or write, and we additionally assume that every time a process writes a
value to a location in memory, it receives the previous value at that location. We define the
running time of a RAM machine as the number of memory accesses it makes. For parallel RAM
machines, we define the parallel running time as the number of “rounds” of memory accesses
made by all processors, so if two processors access memory during the same logical round, then
we only count it as a single unit of parallel time. In other words, a SPARK proves a PRAM
compu-tation that makes T rounds of parallel memory accesses with T + polylog(T · p) rounds of
parallel accesses.

Similar models have been used in other contexts for delegating RAM computation (see, e.g.,
References [38, 39]), but they were less sensitive to the model, since they did not care about small
multiplicative overheads. However, we believe that the above timing model we propose is reflec-
tive of real programs. For memory-intensive programs, our model captures the fact that memory
accesses are practically the most time-consuming operations. For compute-intensive tasks, where
the memory accesses are more sparse, it is only better that the overhead of a SPARK scales with
the number of memory accesses and not the computation time itself.

1.2 Applications

Below, we present applications of SPARKs that rely on the fact that in a SPARK, the prover both
computes and proves the validity of a computation in parallel time, which is essentially as eficient as
possible. While our focus here is on establishing theoretical feasibility results, we expect that our
ideas may also be useful in practical constructions, which we leave for future work.

Time-tight delegation of PRAM computation. In the problem of verifiable delegation of
computation [35, 39, 52], there is a client who wishes to outsource an expensive (possibly non-
deterministic) computation M on an input x to a powerful yet untrusted server. The server should
not only produce the output y but also a proof that the computation was done correctly.

A non-interactive SPARK for a class of PRAM computations directly gives a delegation protocol
for the same class. This is because SPARKs satisfy a “delayed-output” property—the output y of the
computation need not be known to the SPARK prover or verifier in advance, as it is computed in
parallel to the proof. Therefore, using a non-interactive SPARK, a server can perform a PRAM
computation as well as compute a proof with essentially no overhead in running time. Specifically,
for T -time computations with p processors, the server runs in time T + polylog(T · p) and uses at
most p · polylog(T · p) processors. We call delegation schemes with this property time-tight.

We emphasize that our non-interactive SPARK construction yields a time-tight delegation proto-
col for non-deterministic computations that use any amount of parallelism. For example, consider
the case where a client wants to outsource a PRAM computation over a large database (stored
at the server) but only knows a hash of the database. The server can perform the computation
while proving both that the output is correct and the database is consistent with the client’s hash.
Furthermore, if both the server and the client have agreed upon the hash at the beginning of the
protocol, then the running time depends only on the time of the PRAM computation (otherwise,

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:5

the server will need to prove that the initial database hashes to the correct value, which requires
computing a hash over the whole database and will be expensive if the database is large).

VDFs from sequential functions. Verifiable delay functions (VDFs) are functions that require
some “long” time T to compute (where T is a parameter given to the function), yet the answer to
the computation can be eficiently verified given a proof that can be jointly generated with the
output (with only small overhead) [20, 21, 51, 56]. The work of Boneh et al. [20] suggests a
theoretical construction of VDFs based on succinct non-interactive arguments (SNARGs) and
any iteratively sequential function (ISF).2 Other known constructions of VDFs [51, 56] rely on
the repeated squaring assumption—a concrete ISF.

Let us recall what ISFs are. A sequential function (SF) is a function that takes a long time to
compute, even if one has many parallel processors. An ISF is the iteration of some round function
and the assumption is that iterating the round function is the fastest way to evaluate the ISF, even
if one has many parallel processors. Clearly, any VDF implies an SF and so any construction of
VDFs will necessarily rely on such (but this is not the case for an ISF3). It is thus a very natural
question whether we can get a VDF based on only SFs and SNARGs. Note that the construction of
Boneh et al. [20] inherently relies on the iterated structure of the underlying sequential function.4

We observe that any non-interactive SPARK for computing and proving an SF implies a VDF:
Simply compute the non-interactive SPARK for the SF. Therefore by our main result, any SF,
SNARK, and collision-resistant hash function imply a VDF.

Theorem 1.5 (Informal; see Theorem 9.4 and Corollary 9.8). Assuming the existence of a
collision-resistant hash function, a SNARK, and a sequential function, there exists a VDF.

In fact, one way to view our main construction is by improving existing techniques for con-
structing verifiable computation for iterated functions from SNARGs to arbitrary functions using
SNARKs (and collision-resistant hash functions). An interesting open question is how to construct
verifiable computation for arbitrary functions from only SNARGs, rather than SNARKs.

Memory-hard VDFs. A particularly appealing extension of the application above is to the exis-
tence of memory-hard VDFs. Recall that VDFs only guarantee that a long computation has been
performed (and anyone can verify this publicly). It is very natural to require that not only a time-
consuming computation was performed but also that the computation required many resources,
for example, a large portion of the memory across time.

Clearly any VDF that is based on an ISF is not memory-hard. The reason is that even if the basic
round function is memory-hard, upon every iteration the memory consumption goes to (essen-
tially) zero! Since the VDF construction discussed above does not necessarily have to be instanti-
ated with an ISF but rather any SF (and a SPARK for computing it), we can use a memory-hard
sequential function (e.g., References [1–3, 5, 28–30]) and get a VDF where the computation not
only takes a long time, but also requires large memory throughout.

Theorem 1.6 (Informal; see Theorem 9.4 and Corollary 9.11). Assuming the existence of a
collision-resistant hash functions, a SNARK, and a memory-hard sequential function, there exists a
memory-hard VDF.

2Their original construction relied on incremental verifiable computation [55], which exists based on SNARKs [15], and any
ISF. In an updated version they show that SNARGs, along with ISFs, are suficient.
3However, a continuous VDF [32] does imply an ISF.
4In the construction based on SNARGs and ISFs, they need to be able to “break” the computation of the function in various
mid-points of the computation, and the internal “state” in those locations has to be small for eficiency of the construction. In
the construction based on SNARKs and ISFs, they rely on a tight construction of incremental verifiable computation, but
the number of parallel processors required for the latter is as large as the cost of a single step [12, 16, 48], and so many steps
are needed.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:6 N. Ephraim et al.

Last, we note that sequentiality and memory-hardness are two examples of functions that are
hard to compute with bounded resources. Since a SPARK computes a function and constructs the
proof in parallel, then the above transformations can be used to preserve any hardness property of
a PRAM computation, so long as the function remains hard after an additive increase in the
parallel running time (and an small increase in the number of parallel processors). This enables
generically turning hard functions into verifiable hard functions (see Theorem 9.4 for a formal
version of this claim).

1.3 Related Work

Succinct arguments with eficient provers. We elaborate on the existing succinct arguments
that focus on prover eficiency. We consider the general setting of proving computation that takes T
parallel time using p processors (although most works only explicitly consider the setting where p
= 1 and T is the total time).

First, we recall that Kilian’s succinct argument consists of a prover who commits to a PCP us-
ing a Merkle tree and locally opens a set of random locations specified by the verifier. As such,
eficient PCP constructions immediately give rise to succinct arguments with an eficient prover.
Specifically in References [11, 14], they show how to construct PCPs in quasi-linear time, which
yield succinct arguments with a prover running in T · p · polylog(T · p) time for computation with
total work T · p. In Reference [11], they show how to construct a quasi-linear size PCP that can
be computed in polylog(T · p) depth with roughly T · p processors, when given the transcript
of the computation. This results in a succinct argument where the prover runs in parallel time
T + polylog(T · p) using roughly T · p processors. When restricting the prover to use at
most p · polylog(T · p) processors, as required by SPARKs, this yields a succinct argument
where the prover runs in parallel time T · p · polylog(T · p). Furthermore, the above arguments
can be made non-interactive by applying the Fiat-Shamir transformation [34, 44].

A different line of work has focused additionally on the prover’s space complexity. Bitansky
et al. [16] (following Valiant’s [55] incrementally verifiable computation framework using recur-
sive proof composition) construct complexity-preserving SNARKs, in which both the time and
space of the underlying computation up to (multiplicative) polynomial factors in the security pa-
rameter. For the task of delegating deterministic (T · p)-time S-space computation, Holmgren and
Rothblum [38] give a prover with T · p · polylog(T · p) total time and S + o(S) space assuming
sub-exponential LWE.

Tight VDFs. As we describe shortly in Section 2, our construction splits the computation into
“chunks” and proves each of them in parallel. This idea is inspired by the recent transforma-
tions of Boneh et al. and Döttling et al. [20, 26] in the context of verifiable delay functions
(VDFs) [20, 21]. Those works show how to use a VDF for an iterated sequential function where the
honest evaluator has some overhead, into a VDF where the honest evaluator uses multiple parallel
processors and has essentially no parallel time overhead. However, iterated functions can be naturally
split into chunks and so most of the technical dificulty in our work does not arise in that context. See
Section 2 for more details.

IOPs. In an effort to bring down the quasi-linear overhead of PCPs, Ben-Sasson et al. [13] and
Reingold et al. [52] introduced the concept of interactive oracle proofs (IOPs).5 IOPs are a type of
proof system that combines aspects of interactive proofs (IPs) and PCPs: In every round a
prover sends a possibly long message but the verifier is allowed to read only a few bits. IOPs

5To clarify notation, IOPs (introduced by Reference [13]) are equivalent to the notion of Probabilistically Checkable Inter-
active Proofs (introduced concurrently and independently by Reference [52]).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:7

also generalize Interactive PCPs [40]. The most recent IOP is due to Ron-Zewi and Rothblum [54]
(improving Ben-Sasson et al. [10]) and achieves nearly optimal overhead in proof length (i.e., a 1+ϵ
factor for an arbitrary ϵ > 0) and constant rounds and query complexity, however, the prover’s
running time is some unspecified polynomial.

2 TECHNICAL OVERVIEW

In this section, we present the main techniques underlying our transformation from succinct ar-
guments of knowledge with small multiplicative prover overhead to SPARKs.

2.1 Warmup: SPARKs for Iterated Functions

Our starting point stems from the recent works of Boneh et al. and Döttling et al. [20, 27]. For
concreteness, we describe the setting of Reference [20], which focuses on the simplified case of

proving correctness of the output of an iterated function д(T)(x0) = (д ◦ . . . ◦ д)(x0) for some T �
N. Rather than proving that д(T)(x0) = xT directly, they split the computation into different sub-
computations of geometrically decreasing size such that the proof for every sub-computation
completes by time T .

To demonstrate this idea, suppose for simplicity that each iteration takes one unit of time to
compute and that there is a succinct argument that can non-interactively prove any computation

of k iterations ofд in 2k additional time. Then, to prove thatд(T)(x0) = xT , they first perform 1/3 of
the computation to obtainд(T /3)(x0) = xT /3 and then prove its correctness. Observe that xT /3 can be
computed in timeT /3 and the proof can be generated in time 2T/3 by assumption, so the proof that
д(T /3)(x0) = xT /3 completes by timeT . In parallel to proving thatд(T /3)(x0) = xT /3, they additionally
compute and prove 1/3 of the remaining computation (namely, that д((T −T /3)/3)(xT /3) = x5T /9) in a
separate parallel thread, which also will finish by time T . They continue in this fashion recursively
until the remaining computation can be verified directly.

In this construction, the prover only needs to start at most O(logT) parallel computation threads
and finishes in essentially parallel timeT . The final proof consists of O(logT) proofs of the interme-
diate sub-computations. The verifier checks each proof for the sub-computations independently
and accepts if all checks pass and the proposed inputs and outputs are consistent with each other.
More generally, if the given non-interactive argument had α ? multiplicative overhead, then the
resulting number of threads needed would be O (α ? · logT). So, when the overhead is quasi-linear
(i.e. α ? � polylogT), the resulting argument is still succinct.

2.2 Extending SPARKs to Arbitrary Computations

The focus of this work is extending the above example to handle arbitrary non-deterministic
polynomial-time computation (possibly with a long output) that introduces many complications.
For now, we focus on the case of RAM computation that uses only a single processor (we later
show how to extend this to arbitrary parallel RAM computations). Specifically, suppose we are
given a statement (M, x ,T) with witness w , where M is a RAM machine and we want to prove that
M(x ,w) outputs some value y within T steps. We emphasize that our goal is to capture general
non-deterministic, polynomial-time computation where the output y is not known in advance, so
we would like to simultaneously compute y given (M, x ,T) and w , and prove its correctness. Since
M is a RAM machine, it has access to some (potentially large) memory D consisting of n words in
memory. We let λ be the security parameter and size of a word, and T be an arbitrary polynomial
in λ. Let us try to employ the above strategy in this more general setting.

As M does not necessarily implement an iterated function, the first problem we encounter is
that there is no natural way to split the computation into many sub-computations with small
input and output. For intermediate statements, the naïve solution would be to prove that running

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

s

31:8 N. Ephraim et al.

the RAM machine M for k steps starting at some initial memory Dstart results in final memory
Dfinal. However, this is a problem, because the size of the memory, n, may be large—perhaps even as
large as the full running time T—so the intermediate statements we need to prove may be huge!

A natural attempt to mitigate this would be to instead provide a succinct digest of the memory at
the beginning and end of each sub-computation and then have the prover additionally prove that
it knows a memory string consistent with each digest. Concretely, each sub-computation corre-
sponding to k steps of computation would contain digests cstart, cfinal. The prover would show that
there exist strings Dstart, Dfinal such that (1) cstart, cfinal are digests of Dstart, Dfinal, respectively, and
(2) starting with memory Dstart and running RAM machine M for k steps results in memory Dfinal.
This seems like a step in the right direction, since the statement size for each sub-computation
would only depend on the output size of the digest and not the size of the memory.
However, the prover’s witness—and hence running time to prove each sub-computation—still
scales linearly with the size of the memory in this approach. Therefore, the main challenge we
are faced with is removing the dependence on the memory size in the witness of the sub-
computations.

Using local updates. To overcome the above issues, we observe that in each sub-computation the
prover only needs to prove that the transition from the initial digest cstart to the final digest cfinal is
consistent with k steps of computation done by M . At a high level, we do so by proving that there
exists a sequence of k local updates to cstart that result in cfinal. Then, to verify a sub-computation
corresponding to k steps, we can simply check the k local updates to the digest of the memory,
rather than checking the memory in its entirety. To formalize this idea, we rely on compressing
hash functions that allow for local updates that can be eficiently computed in parallel to the main
computation. We call these concurrently updatable hash functions.

Given such hash functions, will use a succinct argument of knowledge (PsARK , V ARK) for an NP
language Lupd that corresponds to checking that a sequence of local updates are valid. Specifically, a
statement (M, x , k, cstart, cfinal) � Lupd if and only if there exists a sequence of updates u1, . . . ,uk such
that, starting with short digest cstart, running M on input x for k steps specifies the updates u1, . .
. ,uk that result in a digest cfinal. Then, as long as the updates are themselves succinct, the size
of the witness scales only with the number of steps of the computation and not with the size of the
memory.

To make the above approach work, we need updatable hash functions that satisfy the following
two properties:

(1) Updates can be computed eficiently in parallel to the main computation.
(2) Updates can be verified as modifying only the specified locations in memory.

We next explain how we obtain the required hash functions satisfying the above properties. We
believe that this primitive and the techniques used to obtain it are of independent interest.

Concurrently Updatable Hash Functions. Roughly speaking, concurrently updatable hash
functions are computationally binding hash functions that support updating parts of the under-
lying message without re-hashing the whole message. For eficiency, we additionally require that
one can perform several sequential updates concurrently. For soundness, we require that no ef-
ficient adversary can find two different openings for the same location even if it is allowed to
perform polynomially many update operations. A formal definition appears in Section 5.

We focus on the case where each update is local (a single word per timestep), but we show
how to extend this to updating many words in parallel in Section 5. Our construction relies on
Merkle trees [43] and hence can be instantiated with any collision-resistant hash function. Recall
that a Merkle tree uses a compressing hash function, which we assume for simplicity is given by

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:9

h : {0, 1}2λ → {0, 1}λ , and is obtained via a binary tree structure where nodes are associated with
values. The leaves are associated with arbitrary values and each internal node is associated with a
value that is the hash of the concatenation of its children’s values.

It is well known that Merkle trees, when instantiated with a collision-resistant hash function h,
act as short (binding) commitments with local opening. The latter property enables proving claims
about specific blocks in the input without opening the whole input, by revealing the authentication
path from some input block to the root (i.e., the hashes corresponding to sibling nodes along the
path from the leaf to the root). Not only do Merkle trees have the local opening property, but the
same technique allows for local updates. Namely, one can update the value of a specific word in the
input and compute the new root value without recomputing the whole tree (by updating the hashes
along the path from the updated block to the root). All of these local procedures cost time
that is proportional to the depth of the tree, log2 n, as opposed to the full memory n. We denote
this update time as β (which may additionally depend polynomially on λ, for example, to compute

the hash function at each level in the tree).
Let us see what happens when we use Merkle trees as our hash function. Recall that the Merkle

tree contains the hash of the memory at every step of the computation, and we update its value
after each such step. The latter operation, as mentioned above, takes β time. So even with local
updates, using Merkle trees naïvely incurs a β delay for every update operation that implies a β
multiplicative delay for the whole computation (which we want to avoid)! To handle this, we use a
pipelining technique to perform the local updates in parallel.

Pipelining updates. Consider two updatesu1 andu2 that we want to apply to the current Merkle tree
sequentially. We observe that, since Merkle trees updates work “level by level,” we can first update
the first level of the tree (corresponding to the leaves) according to u1. Then, update the second
layer according to u1 and in parallel update the first layer using u2. Continuing in this fashion, we
can update the third layer according to u1 and in parallel update the second layer using u2, and so
on. The idea can be generalized to pipeline u1, . . . ,uk , so the final update uk completes after (k − 1)
+ β steps, and the memory is consistent with the Merkle tree given by performing update
operations u1, . . . ,uk sequentially. The implementation of this idea requires β additional parallel
threads, since the computation for at most β updates will overlap at a given time. A key point that
allows us to pipeline these concurrent updates is that the operations at each level in the tree are
data-independent in a standard Merkle tree. Namely, each processor can perform all of the
reads/writes to a given level in the tree at a single timestep, and the next processor can continue in
the next timestep without incurring any delay.

Verifying that updates are local. With regards to the soundness of this primitive, a subtle—yet
important—point that we need in our application is that it must be possible to prove that a valid
update only modifies the locations it specifies. For example, suppose a cheating prover updates the
digest with respect to one location in memory while simultaneously rewriting other locations in
memory in a way that does not correspond to the memory access done by the machine M . Then,
the prover will later be able to open inconsistent values and prove that M computes whatever it
wants. Moreover, the prover could gradually make these changes across many different updates.
Fortunately, the structure of Merkle trees allow us to prove that a local update only changes a
single location. At a high level, this is because the authentication path for a leaf in a Merkle tree
effectively binds the root of the tree to the entire memory. Thus, we show that if a Merkle tree is
updated at some location, then one can use the authentication path to prove that no other locations
were modified. Furthermore, we show in the general case how to extend this for updating many
locations in a single update.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Í
i =1

31:10 N. Ephraim et al.

Fig. 1. The “compute” and “proof” phases for each of m sub-computations. The ith sub-computation consists
of ki steps, while pipelining updates which each take β time. After finishing all updates, the prover computes
the proof that takes ki · α ? time.

Ensuring optimal prover runtime. Using the above ingredients, we discuss how to put every-
thing together to ensure optimal prover runtime. Concretely, suppose we have a concurrently
updatable hash function where each update takes time β , and a succinct non-interactive argument
of knowledge with quasilinear prover overhead for the language Lupd . Recall that a statement
(M, x , k, cstart, cfinal) � Lupd if there exists a sequence of k hash function updates such that

(1) the updates are consistent with the computation of M and (2) applying these updates to cstart

results in cfinal. Let α ? be the multiplicative overhead of the succinct argument with respect to the
number of updates (so a computation with k ≤ T updates takes time k · α ? to prove). Note that α ?

� poly(β , logT), as we require that the total time to prove a Lupd statement is quasilinear in the
work, and a statement for at most T updates requires T · β total work.

As discussed above, to prove that M(x ,w) outputs a value y in T steps, we split the computation
into m sub-computations that all complete by time T . The ith sub-computation will consist of a
“compute” phase, where we compute ki steps of the totalT computation steps, and a “proof” phase,
where we use the succinct argument to prove correctness of those ki steps. For the “compute” phase,
recall that performing ki steps of computation while also updating the digest takes ki ·β total work.
However, as described above, we can pipeline these updates so the parallel time to compute these
updates is only (ki − 1) + β .

For the “proof” phase to complete in the desired amount of time, we need to set the values of ki

appropriately. Each proof for ki ≤ T steps of computation takes at most ki · α ? time. Therefore, the
largest “chunk” of computation we can compute and prove by roughly time T is T /(α ? + 1). For
convenience, let γ , α ? + 1. Then, in the first sub-computation, we can compute and prove k1 =
T /γ steps of computation. In each subsequent computation, we compute and prove a γ fraction
of the remaining computation. Putting everything together, we get that ki = (T /γ) · (1 − 1/γ)i−1 for
i � [m − 1] and then km < γ is the number of remaining steps such that m ki = T . This
results in roughly γ logT � poly(β , logT) total sub-proofs, meaning that the proof size depends
only polylogarithmically on T .

In Figure 1, we show the structure of the compute and proof phases for all m sub-computations.
We emphasize that the entire protocol completes within T + α ? ·γ + β parallel time, since the first

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:11

m − 1 sub-proofs complete by time T + β , all m sub-computations complete by time T + β , and the
proof of the final γ steps takes roughly α ? ·γ time to prove. Since α ?, γ , and β are in poly(λ, logT),
this implies that we only have a small additive rather than multiplicative overhead.

We note that in the overview above where we discuss SPARKs for iterated functions, correctness
of the final sub-computation is proven by having the prover send the witness in the clear, and
having the verifier check it directly. In our full construction, we instead have the prover give a
succinct proof for the last sub-computation. The main reason for this is that for the case of general
parallel RAM computations, we want the communication complexity and the complexity of the
verifier to depend only poly-logarithmically on the depth T and processors ρ used in the original
computation. However, the witness for the final sub-computation may have length linear in ρ
(since at each step in the final sub-computation, the witness may specify the actions of each of the ρ
processors). Having the prover instead provide a succinct proof solves this issue.

Next, we note that we have a β gap between the time that the “compute” phase ends and the
“proof” phase begins for a particular sub-computation. This is because we have to wait β additional
time to finish computing the updates before we can start the proofs. However, we can immediately start
computing the next sub-computation without waiting for the updates to complete. Last, the number of
processors used in the protocol is β at all times in the constantly running “compute” phase that is
additionally computing updates to the digest in parallel. Then, to run each of the m sub-proofs in
parallel, we get at most a factor of m times the number of processors used by a single sub-proof.

Computing the initial digest. Before giving the full protocol, we address a final issue, which is
for the prover to compute the digest of the initial memory string. Specifically, the prover needs to
hash a string D � {0, 1}n , which the RAM machine M assumes contains its inputs (x ,w). Directly
hashing to the string x||w would require roughly |x| + |w| additional time, which could be as large
asT . To circumvent the need to compute the initial digest, we simply do not compute a digest of the
initial memory! Instead, we start with a digest of an uninitialized memory that can be computed
eficiently and allows each position to be initialized exactly once whenever it is first accessed.

We extend our hash function definition to enable this as follows: We start with a dummy value
� for the leaves of the Merkle tree. Because the leaves all have the same value, we can compute the
root of the Merkle tree eficiently without touching all of the nodes in the tree. Specifically, if the
leaves have the value dummy(0), then we can define the value of the nodes at level j recursively as
dummy(j) = h(dummy(j −1)||dummy(j −1)). Then the initial digest is just the root dummy(log n).
Note that here, the prover does not need to initialize the whole tree in memory with dummy values,
it simply needs to compute dummy(log n) as the initial digest.

Whenever the prover accesses a location in D for the first time, it performs the correspond-
ing local update to the Merkle tree. However, performing this update is non-trivial as many of
the nodes in the Merkle tree may still be uninitialized. What saves us is that any uninitialized
node must correspond to leaves that are also uninitialized, so they still have the value �. As such,
we can compute the value of any uninitialized node at level j eficiently as dummy(j). To
main-tain eficiency, the prover can keep track of a bit for each node to check if it has been
initialized or not.

Given a single authentication path for a newly initialized location in memory, the verifier can
check that this path is a valid opening for� with the previous digest and for the new value with the
updated digest. This guarantees that only the newly initialized value was modified, and the verifier
can make sure each location is updated at most once by disallowing the prover from updating
locations to �. Furthermore, the verifier can check that any initialized value not part of the witness
(corresponding to the input x) is consistent with what M expects.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

s

1

1

s

31:12 N. Ephraim et al.

2.3 Our SPARK Construction

We now summarize our full SPARK construction. Suppose that we have (1) a concurrently up-
datable hash function that starts as uninitialized where each update takes time β and (2) a suc-
cinct non-interactive argument of knowledge (PsARK , V ARK) for the update language Lupd with
α ? � poly(λ, logT) multiplicative overhead. Let γ , α ? + 1, as described above, which is the frac-
tion of remaining computation done at each step. The protocol (P , V) for a statement (M, x ,T) is
as follows:

(1) V samples public parameters pp for the hash function and sends them to P .
(2) Using pp, P computes the digest cstart for the uninitialized memory Dstart = �n .
(3) P computes T /γ steps of M(x ,w) while in parallel updating Dstart and performing the cor-

responding local updates to digest c1 = cstart.
(4) After completing the T /γ steps of the computation (but not necessarily completing all corre-

sponding updates), P starts recursively computing and proving the remaining T −T /γ steps
in parallel.

(5) Letu1, . . . ,uT /γ be the current updates, which result in digest c0 . After computing the current
updates, P uses PsARK(u1, . . . ,uT /γ) for language Lupd to prove that starting with digest c1,
running M on input x for T /γ steps results in digest c0.

(6) P continues until there are at most γ steps of the computation, at which point P computes
and proves the remaining steps and sends the proof to V .

(7) After finishing the computation and all corresponding updates, P uses the final digest to
open the output y and give a proof of its correctness. V accepts if the proof certifying y
verifies and V ARK accepts all sub-protocols, which are consistent with each other.

Handling interactive protocols. The same transformation described above applies to interactive
r-round succinct argument of knowledge. However, since the protocol is interactive, the prover
starts an interactive protocol to prove that sub-computations were performed correctly. It is not
necessarily the case that the messages in the various interactive arguments will be “synced” up, and
so our transformation suffers from (at most) a polylogT factor increase in the round complexity.
For specific underlying succinct arguments, however, it may be the case that we can synchronize
the rounds to reduce the round complexity. Indeed, this is the case for Kilian’s succinct argument,
which we discuss in Section 7.1.

Extending to PRAM computation. We next discuss how to extend the protocol given above to
deal with parallel RAM computation with any number of processors. We assume for simplicity
that in the given machine no two processors access the same location in memory concurrently.
Suppose M is a PRAM machine where M(x ,w) runs in parallel time T using p processors. In the
above protocol, we emulate each step of M while performing the corresponding hash function
updates in parallel. The SPARK prover can use p processors to emulate M , but as M might access p
locations in memory at each step, the hash function needs to support updating any set of p
positions concurrently. We show how to generalize the updatable hash function scheme described
above to handle such updates while still supporting pipelining for each set of updates. As for
eficiency, we observe that this naively increases the overhead to compute each sub-proof by a
factor of p (if the overhead scales with the total work rather than the depth of the underlying
computation). As such, we need to use an underlying succinct argument that has overhead α ? �
polylog(T · p) in the depth of the underlying computation while using at most p processors. We
refer to such arguments as depth-preserving and discuss how to construct them using known
techniques in Sections 7.1 and 7.2.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ λ

n

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:13

Security proof and argument of knowledge definition. We note that proving security in the
above construction is somewhat non-trivial. The key issue is that we need to simultaneously ex-
tract witnesses from super logarithmically many concurrent or parallel arguments of knowledge,
without causing a blow-up in the complexity of the resulting extractor. In the non-interactive case,
it is pretty straightforward to deal with this, since the statements are all “fixed” and so concurrent
composition just works. However, the interactive setting is more challenging, since there are more
dependencies. This issue came up and was resolved in previous works, e.g., References [42, 49],
where new extraction techniques and definitions were introduced. In our case, we introduce yet
another argument of knowledge definition, which (1) enables dealing with this issue in our proof
of security, (2) is equivalent to common definitions of proofs of knowledge, and (3) we believe is
conceptually simpler and much easier to work with. We view this definition as an additional inde-
pendent contribution. See Section 4 for additional details in the context of SPARKs and Section 3.3
and Appendix A in the context of standard notions of succinct arguments of knowledge.

3 PRELIMINARIES

Basic notation. For a distribution X we denote by x ← X the process of sampling a value x from
the distribution X . For a set X , we denote by x ← X the process of sampling a value x from the
uniform distribution on X . Supp(X) denotes the support of the distribution X . For an integer n � N
we denote by [n] the set {1, 2, . . . , n }. We use PPT as an acronym for probabilistic polynomial time.

A function negl : N → R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc . Two sequences of random variables X = {Xλ }λ�N and Y = {Yλ }λ�N are computationally
indistinguishable if for any non-uniform PPT algorithm A = { A λ }λ�N there exists a negligible
function negl such that |Pr[Aλ(1 , Xλ) = 1] − Pr[Aλ (1 ,Yλ) = 1]| ≤ negl(λ) for all λ � N. For a
language L with relation RL , we let RL(x) denote the set of witnesses w such that (x ,w) � RL . We say
that an ensemble {Xn }n�N is uniformly computable if there exists a Turing Machine M such that
M(1) outputs Xn in time polynomial in n.

Interactive Protocols. We consider interactive (P)RAM machines and interactive protocols. For-
mally, we assume there is a specified part of a machine’s memory for input from and output to
another interactive machine, so the time for an interactive machine to send a message is simply
the time to write it to its output tape. Given a pair of interactive machines P and V , we denote by
hP(zP), V(zV)i(x) the random variable representing the output of V with common input x and
private input zV , when interacting with P with private input zP , when the random tape of each
machine is uniformly and independently chosen.

The round complexity of the protocol is the number of distinct messages sent between P and V .
We say that a protocol is non-interactive if it consists of one message from P to V and then V
computes its output. To define the complexity of an interactive machine A, we let workA(x) denote
the maximum amount of work done by A(x) over any possible interactions.

3.1 RAM Model

Random Access Memory (RAM) computation consists of a machine M that keeps some local
state state and has read/write access to memory D � ({0, 1}λ)n (equivalent to the tape of a Turing
machine). Here, λ is the security parameter and length of a word,6 and n ≤ 2λ is the number of

6We note that the length of a word only needs to be greater than log n, but can be as large as any fixed polynomial in λ.
We set it to λ for simplicity.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0

i i −
rd
i

i i

ii i

i

i

i

i

i

i i

1 |O

31:14 N. Ephraim et al.

words in memory used by M . We assume that M specifies n and that |(M,x)| ≤ n. When we write
M(x) to denote running M on input x , this means that M expects its initial memory D to be equal to
x||0nλ−|x |. The computation is defined using a function step, which has the following syntax:

(state0, op, `,vwt) = step(M, state,vrd).

Specifically, step takes as input the description of the machine M , the current state state, and a
word vrd that was read in the last step from memory. Then, it outputs the next state state0, the
operation op � {rd, wt } to do next, the next location ̀ � [n] to access, and the word vwt to write next
if op = wt (or � if op = rd).

Using step, we can define each step of RAM computation to run step and then either do a read or
a write. We assume that each write operation returns the value in the memory location before the
write. Formally, starting with an initially empty state state0 and letting vrd = �, the ith step of
computation for i ≥ 1 is def ined as:

(1) Compute (statei , opi , `i ,v
wt) = step(M, statei−1,vrd

1).
(2) If opi = rd, then let v be the word in location `i of D.
(3) If opi = wt, then let vrd be the word at location `i in D and write vwt to that location.

The computation halts when step outputs a special halting value with the output y of M(x)
written at the start of the memory, where we assume that the final state specifies the output length.
Without loss of generality, we assume that the state size can hold O(log n) bits.

Parallel RAM Computation. Our main results will be in the parallel-RAM (PRAM) set-
ting, where each step of the machine can potentially branch to multiple processes that have ac-
cess to the same memory D. This can be formalized by allowing step to output multiple tuples
(state0, op, `,vwt), each associated with a process identifier specifying the process to continue the
computation from that state. Then, each process continues by running step at each step, as above.
The computation halts when there are no running processes.

For convenience, we define an algorithm parallel-step that logically runs step for all active
processes. It has the following syntax:

(State0, Op, S,V wt) = parallel-step(M, State,V rd).

Here, all inputs and outputs are tuples containing a value for each process. Specifically, if there are
p active processes before the step, and p0 resulting processes, then State = (statei)i�[p], V rd =
(vrd)i�[p], State0 = (state0)i�[p0], Op = (opi)i�[p0], S = (`i)i�[p0], V wt = (vwt)i�[p0]. For each i � [p], in
the previous step the ith process had state statei and read (or overwrote) value vrd. For each i �
[p0], the ith process after the step has state state0, and accesses location `i in memory by either
writing vwt to it when opi = wt, or reads from it when opi = rd. Note that V wt contains � for each
element corresponding to a read operation. Also, note that if process i was spawned in this step,
then state0 will be its initial state.

For ease of notation, we will also define an algorithm access, which accesses a set of locations in
memory and then reads and writes to them as specified. Specifically, accessD (Op, S,V wt) has
memory access to D, takes as input Op, S , and V wt as defined above, and does the following for
each i � [|Op|]:

(1) If opi = rd, then let vrd be the word at location `i of D.
(2) If opi = wt, then let vrd be the word at location `i in D and write vwt to that location.

It then outputs V rd = (vrd, . . . ,vrd
p|).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0

i i i i i−1 i−1

M

U

U

U U

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:15

Using parallel-step and access, we can then formalize a full PRAM computation as follows:
Starting with State0 = (state0), where state0 is an initially empty state, and V rd = (�), the ith step of
the PRAM computation M for i ≥ 1 is def ined as:

(1) Compute (State , Op , S ,V wt) = parallel-step(M, State ,V rd).
(2) Let Vi

rd = accessD (Opi , Si ,Vi
wt).

The computation halts when all running processes reach a halting state, and the outputy of M(x) is
written to the start of the memory, where we additionally assume that the output length is encoded
in the final state(s).

We are in the exclusive-read exclusive-write (EREW) model, i.e., the most restrictive PRAM
model, where if some process accesses a location (either a read or a write) in memory while another
process accesses the same location (either a read or a write), then there are no guarantees for the
resulting effect. In addition to specifying the memory size n, we also assume that a PRAM machine
specifies the number of concurrent processesp it uses, and thatp ≤ n, as we are in the EREW model.
Last, we assume that all processes in a PRAM computation have local registers that can be used to
communicate the results of each step.

(P)RAM Complexity. Each step of RAM computation is allowed to make a single access to mem-
ory. We think of step, which computes the transition function from state to state0, as being imple-
mented by an eficient CPU algorithm with access to a constant number of words.

As a result, we define the running time of a RAM machine M as the number of accesses it makes
to its working memory. For PRAM machines, each step of computation may make multiple parallel
accesses to memory via different processors.

To model the complexity of a (P)RAM machine M , we consider two complexity measures: work
and depth. Specifically, we let workM (x) denote the total amount of computation done by all
processors measured in steps (or equivalently memory accesses). When M is a non-deterministic
machine, we denote this by workM (x ,w) where w is the witness. We let depth (x) (analogously,
depthM (x ,w)) denote the number of sequential steps until M halts, where steps that occur in
parallel are counted as one step. For a (non-parallel) RAM machine, we simply denote its running
time by workM (x).

We also assume that n words in memory can be allocated and initialized to zeros for free.

3.2 Universal and NP Relations

Next, we define a variant of the universal relation, introduced by Reference [8]. For eficiency
reasons, it will be helpful to define this relative to different computational models, so we give
definitions for Turing machine computation and RAM machine computation.

Definition 3.1 (Universal Relation). The universal relation for Turing machines RTM is the set of
instance-witness pairs ((M, x ,y, L, t),w) where M is a Turing machine such that M(x ,w) outputs y
within t steps, and additionally |y| ≤ L. We let L T M be the corresponding universal language.
We similarly define RPRAM and L PRAM to the be universal relation and language, respectively, for
PRAM computation, where the given machine M is a PRAM machine.

The main difference between our definition and the standard universal relation of Reference
[8] is that we consider computation with long outputs y, and we also include an upper bound
L on the length of y. We include y to have a definition that captures both deterministic and
non-deterministic polynomial-time computation. A similar relation was given in Reference [24]
to define a canonical relation for P. Moreover, the universal relation of Reference [8] is linear-
time reducible to our definition above. With regards to L, we include this because in our main

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

h

λ

? ?
r

?
r

Pr ?
r

: λ,z,s r ≤ negl(λ).

U

31:16 N. Ephraim et al.

construction of SPARKs, the output y of the computation will not be known in advance. However,
the complexity of the scheme inherently depends on L (as the output of the protocol is y).

Finally, we note that for a statement (M, x ,y, L, t) with respect to PRAM computation, we do not
place any restriction on the length of the witness w . Specifically, the machine M may only access t
positions in w , but it could be the case that |w| is significantly greater than t .

3.3 Succinct Arguments of Knowledge

In this section, we define succinct arguments of knowledge [8, 41, 44] for relations R � RTM. We
focus on NP languages and relations, where the argument of knowledge definition is restricted to
polynomial-time statements.

Definition 3.2 (Succinct Arguments of Knowledge for NP Relations). Let α : N3 → N. A pair of
interactive machines (P , V) is called a succinct argument of knowledge with α-prover eficiency for a
relation R � R TM if the following conditions hold:

• Completeness: For every λ � N and ((M, x ,y, L, t),w) � R,
iPr hP(w), Vi(1λ , (M , x ,y, L, t)) = 1 = 1,

where the probability is over the random coins of P and V .
• Argument of Knowledge for NP: There exists a probabilistic oracle machine E and a polyno-

mial q such that for every non-uniform probabilistic polynomial-time prover P ? = { P ? }λ�N
and every constant c � N, there exists a negligible function negl such that for every λ � N,
M, x , t , L,y � {0, 1}� with |M,x,t,y| ≤ λ, L ≤ λ, and t ≤ |x|c, and every z, s � {0, 1}�, the
following hold:

Let Pλ,z, s denote the machine Pλ with auxiliary input z and randomness s fixed, let V
denote the verifier V using randomness r � {0, 1} `(λ) where `(λ) is a bound on the number
of random bits used by V(1λ , ·). Then:

(1) The expected running time of E Pλ , z , s , V (1λ , (M, x ,y, L, t)) is bounded by q(λ, t), where the
expectation is over r ← {0, 1} `(λ) and the random coins of E .

(2) It holds that
r ← {0, 1} `(λ) hP ? , V i(1λ , (M , x ,y, L, t)) = 1
w ← E Pλ , z , s , V (1λ , (M, x ,y, L, t)) � ((M, x ,y, L, t),w) < R

• Succinctness: There exist polynomials q1, q2 such that for any λ � N and (M, x ,y, L, t) �
{0, 1}�, it holds that

workV (1λ , (M , x ,y, L, t)) ≤ q1(λ, |(M,x,y,L)| , log t)

and the length of the transcript produced in the interaction between P(w) and V on common
input (1λ , (M, x ,y, L, t)) is bounded by q2(λ, log t).

• α -Prover Runtime: For all λ � N and ((M, x ,y, L, t),w) � R, it holds that

workP(1λ , (M , x ,y, L, t), w) ≤ α(λ, |(M,x,y,L)| , t).

If the above holds for R = RTM, then we say that (P , V) is a succinct argument of knowledge for
NP.

We note that we could naturally relax the above definition so completeness and eficiency only
hold for statements (M, x ,y, L, t) where t ≤ T(|x|) for some slightly super-polynomial function T , as
in References [7, 24]. In our results, if we assume this weaker notion, then our resulting SPARK will
satisfy the same notion.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

r
?

U

U

U

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:17

We also note that the above definition captures succinct arguments of knowledge for any specific
NP language L with relation R L (not necessarily contained in RTM). The relation R L implicitly
determines an NP verification machine M L with time bound T � poly(|x|). Then, we can consider
the relation R = {((ML, x, 1, 1,T (|x|)),w) : M L (x , w) = 1 withinT(|x|) steps } � RTM.

Remark 1 (Comparison with Previous Definitions). In contrast to the definition of universal ar-
guments of knowledge, the argument of knowledge definition above for NP holds only for all
malicious provers P ? and constants c where the statements (M, x ,y, L, t) have t ≤ |x|c. We also
define the extractor to run in expected polynomial time q(λ, t) where q is a polynomial indepen-
dent of P ? or the specific time bound |x|c. This is in spirit of universal arguments [8] where they
define a weak extractor that only extracts a single bit of the witness at a time (because they deal
with t , which is not necessarily bounded by a polynomial).

We note that for NP, our extractor definition differs from the standard notion, which does not
give the extractor oracle access to V , runs in expected time proportional to ϵ(λ)−κ(λ), and always
extracts a valid witness. Here, ϵ(λ) is the success probability of Pλ,z, s and κ(λ) is the knowledge
error (see Reference [9]). Nevertheless, we show in Section A that our definition for NP is implied

by a definition of witness-extended emulation for NP arguments, which is in turn implied by the
standard argument of knowledge definition for NP with negligible knowledge error [42] (with
minor modifications to fit into our setting).

We emphasize that the above definition is given for relations in R TM where the time bound t
represents the total work of the computation. We can readily extend this to relations for parallel
computations where the machine M runs in depth t and uses pM processors, by generically bound-
ing the total work by t · pM in the above definition. Below, we more precisely quantify the prover
eficiency for parallel computations by decoupling the prover’s depth and parallelism, which may
depend on the parallelism and depth of the underlying computation.

Definition 3.3 (Decoupling Prover Eficiency for Succinct Arguments). Let α , ρ : N4 → N. A suc-
cinct argument of knowledge (P , V) for a relation R � R TM satisfies (α , ρ)-prover eficiency if for
all λ � N and ((M, x ,y, L, t),w) � R where M uses at most pM processors, it holds that

workP(1λ , (M , x ,y, L, t), w) ≤ α(λ, |(M,x,y,L)| , t)

using ρ(λ, |(M,x,y,L)| , t) processors.
We may also consider relations R consisting of parallel machines M that use pM processors, in

which case α and ρ may additionally depend on pM .

We note that a succinct argument of knowledge with α-prover runtime immediately gives
a succinct argument of knowledge satisfying (α 0, 1)-prover eficiency where α0(λ, |(M,x,y,L)| ,
t ,pM) = α (λ, |(M,x,y,L)| , t · pM).

SNARKs. Next, we define succinct non-interactive arguments of knowledge.

Definition 3.4 (SNARKs for NP Relations). A Succinct Non-interactive Argument of Knowl-
edge (SNARK) for a relation R � R TM is a tuple of probabilistic algorithms (G , P , V) with the
following syntax:

• (crs, st) ← G(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs and a verification state st.

• π ← P(crs, (M , x ,y, L, t), w): A probabilistic algorithm that on input a common reference
string crs, a statement (M, x ,y, L, t), and a witness w , outputs a proof π .

• b ← V(st, (M , x ,y, L, t), π): A PPT algorithm that on input a verification state st, a statement
(M, x ,y, L, t), and a proof π , outputs a bit b indicating whether to accept or reject.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

����

��
�

λ

? ?

?

Pr

�
�
��

λ,z,s

�
�
���

U

31:18 N. Ephraim et al.

We require the following properties:

• Completeness: For every λ � N and ((M, x ,y, L, t),w) � R,

� (crs, st) ← G(1λ)
Pr π ← P(crs, (M , x ,y, L, t),w)

� b ← V(st, (M , x , y, L, t), π)

�
: b = 1� = 1.

�
• Adaptive Argument of Knowledge for NP: For any non-uniform polynomial-time prover

P ? = { P ? }λ�N , there exists a probabilistic machine E and a polynomial q, such that for ev-
ery c � N, there exists a negligible function negl such that for every λ � N and z, s � {0, 1}�,
the following hold:

Let Pλ,z, s denote the machine Pλ with auxiliary input z and randomness s fixed. Then:

(1) The running time of E(crs, z, s) is bounded by q(λ, t), where (crs, st) ← G(1λ), and t is
given by the statement output by Pλ,

z
,s (crs).

(2) It holds that

� (crs, st) ← G(1λ)
� ((M, x ,y, L, t),π) ← P ? (crs)
� b ← V(st, (M , x ,y, L, t), π)
� w ← E(crs, z, s)

b = 1 � �

: ((M, x ,y, L, t),w) < R � � ≤ negl(λ).
t ≤ |x|c

�
• Succinctness: There exist polynomials q1,q2 such that for any λ � N, (crs, st) in the support of

G(1λ), (M, x ,y, L, t) � {0, 1}� with |y| ≤ L, witness w , and proof π in the support of
P(crs, (M , x ,y, L, t),w),7 it holds that
• workV (st, (M , x ,y, L, t), π) ≤ q1(λ, |(M,x,y, L)|, logt) and
• |π| ≤ q2(λ, log t).

• α -Prover Runtime: For all λ � N and ((M, x ,y, L, t),w) � R, it holds that

depthP(crs, (M , x ,y, L, t),w) = α (λ, |(M,x,y,L)|,t).

If the above holds for R = RTM, then we say that (G , P , V) is a SNARK for NP. When crs = st for
G(1λ), we say that the SNARK is publicly verifiable and write crs ← G(1λ).

We note that our definition of adaptive argument of knowledge for NP is implied by the
definition of Reference [16] for NP. As in the interactive setting, we can similarly relax the com-
pleteness and eficiency properties to only hold for statements with t bounded by a slightly super-
polynomial functionT (|x|) as in Reference [16].

Remark 2 (On the Distribution over the Auxiliary Input). With regards to auxiliary input, our
SNARK definition follows the convention of Reference [15]. However, as they point out, it was
shown by References [17, 22] that this definition is too strong. In particular, they show that it is
impossible to achieve assuming indistinguishability obfuscation. As such, the argument of knowl-
edge definition can be relaxed to consider security with respect to a particular distribution of
auxiliary input appropriate for the specific application.

As with interactive arguments, we can also extend the above definition to decouple prover efi-
ciency into prover depth and parallelism.

7Note that we could additionally require a verifier to be eficient for “dishonest” proofs that are not in the support of an
honest prover P . However, given any verifier V that satisfies succinctness for honest proofs with universal polynomial p ,
we can construct an eficient verifier V 0 for any proof by running V for at most p(λ, |(M, x, y, L)| , log t) steps and
rejecting otherwise.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

λ

? ?
r

?
r

�
�
��

�
��
�

?
r

?
r

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:19

Definition 3.5 (Decoupling Prover Eficiency for SNARKs). Let α , ρ : N3 → N. A SNARK (G , P , V)
for a relation R � R TM satisfies (α , ρ)-prover eficiency if for all λ � N, (crs, st) in the support of
G(1λ), and ((M, x ,y, L, t),w) � R, it holds that

workP(crs, (M , x ,y, L, t),w) ≤ α (λ, |(M,x,y,L)| , t)

using ρ(λ, |(M,x,y,L)| , t) processors.
We may also consider relations R consisting of parallel machines M that use pM processors, in

which case α and ρ may additionally depend on pM .

4 SUCCINCT PARALLELIZABLE ARGUMENTS OF KNOWLEDGE

In this section, we define succinct parallelizable arguments of knowledge for non-deterministic
polynomial-time PRAM computation, using the following syntax for interactive protocols: We
denote by hP (w), V i the output of V in the interaction, which may be of arbitrary (polynomial)
length. Furthermore, we let V output � to indicate reject, and output y , � to accept the output y.

Definition 4.1 (SPARKs for NP Relations). A Succinct Parallelizable Argument of Knowledge
(SPARK) for a relation R � RPRAM is a tuple of probabilistic interactive machines (P , V) where P
is a PRAM machine, satisfying the following properties:

• Completeness: For every λ � N and ((M, x ,y, L, t),w) � R where M has access to n ≤ 2λ

words in memory,
h i

Pr hP(w), Vi(1λ , (M , x , t , L)) = y = 1,

where the probability is over the random coins of P and V .
• Argument of Knowledge for NP: There exists a probabilistic oracle machine E and a poly-

nomial q such that for every non-uniform polynomial-time prover P ? = { P ? }λ�N and every
constant c � N, there exists a negligible function negl such that for every λ � N, z, s � {0, 1}�,
and (M, x , t , L) � {0, 1}� with |M,x,t| ≤ λ, L ≤ λ, M having access to n ≤ 2λ words in mem-
ory and pM processors, and t · pM ≤ |x|c, the following hold:
Let Pλ,z,s denote the machine Pλ with auxiliary input z and randomness s fixed, let V
denote the verifier V using randomness r � {0, 1}l (λ) where l(λ) is a bound on the number
of random bits used by V(1λ , ·). Then:

(1) The expected time of E Pλ , z , s , V (1λ , (M, x , t , L)) is bounded by q(λ, t ·pM), where the expec-
tation is over r ← {0, 1}l (λ) and the random coins of E .

(2) It holds that

� r ← {0, 1}l (λ)

Pr � y = hPλ,z, s , V i(1λ , (M , x , t , L))

� w ← E Pλ , z , s , V (1λ , (M, x , t , L))

�
: y , � � ((M, x ,y, L, t),w) < R� ≤ negl(λ).

�

• Succinctness: There exist polynomials q1,q2 such that for any λ � N, (M, x , t , L) � {0, 1}�

where M has access to n ≤ 2λ words in memory and pM processors, it holds that

workV (1λ , (M , x , t , L)) ≤ q1(λ, |(M,x)|,L, log(t · pM))

and the length of the transcript produced in the interaction between P(w) and V on common
input (1λ , (M, x , t , L)) is bounded by q2(λ, L, log(t · pM)).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

31:20 N. Ephraim et al.

• Optimal prover depth: There exist polynomials q1,q2 such that for all λ � N and ((M, x ,y, L,
t),w) � R where M has access to n ≤ 2λ words in memory and pM processors, it holds that

depthP(1λ , (M, x , t , L), w) ≤ t + q1(λ, |(M,x)|,L, log(t · pM))

and the total number of processors used by P is at most pM · q2(λ, log(t · pM)).

If the above holds for R = RPRAM, then we say that (P , V) is a SPARK for non-deterministic
polynomial-time PRAM computation.

We next remark about some subtleties in our definition and compare to related notions.

Remark 3 (Delayed Output). We note that our definition of SPARKs has a “delayed output” prop-
erty where the prover picks the output of the protocol rather than it being known a priori to both
the prover and verifier. For typical NP languages, this distinction is not important, because the
prover is always trying to prove that the relation outputs 1. However, for proving more general
polynomial-time computation, the output may not be known in advance, so the prover must com-
pute both the output and a proof.

Remark 4 (Execution-dependent Extraction). Since there may be many possible outputs y of the
computation, it is very important that the extractor finds a witness for the actual output y that V
accepts in the interaction. Morally, this definition should capture the fact that the prover actually
knows a witness for that output, instead of a witness for an arbitrary output y0 that the prover
may never convince the verifier of. This is particularly relevant for NP relations, since when a
prover convinces a verifier of an accepting witness (i.e., one where the relation outputs 1) it is not
meaningful to extract a witness, which makes the relation output 0. Note that it does not sufice to
run the protocol and simply give the extractor y (and require the extractor to provide a witness for
that output), as the malicious prover may only convince V of any particular y with small
probability.

A similar challenge motivated the work on precise proofs of knowledge [45], where they de-
fined arguments of knowledge where the extractor’s behavior depended on a specific instance of
the protocol.8 To capture this, their extractor receives a uniformly sampled view of the prover in
the protocol and extracts a consistent witness. In our definition above, we choose to give the ex-
tractor oracle access to the fixed prover as well as the verifier with fixed randomness that results
in accepting a particular output y. This is akin to giving the extractor an oracle version of the view,
while additionally making the extractor black-box in both the malicious prover and (fixed) verifier.
As such, the extractor can emulate the interaction to deterministically figure out the output y it
needs to extract for.

Remark 5 (On Composition). It is often important for arguments of knowledge to be
composable—that is, to be able to be used as a sub-protocol (possibly many times). Indeed, we
require this for our transformation from arguments of knowledge to SPARKs. Often, the challenge
with composing proofs of knowledge is obtaining the desired running time of the final extractor.

One definition that composes well is precise argument of knowledge [45]. As explained above, in
that definition the extractor receives the prover’s view in the protocol, and for every view, the
running time of the extractor is a fixed polynomial (in the prover’s running time on that view).
However, this notion is quite strong, and hence is not known to hold for standard arguments of
knowledge. A more standard notion is witness-extended emulation [42], where the extractor is not
given a view, but instead must output a uniformly distributed view of the verifier as well as a
witness. Moreover, the extractor only needs to run in expected polynomial time, and may use

8They considered instances with different running times, whereas we consider instances with different outputs.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U
n

n

���� n

��
�

λ

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:21

rewinding. However, when this is used as a sub-protocol, the view picked by the extractor may
not be compatible with the external view in the rest of the protocol.

To fix this issue, our definition essentially gives the extractor a uniformly sampled view, and we
require that the extractor runs in expected polynomial time over the choice of the view. This can be
seen as a relaxation of precise argument of knowledge, since it does not need to be eficient for every
view, but also as a (conceptual) strengthening of witness-extended emulation, because the
extractor must work on a given view, rather than being able to sample one itself.

Remark 6 (On the Dependence on Parallelism). An important contribution of our SPARK defini-
tion is decoupling the time of a PRAM computation from the total work done. As such, we briefly
discuss the dependence on the number of processors used by the underlying PRAM machine.

For a PRAM machine M that uses pM processors and runs in time t , we note that the work of M
can be generically bounded by t · pM . Therefore, we use t · pM in place of the usual notion of work for
succinctness and prover eficiency.

The only other dependence on pM in our SPARK definition is in the amount of processors we
allow the prover to use. As the prover must emulate M(x ,w) in roughly the same depth that M
uses, the prover needs to at least use pM processors. Furthermore, we require in our definition
that the parallelism is preserved up to multiplicative poly(λ, log(t · pM)) factors, following similar
definitions for complexity-preserving arguments [18].

Non-interactive SPARKs. Next, we define non-interactive SPARKs for non-deterministic
polynomial-time PRAM computation. Non-interactive SPARKs differ from SNARKs (Definition 3.4)
in two key ways, analogously to the interactive setting. First, a non-interactive SPARK must com-
pute the output of the (possibly non-deterministic) computation while computing the proof, and
second, we require near-optimal prover eficiency. However, the other requirements, most notably
the argument of knowledge definition, are nearly the same as in SNARKs.

Definition 4.2 (Non-interactive SPARKs for NP Relations). A Non-interactive Succinct Paral-
lelizable Argument of Knowledge (niSPARK) for a relation R � RPRAM is a tuple of probabilistic
algorithms (Gni , Pni , V i) with the following syntax:

• (crs, st) ← Gni(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs and a verification state st.

• (y,π) ← Pni(crs, (M , x , t , L), w): A probabilistic algorithm that on input a common reference
string crs, a statement (M, x , t , L), and a witness w , outputs a value y and a proof π .

• b ← V i(st, (M, x ,y, L, t),π): A PPT algorithm that on input a verification state st, a statement
(M, x ,y, L, t), and a proof π , outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ � N and ((M, x ,y, L, t),w) � R where M has access to n ≤ 2λ

words in memory,

� (crs, st) ← Gni(1λ)
Pr (y,π) ← Pni(crs, (M , x , t , L), w)

� b ← V i(st, (M, x ,y, L, t),π)

�
: b = 1� = 1.

�
• Adaptive Argument of Knowledge for NP: For all non-uniform polynomial-time provers

P ? = { P ? }λ�N , there exists a probabilistic machine E and a polynomial q such that for
every constant c � N, there is a negligible function negl such that for every λ � N and z, s
� {0, 1}�, the following hold:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ,z,s λ

?

Pr

���
��

λ,z,s

n
M

�
�
���

ni

U n

31:22 N. Ephraim et al.

Let P ? denote the machine P ? with auxiliary input z and randomness s fixed. Then:
(1) The running time of E(crs, z, s) is bounded by q(λ, t ·pM), where t is given by the statement

(M, x ,y, L, t) output by Pλ,
z
,s (crs) and pM is the number of processors used by M .

(2) It holds that

� (crs, st) ← Gni(1λ)
((M, x ,y, L, t),π) ← P ? (crs)

� b ← V i(st, (M, x ,y, L, t),π)
� w ← E(crs, z, s)

b = 1 � �

: ((M, x ,y, L, t),w) < R � � ≤ negl(λ),
t · p ≤ |x|c

�
where pM is the number of processors used by M .

• Succinctness: There exist polynomials q1,q2 such that for any λ � N, (crs, st) in the support of
Gni(1λ), (M, x , t , L) � {0, 1}� where M uses n ≤ 2λ words in memory and pM processors,
witness w , and (y,π) in the support of Pni(crs, (M, x , t , L),w), it holds that
• workV (st, (M, x ,y, L, t),π) ≤ q1(λ, |(M,x)|,L, log(t · pM)),
• |y| ≤ L, and
• |π| ≤ q2(λ, L, log(t · pM)).

• Optimal prover depth: There exists polynomials q1 and q2 such that for all λ � N and
((M, x , t , L,y),w) � R where M has access to n ≤ 2λ words in memory and pM processors, it
holds that

depthPni
(crs, (M, x , t , L),w) = t + q1(λ, |(M,x)|,L, log(t · pM))

and the total number of processors used by Pni is in pM · q2(λ, log(t · pM)).

If the above holds for R = RPRAM, then we say that (Gni , Pni , V i) is a non-interactive SPARK for
non-deterministic polynomial-time PRAM computation. When st = crs for Gni(1λ), we say that the
non-interactive SPARK is publicly verifiable and write crs ← Gni(1λ).

5 CONCURRENTLY UPDATABLE HASH FUNCTIONS

In this section, we define and construct a hash function that (1) allows concurrently updating
arbitrary positions in the string underlying the digest, (2) has the property that different updates
can be computed concurrently using multiple processors in a pipelined fashion (described in more
detail below). This can be seen as a strengthening of locally updatable hash functions, with extra
eficiency properties. We define our construction in the PRAM model.

For a security parameter λ � N, our hash function will be for strings D consisting of n ≤ 2λ

words of length λ. It will be helpful for us to capture the case when D is not defined at every
location, that is, some words are set to �. To formalize this, below, we define the notion of a
partial string, which is simply a succinct way to represent strings over ({0, 1}λ �{�})n .

Definition 5.1 (Partial String). For any string s � ({0, 1}λ � {�})� of words, the partial string D
representing s is defined as follows: D is given by tuple (n, I , A), where n is the number of words (or
� elements) in s , I � [n] is the set of non-� locations in s , and A � {0, 1} |I | is the assignment to those
indices. We let Di denote the ith word in s.

Next, we define the hash functions used in this article. A concurrently updatable hash function
is a tuple of algorithms (C.Gen, C.Hash, C.Open, C.Update, C.VerOpen, C.VerUpd) with the fol-
lowing syntax9:

9For simplicity, the only randomized algorithm in our definition is the key generation algorithm, and the rest are deter-
ministic. However, with minor modifications to our main protocol, we could use a scheme where all algorithms may be
randomized.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0

0

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:23

• pp ← C.Gen(1λ , n): A PPT algorithm that on input the security parameter λ in unary and an
integer n, outputs public parameters pp.

• (ptr, digest) = C.Hash(pp, D): A deterministic algorithm that on input public parameters pp and
a partial string D, outputs a pointer ptr to a location in memory and a string digest.

• (V ,π) = C.Open(pp, ptr, S): A read-only deterministic algorithm that on input public parame-
ters pp, a pointer ptr, and an ordered set S = (`1, . . . , `p) of locations ̀ i � [n], outputs a tuple
V = (v1, . . . ,vp) of values vi � {0, 1}λ �{�} , and a proof π .

• (digest,τ) = C.Update(pp, ptr, S,V): A deterministic algorithm that on input public parameters
pp, a pointer ptr , an ordered set S = (`1, . . . , `p) of locations `i � [n], and a tuple V = (v1, .
. . ,vp) of words vi � {0, 1}λ , outputs a digest digest and a proof τ .

• b = C.VerOpen(pp, digest, S,V ,π): A deterministic algorithm that on input public parameters
pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i � [n], a tuple V = (v1, . .
. ,vp) of values vi � {0, 1}λ �{�}, and a proof π , outputs a bit b.

• b = C.VerUpd(pp, digest, S,V , digest , τ): A deterministic algorithm that on input public pa-
rameters pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i � [n], a tu-
ple V = (v1, . . . ,vp) of words vi � {0, 1}λ , a digest digest0, and a proof τ , outputs a
bit b.

We assume for simplicity that there are no duplicate locations specified by the set S in the above
algorithms. We note that when S is a single location ` and V is a single word v, to simplify nota-
tion, we let C.Open, C.Update, C.VerOpen, and C.VerUpd take ` and v as input rather than the
singleton ordered set (`) and tuple (v). We require the following completeness, soundness, and
eficiency properties.

At a high level, completeness says that opening or updating an honestly generated digest gives
a valid proof, and that the string underlying the digest is correct. Moreover, this holds after any
sequence of updates to the digest.

Definition 5.2 (Completeness). Let λ, n � N with n ≤ 2λ , pp be in the support of C.Gen(1λ , n), D
= (n, I , A) be a partial string, and m ≥ 0. For any ordered sets S (i) � [n] and tuples V (i) �
({0, 1}λ)|S (i)| for i � [m], do the following:

(1) Compute (ptr, digest(0)) = C.Hash(pp, D).
(2) For i = 1, . . . ,m, compute (digest(i),τ (i)) = C.Update(pp, ptr, S (i),V (i)).

Let D0 be the partial string resulting from writing each word in V (i) to D at the corresponding
location in S (i) for i = 1, . . . ,m. Then, the following hold for any p � N and ordered set S = (`1, . .
. , `p) of locations in [n]:

• Open Completeness. Let (V ,π) = C.Open(pp, ptr, S) where V = (v1, . . . ,vp). Then,

C.VerOpen(pp, digest(m), S,V ,π) = 1 � D ` i
= vi �i � [p].

• Update Completeness. For any tuple V � ({0, 1}λ)p , let (digest,τ) = C.Update(pp, ptr, S,V).
It holds that

C.VerUpd(pp, digest(m), S,V , digest,τ) = 1.

Next, we define soundness, which informally says that no PPT adversary can give a digest and a
sequence of valid updates that update some position ` to a wordvprev and then open ` to a different
value v final , vprev.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ

Pr

�
����

�
����

≤ negl(λ),

31:24 N. Ephraim et al.

Definition 5.3 (Soundness). For all non-uniform PPT adversaries A = { A λ }λ�N , there exists a
negligible function negl such that for all λ � N, it holds that for all with n ≤ 2 ,

� C.VerOpen(pp, digest(0), S (0),V (0),π (0)) = 1 � �
� �i � [m] : C.VerUpd(pp, digest(i−1), S (i),V (i), digest(i),τ (i)) = 1 � �

C.VerOpen(pp, digest(m), S,V ,π) = 1 �
� �̀ � S ∩ S (0) : vprev , vfinal �

the probability is over the choice of pp ← C.Gen(1λ , n) and (m, {(digest(i), S (i),V (i), τ (i))}i�[m],
digest(0), S (0),V (0), π (0), S,V ,π) ← Aλ (pp), and vprev and v final are defined as follows:

• vprev is the value in V (i) at the index of ` in S (i), where i � {0, . . . , m } is the largest index
with ` � S (i).

• v final is the value in V at the index of ` in S .

Last, we require the following eficiency properties, which at a high level say that any sequence
of k updates can be computed (while opening the previous values) in a pipelined fashion with only
additive overhead:

Definition 5.4 (Parallel Eficiency). Let β : N → N. We say that a concurrently updatable hash
function satisfies β-parallel eficiency if the following hold for all λ, n � N with n ≤ 2λ , pp in the
support of C.Gen(1λ , n), and ordered sets S � [n]:

• The algorithms C.Open, C.Update, C.VerOpen, and C.VerUpd when given public parame-
ters pp and locations S can each be computed with |S| · β(λ) work, which can be decoupled
into depth β(λ) with |S| · β(λ) processors.

• Computing C.Hash(pp, D) for any partial string D = (n, I , A) can be done with |I|·β(λ) work,
which can be decoupled into depth β(λ) with |I| · β(λ) processors.

• For any pointer ptr, and tuple V � ({0, 1}λ)|S |, def ine(V 0,π , digest,τ) as follows:
– (V 0,π) = C.Open(pp, ptr, S)
– (digest,τ) = C.Update(pp, ptr, S,V)
There exists an algorithm OpenUpdate(pp, ptr, S,V) that outputs (V 0,π , digest,τ), such that k
sequential calls to OpenUpdate, each on at most pmax locations, can be computed with pmax

· β(λ) work, which can be decoupled into depth (k − 1) + β(λ) using at most pmax · β(λ)
processors.

When β is a polynomial, we say the scheme satisfies parallel eficiency.

Remark 7. We emphasize that the completeness and soundness properties we give for concur-
rently updatable hash functions must hold for any sequence of m “valid” updates. At a high level,
these notions stipulate that an opening will always give the correct values (with a proof) and that
no adversary can find an opening for a value you would not expect (based on the updates). Fur-
thermore, we require C.VerUpd to ensure that an update to a set of locations does not affect any
other locations.

We note that even when viewed as a hash function with local updates (i.e., updates to a sin-
gle location rather than a set) our definition generalizes some previous notions. Specifically, this
applies to standard notions of completeness and position binding for vector commitments [23],
as when there are no updates (i.e., m = 0), they are equivalent. Our definition also general-
ized the read and write security properties of other Merkle tree commitments, such as those in
Reference [39].

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

R

n n

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:25

We note that it does not sufice to consider the properties to hold with respect to a single update
(i.e., when m = 1). This is because our hash functions keep state, so it may be the case that it
internally keeps a counter and artificially breaks completeness or soundness after some m > 1
updates have occurred.

5.1 Hash Function Building Blocks

Before giving our concurrently updatable hash function construction, we provide some prelimi-
nary definitions and building blocks.

Binary trees. When we discuss complete binary trees with n leaves, we refer to each node having a
level, where the leaves are level 0 and the root is level log n. For a node at level i, its children are
the two nodes adjacent to it at level i − 1, and its parent is the node adjacent to it at level i + 1.

Definition 5.5 (Ancestor Nodes). For a complete binary tree and a set of leaves S , we define the
set ancestors(S) to be the set containing all nodes that are ancestors of any node in S , including S .
For a single node ` , we simply write ancestors(`) to denote the ancestors of the node ` .

Definition 5.6 (Dangling Nodes). Let T be a complete binary tree and S be a set of leaves in MT .
The dangling nodes with respect to S , denoted dangling(S), is the set consisting of all siblings of
nodes in ancestors(S) that themselves are not contained in ancestors(S). For a single leaf ` , we
simply write dangling(`) to denote the dangling nodes relative to {` }.

We remark that the notion of dangling nodes for a set S is a generalization of an authentication
path for a single location ` . Specifically, just like an authentication path gives a proof for opening a
single location in a Merkle tree, the values for nodes in dangling(S) can similarly be used to certify an
opening for the locations in S . Next, we bound the size of a dangling set.

Claim 5.7. Consider a complete binary tree with n leaves and let S � [n]. If 0 < |S| ≤ p, then
|dangling(S)| ≤ p log(n/p).

Proof. A similar observation and proof were given in Reference [46]. We give the full proof
with our notation here for completeness.

We prove the claim by induction on i where n = 2i for any p � [n]. In the base case, when i
= 0 so n = 20 = 1, |dangling(S)| = 0 ≤ p log(n/p) for all p � [20] = {1} as required. We next
show the claim for n = 2i for i > 0 assuming it for n/2 = 2i−1. Let S � [n] be a set of leaves for the
complete binary tree with n leaves. Let SL = S ∩ {1, . . . , n/2} and SR = S ∩ {n/2 + 1, . . . , n}, where
we consider SL to be a set of leaves in the sub-tree of height i − 1 rooted at the left child of the
root, and similarly SR to be a set of leaves in the sub-tree rooted at the right child of the root.

We first consider the case when |SL|, |SR | > 0. By the inductive hypothesis, there are at most
|SL| log(n/(2|SL|)) nodes in dangling(SL) and similarly at most |SR | log(n/(2|SR |)) nodes in
dangling(SR). This implies that

|dangling(SL)| + |dangling(S)|
≤ |SL| log

2|SL|
+ |SR | log

2|SR |
= (|SL| + |SR |) logn − (|SL| log |SL| + |SR | log |SR |) − (|SL| + |SR |).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

(a (b + +

31:26 N. Ephraim et al.

Using the fact that a log a + b logb ≥ (a + b)(log(a + b) − 1) for any a,b > 0,10 this implies that

|dangling(SL)| + |dangling(SR)| ≤ p logn − p(log p − 1) − p

= p log(n/p).

Furthermore, note that this covers all nodes in dangling(S) as the roots of both ancestors(SL) and
ancestors(SR) (when viewed as sub-trees) are in ancestors(S) (since |SL|, |SR | > 0), and there are no
other siblings that cross between the two sub-trees ancestors(SL) and ancestors(SR).

Now consider the case where either |SL| = 0 or |SR | = 0. Note that because we assume p > 0, it
cannot be the case that both |SL| and |SR | are 0. Without loss of generality, we consider the case
where |SR | = 0. In this case, it must be that |SL| = p ≤ n/2. Then by the inductive hypothesis there
are at most p log(n/(2p)) nodes in dangling(SL). Furthermore, dangling(S) consists of all nodes in
dangling(SL) plus the root of SR . So,

|dangling(S)| ≤ 1 + p log(n/(2p)) = p log(n/p) + (1 − p)
≤ p log(n/p),

which holds given that p ≥ 1.

Next, we give the following helpful claim, which follows from the definition of a dangling set,
which will be helpful in our concurrently updatable hash function construction. Recall that a proper
tree is one where every node has either zero children or two children.

Claim 5.8. For any set S of leaves in a complete binary tree with n leaves, ancestors(S) �
dangling(S) is a proper sub-tree with leaves S � dangling(S).

Proof. Note that if S is empty, the claim holds vacuously, then so henceforth, we assume S is
non-empty. Let T be the sub-tree consisting of ancestors(S) � dangling(S). Note that T is a tree
since ancestors(S) is a tree, and every node in dangling(S) is a child of a node in ancestors(S). To
show that T is proper and that its leaves are S � dangling(S), we will show that every node in T is
either in S � dangling(S), in which case it is a leaf, or is in ancestors(S) \ S and has both of its
children in T , which sufices for the claim. Consider any node node in T . If node � dangling(S),
then its children are not in T , since neither child is an ancestor of S by definition, and hence
neither can be in dangling(S). It follows that node is a leaf. If node � S , then it is a leaf in the
complete binary tree and is in T , so is a leaf in T . If node � ancestors(S) \ S , then its children are in
ancestors(S) � dangling(S), and so are both in T .

Merkle trees. Let h : {0, 1}2λ → {0, 1}λ be a compressing hash function. A Merkle tree [43] for a
string D � {0, 1}nλ consists of a complete binary tree of log n + 1 levels labelled 0, . . . , log n where
level i consists of n/2i nodes. Each node is associated with a value in {0, 1}λ . The leaves at level 0
correspond to D, split into n blocks of length λ. The value of each node at level i > 0 is def ined to
be the hash (using h) of the concatenation of its children’s values at level i − 1. The single node at
level logn is referred to as the root or digest of the Merkle tree.

An authentication path π = (π0, . . . , πlog n−1) for a leaf i � [n] consists of the values in the tree
corresponding to the siblings of all nodes along the path from the leaf to the root, ordered from
level 0 to log n − 1. An authentication path π = (π0, . . . , πlog n−1) for a leaf i is said to be a valid

10This follows by an application of Jensen’s inequality to the function f (x) = 2x log x , which is convex on all x > 0.
Specifically,

a log a + b log b =
f

2
)

+
f

2
)
≥ f

a
2

b
= (a + b) log

a
2

b
= (a + b) (log(a + b) − 1).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

2λ

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:27

opening for v � {0, 1}λ with respect to a digest digest if when hashing the value v at leaf i with
π0, hashing the resulting value with π1, and so on for all values in π , the final value equals digest.
Whenever updating the value of a leaf i with block block, we additionally re-compute the hash
values along the path to the root using its authentication path. The overall size needed to store the
Merkle tree in memory is 2nλ bits. In our construction, rather than using an authentication path,
we will use the notion of a dangling set (5.6) that generalizes an authentication path for multiple
leaves.

Assuming the underlying hash function h is collision-resistant, it is well known that a Merkle
tree is binding to a fully defined string that allows for local opening and updates. Moreover, it is
known that a standard Merkle tree satisfies the standard completeness and binding properties of a
commitment.

In our construction, we will want to use a Merkle tree for valuesv � {0, 1}λ �{�}. Therefore, we
will use a Merkle tree for 2λ-bit values, so we can uniquely encode each element of {0, 1}λ �{�} as a
string of length 2λ and each node in the Merkle tree corresponds to two consecutive words in
memory.

Segment Tree. A segment tree is a data structure that provides a way for the prover to eficiently
check if a range of indices in the partial string D = (n, I , A) are �. To this end, we want to represent the
set I (which will be constantly updated) in a way that allows us to check if [i1, i2] ∩ I = � in O(log n)
time and independent of |I| and |i2 − i1|.

To do so, we use a segment tree that mirrors the Merkle tree and consists of a complete binary
tree with n leaves. Each node has an associated bit that is 1 if the corresponding node in the
Merkle tree has been initialized and 0 otherwise. Every time a leaf in the Merkle tree is updated, we
initialize all nodes in the tree along the path to the root, meaning we set the corresponding bits in
the segment tree to 1. Then, if any node in the segment tree has a bit of 0, then it guarantees that all
indices corresponding to the leaves that are descendants of this node are �. This implies that for
any range [i1, i2], we can check if [i1, i2] ∩ I = � by checking the bits of O(log n) nodes in the tree
that cover this range of indices. This data structure only requires 2n additional bits to store.

5.2 Construction
Let H = { Hλ }λ�N be a collision-resistant hash function family ensemble with h : {0, 1}4λ →
{0, 1} for each h � Hλ . We also assume that we have a canonical, deterministic encoding of each
value in {0, 1}λ � {�} to 2λ-bit strings, denoted by block(v) for v � {0, 1}λ � {�} , which can
eficiently decoded (for example, we could represent v � {0, 1}λ asv||0λ and � as 12λ).

We now give our full concurrently updatable hash function construction C = (C.Gen, C.Hash,
C.Open, C.Update, C.VerOpen, C.VerUpd).

• pp ← C.Gen(1λ , n): Sample h ← Hλ and output pp = (h, n).
• (ptr, digest) = C.Hash(pp, D):

(1) Parse pp = (h, n). Allocate 4nλ + 2n + 2λ log n bits of memory at a pointer ptr , starting
with a Merkle tree with n leaves at ptr , a corresponding segment tree at pointer segtree,
and log n extra blocks of size 2λ at pointer aux.
We assume that all memory is initialized to 0.

(2) Define dummy(0) = block(�). Let h = pp, and for j = 1, . . . , log n, compute dummy(j)
= h(dummy(j − 1)||dummy(j − 1)) and write it to the next block of free memory at aux.

(3) Recall that D = (n, I , A) specifies a set I of non-� indices with values given in A. Run the
update procedure defined below by C.Update(pp, ptr, I , A).

(4) Let digest be the value of the root in ptr, or dummy(log n) if it is uninitialized, and output
(ptr, digest).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

`

`

` ` `

`

`

`

`

`

`

(i) (i)

(1) (p)

31:28 N. Ephraim et al.

• (V ,π) = C.Open(pp, ptr, S): Parse pp = (h, n). Let p = |S| and let S = (`(1), . . . , `(p)). Let segtree
be the pointer to the segment tree in memory.

(1) Compute the set dangling(S).
(2) Let R be an initially empty set, which will store all read values.
(3) For each level j = 0, . . . , log n − 1, do the following:

(a) In parallel for each node ` � S � dangling(S) at level j:
• Read ` in ptr, and let its value be urd.
• Read ` in segtree, and let its value be brd.

(b) For every ` � S � dangling(S) at level j, if brd = 0, let urd = dummy(j). Add (`,urd) to R.
To form the output, do the following:

(1) For each i � [p], let v(i) � {0, 1}λ �{�} be the value such that (`(i), block(v(i))) � R.
(2) Let π be a list containing all (`, u) in R such that ` � dangling(S).
(3) Note that the above values exist in R since it contains an entry for each node in S �

dangling(S). Output (V ,π) where V = (v(1), . . . ,v(p)).
• (digest,τ) = C.Update(pp, ptr, S,V): Let p = |S|, S = (`(1), . . . , `(p)), and V = (v(1), . . . ,v(p)).

Parse pp = (h, n). Let segtree be the pointer to the segment tree in memory.
Preprocessing Steps.
(1) Compute the sets of nodes dangling(S) and ancestors(S).
(2) Let R,W be sets, initially empty, which will contain the read and written values (respec-

tively).
(3) Add (`(i), block(v (i))) to W for all i � [p].
For each level j = 0, . . . , log(n) − 1:

Access Step. Do the following in parallel:
• For every node ` � ancestors(S) at level j, in parallel:
– Let u be the value with (`, u) � W , and write u to ` in ptr . Let uprev be the value

overwritten.
– Write 1 to ` in segtree, and let the value overwritten be bprev.

• For every ` � dangling(S) at level j, in parallel:
– Read ` in ptr , and let its value be urd.
– Read ` in segtree, and let its value be brd.

Compute Steps.
(1) In parallel for every ` � ancestors(S) at level j, if bprev = 0, then set uprev = dummy(j).

Add (`,uprev) to R.
(2) In parallel for every ` � dangling(S) at level j, if brd = 0, then set urd = dummy(j).

Add (`,urd) to R.
(3) In parallel for every node ` � ancestors(S) at level j + 1, do the following:

(a) For its left child and right child, let uL and uR , respectively, be the values given by
W if they exist and by R otherwise. If neither, then abort and output �.

(b) Compute u as the hash ofuL||uR using h, and add (`, u) to W .
Form Output.
(1) For each i � [p], let vprev � {0, 1}λ �{�} be the value such that (`(i), block(vprev)) � R.
(2) Let π be a list containing all (`, u) in R such that ` � dangling(S).
(3) If any of the above values cannot be found, then output �. Otherwise, output (digest,τ)

where digest is the value of the root given by W and τ = (vprev, . . . ,vprev, π).
• b = C.VerOpen(pp, digest, S,V ,π): Parse pp = (h, n) and output 1 if and only if the following

steps are successful:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

`

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:29

(1) Check that |S| = |V|, each element of S is in [n], each value in V is in {0, 1}λ � {�} , and
each element of π is a pair (`, u) � [n] × {0, 1}2λ .

(2) Compute dangling(S) and check that the set of locations in π is equal to dangling(S).
(3) Let R be a set, initialized with all elements π and (`(i), block(v(i))), where `(i) is the ith

location in S and v(i) is the ith value in V .
(4) For each level j = 0, . . . , log n − 1, do the following:

(a) For each pair of sibling nodes `L , `R in S � dangling(S) at level j, let ` be the location of
their parent node.

(b) Compute u as the hash of the values for `L and `R given by R using h.
(c) Add (`, u) to R.

(5) Check that the value in R corresponding to the root is equal to digest.
• b = C.VerUpd(pp, digest, S,V , digest0,τ): Parse pp = (h, n) and output 1 if and only if the fol-

lowing hold:
(1) τ can be parsed asV0||π where |V0| = |S|.
(2) Each value of V is in {0, 1}λ .
(3) C.VerOpen(pp, digest, S,V 0,π) = 1.
(4) C.VerOpen(pp, digest0, S,V ,π) = 1.

Theorem 5.9. Assuming the existence of collision-resistant hash function families, there exists a
concurrently updatable hash function.

We prove Theorem 5.9 in Section 5.3, where we show that the construction C satisfies complete-
ness in Lemma 5.10, soundness in Lemma 5.14, and eficiency in Lemma 5.18.

5.3 Proofs

Lemma 5.10 (Completeness). The construction C satisfies completeness.

Proof. Fix any λ, n � N with n ≤ 2λ and pp in the support of C.Gen(1λ , n). To show the
completeness properties, recall that the hash function algorithms keep track of a Merkle tree at ptr
and a segment tree at segtree to keep track of which nodes are initialized. We start by defining a
notion that captures when memory at (ptr, segtree) is consistent with a Merkle tree for a partial
string D. Formally, we say that (ptr, segtree) is consistent with a partial string D = (n, I , A) if the
following hold:

(1) For every i � I , leaf i has value 1 in segtree,
(2) For every node with value 1 in segtree, the values of its ancestors in segtree are set to 1, and
(3) For every node node with value 1 in segtree, its value in ptr is equal to the value of node in

the Merkle tree for block(D1)|| . . . ||block(Dn) using the hash function given by pp.

We start by showing that doing an update preserves consistency.

Claim 5.11. Suppose that (ptr, segtree) is consistent with a partial string D. For any ordered set
S = (`(1), . . . , `(p)) of locations `(i) � [n] and tuple V = (v(1), . . . ,v(p)) of words v(i) � {0, 1}λ , let
(ptr0, segtree0) be pointers to memory after computing C.Update(pp, ptr, S,V). Then, (ptr0, segtree0) is
consistent with the partial string D0, where D0

(i) = v(i) for all i � [p], and D0 agrees with D at all
other locations.

Proof. When C.Update(pp, ptr, S,V) is computed, the only nodes updated in ptr and segtree are
those in ancestors(S). In segtree, every node in ancestors(S) is set to 1. This immediately gives the
first two properties of consistency. To show the third property, let MT be the Merkle tree for the
string block(D1)|| . . . ||block(Dn) using the hash function given by pp. We need to show that every

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0

31:30 N. Ephraim et al.

node with value 1 in segtree0 has the same value in ptr0 and MT . Since (ptr, segtree) are consistent
with D, and the only changes are to nodes in ancestors(S), it sufices to show that this holds for
every node in ancestors(S). Throughout this proof, we will refer to iteration j of C.Update as the
iteration that updates the jth level of the tree, for j = 0, . . . , log n.

Consider any node node � ancestors(S). We show by induction on the level of node that its
value in ptr0 is equal to its value in MT . For the base case, when node is at level 0 (i.e., it is a leaf), it
follows that node = `(i) for some index i. It is only updated at iteration 0, where it is set to
block(v(i)) = block(D `(i)), which gives the base case.

Next, assume that every node at level j has the same value in ptr and MT , and suppose node is at
level j+1. For convenience, let `L , `R be the locations for the left and right child of node, respectively.
During the update, node is only written to in the (j + 1)st iteration, where it is set to the hash of
the concatenation of values corresponding to its children, found in sets R,W maintained by the
algorithm. Let uL,uR be the values used for the left and right child, respectively. To show that the
value for node is indeed its value in MT , it therefore sufices to show that uL,uR are the values for
`L , `R in MT . Without loss of generality, we show this for the value uL used for `L .

To prove that uL is indeed the value of `L in MT , we claim the following:

Subclaim 5.12. If `L is initialized before the (j + 1)st iteration, then uL is the value of `L in ptr0. If
it is not initialized, then uL is set to dummy(j).

We complete the proof assuming Subclaim 5.12 and then show that the subclaim holds. The only
time that `L is accessed by C.Update is during the jth iteration. There are two cases to consider:

• Case 1: `L is in ancestors(S). In this case, it is initialized during iteration j, so it follows by
Subclaim 5.12 that uL is its value in ptr0. Since it is at level j, then by the inductive hypothesis,
this is equal to the value in MT .

• Case 2: `L is in dangling(S). In this case, it is not changed by C.Update. If it was already
initialized before the update, then the inductive hypothesis applies as in the previous case. If
not, then uL = dummy(j) by Subclaim 5.12. Moreover, since (ptr, segtree) is consistent with
D before the update, then the fact that `L is uninitialized in segtree implies that D ` = � for
every leaf ` that is a descendant of `L . Therefore, the value of `L in MT is dummy(j), so uL

is indeed equal to the value of `L in MT .

Since node is an ancestor of a leaf in S , these are the only two cases. Therefore, assuming
Subclaim 5.12, the value uL agrees with MT . To complete the proof, it remains to show
Subclaim 5.12.

To prove that Subclaim 5.12 holds, recall that the algorithm C.Update first checks if `L is in the
set W and then checks the set R. Both children are only accessed and modified in R,W in iteration j.
Between the two children, at least one child must be in ancestors(S). In this case, in iteration j it is
initialized and its final value in memory is added to W , which is the value used. If either child is not
in ancestors(S), then it is in dangling(S) by definition. In this case, it follows that in iteration j it is
added to R (and not W), where either its value in memory is used, or dummy(j) if it is not
initialized. This completes the proof of Subclaim 5.12, which in turn gives the claim.

Next, we show that the memory after initially hashing a partial string is consistent with that
partial string.

Claim 5.13. Let Dstart = (n, I , A) be a partial string, and let (ptr, segtree) be the pointers to the
Merkle tree and segment tree in memory after running C.Hash(pp, Dstart). Then, (ptr, segtree) are
consistent with Dstart.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

| |

0

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:31

Proof. Running C.Hash(pp, Dstart) results in the same memory as running:

(1) (ptr, digest) = C.Hash(pp, D�), where D� is the empty partial string.
(2) C.Update(pp, ptr, I , A), where we recall that I specifies the set of non-� locations in Dstart

and A is the assignment to those locations.

After C.Hash(pp, D�), it is vacuously true that the resulting memory is consistent with D�, since
there are no non-� words in D�. Therefore, by Claim 5.11, the memory after C.Update(pp, ptr, I , A) is
consistent with Dstart.

We are now ready to prove completeness. Fix any partial string Dstart = (n, I , A), integer m ≥ 0,
ordered sets S (i) � [n] and tuples V (i) � ({0, 1}λ) S (i)

for i � [m]. Compute

(1) (ptr, digest) = C.Hash(pp, Dstart).
(2) For i = 1, . . . ,m, compute (digest(i),τ (i)) = C.Update(pp, ptr, S (i),V (i)).

Let D be the partial string formed by writing each word in V (i) to Dstart at the corresponding loca-
tion in S (i) for i = 1, . . . ,m, and let MT be the Merkle tree for D. We start by noting that (ptr, segtree)
is consistent with D after all m updates. This following by induction on m: For the base case, when
m = 0, this follows from Claim 5.13. For the inductive step, assuming this holds for m
updates, then Claim 5.11 implies that it holds after the (m + 1)st update. Using the fact that
(ptr, segtree) is consistent with D, we proceed to show open completeness and update
completeness.

Open Completeness. Fix any p ≥ 0 and ordered set S = (`(1), . . . , `(p)). Compute

(V ,π) = C.Open(pp, ptr, S),

and parse V = (v(1), . . . ,v(p)). To show open completeness, we first make the following assertions
about the values in MT :

• For all `(i) � S , the value at leaf `(i) in MT is equal to block(v(i)).
• For all ` � dangling(S), the value in MT is equal to the value u such that (`, u) � π .
• The value of the root in MT is equal to digest(m).

These assertions hold by consistency of (ptr, segtree) with D. Specifically, each of these values is
either given by the node’s value in ptr , or is set to dummy(j) if uninitialized and at level j. Each
initialized node agrees with MT by consistency, and for any uninitialized node, consistency implies
that all of the leaves that are descendants of that node must be uninitialized and thus have the value
�. Therefore, dummy(j) is the value at the corresponding location in MT . Therefore, in either case,
the value given above is equal to the corresponding value in MT .

Using this, we proceed to show open completeness. We need to show (1) that D agrees with V
at the locations in S , and (2) that C.VerOpen(pp, digest(m), S,V ,π) accepts. (1) follows immediately
from our observation that V correspond to the values at S in MT .

For (2), recall that C.VerOpen does syntactic checks on V and π and then iteratively hashes
values down the tree to obtain a digest digest?. It accepts if all syntactic checks pass and digest? =
digest(m). By construction, V consists of a value v(i) for i � [p], and the proof π contains a pair (`, u)
for each ` � dangling(S), so the syntactic checks pass.

To show that digest? = digest(m), we have that digest? is derived from the values in V and π ,
which constitute a set of values for S � dangling(S). Specifically, digest? is obtained by iteratively
hashing each pair of siblings at each level until reaching the root. By Claim 5.8, there is a sub-tree
containing ancestors(S) whose leaves are all in S � dangling(S). It follows that having values for
every node in S � dangling(S) sufices to obtain a value for the root. Moreover, since the values

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

(i) (i)

λ

Pr

�
����

�
����

≥ ,

31:32 N. Ephraim et al.

given for S � dangling(S) are equal to the corresponding values in MT , then digest? is equal to the
root of MT . Since digest(m) is also equal to the root of MT , then digest? = digest(m), which
concludes the proof of open completeness.

Update Completeness. Fix any p ≥ 0, ordered set S = (`(1), . . . , `(p)), and tuple V = (v(1), . . . ,
v(p)). Compute

(digest,τ) = C.Update(pp, ptr, S,V).
To show update completeness, we need to show that C.VerUpd(pp, digest(m), S,V , digest,τ) = 1,
which consists of syntactic checks and two inner verifications. The syntactic checks pass by defi-
nition of C.Update, which in particular state that τ can be parsed as V0||π where V 0 is a tuple of p
values. For the verifications, we need to show that both of the following hold:

(A) C.VerOpen(pp, digest(m), S,V 0,π) = 1
(B) C.VerOpen(pp, digest, S,V ,π) = 1

For Equation (A), we claim that (V 0,π) would be the output of C.Open(pp, ptr, S), had it been
run before the final update. Specifically, for each i � S,V 0 consists of a value vprev with block(vprev)
equal to the value in memory at each leaf in S before the update, or � if the leaf is uninitialized, just
as what would be output by C.Open. For π , it consists of the values read for each node in
dangling(S), or the dummy values if uninitialized. Since C.Update never writes to the nodes in
dangling(S), then these values are exactly what would be returned by C.Open. Therefore, Equation
(A) holds by open completeness.

For Equation (B), we claim that (V ,π) would be the output of running C.Open(pp, ptr, S) after
this final update. To see this, we observe that V consists of a value v(i) for each `(i) � S where
block(v(i)) is equal to its value in ptr after the update. Moreover, each of these nodes is initialized,
and so these are the values that would be returned by C.Open. For π , the same logic as above holds
(namely, that the nodes in dangling(S) are not changed by C.Update, and so are determined exactly
as by C.Open). Therefore, Equation (B) accepts by open completeness, concluding the proof.

Lemma 5.14 (Soundness). The construction C satisfies soundness.

Proof. Suppose for contradiction there exists a non-uniform PPT adversary A = { A λ }λ�N and
a polynomial q such that for infinitely many λ � N, there exists an integer n ≤ 2 such that

� C.VerOpen(pp, digest(0), S (0),V (0),π (0)) = 1 � �
� �i � [m] : C.VerUpd(pp, digest(i−1), S (i),V (i), digest(i),τ (i)) = 1 � � 1

C.VerOpen(pp, digest(m), S,V ,π) = 1 � q(λ)
� �̀ � S ∩ S (0) : vprev , vfinal �

(5.1)

the probability is over pp ← C.Gen(1λ , n) and (m, {(digest(i), S (i),V (i),τ (i))}i�[m], digest(0), S (0),
V (0),π (0), S,V ,π) ← Aλ (pp) and vprev and v final are defined as follows:

• vprev is the value in V (j) at the position of ` in S (j), where j � {0, . . . , m } is the largest index
with ` � S (j).

• v final is the words in V at the index of ` in S .

We show that whenever A succeeds, we can construct authentication paths certifying that ̀ can be
opened to two different values in digest(m), which breaks the binding of standard Merkle trees
assuming collision resistance.

The outline of the proof is as follows: First, in Claim 5.15, we will show that given a valid opening
for many locations, we can eficiently construct a valid with respect to each individual location,
which in fact is just a single Merkle tree authentication path. This claim actually sufices for the

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

` ` ` `

`

`

`` `

` ` `

`

` `

` `

`

`

`

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:33

case of no updates, i.e., m = 0. To deal with m > 0, we show in Claim 5.16 how, given an opening
under for ` under digest(i) and a valid update proof to digest(i+1), we can construct an opening for `
under digest(i+1) (or otherwise break collision resistance). At a high level, applying Claim 5.15 and
then Claim 5.15 m times yields two Merkle tree authentication paths for vprev , v final with respect
to digest(m), which contradicts collision resistance of H as required.

We next formally state these general claims, then prove the lemma assuming they hold, and
finally prove each of the claims to complete the proof of the lemma.

Claim 5.15. For any λ, n ≤ 2λ ,p � N, pp in the support of C.Gen(1λ , n), ordered set S =
(`(1), . . . , `(p)), tuple V = (v(1), . . . ,v(p)), digest digest, and proof π , if

C.VerOpen(pp, digest, S,V ,π) = 1,

then there exist proofs π (1), . . . ,π (p) such that

C.VerOpen(pp, digest, `(i),v (i),π (i)) = 1

for all i � [p]. Moreover, they can be computed from (S,V ,π) in polynomial time.

Claim 5.16. There exists a polynomial-time algorithm A 0 that on input (pp, digest, `,v, π ,
digest0,S,V ,τ), if

(1) C.VerOpen(pp, digest, `,v, π) = 1 and
(2) C.VerUpd(pp, digest, S,V , digest0,τ) = 1,

then A 0 either outputs a collision in H under h, where h is given by pp, or outputs a proof π ? such
that

C.VerOpen(pp, digest0, `,v?, π ?) = 1,
where v? = v if ` < S and otherwise v? is the value in V at the index of ` in S.

Proving the lemma assuming the above claims. We next prove the lemma assuming that
Claims 5.15 and 5.16 hold. We condition on the event that A succeeds, which occurs with proba-
bility at least 1/p(λ).

First for the case of m = 0, we apply Claim 5.15 for (S(0),V (0),π (0)) and ` � S (0) to eficiently
compute a proof π (0) such that C.VerOpen(pp, digest(0), `,v(0),π (0)) = 1 where v(0) is the value in
V (0) corresponding to location ` � S (0). Note that, since m = 0, then v (0) = vprev by definition.
Next, we apply the claim for (S,V ,π) and ` � S to eficiently compute a proof π final such that
C.VerOpen(pp, digest(0), `,v final,π final) = 1. By definition of C.VerOpen, π (0) and π final both give
valid Merkle tree authentication paths with respect to the same location but different valuesvprev ,
v final. This contradicts collision resistance of H as this event occurs with probability 1/p(λ) by
assumption.

Next, we consider the case when m > 0. Again, we start by applying Claim 5.15 for (S (0),V (0),

π (0)) and ` � S (0) to eficiently compute π (0) such that C.VerOpen(pp, digest(0), `,v(0),π (0)) = 1
where v(0) is the value for ` in V (0). Now we apply Claim 5.16 for i = 1, . . . ,m to either find a
collision or construct a proof π (i) for the value v(i) specified by the first i updates. Specifically, for
the first case of i = 1, note that (pp, digest(i−1), `,v (i−1), π (i−1), digest(i), S (i),V (i), τ (i)) satisfy the
conditions for Claim 5.16. As a result, we either find a collision or compute a proof π (i) for the
value v(i) with respect to digest(i). Assuming we do not find a collision, this implies that the
conditions for the claim also hold for general i > 1 as well. As such, after applying the claim at
most m times, we will either find a collision or have computed a proof π (m) such that

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

` ` `

`

`` `

31:34 N. Ephraim et al.

C.VerOpen(pp, digest(m), `,v(m), π (m)) = 1. Note that v(m) = vprev by definition. Finally, we apply
Claim 5.15 for (S,V ,π) and ` � S to eficiently compute eficiently compute a proof π final such that
C.VerOpen(pp, digest(m), `,v final,π final) = 1. Again, by definition of C.VerOpen, π (m) and π final

both give valid authentication paths for ` but for different values vprev , v final. Thus, in the case
where applying Claim 5.16 does not directly find a collision with respect to H , we still find a col-
lision by the binding property of Merkle trees. As this event occurs with probability 1/p(λ) by
assumption, this contradicts the collision resistance of H .

Proving the claims. We now continue to prove Claims 5.15 and 5.16. Towards this, we start by
defining a helpful criteria for when C.VerOpen accepts. This requires defining an algorithm extend
and the notion of an induced value. To define these, fix any λ, n,p � N with p ≤ n ≤ 2λ , pp in the
support of C.Gen(1λ , n), ordered set S = (`(1), . . . , `(p)), tuple V = (v(1), . . . ,v(p)), and list π of values
for nodes in dangling(S).

Define extend(pp, S,V ,π) to do the following: Parse pp = (h, n) and let T be the proper sub-tree of
the complete binary tree given by Claim 5.8 whose leaves are S �dangling(S). Assign values to the
nodes in T as follows:

• For each leaf `(i) in S , let its value be given by block(v(i)).
• For each node in dangling(S), let its value be given by π .
• For the remaining nodes, iteratively hash each pair of siblings using h at each level to assign

a value to their parent, until reaching the root.

Let MT be the resulting (proper) Merkle tree on T , and define extend(pp, S,V ,π) = MT .
Using this algorithm, we define an induced value as follows: For any node ` and value u, we say

that (`, u) is induced by (S,V ,π) if the value of ` in MT is u, where MT = extend(S,V ,π). Note that
this implies that u is the value of ` in any Merkle tree that agrees with the above values at S �
dangling(S). Our main observation for this proof is that when S,V ,π have the correct syntax, the
following subclaim holds:

Subclaim 5.17. C.VerOpen(pp, digest, S,V ,π) accepts if and only if digest is the value for the root
induced by (S,V ,π).

This follows immediately from the definition of C.VerOpen. Specifically, C.VerOpen(pp, digest,
S,V ,π) implicitly runs extend(pp, S,V ,π), compares the value of the resulting root to digest, and
accepts when they are equal. Using Subclaim 5.17, we are now ready to prove the two claims above.

Proof of Claim 5.15. Fix λ, pp, S , V , digest, and π as in the statement of the claim. Let MT =
extend(pp, S,V ,π). For each i � [p], let π (i) contain all pairs (`, u) such that ` � dangling(`(i)) and
u is the value of `(i) in MT . Note that these values exist as dangling(`(i)) � ancestors(S) �
dangling(S), and MT contains the latter nodes.

For each i � [p], we show first that π (i) is eficiently computable, and then we show that it gives
a valid opening proof. For eficiency, note that extend(pp, S,V ,π) runs in time poly(λ,p, log n),
since it requires computing at most |S � dangling(S)| hashes, each taking time polynomial in λ,
and |S � dangling(S)| � poly(p, log n) by Claim 5.7. Moreover, the input to extend has length
polynomial in λ, p, and logn, so it follows that π (i) can be computed in polynomial time based on
S,V ,π .

Next, we show that C.VerOpen(pp, digest, `(i),v (i),π (i)) = 1. By Subclaim 5.17, this ac-
cepts whenever digest is the value for the root induced by (`(i),v (i), π (i)). Let MT0 =
extend(pp, `(i),v(i), π (i)). We want to show that digest is the value of the root in MT 0. Note that
the values of `(i) and of dangling(`(i)) agree between MT and MT0 by definition. It follows that

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0

0

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:35

the values for each ancestor of `(i) agree between the two Merkle trees. Finally, we note that, since
C.VerOpen(pp, digest, S,V ,π) accepts, then digest is the value of the root of MT , and hence is the
value of the root of MT 0, which completes the proof.

Proof of Claim 5.16. Since C.VerUpd(pp, digest, S,V , digest0,τ) = 1, then τ can be parsed as
Vprev||π0 such that C.VerOpen(pp, digest, S,Vprev,π 0) = 1 and C.VerOpen(pp, digest0,S,V ,π 0) = 1.
In the case that ̀ � S , then by Claim 5.15, A 0 can use (S,V ,π 0) to compute and output a proof π ? in
polynomial time such that C.VerOpen(pp, digest0, `,v?, π ?) accepts, where v? is the value of ̀ given
by V . As a result, we focus on the case that ̀ < S , and thus v ? = v .

Consider running the verifications C.VerOpen(pp, digest, `,v, π), C.VerOpen(pp, digest, S,Vprev,
π 0), and C.VerOpen(pp, digest ,S,V ,π 0). They all accept by assumption, and from the inputs
to each we can define a Merkle tree with all the induced values. Specifically, let MT =
extend(pp, `,v, π), let MTprev = extend(pp, S,Vprev,π 0), and let MT final = extend(pp, S,V ,π 0).
By Subclaim 5.17, the root of MT and MT prev is digest, and the root of MT final is digest0. Note
that MT contains all nodes in ancestors(`) � dangling(`), and both MT prev and MT final contain
ancestors(S) � dangling(S).

To construct a proof π ? corresponding to opening location ` to value v ? in digest0, we need to
construct values for dangling(`), which are simply the nodes in the authentication path for ` .
Before defining π ? , we introduce some notation. For j � {0, . . . , log n − 1 }, let nodej be the
ancestor of ` at level j and let sibj be its sibling. Also, let i � [log n] be the level in a binary tree
containing the closest common ancestor of leaf ` and any leaf in S .

Next, define π ? to contain all pairs (sibj ,uj) for j � {0, . . . , log n − 1 } where uj is defined as
follows:

• If j < i − 1, then uj is the value of sibj in MT (or � if it does not exist).
• If j ≥ i − 1, then uj is the value of sibj in MT final (or � if it does not exist).

We claim that either C.VerOpen(digest0, `,v?, π ?) = 1, in which case A 0 outputs π ? , or we can
find a collision in the hash function. Recall that C.VerOpen can be split into syntactic checks, and
checking the value of digest0. We first show that the syntactic checks done by C.VerOpen pass,
and then we show that either A 0 outputs a collision, or the rest of the verification succeeds.

For the syntactic checks, it follows that the inputs to C.VerOpen are formatted correctly, so we
only need to show that π ? contains a value for all nodes in dangling(`) = (sib1, . . . , siblog n−1). To
show this, we have the following:

• For j < i − 1, sibj � dangling(`) by definition and so is successfully found in MT .
• For j = i − 1, we note that nodei is the closest common ancestor of ` and S , and is not

a leaf, since ` < S . Therefore, the children of nodei , namely, sibi−1 or nodei−1, must be in
ancestors(S) � dangling(S). This implies that sibj is found successfully in MT final.
We note that this also implies that nodei−1 is in dangling(S), since it cannot be in ancestors(S)
by definition of i, which is will be helpful later on in the proof.

• For j > i − 1, we have that nodej � ancestors(nodei) � ancestors(S), and so its sibling
sibj � ancestors(S) � dangling(S).

This shows that π ? contains a value for every node in dangling(`), so the syntactic checks done
by verification pass.

Next, C.VerOpen(digest0, `,v?, π ?) checks digest0 by computing the root induced by (`, v ?, π ?).
Along the way, it computes a value for each node in ancestors(`(i)). Let c1, . . . , clog n be these
values. We will show that either clog n = digest , and so verification accepts, or we can find a
collision. Towards this, we have the following observations:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:36 N. Ephraim et al.

(1) ci−1 is the value of nodei−1 in MT .
This holds, since ci−1 is computed based on leaf values for ` and for sib0, . . . , sibi−2 from

MT , and so it agrees with MT .
(2) Either nodei−1 has the same value in MT and MTprev, or we can find a collision.

Both Merkle trees MT and MTprev have digest as the root. They also both contain nodei−1,
since it is in both ancestors(`) by definition and in dangling(S) as shown above. This implies
that they also contain the nodes in its authentication path. If the values for nodei−1 between
the two trees are not the same, then this would give two different openings for nodei−1

relative to digest, which can be used to find a collision.
(3) nodei−1 has the same value in MTprev and MT final.

MTprev is induced by (S,Vprev,π 0), while MT final is induced by (S,V ,π 0). Therefore, these
trees agree at all nodes in π0, which consists of all nodes in dangling(S), and in particular
contains nodei−1 as shown above. Therefore, MT prev and MT final have the same value for
nodei−1.

(4) (ci , . . . , clog n) are the values for nodei , . . . , nodelog n , respectively, in MT final.
By combining observation 1, 2, and 3, we have that ci−1 is the value of nodei−1 in MT final.

Moreover, the values for sibi−1, . . . , siblog n−1 in π ? are defined to be the values from MT final.
For j = i, . . . , log n, the value cj is computed as the hash of these values for sibj−1 and nodej−1,
so cj is the value of nodej in MT final.

Observation 4 implies that clog n

required.
= digest0, so C.VerOpen(pp, digest0, `,v?, π ?) = 1, as

This completes the proof of Lemma 5.14.

Lemma 5.18 (Parallel Efficiency). There exists a polynomial β such that the construction C
satisfies β-parallel eficiency.

Proof. We show the three required eficiency properties in the following claims. The lemma
then follows by letting the polynomial β be any polynomial larger than q1, q2, and q3 given in the
claims.

For the following claims, let tH(λ) denote the time it takes to hash each pair of 2λ-bit words, and
note that tH(λ) � poly(λ). It will also be helpful to note that for any set S of p locations,
ancestors(S) � dangling(S) contains at most p logn nodes by definition.

Claim 5.19. There exists a polynomial q1 such that for any λ, n � N with n ≤ 2λ and pp in the
support of C.Gen(1λ , n), the algorithms C.Open, C.Update, C.VerOpen, and C.VerUpd, when given a
set S of p locations and public parameters pp, can each be computed in with work p · q1(λ), or with depth
q1(λ) using p · q1(λ) processors.

Proof. We analyze C.Update, and we observe that the analyses for C.Open and C.VerOpen
follow similarly as the algorithms have the same overall structure. Furthermore, C.VerUpd simply
calls C.VerOpen twice. Thus, it sufices to argue the claim for C.Update.

We note that C.Update can be split into (1) preprocessing, (2) access and compute steps at each
level in the tree, and (3) forming the output. Before analyzing the complexity of each of these, we
discuss how to implement each of the relevant sets to achieve eficiency. The sets S , dangling(S),
ancestors(S), R, and W each contain at most p · log n � p · poly(λ) nodes, and R,W additionally
contain 2λ-bit values for each node. We would like each set to support concurrent reads and writes to
distinct locations. This is done by allocating 2n · poly(λ) bits in memory for each set (initialized to
zeroes) and using an indicator bit to say if an element is in the set or not followed by its value (if
any).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:37

This can be done as there are 2n nodes in the tree, and each location can be encoded with
log(2n) bits (and so with the above implementation, there are poly(λ) bits in memory for each
node). Specifically, the root is encoded as 0, and for each node with index i , its left and right
children are encoded as 2i + 1 and 2i + 2, respectively. The exact encoding is not important for our
application, only that each location requires log(2n) bits and that it gives a way to find a node’s
parent or child in time poly(λ). Note that with this encoding and at most p · poly(λ) processors for
each of the above sets, every location in each set can be accessed concurrently.

Next, we analyze the running time of (1), (2), and (3). For (1), the preprocessing steps require
computing the relevant sets, which can be done in depth poly(λ) using p processors with the
implementation described above. Specifically, computing R and W is straightforward, where for
W , we assume that each block(v(i)) can be encoded (and decoded) in poly(λ) time. For ancestors(S),
we can use p processors as follows: Each of the p processors can start at the leaf nodes (where each
processor know its starting leaf index). Subsequently, they can move down the tree and update the
sets. To make sure only one process is accessing a single location at a time, after each processor
adds node at level i of the tree, it can check if that node’s sibling was also added to ancestors(S). If
so, then only the processor accessing the sibling with the larger index can move on to the next level.
Once a node stops (because its corresponds to the smaller of the two nodes), it can stop checking
nodes further down the tree. Thus, at most two processors might be trying to access a node at each
step, and each processor can eficiently check if it should continue. After determining ancestors(S),
the set dangling(S) can be computed in depth poly(λ) with p processors, where each processor is
initially assigned to a leaf node in S , and adds that node’s sibling to dangling(S) whenever the
sibling is not given by ancestors(S). Each processor can stop making updates exactly as above, so
each memory location is only accessed by a single process.

For (2), we would like each access step to take a single time slot, as specified by the algorithm.
To do this, at the end of the pre-processing steps, we can compute the locations for each leaf in S
� dangling(S), which only adds an additional poly(λ) depth using p logn processors, and then
spawn p logn processors to access these locations in Merkle tree in the subsequent access step.
Then, during the compute steps, using depth poly(λ) and at most p processors, the locations for the
next access step can be computed as above. Continuing in this fashion ensures that each access step
is indeed a single step, with at most p processors. The compute steps additionally require updating R
and W , as well as computing a hash per each of the p processors. This takes depth poly(λ) using p ·
poly(λ) processors, where poly(λ) extra processors are possibly needed to compute the hash
eficiently. These access and compute steps are repeated logn ≤ λ times for each level in the tree.

For (3), forming the output requires reading R with at most poly(λ) work per element in the set,
which can be distributed as above. Obtaining the value of digest from W requires an additional
O(λ) depth.

Thus, it holds that there is a polynomial q1 such that C.Update, C.Open, C.VerOpen, and
C.VerUpd can be computed with work p · q1(λ), or with depth q1(λ) using at most p · q1(λ)
processors.

Claim 5.20. There exists a polynomial q2 such that for any λ, n � N with n ≤ 2λ , pp in the
support of C.Gen(1λ , n), and partial string D = (n, I , A) computing C.Hash(pp, D) can be done in
work |I| · q2(λ), or with depth q2(λ) with |I| · q2(λ) processors.

Proof. Recall that computing C.Hash(pp, D) consists of allocating memory initialized to 0
(which we assume is free), computing log n hashes to compute dummy values, and running
C.Update(pp, ptr, I , A). As shown in the previous claim, running C.Update takes either work |I| ·
q1(λ), or depth q1(λ) using |I| · q1(λ) processors, and computing log n ≤ λ hashes requires

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0 0 1 1
i i

j j

i

j

31:38 N. Ephraim et al.

tH(λ) · log n � poly(λ) work. Thus, we let q2 be a polynomial such that q2(λ) is at least as large as
q1(λ) + tH(λ) · λ to cover the depth requirement.

Claim 5.21. There exists a polynomial q3 and an algorithm OpenUpdate such that the following
holds: For any λ,p, n � N with n ≤ 2λ , pp in the support of C.Gen(1λ , n), pointer ptr, ordered set S �
[n] of p locations, and tuple of words V � ({0, 1}λ)p , def ine(V 0,π , digest,τ) as follows:

• (V 0,π) = C.Open(pp, ptr, S) and
• (digest,τ) = C.Update(pp, ptr, S,V).

It holds that OpenUpdate(pp, ptr, S,V) outputs (V 0,π , digest,τ) and computing k sequential calls to
OpenUpdate, each on at most pmax locations, can be done with k · pmax · q3(λ) work, or with depth (k
− 1) + q3(λ) using at most pmax · q3(λ) processors.

Proof. For the algorithm OpenUpdate, we note that C.Update already computes the values
for S before the update and the values for dangling(S). We therefore define OpenUpdate to
run C.Update to obtain (digest,τ), parse τ = V0||π where V 0 � ({0, 1}λ � {�})p and output
(V 0,π , digest,τ). SinceV 0 gives value for each location in S in the Merkle tree before being updated
(or � is uninitialized), thenV 0 is the tuple of values for S given by C.Open(pp, ptr, `) before the up-
date. Additionally, because the node values for dangling(S) are unchanged by C.Update, the proof π
output by OpenUpdate will be the same as in C.Open. Therefore, the output of OpenUpdate is
correct.

To perform k sequential updates to the Merkle tree, we observe that it is possible to pipeline
them, as we describe next. Note that each update only needs to share memory corresponding to
the Merkle tree and segment tree. All other memory used by the algorithm specified in Claim 5.19
can be allocated per updated. Consider a sequence of k sequential calls to OpenUpdate, denoted
Updi for i � {0, . . . , k − 1 }, each updating at most pmax locations. Recall that OpenUpdate pre-
processes its input, then iterates over the levels of a binary tree doing a single access step and then
compute steps at each level, and then forms its output. In what follows, it will be helpful to denote
the phases of computation done by Updi as the sequence:

Pi , Ai ,Ci , Ai ,Ci , . . . , Alog(n)−1,Clog(n)−1, F i ,

where Pi denotes the pre-processing steps, Ai is the access step at iteration j, Ci denotes the com-
pute steps at iteration j, and Fi corresponds to the steps for forming the output.

To perform the updates in parallel, we will pipeline them in different processes so one starts
after the other: Specifically, Upd0 will start at time 0, Upd1 will start at time 1, and in general Updi

will start at time i . Each process remembers the node values it sees during the procedure. The value
of the root node, when all operations finish, is the new digest. Additionally, even if some update
is given less than pmax positions, we require that certain phases of the update whose running time
depends on pmax (namely, the preprocessing steps and compute steps) still take time as if they were
given pmax positions. Namely, each of these takes fixed polynomial time in λ and pmax, so this can
be easily implemented by doing dummy operations until the right amount of time has elapsed.
This ensures that for each update Pi takes the same amount of time for each update i, and Cj takes
the same amount of time for each i, j.

In terms of correctness, we want to show that for every i � [k], the output of Updi in the
concurrent execution is the identical to its output in a sequential execution where the operations
are run sequentially (using the number of processors specified by the C.Update description). To do
so, we will show that for each block of memory shared between different operations, the memory
accesses to that block occur in the same order in both executions. The shared memory is that in ptr
and segtree. Note that the only steps that access this memory are the access steps Ai .

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

j

j jj j

j

j
i i i i

0

j j

U

k

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:39

Consider any memory location in level j of ptr or segtree. This is only accessed by Ai for each i.

Therefore, consider any Ai and Ai0
such that such that Ai occurs before Ai0

in the sequential exe-
cution. We will show that this is preserved in the concurrent execution.

To show this, let tP be the depth of the preprocessing steps in single call to C.Update and let
tC be the depth of the compute steps in a single C.Update, and note that tP , tC are functions of
λ,pmax. In the concurrent execution, Ai occurs at time t , i + tP + j · (tC + 1). This is because Updi

starts at time i, and before Ai occurs, there are tP steps for the pre-processing Pi , j access steps
A0, . . . , Aj−1, and j groups of tC compute steps C0, . . . , Cj−1. Let t0 , i0 + tP + j · (tC + 1) be the time

that Ai occurs. Since Ai occurs first in the sequential execution, then i < i0, which implies that t
< t0. Since this holds for every i , i0, it follows that every memory access to level j of the tree
occurs in the same order in both the concurrent and sequential executions, which implies
correctness. Note that this crucially relied on the fact that each access step indeed is a single step.

Last, we show eficiency for the pipelined operations. We note that, since OpenUpdate requires
running C.Update and then formatting the output, a single invocation to OpenUpdate requires
depth 2 ·q1(λ) using at most pmax ·q1(λ) processors by Claim 5.19, and can be done with 2pmax ·q1(λ)
total work. This implies that the total work to do all k operations is k · pmax · 2q1(λ). To decouple
this into depth and processors, we note that, since we pipeline the operations such that in every
step a new OpenUpdate begins, the total depth of this sequence of operations can be bounded by 2
· q1(λ) + (k − 1). Moreover, there can be a total of 2 · q1(λ) operations occurring concurrently,
and so (2 · q1(λ)) · (pmax · q1(λ)) bounds the total number of processors needed at any given time.
Letting q3(λ) = 2 · (q1(λ))2 completes the proof.

This completes the proof of Lemma 5.18.

6 FROM SUCCINCT ARGUMENTS TO SPARKS

In this section, we present our main transformation, which will be instrumental in our construc-
tion of SPARKs. Specifically, we show a generic transformation from any concurrently updatable
hash function and succinct argument of knowledge for NP, to an argument that satisfies the
SPARK completeness and argument of knowledge properties, and where the provers overhead de-
pends additively on the multiplicative overhead of the original succinct argument. As we show in
Section 8, when instantiating this transformation with a succinct argument whose prover overhead
is suficiently small (which is indeed satisfied by existing succinct arguments), this transformation
yields a SPARK.

We first give the transformation in the interactive setting. To do so, we start by describing a
helper language in Section 6.1 and then give the interactive protocol in Section 6.2. We then
prove completeness, argument of knowledge, optimal prover depth, and succinctness in Section 6.3.
Finally, we show the transformation in the non-interactive setting in Section 6.4.

6.1 The Update Language

Let (M, x ,y, L, t) be any statement in LPRAM, where M is a PRAM program with access to a string
D � {0, 1}nλ in memory for n ≤ 2λ . To help with our construction, we define the language Lupd in
Figure 2. This language corresponds to k steps of a PRAM computation where at each step we
additionally update a digest corresponding to the memory of M . Specifically, a statement

(M, x , k, pp,h , digest0, hash0, digestk , hashk)

is in Lupd if there exists a sequence of k consistent updates that start with digest digest0 and end
with digest digest . Here, each update may correspond to concurrently reading or writing multiple
positions. The ith update (digesti ,Vi

prev,Vi
rd,πi ,τi) specifies the digest digesti after that step, the

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

i i

0

−1

i
rd wt

i−1

i i

i−1

0 k
0 k

i i i

i i

i i

i

U

31:40 N. Ephraim et al.

Fig. 2. A language for verifying k steps of a RAM computation M on input x from initial state State0 to final
state Statefinal.

values V prev at the updated locations in the digest before the update, the values V rd read from or
overwritten in D during that step, and proofs πi ,τi validating the operations performed at that
step.

The relation of this language is defined relative to a starting PRAM configuration (State0,V rd)
and the values given by

(Statei , Opi , Si ,Vi
wt) = parallel-step(M, Statei−1,Vi

rd)

for i � [k]. For every step i, the relation checks (1) that the update from digesti−1 to digesti is valid
(using proof τ and the values V and V) and (2) there is a valid opening for digest at locations
in Si (using proof πi and the values V prev). Specifically, this check guarantees that the value in V rd

claimed to have been read for each position either already appeared there under digest , or that the
position was � before step i and was initialized correctly in step i. Last, it checks that the values
before the sequence of updates State0,V rd and those after the final update Statek ,V rd hash
(using h) to the values hash , hash , respectively, given by the statement.

We emphasize that for each step i, the values V rd, V wt, and V prev each serve a difference purpose:
for each wt operation in the update,V wt contains the value written to D, andV rd contains the value

overwritten in D. For each rd operation, V rd contains the read value (and V wt contains �). Finally,
V prev contains the values underlying the digest before the update, at all the positions in question.

The key properties of this language are (1) the witness scales with the length of the computation
and not the size of the memory, and (2) witnesses for consecutive Lupd computations can be merged
into a single witness for a larger Lupd computation. This allows us to prove that (M, x ,y, L, t) �
L PRAM with witness w by splitting a proof that M(x,w) = 1 into proofs of many sub-computations,
where the proof of each sub-computation will correspond to a statement in Lupd .

The complexity of Lupd . Note that the language Lupd is a standard NP language. In particular,
verifying that an instance-witness pair corresponding to k ≤ t updates is in the relation for Lupd

can be done by a circuit with depth k · β(λ) · q(λ, |(M,x)| , log t) for a polynomial q using β(λ) · pM
processors, where β is the eficiency of the concurrently updatable hash function, whenever the

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

s

U

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:41

Fig. 3. A parallel algorithm, used in the protocol in Figure 4, that computes and proves T steps of RAM
computation.

number of positions changed in each update is at most pM (this follows from the eficiency of the
concurrently updatable hash function). When using a succinct argument to prove statements in
Lupd , we can either view the relation as a circuit, Turing machine, or PRAM machine that uses
β(λ) · pM processors.

6.2 Interactive Protocol

In this section, we give our protocol in Figures 3 and 4. It relies on the following ingredients:

• A succinct argument of knowledge (PsARK , V ARK) for Lupd with (α , ρ)-prover eficiency.
• A concurrently updatable hash function C with β-parallel eficiency.
• A collision-resistant hash function family ensemble H = { Hλ }λ�N with h : {0, 1}� → {0, 1}λ

for each h � Hλ . We note that this is implied by C.

We refer to Section 2 for a high-level overview of the construction and next give the formal details.

Parameters. For ease of readability for the protocol and corresponding proofs, we define the
parameters for the protocol with respect to the relation RPRAM, security parameter λ � N, and

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

s

s

U

U

31:42 N. Ephraim et al.

statement (M, x , t , L) � {0, 1}� as follows: Note that we assume that all functions defined below
are computable in polynomial time in their input length.

• n ≤ 2λ is the amount of words in memory needed to run M , and pM is the number of parallel
processors used by M .

• β , β(λ) is the “hash eficiency” of our construction. Namely, β upper bounds the parallel
eficiency of C on security parameter λ and the time to compute a hash from Hλ . Specifically,
we will be using the hash function h � Hλ on inputs containing k RAM states and k words,
for k � N, and we require that this takes time β using k · β processors. For example, this can be
achieved by using C for H .

• α and ρ are functions defining the prover eficiency of (PsARK , V ARK). For any security pa-
rameter Λ, machine, input, and output of total length X , and bound on time T to verify a
statement in Lupd using P processors, without loss of generality, we assume α(Λ, X ,T , P)/T
and ρ(Λ, X ,T , P) are increasing functions in X , T , and P .11 For any statement in Lupd corre-
sponding to k updates, we note that T can be written as k · f (k) where f is increasing in k
(and also depends on λ, |(M,x)|), and so α (Λ, X ,T , P)/k is also increasing as a function of k .

• `upd, tupd,pupd are functions determining the complexity of an Lupd instance on at most t
updates. Define `upd , `upd(λ, |(M,x)| , t) to be an upper bound on the statement length, and
note that ̀ upd � |(M,x)| + log t + poly(λ) by definition of Lupd . We let tupd , tupd(λ, |(M,x)| , t)
upper bound the time to verify the instance using pupd , pupd(λ,pM) processors. Note that
tupd � t · β · |(M,x)| · poly(λ, log t) when pupd = β · pM .

• α ? , α (λ, `upd, tupd,pupd)/t is the worst-case multiplicative overhead (with respect to the
depth t) of the depth of running PsARK to prove a statement in Lupd corresponding to at
most t steps of computation, when using ρ ? , ρ(λ, `upd, tupd,pupd) processors. Note that
this implies that any valid Lupd statement with k ≤ t steps can be proven in parallel time
α ? · k with ρ ? processors.

• γ , α ? + 1 is such that a 1/γ fraction of remaining computation is done at each recursive
call to Compute-and-prove. We note that γ can be eficiently computed as a function of the

common inputs to the protocol.

We formalize the protocol in Figures 3 and 4. We are now ready to state our main theorem.

Theorem 6.1 (Restatement of Theorem 1.1). Suppose there exists a concurrently updatable hash
function and a succinct argument of knowledge (PsARK , V ARK) with (α , ρ)-prover eficiency for the
NP language Lupd . Then, there exists an interactive protocol (P , V) for RPRAM satisfying SPARK
completeness and argument of knowledge for NP, as well as the following eficiency properties:

There exists a polynomial q such that for all λ � N and ((M, x ,y, L, t),w) � RPRAM where M has
access to n ≤ 2λ words in memory and pM processors, the following hold: Let α ? and ρ ? (formally
defined above based on α and ρ) be the multiplicative overhead in depth (with respect to the number of
steps) and number of parallel processors used, respectively, by PsARK to prove a statement in Lupd

corresponding to at most t steps of computation. Then:

• The depth of the prover is bounded by t + (α ?)2 · |(M,x)| · L · q(λ, log(t · pM)) when using
(pM + α ? · ρ ?) · q(λ, log(t · pM)) processors.

• The work of the verifier is bounded by α ? · |(M,x)| · L · q(λ, log(t · pM)), and the length of the
transcript produced in the interaction between P(w) and V is bounded by α? ·L·q(λ, log(t ·pM)).

11For example, if α (Λ, X , T , P)/T were not increasing in T , then we could def ine an upper boundα0(Λ, X , T , P) = T ·
maxt ≤T (α (Λ, X , t, P)/t) that is increasing in T and preserves asymptotic behavior.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:43

Fig. 4. Protocol (P , V) for RPRAM .

We prove Theorem 6.1 by showing that the protocol in Figure 4 is a SPARK for RPRAM with ρ-
succictness for every ρ with ρ(λ, t) � poly(λ, log t). The proof is given in Section 6.3. Specifically,
we show completeness in Lemma 6.2, argument of knowledge in Lemma 6.3, prover eficiency
in Lemma 6.13, and succinctness in Lemmas 6.16 and 6.17. Before giving the proofs, we give the
following remarks about the construction:

Remark 8 (On the Size of M and x). We note that when we bound the communication complexity
(Lemma 6.17), we assume without loss of generality that the machine M and input x are a priori
bounded by a f ixed polynomial inλ. This enables us to bound the number of sub-protocols, and
hence the communication complexity, independently of |(M,x)|. A similar observation was made by
Reference [16] to achieve succinctness. This assumption is without loss of generality, since P , when
given a large input (M, x), could instead compute digest = h(M, x) where h is a hash function and
prove the instance (Uh, (h, digest), t 0, L) using witness (M, x ,w). Here, Uh is a universal RAM

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

h

i i

i i i i

i

−1 0
rd

i i i

i

31:44 N. Ephraim et al.

machine for pM bounded parallelism with the hash function h hardcoded. Uh receives input digest,
witness (M, x ,w), and checks that digest = h(M, x) and if so, computes and outputs y = M(x,w). U
has size poly(λ) independent of |(M,x)|, and because it is a RAM machine, it can perform the hash
and simulate M in time t0 = t + |(M,x)| · poly(λ). Additionally, U uses the same amount of
parallelism as M and n + |(M,x)| · poly(λ) memory, where the additional memory is used to
compute the hash (note that if the resulting memory size is larger than 2λ , then P and V can
simply use a polynomially larger security parameter to prove the resulting statement).

To formalize this transformation, both P and V would be changed to compute digest and run the
SPARK protocol with statement (Uh, (h, digest), t 0, L). As such, the running times of the prover and
verifier incur a delay of |(M,x)| · poly(λ), but the remaining complexity would be based on having
a statement of size poly(λ) and a time bound of t0 = t + |(M,x)| · poly(λ).

Remark 9 (On the Dependence on t andpM). We note that our construction when used for a PRAM
machine M needs to know the time bound t and the bound on number of processors pM ahead of
time. Specifically, the parameter γ , which determines how the prover divides up the computation,
depends on both t and pM . This assumption is standard for universal arguments [8], but for some
applications, a bound on time or processors may not be a priori known. Existing techniques for
constructing eficient SNARKs based on incremental verifiable computation (e.g., References [16,
55]) do not require this assumption, but it is not clear how to extend this approach to the interactive
setting (starting from weaker assumptions). We leave it as an open question to construct a SPARK
where the prover does not know t and pM in advance.

6.3 Proofs

In this section, we prove completeness, argument of knowledge, succinctness, and prover efi-
ciency.

Lemma 6.2 (Completeness). For every λ � N and ((M, x ,y, L, t),w) � RPRAM where M has access

to n ≤ 2λ words in memory, it holds that
iPr hP(w), Vi(1λ , (M , x , t , L)) = y = 1,

where the probability is over the random coins of P and V .

Proof. Let Πi be as defined by the protocol for i � [m], with statement

statementi = (Mi , xi , ki , ppi , hi , digesti , hashi , digest0, hash0).

Recall that V accepts and outputs y , � if and only if conditions 6a through 6f from Figure 4
are valid with respect to these statements. Conditions 6b, 6c, 6d, and 6e follow immediately by

definition of P . Therefore, we focus on conditions 6a and 6f.
For conditions 6a and 6f, we first show that the sequence of t updates ui = (digest ,V prev,V rd, π ,

τ) for i � [t] that the prover computes at each step (across all statements) are valid. In particular, let
(Statei , Opi , Si ,Vi

wt) = parallel-step(M, Statei−1,Vi
rd) for all i � [t] where we initialize State0,V rd as

Statestart,Vstart, as in the protocol. We show that all conditions specified in Lupd hold for each
update ui according to the computation of M .

To show this, recall that the digest and proofs in each update i of the full computation are
computed as (V prev,πi , digesti ,τi) = OpenUpdate(pp, ptr, Si ,Vi), where Vi is defined from V rd,V wt

as in the protocol. By the eficiency property of Definition 5.4, the values computed are equivalent
to computing (V prev,πi) = C.Open(pp, ptr, Si) and then (digesti ,τi) = C.Update(pp, ptr, Si ,Vi)
sequentially at each step. Given this, it holds that before step i of the full computation, the prover
has computed (ptr, digest0) = C.Hash(pp, D�), where D� is the empty partial string, and then

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

fig:spark
fig:spark
fig:spark
fig:spark
fig:spark
fig:spark
fig:spark
fig:spark
fig:spark
fig:spark

j j

i i

i i−1 i
prev
i i

prev
i

C

i j i

` i

` i

i i i i i

s s

Í
i =1

U

m

U

λ
λ

M
? ?

r

s s

s

?
r

inner
?

r

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:45

computed i − 1 updates. Let D ? be the true string resulting from the first i − 1 updates, and let DC

be the partial string underlying the digest. Namely, D ? starts as x||w||0n
λ
−|x |−|w |, DC starts as D�,

and we apply the same i − 1 logical updates to both strings. Note that DC = � for all positions j
that have not yet been accessed, and DC = D ? for all other locations.

Next, we will use D? and DC to show that updateui satisfies conditions 1, 2, 3, and 4 of Lupd . First,
by update completeness, since Vi is defined from V rd,V wt exactly as in the definition of Lupd , and
(digest ,τi) = C.Update(pp, ptr, Si ,Vi) then it follows that C.VerUpd(pp, digest , Si ,Vi , digest ,τi)
accepts as required by condition 1. Next, by open completeness of C, since (V ,π) = C.Open(pp,
ptr, Si), then C.VerOpen(pp, digesti−1, Si ,Vi

prev, πi) accepts. This satisfies condition 2 of Lupd . Open
completeness also implies that V are the values of Si in D . This gives condition 3, since the
value of each location in DC is equal to � if it has not been accessed yet, and otherwise P sets it to
the corresponding value in V rd given for that location in D ? . Last, for each location ̀ � S , when the
corresponding value in Vi

prev is set to � and `j ≤ |x|, then DC = � and so location `i has never been
accessed. This implies that D ? = x ` i , which gives condition 4. Thus, all conditions specified by Lupd

hold for each update ui = (digest ,V prev,V rd,π ,τ) as required.
We now show that V accepts condition 6a for the full protocol of Figure 4. Because each up-

date is valid with respect to Lupd , it follows that the prover PsARK for sub-protocol Πi receives a
valid witness with respect to statementi for i � [m]. Specifically, it receives the ki consecutive
updates corresponding to the ith sub-computation performed by P , where the starting hash cor-
responds to the starting states and words read in the witness, and the ending hash corresponds
to the final states and words read resulting from the sequence of updates, both by definition of P .
Completeness of (PsARK , V ARK) implies that V ARK accepts in protocols Πi .

For condition 6f, we have that P honestly steps through the computation of M(x ,w). To see that
P reaches the final state, recall that each sub-computation corresponds to ki steps of the original
computation and m ki = t (by condition 6c). Therefore, the final state Statem corresponds to the
state of M(x ,w) after t steps. Since ((M, x ,y, L, t),w) � RPRAM, then after t steps the final state will
be the halting state. We showed above that the prover performs all updates correctly and consistent
with memory, so it follows by open completeness that C.VerOpen(pp, digest0 , [dL/λe],Y ,πfinal) = 1
and that Y is the right length, and hence that the output is equal to y.

Lemma 6.3 (Argument of Knowledge). (P , V) satisfies the argument of knowledge for NP prop-
erty of Definition 4.1.

Proof. To show that (P , V) is an argument of knowledge for RPRAM, consider any non-uniform
polynomial-time prover P ? = P ?

λ
�
N, integer c � N, security parameter λ � N, and statement

(M, x , t , L) where M accesses at most n ≤ 2 memory and p processors, with |M,x,t| ≤ λ, L ≤ λ,
and t · pM ≤ |x|c. Let Pλ,z, s denote Pλ with auxiliary input z and hardcoded randomness s for any

z, s � {0, 1}�. Let V denote the verifier V with hardcoded randomness r � {0, 1}l (λ) , where l(λ) is
an upper bound on the randomness used by the verifier. Note that l is a function of λ, since by
Lemma 6.16, the verifier runs in time polynomial in λ, |(M,x)| L,pM , log t , each of which are
bounded by a fixed polynomial in λ.

Recall that (P , V) consists of m sub-protocols Π1, . . . ,Πm , where each is an instance of the
protocol (PsARK , V ARK). Let EsARK be the extractor for (PsARK , V ARK) with expected running time
bounded by a polynomial qsARK, which exists by assumption that (PsARK , V ARK) is an argument of
knowledge. As a subroutine to our full extractor, we first construct a probabilistic oracle machine

E
Pλ , z , s , V

that uses EsARK to extract witnesses for the statements in each sub-protocol defined by the
interaction (Pλ, z , s , V), as follows:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:spark
fig:spark
fig:spark

P ?
λ, z , r

λ,z,s r

i s s

i
?

r
?
i s

?
r

V i r

s i

i
?

s r
? V

sARK i

λ,z,ss r

λ,z,s r

λ
λ c

?
r

inner

?
r

?
i

V
λ

i V
sARK

i V
sARK

i is r

s

s
?
iP , V

p).
λ,z,s

r
?

r

31:46 N. Ephraim et al.

Einner
s , V

(1λ , (M, x , t , L)):

(1) Emulate the interaction between P ? and V on common input (1λ , (M, x , t , L)), which
uniquely determines the statement statementi used for sub-protocol Πi for all i � [m]. Let Y be
the values in the opening sent in the final message of the protocol.

(2) For all i � [m], define the prover P ? and verifier V ARK, r i for the protocol (PsARK , V ARK) on
common input (1λ , statementi) as follows:
• P ? emulates the interaction between Pλ,z, s and V on common input (1λ , (M, x , t , L)) until

the start of Πi . P then interacts with V ARK as part of Πi for statement statementi while
continuing to use Pλ,z, s and V to emulate messages for all other sub-protocols.

• sARK,r is the verifier V on common input (1λ , (M, x , t , L)) restricted to its interaction in
sub-protocol Πi . Namely, V ARK, r uses fixed randomness ri determined by r for Πi .

Note that P ? and V ARK, r i can be emulated using oracles Pλ,z,s and V .

(3) For i � [m], let witi ← E P i , sARK, ri (1λ , statementi), where all queries made by EsARK to P ?

and V ARK, r i are emulated by Einner using its own oracles P ? and V .
(4) Output (wit1, . . . , witm ,Y).
In the following claims, we show that (1) Einner runs in expected polynomial time (over r and its

own random coins) and (2) with all but negligible probability (over r and the coins of EsARK), either
P ? fails to convinces V or for all i � [m] the witness witi extracted by EsARK is valid for
statementi with respect to Lupd :

Claim 6.4. There exists a polynomial qinner such that for every non-uniform probabilistic
polynomial-time prover P ? = P ?

λ�N, λ, c � N, statement (M, x , t , L) where M has access to n
≤ 2 words in memory and pM processors, with |M,x,t| ≤ λ ,L ≤ λ, and t · pM ≤ |x| , and z, s �

{0, 1}�, the expected running time (with a single processor) of E
Pλ , z , s , V

(1λ , (M, x , t , L)) is at most
qinner(λ, t · pM).

Proof. We first analyze the time to emulate a full interaction between Pλ,z,s and V , which is
used to determine the statements statementi and to emulate the oracle calls of EsARK to P and

sARK,ri . Since each oracle call takes a single step by assumption, it follows that the emulation
time is at most workV (1 , (M, x , t , L)) to receive and read each message. By the succinctness of
(P , V) (given by Lemma 6.16) this is bounded by a polynomial q V (λ, |(M,x)| , L,pM , log(t · pM))

independent of P ? and the statement.

Next, we analyze the expected running time of E P ? , sARK, ri for each i � [m]. Recall that tupd ·pupd

is an upper bound on the amount of work to verify a statement with at most t updates in Lupd .
Since EsARK is extracting a witness for an Lupd statement, then for each i � [m], the expected

running time of E P ? , sARK, ri is at most qsARK(λ, tupd · pupd) for some polynomial qsARK when given
oracle access to P ? and V ARK, r assuming ri is uniformly distributed. As the random coins for V
are uniform and V invokes m independent instances of V ARK , this implies that the randomness ri

used by V ARK,ri is uniform. Thus, the expected running time of EsARK
sARK,ri is at most qsARK(λ, tupd ·

upd

Putting everything together, we have that Einner first emulates the interaction between P ?

and V and then runs EsARK to extract a witness m times while emulating the oracle calls of EsARK

(and the resulting oracle calls made to Pλ,z, s and V). Thus, the full expected running time is

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ λ�N

λ c

��
�
�

?
r

P ?
λ, z , r

�
�
�

?
r

λ,z,s r

����
�

P ?
λ, z , r

�
�
�
.

Õ ����
�

P ?
λ, z , r

�
�
�
.

P ?
λ, z , r

?
iP , V ?

r

s
? ? ?

λ,z,s

r

r

i r

i

? ?

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:47

bounded by

qV (λ, L, pM , log(t · pM)) + m · qV (λ, L, pM , log(t · pM)) · qsARK(λ, tupd · pupd).

We can bound tupd(λ, |(M,x)| , t) � poly(λ, |(M,x)| , t) and pupd(λ,pM) � poly(λ,pM), as well
as |(M,x)| ≤ λ, and L ≤ λ. For m, by succinctness (Lemma 6.16), we have that m ≤ α ? ·
poly(λ, |(M,x)| , L, log(t · pM)) and α ? can be bounded by a polynomial in λ, |(M,x)| , t ,pM by def-
inition. Putting these bounds together, this implies that the expected running time is bounded by a

polynomial qinner(λ, t · pM).
Claim 6.5. For every non-uniform probabilistic polynomial-time prover P ? = P ? and con-

stant c � N, there exists a negligible function neglinner such that for all λ � N, statement (M, x , t , L)
where M has access to n ≤ 2 and pM processors, and with |M,x,t| ≤ λ, L ≤ λ, and t · pM ≤ |x| , and
every z, s � {0, 1}�, it holds that

� r ← {0, 1}l (λ)

Pr � y = hPλ,z, s , V i(1λ , (M , x , t , L)) :
� (wit1, . . . , witm ,Y) ← Einner

s , V
(1λ , (M, x , t , L))

≤ neglinner(λ),

�
y , � � �
�i � [m] : (statementi , witi) < Rupd �

�

where statementi is defined to be the statement of the ith sub-protocol in the interaction (Pλ,
z
, s , V).

Proof. To analyze the above probability, we start by formalizing an algorithm S , which is
implicit in the description of Einner . The algorithm S takes as input r � {0, 1}l (λ) , and emulates the
interaction (P ? , V). It then outputs (y, statement1, . . . , statementm), where statementi is the
ith statement in the interaction and y is the output of the protocol. Note that these statements are
the same as the ones computed by Einner in the first step of its description. We can then write the
above probability as

� r ← {0, 1}l (λ)

Pr (y, statement1, . . . , statementm) = S(r) :
� (wit1, . . . , witm ,Y) ← Einner

s , V
(1λ , (M, x , t , L))

Next, we apply a union bound to upper bound this by

�
y , � � �
�i � [m] : (statementi , witi) < Rupd �

�

� r ← {0, 1}l (λ)

Pr (y, statement1, . . . , statementm) = S(r) :
i�[m] � (wit1, . . . , witm ,Y) ← Einner

s , V
(1λ , (M, x , t , L))

�
y , � � �
(statementi , witi) < Rupd �

�

(6.1)

We now upper bound the above probability for any particular i � [m]. We notice that whenever
y , �, that implies that V accepts in protocol Πi for statementi .

By definition of Einner
s , V

, for each i � [m], the witness witi is computed by running

EsARK
sARK, ri , where Einner uses its oracles Pλ,z, s and V to emulate all queries that EsARK makes to

Pi and V ARK, r i . Specifically, emulating Pi requires querying P for every sub-protocol,
and querying V for all protocols other than i.

Let r−i be the randomness of V used in all protocols other than i, where it uses ri . Note that P ?

only depends on r−i , since it only uses V in protocols other than i. Another way to state this is to
view P ? as an randomized prover that emulates the verifier in all sub-protocols other than
i using its internal randomness, where in the above execution, its internal randomness is r−i . To
make this clear, let Pi , r− i

denote the prover Pi (viewing it as a randomized algorithm) that uses

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

?
− i

?
r

.

i s i .

��
�
�

?
i , r−

P V

�
�
�

s
? ?

− i

��
�
�

P ?
i , r− i

�
�
�

s

s
?

− i s
?
i

i

Pr
"

?
i , r−

P , V :
?

− i s
#
≤ μi (λ).

Í
c

?
r

r
?

?
r

?
r

inner

j j

j j −

0

i

31:48 N. Ephraim et al.

randomness r−i to emulate the verifier in all protocols other than i, and note that Pi , r can still
be emulated using the oracles Pλ,z, s and V . We can then write the above probability as

� r ← {0, 1}l (λ)

Pr
�
�

w

(y

i

,

t

s

i

ta

←

tem

E

e
s

A

n

R

t

K

1,
i
,
. .

s

.
A

,
RK

s
,

t
r

a
i

t

(

e

1

m
λ ,

e

s

n

ta

tm

te

)

m

=

en

S

ti

(

)

r) :

�
y , � � �
(statementi , witi) < Rupd �

�
Whenever y , �, it must be the case that V accepts in all sub-protocols, and therefore by
definition of Pi , it follows that V ARK, r i accepts in protocol Πi with Pi , r . We can therefore
upper bound the above probability by

� r ← {0, 1}l (λ)

Pr �
�

(

w

y

i

,

t

s

i

ta

←

tem

E

e

sA

n

R

t

K

1,
,
.
V
.
sA
.

R

,
K,

s
r

t
i

a

(

t

1

e
λ

m

, s

e

t

n

a

t

t

m

em

)

e

=

nt

S

i)

(r)

:

�
hP ? , V ARK, r i(1λ , statementi) = 1 �
� (statementi , witi) < Rupd �

�

(6.2)

We can now use the argument of knowledge property of (PsARK , V ARK). Let l0(λ) be the length of
the randomness used by V ARK . For any r = (r−i , ri) � {0, 1}l (λ) , using r−i as the randomness for Pi , r
, by the argument of knowledge property of (PsARK , V ARK) there exists a negligible function μi
(which depends on the algorithm P but is independent of its randomness) such that for every
randomness r−i for P ? , and for the statement statementi (which in this case is determined by r−i) it
holds that

ri ← {0, 1}l0(λ) hPi,r , V ARK, r i i(1λ , statementi) = 1
witi ← EsARK

i sARK, ri (1λ , statementi) � (statementi , witi) < Rupd

By using the law of total probability in Equation (6.2) (to sum over each choice of r−i), and by
applying the above inequality, we obtain that Equation (6.2) is bounded above by μi (λ). Finally, by
plugging this back into Equation (6.1), we obtain that the probability in the statement of the claim
is upper bounded by i�[m] μi (λ). As in the analysis of the previous claim, we can bound m by
poly(λ, |(M,x)| , L, t ,pM). As |(M,x)| ≤ λ, L ≤ λ, and t · pM ≤ |x| , then m � poly(λ), so this is
negligible as required.

Using Einner to extract the witnesses in the sub-protocols, we now define the full extractor E
that outputs a witness w for (M, x ,y, L, t) given oracle access to Pλ,z,s and V , where y is the value
output by V when interacting with Pλ,z,s .

E Pλ , z , s , V (1λ , (M, x , t , L)):

(1) Run (wit1, . . . , witm ,Y) ← E
Pλ , z , s , V

(1λ , (M, x , t , L)).
(2) Parse each witi as containing an initial set of states and values read (State(i),V rd,(i)) as well

as a sequence of updates, where the updates across all m witnesses together yield an overall
sequence of t updates uj = (digestj ,V

prev,V rd,πj , τj) for j � [t] (abort if this is not the case).
(3) For j = 1, . . . , t , compute (Statej , Opj , Sj ,V

wt) = parallel-step(M, Statej−1,V rd
1) where State0

is the tuple containing the initial RAM state and V rd = (�).
(4) Let DInit � {0, 1}nλ be the string where for each ` � [n], the `th word is set to its value in V rd,

where i is the first iteration with ` � Si , or the `th word in Y if ` is never accessed and ` ≤
dL/λe, or 0λ otherwise.

(5) Output w to be the string of length nλ − |x| starting at position |x| in DInit.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

?
r

λ λ�N

�
�
��

�
��
�

?
r

?
r

y , � �

U

?
r

rλ,z,s λ,z,s

r

U

�
��

�
��

U U

� �
� �� �

�
��

U

�
��

inner

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:49

We note that while DInit and w above may be as large as n · λ bits, they can be specified while
running M by using at most λ + log n bits for each non-zero value. Furthermore, they can have at
most t + dL/λe non-zero values, since M makes at most t memory accesses, and at most dL/λe
additional positions are accessed in specifying the output. Thus, DInit and w can be computed with at
most poly(λ, L, t , log n) additive overhead in time and space.

Claim 6.6. There exists a polynomial q such that E Pλ , z , s , V (1λ , (M, x , t , L)) has expected running
time at most q(λ, t · pM).

Proof. E first runs Einner, which has expected running time bounded by a polynomial qinner(λ, t ·
pM) by Claim 6.4. We bound the remaining running time of E by a polynomial in λ and t ·pM , which
completes the claim.

E parses the output as containing m sets of states and words that together have size m · pM ·
poly(λ), as well as a sequence of t updates, where each update has size at most 2β ·pM ·λ � poly(λ) by
the eficiency of the underlying concurrently updatable hash function. As m � poly(λ) as discussed
in the previous claims, together this takes time t · pM · poly(λ). Using these updates to determine
which values to read, E emulates M for t steps, which can be done in time t · pM · poly(λ).
Finally, E computes the initial memory DInit to output a witness w , which, as discussed above,
requires specifying at most t + dL/λe positions and therefore takes at most poly(λ, L, t) �
poly(λ, t) time. Altogether, E runs in expected time at most qinner(λ, t ·pM)+t ·pM ·poly(λ)+t ·pM

·poly(λ)+poly(λ, t), which can be bounded by a polynomial q(λ, t · pM).
Claim 6.7. For every non-uniform probabilistic polynomial-time prover P ? = P ? and con-

stant c � N, there exists a negligible function negl such that for all λ � N, statement (M, x , t , L) where M
has access to n ≤ 2λ and pM processors, and with |(M,x,t)| ≤ λ, L ≤ λ, and t · pM ≤ |x|c, and all z, s �
{0, 1}�, it holds that

� r ← {0, 1}l (λ)

Pr � y = hPλ, z, s , V i(1λ , (M , x , t , L)) :

� w ← E Pλ , z , s , V (1λ , (M, x , t , L))

�

((M, x ,y, L, t),w) < RPRAM � ≤ negl(λ).

�

Proof. In the following, all probabilities are over r ← {0, 1}l (λ) and w ← E Pλ , z , s , V (1λ , (M,
x , t , L)), and we let y and statementi for i � [m] be determined by r in each probability, namely,
y = hP ? , V i(1λ , (M , x , t , L)) and statementi is the statement used by P ? for the ith sub-
protocol with V . Additionally, we let wit1, . . . , witm ,Y be the output of Einner during the execution
of E in each probability.

Suppose by way of contradiction that there exists a polynomial p such that for infinitely many
λ � N,

Pr

y , � � ((M, x ,y, L, t),w) < RPRAM

> 1/p(λ).

We can rewrite this probability as

� y , � � � � y , � � �
Pr � �i � [m] (statementi , witi) � Rupd � � + Pr � �i � [m] (statementi , witi) < Rupd � �

� ((M, x ,y, L, t),w) < RPRAM
� � ((M, x ,y, L, t),w) < RPRAM

�
� y , � � �

≤ Pr � �i � [m] (statementi , witi) � Rupd � � + negl (λ),
� ((M, x ,y, L, t),w) < RPRAM

�

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

inner

�
��

U

�
��

1
2p(λ)

Pr

�
���� U

�
����

≤ .

Pr

�
���� U

�
����

> .

λ

?

p

?
p

rd ?

? V

ii i i

i i i i

i i

0

31:50 N. Ephraim et al.

by Claim 6.5 above. As negl (λ) < 1/(2p(λ)) for infinitely many λ � N, this implies that for
infinitely many λ � N,

� y , � � �
Pr � �i � [m] (statementi , witi) � Rupd � � > .

� ((M, x ,y, L, t),w) < RPRAM
�

Furthermore, by a standard averaging argument, it holds that
� y , � � �
� �i � [m] (statementi , witi) � Rupd � � 1

((M, x ,y, L, t),w) < RPRAM � 4p(λ)
� E halts after 4 · p(λ) · q(λ, t · pM) steps �

Otherwise, the expected work done by E must be greater than q(λ, t · pM), in contradiction with
Claim 6.4. This implies that for infinitely many λ � N,

� y , � � �
� �i � [m] (statementi , witi) � Rupd � � 1

((M, x ,y, L, t),w) < RPRAM � 4p(λ)
� E halts within 4 · p(λ) · q(λ, t · pM) steps �

(6.3)

Given this, consider the following non-uniform adversary A = { A λ }λ�N . At a high level, we
will show that on input pp ← C.Gen(1 , n) and h ← Hλ , A will either break the soundness of C or
the collision-resistance of H with at least the probability above. In its non-uniform advice, A λ will
have hardcoded the code of Pλ,z,s , the statement (M, x , t , L), and the value of p(λ).

Aλ (pp, h):

(1) Sample r ← {0, 1}l (λ) . Let V p,h,r be the verifier that uses (pp,h) as its first message and the
string r for all other random bits needed.

(2) Run the interaction y = hPλ, z, s , V p,h,r i(1λ , (M , x , t , L)). If y = �, then abort and output �.

Otherwise, let Y ,π , Statefinal,Vfinal be the final message sent by Pλ,z,s .

(3) For at most 4 · p(λ) · q(λ, t · pM) steps, run w ← E Pλ , z , s , pp, r (1λ , (M, x , t , L)). If E does not
output within 4·p(λ)·q(λ, t ·pM) steps, then abort and output�. Otherwise, let wit1, . . . , witm

be the witnesses output by Einner for statements statement1, . . . , statementm .
(4) If there exists an j � [m] such that (statementj , witj) < Rupd, then abort and output �.

Otherwise, parse each witness witj as containing an initial set of states and words read
(State(j),V rd,(j)), as well as a sequence of updates. Let u1, . . . ,ut be the sequence of t updates
obtained across all m witnesses. For each update i � [t] we now have the following values
and notation:
• The values State , Op , S ,V wt from each step of E ’s emulation.
• The extracted update ui = (digesti ,V

prev,V rd,π , τ).
• Let Vi be a tuple of |Si | values, where the jth value is that of V rd or V wt according to the

corresponding operation given by Opi .
Last, we have the following starting values:

• The starting values (State0,V rd) defined by E .
• The initial digest computed by V , denoted digest0.
We will be using this notation throughout the proof.

(5) Check that E ’s emulation is consistent with the extracted updates. Specifically, let K0 = 0
and let Kj be the number of updates in sub-statements 1 through j for each j � [m].

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Kj

Kj

final t

0 0

i i i i − −1
?

ii i i

t

i i

0

i

j 0 ij j j i i

0

�

0

U

Pr

�
���
�

M

U

�
���
�

+ Pr

�
����

U

�
����

.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:51

If there exists a j � [m] such that (State(j),V rd,(j)) is not equal to (StateKj−1 ,V r
d−1

), then let j

be the smallest such index and output ((State(j),V rd,(j)), (StateKj−1 ,V rd
−1

)). Similarly, if

(Statefinal,V rd) , (Statet ,V rd), then output these four values.
(6) Next, A λ emulates the computation of M(x ,w). To avoid confusion with the values in the

extracted update, we will use a superscript “?” to denote the values computed in this emu-
lation. Let State? be a tuple containing the initial RAM state, V rd? = (�), and D ? = x||w be
the initial memory string for use by M .

For i = 1, . . . , t , do the following:
(a) Compute (State?, Op?, S ?, Vi

wt?) = parallel-step(M , State?
1, Vi

rd?).
(b) Read from and write to D ? by running V rd? = accessD (Op?, S ?, V wt).

Let Y ? be the tuple containing the first L0 = dL/λe words of D ? , and let y ? be the con-
catenation of the first outlen bits from Y ? , where outlen is the output length specified by
State?.

(7) If there exists an index i such that V rd , V rd? , then let i be the smallest such index. Compute
a digest of the empty partial string (ptr?, digest?) = C.Hash(pp, D�) and then compute

(�, π ?) = C.Open(pp, ptr?, S). Output

(i − 1,
n

(digest , S ,V ,τ)
o

, digest , S , (�)|Si |, π ?,V prev,π).
j�[i−1]

(8) If Y , Y ? , then compute a digest of the empty partial string (ptr?, digest?) = C.Hash(pp,
D) and then compute (�, π ?) = C.Open(pp, ptr?, [L0]). Output

n o
(t , (digestj , Sj ,Vj ,τj)

j�[t]
, digest0, [L0], (�)L , π ?, Y , πfinal).

(9) Otherwise, abort and output �.

To analyze the success of A in breaking the soundness of H and C, in the subsequent subclaims,
we argue that (1) A λ runs in (strict) polynomial time; (2) if A λ outputs in step 5, then A λ finds a
collision in h; (3) if A λ outputs in steps 7 or 8, then A λ finds values that breaking the soundness of
C; and (4) if A λ reaches step 9, then it must be the case that ((M, x ,y, L, t),w) � RPRAM.

Given these subclaims, we can conclude the proof as follows: First, note that A λ outputs in
steps 5, 7, 8, or 9 whenever y , �, (statementi , witi) � Rupd for all i � [m], and E halts within 4 ·
p(λ) · q(λ, t · pM) steps. We can break this event into two cases as

� y , � � �
� �i � [m] (statementi , witi) � Rupd � �

E halts within 4 · p(λ) · q(λ, t · p) steps �
� ((M, x ,y, L, t),w) � RPRAM �
� y , � � �
� �i � [m] (statementi , witi) � Rupd � �

E halts within 4 · p(λ) · q(λ, t · pM) steps �

� ((M, x ,y, L, t),w) < RPRAM
�

By Subclaim 6.12, the first term is greater than the probability that A λ outputs in step 9. By
Equation (6.3), the second term is greater than 1/(4p(λ)). Putting these together, we get that the
probability that A λ outputs in step 5, 7, or 8 is greater than 1/(4p(λ)). It then follows from Sub-
claims 6.8, 6.9, and 6.11 that for infinitely many λ � N, A λ runs in polynomial time and either
outputs a collision in H or in C with probability at least 1/(4p(λ)). As A directly implies an ad-
versary A 0 that either gets pp or h as input and simulates the other input for A , this implies

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ,z,s p

c

λ,z,s

p

Kj

final t

Kj −1

p

d
K

rd

t
(m)0

31:52 N. Ephraim et al.

that A can be used to break the soundness of H or of C with probability at least 1/(4p(λ)), in
contradiction.

Subclaim 6.8. There exists a polynomial q A such that for every h � Hλ and pp in the support of
C.Gen(1λ , n), the running time of Aλ (pp, h) is at most q A (λ) for all λ � N.

Proof. The running time of A λ is bounded by the sum of (1) the time to run hP ? , V p,h,r i(1λ ,
(M, x , t , L)), (2) the total amount of time A λ spends running E , (3) the time to check that all
(statementi , witi) pairs are in Rupd, (4) the time to check for an output in step 5, (5) the time to
emulate the execution of M , and (6) the time to check for and compute an output in steps 7 and 8.
We separately argue that each of these run in at most polynomial time in λ, |(M,x)| , L,pM , t ,
which are each bounded by a fixed polynomial in λ as |(M,x)| ≤ λ, L ≤ λ, and t · pM ≤ |x| .

First, (1) is bounded by a polynomial in λ, since P ? runs in polynomial time for any z, s �
{0, 1}� and both the communication complexity and running time of V p,h,r are bounded by a
fixed polynomial poly(λ, |(M,x)| , L,pM , t) by Lemmas 6.16, 6.17, and by definition of α ? . Next, (2)
is bounded by 4 · p(λ) · q(λ, t · pM) by definition of A λ , and p,q are polynomials. For (3), it requires
checking the at most t updates are valid where each check requires a polynomial amount of work
in λ, |(M,x)| ,pM , log t by definition of Lupd and the eficiency of C. Next, (4) requires comparing
m + 1 values of containing at most pM states, where each state is a constant number of words,
and pM words of length λ, and so takes time poly(λ,pM). Next, (5) takes t steps of computation,
each of which takes time bounded by a fixed polynomial in λ,pM by the definition of PRAM
computation. Last, (6) requires (t + L) · pM · λ time to check equality of all corresponding values.
Computing the initial digest and opening requires 2β(λ) ·pM � poly(λ) by eficiency of C. Then, the
full output has size at most t · pM · poly(λ) � poly(λ) and takes at most t · pM · poly(λ) � poly(λ)
time to compute.

As |(M,x)| , L,pM , t are bounded fixed polynomials in λ as above, the (strict) running time of A λ

is bounded by some polynomial q A (λ) for all λ � N.

Subclaim 6.9. If Aλ (pp, h) outputs in step 5, then A λ finds values that break the collision-
resistance of H .

Proof. Let K0 = 0 and let Kj for j � [m] be the number of updates in witnesses 1 through j.
Let hash(j), hash(j)0 be the hashes given in statementj for all j � [m]. Suppose that A λ outputs in
step 5, meaning that either there exists some j � [m] such that (State(j),V rd,(j)) , (StateKj−1 ,V r

d−1
)

or (Statefinal,V rd) , (Statet ,V rd). We first discuss the former case and then the latter.
In the first case, let j be the smallest index with (State(j),V rd,(j)) , (StateKj−1 ,V rd). Since A λ

reached step 5, then the output y of V p,h,r is not equal to �, which in particular implies that
hash(j−1)0 = hash(j), and that all m extracted witnesses are valid. Since wit j−1 is a valid witness for
statementj−1 (and StateKj−1 corresponds to the state after the first Kj−1 updates), then by definition of
Lupd it holds that h(StateKj−1 ,V r

j−1
) = hash(j−1)0. Since witj is a valid witness for statementj , then

hash(j) = h(State(j),V rd,(j)). Last, since y , �, then hash(j−1)0 = hash(j). Therefore, A λ successfully
finds a collision.

In the second case, y , � implies that hash(m)0 = h(Statefinal,Vfina
l), and the fact that witm is

valid for statementm implies that h(Statet ,V rd) = hash , so this also results in a collision.

Next, we show that whenever A reaches step 6, rather than viewing the extracted witnesses as
m separate Lupd instances, they can be viewed as a single instance corresponding to all t updates.
This will show that all t updates are in fact being applied to consecutive digests, which will help us
show the subsequent claims analyzing A’s attack. In the subsequent claims, we say that (State,V rd)

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

0
rd

0

1 1 k

2 1 k

rd
k

rd

rd
2

1 1 1k k1 2

1

1

1

2

1

?
p

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:53

is a PRAM configuration if during any step of a PRAM evaluation, the set of states after that step
are State and the words read in that step are V rd.

Subclaim 6.10. Let hashstart = h(State0,V rd) and hashfinal = h(Statefinal,Vfina
l). Def ine

statementcomb = (M, x , t , pp,h, digest0, hashstart, digestt , hashfinal),

and witcomb = (State0,V rd,u1, . . . ,ut). If Aλ (pp, h) reaches step 6, then (statementcomb, witcomb) �
Lupd .

Proof. We start with an independent fact about the Lupd language, which we will then apply to
show that the combined statement in the claim is indeed a valid Lupd statement. Consider any two
Rupd instances

(statement1, wit1) = ((M, x , k1, pp,h, digest0, hash0, digest1, hash1), (State1,V rd,u1, . . . ,u1
1
)),

(statement2, wit2) = ((M, x , k2, pp,h, digest1, hash1, digest2, hash2), (State2,V rd,u2, . . . ,u2
2
))

that agree on M, x , pp,h, and such that the final digest and hash (digest1, hash1) in the first state-
ment matches the initial ones in the second statement. Let State1,final be the final state computed
when verifying (statement1, wit1) and let V1,final be the final words read, given by update u1

1
. In

other words, (State1,final,V1,final) is the final PRAM configuration in the first Rupd instance. We
claim that if (State1,final,V1,final) is equal to (State2,V rd) (that is, the initial configuration of the sec-
ond statement), then we can combine the statements together to get a new valid instance with
statement

statement0 = (M, x , k1 + k2, pp,h, digest0, hash0, digest2, hash2)
and witness wit0 = (State1,V rd,u1, . . . ,u1 ,u2, . . . ,u2).

To show this, we first show that every update i � [k1 + k2] in wit0 satisfies conditions 1, 2,
3, and 4, of Lupd . These four conditions are defined by starting with (State1,V rd) as the starting
PRAM configuration for M and using the updates in the witnesses to iteratively compute k1 + k2

PRAM steps. Then, for each step i, checks are done that depend on the values of the ith step, the
input x , the initial digest digest given by the statement, and the values in the ith update. Since
(statement0, wit0) and (statement1, wit1) have the same machine M and input x , start with the same
initial values digest1, State1,V rd, and agree at the first k1 updates, this implies that conditions 1, 2, 3,
and 4 hold for the first k1 steps. For the remaining k2 steps, we observe that, since the final state
PRAM configuration of the first statement matches (State2,V rd), then the values computed for each
step of verifying (statement2, wit2) are the same as those computed when verifying the final k2

steps of the combined statement. It follows that every all k1 +k2 updates satisfy the required
conditions.

It remains to show that the Lupd requirements for hash0, hash2 are satisfied. We have that
hash0 = h(State1,V rd) as this is a requirement of the first statement being valid. We have that
hash2 is a hash of the final configuration for the combined statement, because this final configura-
tion is the same as that of the second statement, as shown above. It follows that (statement0, wit0)
is a valid Lupd instance.

We observe that the above holds for any number of statements by the same logic, which we will
use to show the claim. Suppose that A λ reaches step 6 and consider any j � [m]. Let

statementj = (M(j), x (j),k(j), pp(j),h(j), digest(j), hash(j), digest(j)0, hash(j)0)
be the jth statement in the interaction between Pλ,z, s and V p,h,r . Since Aλ did not output in step 2,

then the output y of the interaction is not equal to �, which implies that (M (j), x (j), pp(j), h) =
(M, x , pp,h). Since A λ did not output in step 4, then witj is valid for statementj . Since A λ did

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang
fig:lang

d
K

Í
j =1

t

0

i i

n o
j 0 ij j j i i

i

0

0

0

0

i

i−1

31:54 N. Ephraim et al.

not output in step 5, then the PRAM configuration (StateKj−1 ,V r
j−1

) before the start of the j sub-

statement matches (State(j),V rd,(j)). Therefore, them witnesses satisfy all conditions above to “com-
bine” them into a new witness. Based on our claim above, the new statement is

statement0
0

 = (M, x , t , pp,h, digest(1), hash(1), digest(m)0, hash(m)0)

with witness
wit00 = (State(1),V rd,(1),u1, . . . ,ut),

where the new instance corresponds to t updates since m k (j) = t by the fact that y , �.
Recall that our goal is to show that (statementcomb, witcomb) (given in the claim statement) is in

Rupd. The difference between statementcomb and statement00 is in the digests and hashes.
The initial digest and both hashes in statement00 are equal to those in statementcomb, since these

are included in the checks done by the verifier, and so are implied by y , �. For the final digest, we
have that digest(m)0 (given by statementm) is equal to the digest given by update ut , which is digest
, since the extracted witnesses are valid. It follows that statement00 = statementcomb.

For the witnesses, the difference between wit00 and witcomb is that for the initial configuration,
wit00 has (State(1),V rd,(1)), while witcomb has (state0,V rd). Since A λ did not output in step 5, these are
equal, which concludes the claim.

Subclaim 6.11. If Aλ (pp, h) outputs in step 7 or 8, then A λ finds values that violate the soundness
of C.

Proof. We first show the claim for the case that A λ outputs in step 7 and at the end discuss
how to modify the proof in the case that A λ outputs in step 8.

Suppose A λ outputs in step 7, meaning that there exists an index i such that V rd , V rd? . More-
over, let i be the smallest such index. In this case, A λ outputs

(i − 1, (digest , S ,V ,τ) , digest , S , (�)|Si |, π ?,V prev,π).
j�[i−1]

Informally, the values output by A λ correspond to i − 1 updates, an opening of locations Si in
digest0, and an opening of location Si in digesti−1 (the digest before the ith update). To show that

this breaks the soundness of C, we need to show that (A) all updates and openings are valid, yet
(B) V prev is not equal to set of values at locations Si consistent with the i − 1 updates.

For (A), we first show that the initial opening of digest at locations Si to (�)|Si | with
proof π ? is valid. Note that A λ computes (ptr ?, digest?) = C.Hash(pp, D�) and then π ? =
C.Open(pp, ptr?, Si). By completeness of C, it follows that π ? is valid for (�)|S

i
 | at locations Si

with respect to the digest digest? computed by A λ . Since C.Hash is deterministic, it follows that
digest0 = digest?, so we conclude that C.VerOpen(pp, digest0, Si , (�)|Si

|, π ?) = 1.

Next, using the fact that A reaches step 6, by Claim 6.10 the extracted witnesses form a combined
statement (statementcomb, witcomb) in Rupd containing all t extracted updates. This implies that the
sequence of updates from digest0 up until digesti−1 are all valid. Namely,

C.VerUpd(pp, digest j−1, Sj ,Vj , digestj , τj) = 1 for all j � [i − 1].

This also implies that the proof πi is a valid opening proof for V prev at locations Si with respect to
digest . Namely,

C.VerOpen(pp, digesti−1, Si ,Vi
prev,πi) = 1.

Thus, the openings and updates output by A λ are valid.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

i i

i i i

?
j j j

j j j

0 0

j

0

0 0 0

i i

i−1

0

0

0 0 0
? ?

i i

`

p

`

`

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:55

For the rest of the proof, it will be helpful to define the following notation: Let IND be an index
whereV rd and V rd? are not equal (which must exist by assumption). Letv rd,vrd?,vprev, and ` be the
corresponding values at index IND of V rd, V rd?, V prev, and Si , respectively. Before showing (B), we
make the following simplifying observations, which make use of the assumption that Vi

rd , Vi
rd?:

(1) The first i updates and the first i steps in the emulation correspond to the same values, that
is, (Opj , S ?, V wt?) = (Opj , Sj ,V wt) for all j ≤ i.

This holds because of the following: The values (Op?, S ?, V wt?) are computed as a de-
terministic function of the initial configuration (State?, V rd?) and the words read in every
step of the emulation done by A . The values (Opj , Sj ,V wt) are computed as a deterministic
function of the initial configuration (State0,V rd) and words read in the emulation done by E .
The initial configurations are equal by definition, that is, (State?, V rd?) = (State0,V rd).
Since i is the first iteration where V rd? , V rd, then the words read in both are the same. The
observation follows.

(2) There exists an update i0 < i with ` � Si0.
This means that update i cannot be the first iteration that accesses location ` . This holds,

because if i was the first such iteration, then vrd would be the value in location ` of x||w by
definition of w , as would v rd?, in contradiction. Note that this relies on observation 1 above to
use the fact that the locations accessed in the extracted updates and the emulation are the
same.

Now, to show (B), we claim that vprev , v rd? , yet v rd? is the value consistent with the updates
that we “expect” to open at location ` with respect to digest . To show that vprev , v rd? , we note
that because the ith update is valid with respect to Rupd, this implies that vprev is either equal to � or
vrd. However, v rd? is not equal to vrd by assumption. Additionally, v rd? cannot be equal to �, since
it starts off as a value in x||w and is never updated to a non-� value.

To formalize the notion that v rd? is the value we expect to open, recall that v rd? is the value in
location ` of D ? at step i. We argue that at every step starting from the first time ` is accessed, the
value at location ` in D ? is consistent with the i − 1 extracted updates above. This will show that
v rd? is the value we expect to be at ` . Consider the first such update i0 < i that accesses location ̀ ,
which is guaranteed to exist by observation 2 above. If ` is read during update i0 (as specified by
Opi), then the corresponding update value is the value at location ` in x||w by definition of w ,

which by definition is given by Vi
rd. Otherwise (when update i0 writes to `), the value written to

D ? at location ` is given by Vi
wt?, and Vi

wt? = Vi
wt by observation 1 above. By the way that A λ

updates D throughout the emulation, all subsequent reads and writes to ` in D are consistent
with the extracted updates. This implies that v rd? is the value read from or written to ` during the
last update i0 < i that accessed ` , which in turn is the value to which we expect ` to open.

This completes the proof of the claim that if A λ outputs in step 7, then it finds values that violate
soundness of C. We conclude by discussing the case where A λ outputs in step 8, which follows by
similar logic. In this case, we are given that Y , Y ? (rather than V rd , V rd? as above). To show
that the output in step 8 violates soundness, we need to argue all updates and openings are valid,
yet for some ` ≤ L0, the `th value Y is not the value we expect to open at location i with respect

to digestt . Let Y` be this value, and let Y ? be the corresponding value in Y ? . The initial opening
and all t updates (before location ` is opened to its value in Y) are valid by identical logic as above.
The final opening πfinal is accepting, since V p,h,r outputs a non-� value. Next, to argue that Y` is
not the value we expect to open, we can show that Y ? is the value we expect to open. If location `
is never accessed, then it would follow that Y` = Y ? , since both would be the corresponding word

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

i i 0

0 0
?

U

t

U

U

rd

rd
start

start

rd

31:56 N. Ephraim et al.

in x||w, so it follows that there must be some previous access for location ` . Therefore, the same
logic used in the above argument holds.

Subclaim 6.12. If A λ outputs � in step 9, then it holds that ((M, x ,y, L, t),w) � RPRAM .

Proof. When A λ does not output in step 2, it holds that y , �, so the final state Statefinal must
be halting. Since A λ does not output in step 5, then Statefinal is equal to the final state Statet

computed by E in the extraction. It follows that Statet is a halting state.
When A λ does not output in step 7, it holds that V rd = V rd? for all i � [t]. Since State0 = State?,

V rd = V rd? , and parallel-step is a deterministic function, this implies that Statet computed by A λ

is equal to Statet , which corresponds to a halting state as argued above. Moreover, the emulation
done by A λ perfectly emulates the computation of M(x ,w), so it is the case that M(x ,w) = y ?

within t steps, so ((M , x , t ,y?), w) � RPRAM. To show that y = y ? , recall that y ? is the first outlen
bits of Y ? , where outlen is the output length specified by State? = Statet . We have that Y = Y ?

whenever A λ does not output in step 8. Moreover, y is the concatenation of the first outlen bits of Y ,
which follows because A does not abort in step 2. It follows that y = y ? . Putting everything
together, if A λ outputs in step 9, then it follows that ((M, x ,y, L, t),w) � RPRAM, as required.

This completes the proof of Claim 6.7.

This completes the proof of Lemma 6.3.

Lemma 6.13 (Prover Efficiency). There exists a polynomial q such that for any λ � N and ((M,
x ,y, L, t),w) � RPRAM where M uses pM processors and has access to n ≤ 2λ words in memory, it
holds that

depthP(1λ , (M, x , t , L), w) ≤ t + (α ?)2 · |(M,x)| · L · q(λ, log(t · pM))
using at most 4 · pM · β + ρ ? · γ log t ≤ (pM + α ? · ρ ?) · q(λ, log(t · pM)) processors.

Proof. The work of P can be split into initialization, running Compute-and-prove, and then
proving the output. We first focus on the prover’s complexity for initialization and proving the
output, specified in Steps 2, 3, and 5 in Figure 4.

For Step 2 of initialization, the prover computes the initial state Statestart for M , the set Vstart = (�),
the parameter γ , and the hash hashstart. Both Statestart and V can be computed in time
O(λ), and since hashstart corresponds to hashing a single state and word, it can also be in time β
� poly(λ) (see parameters paragraph). To compute γ , the prover needs to compute the following
parameters: First, the prover can compute the hash eficiency parameter β = β(λ) given the security
parameter λ. Next, we recall the following parameters based on the definition of Lupd , which can be
eficiently computed at the start of the protocol given the security parameter λ, time bound t , and
processors pM used by the machine M : The length of Lupd statements for at most t updates is at
most `upd(λ, |(M,x)| , t) � log t + |(M,x)| + poly(λ), and when using pupd(λ,pM) = β · pM

processors, the verification procedure takes time at most tupd(λ, |(M,x)| , t) = t · β · |(M,x)| ·
poly(λ, log t). Given these parameters, we can compute α ? = α (λ, `upd, tupd,pupd)/t and finally γ
= α ? + 1, which the rest of the protocol depends on. All of these parameters can be eficiently
computed in polynomial time in the input length on a single processor, so in total this step requires
poly(λ) + polylog(λ, |(M,x)| ,pM , t) � poly(λ, log(t · pM)) work with a single processor.

For Step 3 of initialization, the prover needs to compute the initial digest digeststart and allocate
memory to run M . By Definition 5.4, the work to compute digest is β . To allocate memory and
copy the input x , this takes at most |x| � poly(λ) time.

In Step 5, the prover needs to open dL/λe locations in the concurrently updatable hash function,
which takes dL/λe · β work by Definition 5.4. The prover additionally sends Statefinal and Vfinal that

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

item:sparkb
item:sparkc
item:sparkie
item:sparkb
item:sparkc
item:sparkie

iÍ
j =1Í i

1
!

γ

1 t

1
!

1 t 1

γ

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:57

have size O(λ) as they correspond to a halting state for the PRAM computation M . As β � poly(λ),
this step takes at most L · poly(λ) time to compute.

Combining the above, everything other than Compute-and-prove requires an additive overhead
in depth (with just a single processor) of at most L · |x| · poly(λ, log(t · pM)).

It remains to analyze Compute-and-prove. Recall that Compute-and-prove starts m sub-
protocols Π1, . . . ,Πm . We start by bounding the number of sub-protocolsm byγ log t in Claim 6.14.
We then argue in Claim 6.15 that, starting at Step 4, P completes all sub-protocols in depth at
most t + γ 2 · (log t + 1) + β while using a total of 3 · pM · β + m · ρ ? processors. As γ = α ? +
1, this implies that the total depth of P is t + (α ?)2 · |x| · L · poly(λ, log(t · pM)) when using a
total of 3 · pM · β + ρ ? · γ log t ≤ (pM + α ? · ρ ?) · poly(λ, log(t · pM)) processors.

Last, we recall Remark 8, which states that we can assume without loss of generality that |(M,x)|
is bounded by an a priori fixed polynomial in λ when proving Lupd statements regarding M, x , as
long as the statements are proven relative to the time bound t0 = t + |(M,x)| rather than t . If not,
then the prover (and verifier) can incur an additive |(M,x)| · poly(λ) delay in depth using a single
processor and prove a related statement where it is the case. Therefore, combining this with the
above, it follows that there exists a polynomial q such that the total depth of P can be bounded by t +
(α ?)2 · |(M,x)| · L · poly(λ, log(t · pM)) when using a total of (pM + α ? · ρ ?) · poly(λ, log(t · pM))
processors, as required.

Claim 6.14. The number of protocols m started by P is at most γ log t .

Proof. Recall that ki is the number of steps in the ith sub-protocol. By definition of the protocol,
it holds that k1 = bt/γc. Then at each subsequent call to Compute-and-prove, the number of steps
ki in the ith sub-protocol is equal to 1/γ times the number of remaining steps (rounding down
if necessary), until the number of remaining steps is less thanγ . Thus, we can recursively define k
= b(1/γ) · (t − i−1 kj)c for all i less than the number of sub-protocols m. For notational convenience,
we define Ki = j =1 kj to be the number of steps computed in the first i sub-protocols.

To bound m, we lower bound the number of steps computed by the first i sub-protocols before
hitting the base case. Namely, we show for any i � [m − 1],

i

Ki ≥ t · 1 − 1 −
γ

− i .

We prove this lower bound on Ki via induction on i . The base case of i = 1 holds as (1 − (1 −
1/γ)1) − 1 = 1/γ − 1 and K1 = k1 = bt/γc ≥ t/γ − 1. For the inductive step, assume the bound
holds for j = i − 1. Then, the claim follows by the following set of inequalities:

Ki = Ki−1 + ki = Ki−1 +
1

(t − Ki−1)

≥ Ki−1 1 −
γ

+
γ
− 1

i −1

≥ t · 1 − 1 −
γ

1 −
γ

+
γ
− (i − 1) · 1 −

γ
− 1

≥ t · 1 − 1 −
1 i

!

− i .

Note that m is then defined to be the smallest value such that the number of steps remain-
ing is smaller than γ log t + 1, so t − Km < γ log t + 1. Using the above lower bound, we note
that for any arbitrary value m? , it holds that t − Km ? ≤ t · (1 − 1/γ)m? + m? . Therefore, if

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

item:sparkd

0
i

i =1Í i−1

Õ Õ !

31:58 N. Ephraim et al.

t · (1 − 1/γ)m? + m ? ≤ γ log t + 1 for some m? , then t − Km ? ≤ γ log t + 1. As m is the small-
est value for which t − Km ≤ γ log t + 1, this would imply that m ≤ m? , since we would have hit
the base case before m?.

Plugging in m ? = γ log t , we get that t · (1 − 1/γ)m? + m ? ≤ γ log t + 1. Thus, it follows that
m ≤ γ log t .

Claim 6.15. The prover completes all protocols Π1, . . . ,Πm in depth at most t + γ 2
 · (log t + 1) + β

while using at most 3 · pM · β + m · ρ ? processors in total.

Proof. For i � [m], let the ith sub-protocol Πi have statement statementi and witness witi
as defined by the protocol. The prover’s depth when considering Πi consists of (1) ki steps of
computation corresponding to running M , (2) computing the witness witi for PsARK, (3) computing
the hash hash for the statement statementi , and (4) running PsARK to prove the computation.

To compute witi for PsARK , P makes ki pipelined calls to OpenUpdate in parallel to the computa-
tion. It follows that performing the computation in (1) and the ki concurrent calls to OpenUpdate
in (2) can together be computed in depth ki + β using pM + pM · β processors by Definition 5.4.
For (3), we note that this corresponds to hashing at most pM states and words, and so hashk can
be computed in parallel in time β with pM · β processors (see parameters paragraph). As the hash
is computed in parallel to the final update in (2) (which also takes β steps), it follows that together
(1), (2), and (3) can be done in depth ki + β with 3pM · β processors.

We note that steps (1)–(3) happen consecutively for all m protocols, which all together consist
of t steps of computation while computing the corresponding updates and hash on the side. Thus,
across all protocols, a total of 3 · pM · β processors are used for these three steps and these steps
all finish by time t + β .

For (4), we claim that any valid Lupd statement corresponding to k ≤ t updates can be proven
in time k · α ? using ρ ? processors. Let αb(k) and ρb(k) be the function representing the depth and
processors used to prove valid statements corresponding to k updates. It follows that the time to
prove such a statement is (αb(k)/k) · k ≤ (αb(t)/t) · k with ρb(k) ≤ ρb(t) processors, since it holds
without loss of generality that αb(k)/k is an increasing function in k and that ρb is increasing (see
parameters paragraph for more discussion). However, we defined α ? as αb(t)/t and ρ ? = ρb(t),
which implies the claim. Furthermore, all of these proofs happen simultaneously, so this adds a
factor of m · ρ ? processors to the total computation. It follows that running PsARK requires depth
ki · α ? (with one processor) for sub-protocol i.

Putting everything together, at the start of some sub-computation i with T steps remaining, we
compute and prove bT/γc steps of computation for i ≤ m − 1, or T steps when i = m, where recall
that we defined γ , α ? + 1. By the above, for each i ≤ m − 1 this requires depth bounded by

bT/γc + β + α ? · bT/γc = bT /γ c(α? + 1) + β ≤ T + β .

For i = m, this requires depth bounded by

T + β + α ? · T = T · (α ? + 1) + β = T · γ + β .

For all sub-protocols Πi , we start recursively computing and proving the remaining t −
Í i − 1 kj

steps at depth i =1 kj . By the above, this implies that protocol Πi for i ≤ m − 1 f inishes at
depth

i−1 i−1

kj + t − kj + β = t + β .
i =1 i =1

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

m−

Õ

start

s

V

0
m

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:59

For protocol Πm , note that it starts at depth
Í
i = 1

1 ki and takes km · γ + β depth to compute and
prove by the above. Thus, it completes at depth

m−1

ki + km · γ + β = t + km · (γ − 1) + β ≤ t + (γ log t + 1)(γ − 1) + β ≤ t + γ 2 · (log t + 1) + β
i =1

as km ≤ γ log t + 1. Thus, all protocols finish within depth t + γ 2 · (log t + 1) + β , as required.

This completes the proof of Lemma 6.13.

Lemma 6.16 (Verifier Efficiency). There exists a polynomial q such that for any λ � N, (M, x ,
t , L) � {0, 1}� where M has access to n ≤ 2λ words in memory and pM processors, it holds that

workV (1λ , (M , x , t , L)) ≤ α ? · |(M,x)| · L · q(λ, log(t · pM)).

Proof. To bound the work of the verifier, we note that a bound on the length of each message
is known to the verifier in advance (as they depend on α ? , L, γ , and β , which are all known), so
we can assume that the verifier aborts if it receives a message of the wrong length.

To analyze the verifier’s eficiency, we have that the verifier first samples pp ← C.Gen(1λ , n)
and h ← H λ and then computes γ , Statestart, and V rd . Sampling pp,h take time poly(λ), and as
discussed in the proof of Lemma 6.13, the rest of the values can be computed in time poly(λ, log(t ·
pM)).

The rest of the verifier’s running time is in running and checking consistency of the m sub-
protocols, checking the starting and ending hashes, and verifying the output. The m sub-protocols
are computed using (PsARK , V ARK), and by succinctness, there exists a polynomial qsARK such that

sARK runs in time

qsARK(λ, `upd, log(tupd · pupd)) � poly(λ, |(M,x)| , log(t · pM)),

where we recall that `upd(λ, |(M,x)| , t) � poly(λ, |(M,x)| , log t) upper bounds the Lupd statement
length, tupd(λ, |(M,x)| , t) � t · poly(λ, |(M,x)| , log t) upper bounds the depth to verify a Lupd

statement with at most t updates when using pupd(λ,pM) = pM · β processors.
Next, checking consistency between the sub-protocols is mostly syntactic and can be done in

time m · |(M,x)| · poly(λ, log t). Checking digest0 and hash0 can be done in time poly(λ), as well as
checking hash , since it corresponds to hashing a halting state and single word for the end of the
PRAM computation. Similarly, checking that statefinal is a halting state can be done in time O(λ), as
halting states consist of a single PRAM state with a constant number of words. Verifying the
output y can be done in time dL/λe · β � L · poly(λ) by the eficiency of the hash function and the fact
that |y| ≤ L.

Putting everything together, we get that the verifier runs in timem·L·poly(λ, |(M,x)| , log(t ·pM)).
Since m ≤ γ log t by Claim 6.14 and γ = α ? + 1, this is bounded by

α ? · L · poly(λ, |(M,x)| , log(t · pM)).

Last, by Remark 8, we note that we can assume without loss of generality that the Lupd statements
are relative to a machine M0 and input x0 with length bounded by a fixed polynomial in λ and a
time bound t0 = t + poly(λ, |(M,x)|), so long as V has an additional |(M,x)| · poly(λ) factor in its
running time to hash (M, x). Therefore, combining this with the above and noting that log(t0) �
poly(λ, log t), the verifier’s total running time is at most α ? · |(M,x)| · L ·q(λ, log(t ·pM)) for a fixed
polynomial q.

Lemma 6.17 (Communication Complexity). There exists a polynomial q such that for any λ � N,
(M, x , t , L) � {0, 1}� where M has access to n ≤ 2λ words in memory and pM processors, it holds

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

final

s

s

V

n U

31:60 N. Ephraim et al.

that the length of the transcript produced between P(w) and V on common input (1λ , (M, x , t , L)) is
bounded by

α ? · L · q(λ, log(t · pM)).

Proof. The dominating part of the communication comes from the communication in all sub-
protocols defined by Compute-and-prove. The rest of the communication has size at most poly(λ)
to send pp and h, size poly(λ) to send Statefinal,V rd (as they correspond to the final state of the
computation) and at most λ · dL/λe + L · β � L · poly(λ) to send the final proof. Put together, this
is at most L · poly(λ).

The m sub-protocols in Compute-and-prove are computed using (PsARK , V ARK), so they have
communication bounded by some fixed polynomial qsARK in λ and log(tupd · pupd) by succinctness of
(PsARK , V ARK), where recall tupd upper bounds the tome to verify the ith Lupd statement when
usingpupd processors. Since tupd(λ, |(M,x)| , t) ≤ t ·poly(λ, |(M,x)| , log t) whenpupd(λ,pM) = pM ·β ,
then this implies that the communication across all protocols is at mostm·qsARK(λ, log(tupd ·pupd)) �
m · poly(λ, log(t · pM)), where we additionally used the fact that |(M,x)| ≤ n ≤ 2λ . The prover also
has to send the statement for each sub-protocol, which adds m · `upd � m · poly(λ, |(M,x)| , log t) to
the communication complexity, where we recall that `upd is the upper bound on the Lupd statement
length. By Claim 6.14, m ≤ γ log t and γ = α ? + 1, so all together Compute-and-prove adds

α ? · poly(λ, |(M,x)| , log(t · pM))

to the communication complexity.
Putting everything together, we get a bound of α ? · L · poly(λ, |(M,x)| , log(t · pM)). Finally, by

Remark 8, without loss of generality, we can assume that |(M,x)| is bounded by a fixed polynomial in
λ when used in the Lupd statements, as long as the statements are proven relative to a time
bound t 0 = t +poly(λ, |(M,x)|) (rather than t) and the prover and verify incur an additional delay of
|(M,x)|·poly(λ) delay (which was taken into account in the proofs of prover and verifier eficiency).
Therefore, this implies that log t 0 � poly(λ, log t) (since |(M,x)| ≤ n ≤ 2λ), and so the number of
rounds and total communication is bounded by α ? ·L ·q(λ, log(t ·pM)) for a fixed polynomial q.

6.4 Non-interactive Protocol

In this section, we give the protocol from Section 6 in the non-interactive setting. Specifically, we
show a transformation from any concurrently updatable hash function and succinct non-
interactive argument of knowledge (SNARK) to an argument where the multiplicative over-
head of the SNARK prover translates into only additive overhead for the resulting prover. Our
construction is nearly the same as in the interactive case, though we additionally need to assume that
the underlying succinct argument is a SNARK. We formally define SNARKs in Section 3.3.

Let C be a concurrently updatable hash function, let (Gsnark, Psnark, snark) be a SNARK for Lupd

with (α , ρ)-prover eficiency, and let H = { Hλ }λ�N be a collision-resistant hash function family en-
semble. When we mention the prover and verifier (P, V), we refer to the construction of Section 6.2.
We now give the high-level details of our construction (Gni , Pni , V i) for RPRAM, emphasizing
the key differences from our interactive construction.

• (crs, st) ← Gni(1λ): Let pp ← C.Gen(1λ , n) where n = 2λ , h ← Hλ , and (crssnark, stsnark) ←
Gsnark(1λ). Output (crs, st) where crs = (crssnark, pp,h) and st = (stsnark, pp,h).12

• (y,π) ← Pni(crs, (M, x , t , L),w): Let crs = (crssnark, pp,h). Let M0 be the same as the machine M ,
except that it specifies n = 2λ as the amount of words in memory it has access to. Without

12Note that if the underlying SNARK is publicly verifiable, then stsnark = crssnark. Then, crs = st, so the resulting non-
interactive argument is also publicly verifiable.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

n

s

n

U

n

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:61

sending any messages, run the prover P(w) on common input (M0, x, t, L) using (pp,h) as
the verifier’s first message and crssnark as the common reference string for all underlying
SNARKs. Let y be the output of the computation and π be all messages that would have
been sent in the protocol. Output (y, π).

• b ← V i(st, (M, x ,y, L, t),π): Let st = (stsnark, pp,h). If M uses more than 2λ words in memory,
then output b = 0. Otherwise, let M0 be the same as the machine M , except that it specifies
n = 2λ as the amount of words in memory it has access to. Parse π as all messages from
P , and run the verifier V for statement (M0, x , t ,y, L) using (pp,h)
as the verifier’s first message and stsnark to verify all underlying SNARKs. Let y0 be the value
that V would have output. Output b = 1 if y = y0 and b = 0 otherwise.

We get the following theorem:

Theorem 6.18. Suppose there exists a concurrently updatable hash function and a SNARK (Gsnark,
Psnark , V nark) with (α , ρ)-prover eficiency for the NP language Lupd . Then, there exists a tuple (Gni,
Pn i , V i) satisfying niSPARK completeness and argument of knowledge for NP, as well as the same
eficiency properties as Theorem 6.1.

Specifically, there exists a polynomial q such that for all λ � N and ((M, x ,y, L, t),w) � RPRAM

where M has access to n ≤ 2λ words in memory and pM processors, the following hold: Let α ? and ρ ?

(formally defined based on α and ρ) be the multiplicative overhead in depth (with respect to the
number of steps) and number of parallel processors used, respectively, by Psnark to prove a statement in
Lupd corresponding to at most t steps of computation. Then:

• The depth of Pni is bounded by t + (α ?)2 · |(M,x)| · L · q(λ, log(t · pM)) when using (pM + α ? ·
ρ ?) · q(λ, log(t · pM)) processors.

• The work of V i is bounded by α ? · |(M,x)| · L ·q(λ, log(t ·pM)), and the length of the transcript
produced in the interaction between P(w) and V is bounded by α ? · L · q(λ, log(t · pM)).

To prove Theorem 6.18, we note that completeness, succinctness, and optimal prover depth
follow identically as in the proof of the construction in Section 6. The proof of adaptive argument of
knowledge is conceptually similar yet differs in the technical details as the definition of the
extractor for both the underlying SNARK and niSPARK are different. As such, we give the full
proof of adaptive argument of knowledge in Appendix B.

As we discuss in Remark 2 in Section 3.3, the argument of knowledge property of the underlying
SNARK may only hold for certain distributions over the auxiliary input of the malicious prover.
In this case, the argument of knowledge property in our construction holds for any distribution
Z over the auxiliary input of the malicious prover so long as the SNARK is secure with auxiliary
input drawn from (Z , C.Gen(1λ), Hλ).

7 MAIN RESULTS

We first construct a four-round SPARK in Section 7.1 assuming only collision resistance. Addition-
ally assuming the existence of a SNARK, we construct a space-preserving, non-interactive SPARK in
Section 7.2.

7.1 Four-round SPARKs

We consider general parallel RAM computations consisting of statements (M, x ,y, L, t) where M is
a parallel RAM machine using any pM number of processors. If we instantiate our transformation
from Section 6 with a succinct argument where the prover has α ? = poly(λ, log(t · pM)) overhead in
depth while using at most ρ ? = pM processors, then the transformation of Theorem 6.1 yields a

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

s

s

s

U

31:62 N. Ephraim et al.

SPARK for RPRAM. To capture the requirements we need, we first formalize and define this notion
as a depth-preserving succinct argument of knowledge.

Definition 7.1 (Depth-Preserving Succinct Argument of Knowledge). We say that a succinct argu-
ment of knowledge (P , V) for a relation R � R TM is depth-preserving if there exists a polynomial q
such that (P , V) satisfies (α , ρ)-prover eficiency for α(λ, |(M,x,y,L)| , t ,pM) = (t + |(M,x,y,L)|) ·
q(λ, log(t · pM)) and ρ(λ, |(M,x,y,L)| , t ,pM) = pM .

In the following theorem, we show that a depth-preserving succinct argument of knowledge
yields a SPARK:

Theorem 7.2. Suppose there exists a concurrently updatable hash function and a depth-preserving
succinct argument of knowledge for NP. Then, there exists a SPARK for non-deterministic polynomial
time PRAM computation.

Proof. Let (PsARK , V ARK) be a depth-preserving succinct argument of knowledge for the lan-
guage Lupd where |(M,x)| � poly(λ) by Remark 8. Let α and ρ be the eficiency of (PsARK , V ARK).
We recall that the length of Lupd statements for at most t updates is at most `upd(λ, |(M,x)| , t)
� log t + poly(λ), and when using pupd(λ,pM) � pM · poly(λ) processors, the verification procedure
takes depth at most tupd(λ, |(M,x)| , t) = t · poly(λ, log t). Since (PsARK , V ARK) is depth-preserving,
this implies that there exists a polynomial q such that

α ? = α (λ, `upd, tupd,pupd)/t ≤ q(λ, log(t · pM))

and ρ ? = ρ(λ, `upd, tupd,pupd) = pupd ≤ pM · q(λ, log(t · pM)). Theorem 6.1 implies that there
exists an interactive protocol (P , V) for RPRAM that satisfies SPARK completeness and argu-
ment of knowledge for NP. Furthermore, plugging the values for α ? = q(λ, log(t · pM)) and
ρ ? = pM ·q(λ, log(t ·pM)) into the theorem, this implies that there exists a polynomial q0 such that
the following eficiency properties hold:

• The depth of the prover is bounded by t + |(M,x)| · L · q0(λ, log(t · pM)) when using pM ·
q0(λ, log(t · pM)) processors.

• The work of the verifier is bounded by |(M,x)| · L · q0(λ, log(t · pM)) and the length of the
transcript produced in the interaction between P(w) and V is bounded by L·q0(λ, log(t ·pM)).

This immediately implies the SPARK optimal prover depth and succinctness properties.

We will instantiate the transformation in Theorem 7.2 by showing that Kilian’s protocol [41]
with the parallelizable PCP construction of Reference [11] is a four-round depth-preserving suc-
cinct argument of knowledge. This results in a SPARK from collision resistance alone. Furthermore,
we will describe how to improve the round complexity of this instantiation. Specifically, when ap-
plying the above theorem generically to an r-round succinct argument of knowledge, the round
complexity of the resulting SPARK is roughly r · poly(λ, log(t ·pM)). We will show that when using
Kilian’s protocol, we can instead preserve the round complexity, resulting in a four-round SPARK.

We next recall Kilian’s argument and the PCP we use and then show how this yields a four-round
SPARK.

PCPs and Kilian’s succinct argument. At a high level, Kilian’s argument gives a way to compile
a probabilistically checkable proof (PCP) of knowledge into a four-round succinct argument of
knowledge. To show that Kilian’s argument can be made to be depth-preserving, we will need the
PCP to also have a depth-preserving property. We therefore start by defining a depth-preserving
PCP of knowledge. In what follows, we use the notation V π to denote a verifier V with oracle
access to a proof string π .

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

p

π
p

V pcp
π λ(1 , x) =

pc

V

p

p

p

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:63

Definition 7.3 (Depth-Preserving PCP of Knowledge). A depth-preserving PCP of knowledge for
an NP relation R is a pair (Ppcp , V cp) satisfying the following:

• Completeness: For any λ � N, (x ,w) � R, and π ← Ppcp(1λ , x , w), it holds that V cp(1λ , x) = 1.
• Proof of Knowledge: There exists a PPT extractor E and a negligible function negl such that

for any λ � N, x � {0, 1}�, and proof π � {0, 1}�,

Pr w ← E(x , π) : � (x ,w) < R
1

≤ negl(λ).

• Depth-Preserving Prover Eficiency: Let M be the Turing machine that verifies the relation
R using pM processors. There exists a polynomial q such that for any λ � N and (x ,w) � R,
the depth of Ppcp(x , w) is bounded by t · q(λ, |x| , log(t · pM)) when using pM processors,
where t is the depth of M(x ,w).

• Verifier Eficiency: Let M be the Turing machine that verifies the relation R using pM proces-
sors. There exists a polynomial q such that for any λ � N, input (x ,w) � {0, 1}�, and oracle
string π � {0, 1}�, Vπ

p(1λ , x) runs in time q(λ, |x| , log(t · pM)), where t is the running time
of M(x ,w).

Throughout this section, we will be focusing only on non-adaptive PCPs. In such a PCP, both the
set of queries made by the verifier and the decision algorithm used by the verifier do not depend on
the answers to previous PCP queries. Thus, a non-adaptive PCP verifier can be viewed as an
interactive algorithm without access to π that first outputs a set of query indices I , receives the
corresponding answers according to π , and then indicates whether to accept or reject. It will be
convenient to view the PCP verifier as such when we specify Kilian’s protocol.

We next observe that the PCP of Ben-sasson et al. [11] gives a depth-preserving, non-adaptive
PCP of knowledge. To see this, we note that when viewing their construction as a PCP for a specific
NP language, it has the property that the PCP can be computed from the tableau of the computation
in depth poly(λ, log(t ·pM)) using t ·pM processors. Such a PCP implies a depth-preserving PCP of
knowledge by restricting the prover to only use pM processors at a time, which increases its depth by
a factor of t and satisfies the above definition.

To put everything together, we next recall Kilian’s succinct argument and discuss its eficiency
when instantiated with a depth-preserving PCP. Given any non-adaptive PCP system (Ppcp, pcp) for
NP, Kilian’s transformation yields a four-round interactive protocol (P , V) defined as follows: Let L
be a language with witness relation RL . The common input to the protocol is (1λ , x) and P receives
private input w such that (x ,w) � RL .

(1) V samples a function h from a collision-resistant hash function family and sends h to P .
(2) P computes π ← Ppcp(1λ , x , w), computes a Merkle tree hash of π using h, and sends the

root to V .
(3) V samples a set I of query indices from V cp(1λ , x) and sends it to P .
(4) P opens up the locations in I in the Merkle tree and sends the openings along with the

authentication paths to V .
(5) The verifier accepts if and only if (a) V cp(1λ , x) accepts given the openings and (b) all au-

thentication paths are valid.

The above protocol is a four-round succinct argument of knowledge if (Ppcp , V cp) is a PCP of
knowledge and h is a collision-resistant hash function. We note that the second message where P
computes the PCP proof π with a Merkle tree is the most time-consuming step and is why we need a
PCP with an eficient prover. All other steps can be computed in time poly(λ, |x| , log(t · pM)) for any
PCP.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

s

V
U

U
s

1 s k

1

1

k

k

final

s k

s

k

k

31:64 N. Ephraim et al.

Next, we sketch why Kilian’s protocol is depth-preserving when using a depth-preserving PCP.
The prover Pkilian consists of computing a PCP π , computing the Merkle tree root of π , and then
opening up locations in the Merkle tree corresponding to the verifier’s queries. By definition of a
depth-preserving PCP, computing the PCP can be done in depth t · poly(λ, |x| , log(t · pM)) with
pM processors. This results in a PCP of length t · pM · poly(λ, |x| , log(t · pM)). The Merkle root can
then be computed in depth t · poly(λ, |x| , log(t · pM)) with pM processors. By the bound on the
length of the PCP combined with the PCP verifier’s efiency, the query locations can be opened in
time poly(λ, |x| , log(t · pM)). It follows that instantiating Kilian’s protocol in this way results in a
depth-preserving succinct argument of knowledge.

Constructing a four-round SPARK. We now describe our four-round SPARK construction. We
assume familiarity with the protocol of Section 6.2, which we denote by (Pspark , V park), and which
serves as the basis for the construction. For the underlying succinct argument of knowledge in
that protocol, we use Kilian’s succinct argument with a depth-preserving PCP of knowledge as
described above, which we denote by (Pkilian, kilian).

The protocol (P , V) for RPRAM is defined as follows: The common input to the protocol is
(1λ , (M, x , t , L)) and P receives private input w such that ((M, x ,y, L, t),w) � RPRAM where y is the
output of M(x ,w) within t steps. When we refer to protocol (Pspark, V park), we mean the
protocol with the same inputs.

(1) V computes the first message msg for V park and a hash function h for (Pkilian , V ilian). V
sends (msg ,h) to P .

(2) Using msg , P runs the prover algorithm Provespark through the Compute-and-prove step,
which determines statements for the m sub-protocols. For each of the sub-protocols, P uses
h to compute the second message of (Pkilian , V ilian) for the given statements. Recall that this
consists of a Merkle tree digest of the PCP for that part of the computation, which P stores
explicitly for all protocols. After computing all second messages in parallel, P sends them to
V at the same time.

(3) V responds with the third message of (Pkilian , V ilian) for the m sub-protocols, consisting of
indices to open in each PCP.

(4) P opens all relevant locations with authentication paths in the PCPs and sends the results
to V along with the final message msg sent by Pspark .

(5) V accepts and outputs the value y specified by V park if all of the underlying (Pkilian , V ilian)
protocols accept and all conditions checked by V park hold.

As (Pkilian , V ilian) is a depth-preserving succinct argument of knowledge assuming only the ex-
istence of collision-resistant hash functions, the above construction yields the following theorem:

Theorem 7.4 (Restatement of Theorem 1.3). Suppose there exists a family of collision-resistant
hash functions. Then, there exists four-round SPARK for non-deterministic polynomial-time PRAM
computation.

Proof. We consider the protocol (P , V) defined above which uses a depth-preserving succinct
argument of knowledge and a collision-resistant hash function family.

The proofs of completeness and argument of knowledge for (P , V) follow identically to the
analysis of Theorem 6.1, and the protocol above is defined in four rounds.

Succinctness follows from Theorem 7.2, since the underlying argument is depth-preserving.
We briefly discuss prover eficiency. The prover complexity in (Pkilian , V ilian), which dominates
the prover complexity in the four-round SPARK, comes from the second and fourth messages

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

U

U

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:65

of the protocol. All other messages by the prover and the verifier can be computed in time
poly(λ, |(M,x)| , L, log(t · pM)). Without waiting for all messages of the protocol, all sub-protocols
would have finished by depth t + γ 2 · (log t + 1) + β by the analysis of Lemma 6.13. Thus, the
second messages of the sub-protocols will finish by this time, so the second message will be sent
by time (t + γ 2 · (log t + 1) + β) � t + (α ?)2 · |(M,x)| · poly(λ, log(t · pM)). The fourth message
simply consists of opening locations in the Merkle trees with authentication paths. Assuming the
entire PCP is stored, this can be computed in time poly(λ, log(t · pM)) for each of m PCPs in par-
allel. Thus, the total time for the protocol to finish is t + (α ?)2 · |(M,x)| · L · poly(λ, log(t · pM)).
Again, as the underlying argument is depth-preserving, this implies that α ? � poly(λ, log(t · pM))
and ρ ? = pM · poly(λ) as in Theorem 7.2, so the protocol satisfies optimal prover depth. Thus, the

resulting protocol is a valid SPARK for RPRAM.

7.2 Non-interactive SPARKs

If we instantiate our transformation with a SNARK, as in Section 6.4, then the resulting protocol is
non-interactive. Furthermore, if the SNARK is depth-preserving as in Definition 7.1, then this
implies a non-interactive SPARK. For completeness, we define a depth-preserving SNARK and
formally state this result below. We note that the proof follows identically to that of Theorem 7.2.

Definition 7.5 (Depth-Preserving SNARK). We say that a SNARK (G , P , V) for a relation R �
RTM is depth-preserving if there exists a polynomial q such that (G , P , V) satisfies (α , ρ)-prover
eficiency for

α(λ, |(M,x,y,L)| , t ,pM) = (t + |(M,x,y,L)|) · q(λ, log(t · pM))
and ρ(λ, |(M,x,y,L)| , t ,pM) = pM .

Theorem 7.6. Assuming there exists a concurrently updatable hash function and a
depth-preserving SNARK for NP. Then, there exists a non-interactive SPARK for non-deterministic
polynomial-time PRAM computation.

Assuming the existence of collision-resistant hash functions, Bitansky et al. [16] show how to
transform any (possibly ineficient or preprocessing) SNARK into a complexity-preserving SNARK
using recursive proof composition (following ideas of Valiant [55]). We show that, for paral-
lel RAM machines M using pM processors, their construction gives a depth-preserving SNARK
when allowing the prover to use pM processors as well. The fact that the SNARK is
complexity-preserving means that it also preserves the space complexity of the underlying
computation up to poly(λ, log(t · pM)) factors. We isolate this property and refer to it as space-
preserving, defined as follows:

Definition 7.7 (Space-preserving). We say that a succinct argument (P, V) for a relation R � R TM

is space-preserving if there exists a polynomial q such that for any λ � N, and ((M, x ,y, L, t),w) � R
where M(x ,w) uses n ≤ 2λ space and pM processors, it holds that the space of P is at
most n ·q(λ, log(t ·pM)). We analogously define space-preserving for succinct non-interactive
arguments (G , P , V).

At a high level, the transformation of Reference [16] splits the t-time computation into roughly t
parts of size poly(λ) and constructs proofs for each part separately. Each of these proofs are treated as
independent of each other and can be computed in parallel. At first, this does not provide any
benefit, since the verifier would need to check roughly t distinct proofs. However, they show how
to combine multiple proofs by proving the existence of a set of “lower-level” proofs that the verifier
would have accepted. Using this idea, they combine proofs recursively in a tree-like fashion of
constant-depth until the verifier only has to verify a single proof.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:66 N. Ephraim et al.

We briefly discuss the proof of this transformation and discuss why the resulting SNARK is
depth-preserving. Completeness is straightforward. Proving that this transformation preserves the
argument of knowledge property is more subtle and relies on the fact that the SNARK composition
only has constant depth (without making stronger assumptions about the knowledge extractor for
the underlying SNARK). Succinctness follows as the final proof is simply a single SNARK proof.
To show that the resulting SNARK is depth-preserving and space-preserving, we note that even
if the underlying SNARK has poly(t) overhead in time and space for a t-time computation, each
individual proof will only require poly(λ) overhead, since the size of each sub-computation is only
poly(λ). Thus, the “layer one” proofs (corresponding to the proofs of the main computation) only
incur a poly(λ) multiplicative overhead in the underlying depth and space, and at most poly(λ)
proofs will be processed in parallel at any time. Furthermore, the composed proofs at higher levels
of the tree can be computed as soon as they are ready, and only poly(λ) proofs will be computed
at any time. Once computed, the prover can “forget” the previous parts of the computation, so it
only needs to keep information about poly(λ) proofs around, consisting of the current “frontier”
in this tree. We refer the curious reader to Reference [16] for more details of this proof.

Using the above SNARK transformation in our non-interactive SPARK construction of
Section 6.4, we get the following theorem assuming collision-resistance and any SNARK. We em-
phasize that if the underlying SNARK is publicly verifiable, then so is the resulting SPARK.

Theorem 7.8. Suppose there exists a family of collision-resistant hash functions and a SNARK.
Then, there exists a space-preserving, non-interactive SPARK for non-deterministic polynomial-time
PRAM computation.

Completeness, argument of knowledge, succinctness, and optimal prover depth all follow di-
rectly from the analysis of Theorems 6.1, 6.18, and 7.2. As a result, we focus on the space complex-
ity of the prover. The space complexity is dominated by the sub-protocols. The space used by the
computation is defined to be n, and all other parts are bounded by (|M,x| + L) · poly(λ, log(t · pM)).
If the underlying SNARK is space-preserving, then it holds that each subprotocol uses at most
n · poly(λ, log(t ·pM)) space. There are at most m ≤ (α ? + 1) log t sub-protocols, which are bounded
by poly(λ, log(t · pM)), since the protocol is depth-preserving. Thus, the space used by all sub-
protocols is at most n · poly(λ, L, log(t · pM)) as required.

8 EXTENSIONS

In this section, we discuss various extensions of our main result.

8.1 Space-preserving Interactive SPARKs

In Section 7.2, we gave a transformation from SNARKs to non-interactive SPARKs that are also
space-preserving. As discussed in that section, this relies on a transformation from SNARKs to
complexity-preserving SNARKs due to Reference [16], which only works in the non-interactive set-
ting. Specifically, if each intermediate argument in that transformation requires interaction, then
this would make the round complexity, and hence communication complexity, depend at least lin-
early on t . This raises the question, can we construct space-preserving (interactive) SPARKs from
weaker assumptions than space-preserving non-interactive SPARKs? We emphasize that the four-
round SPARK protocol given in Section 7.1 is not space-preserving. In particular, that construction
requires storing an entire PCP for each sub-protocol, so it requires space that depends on the time
bound t of the underlying computation rather than the space bound.

Bitanksy and Chiesa [18] posed this question for succinct arguments of knowledge (without the
optimal prover depth requirement). They construct four-round complexity-preserving succinct

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:67

arguments of knowledge by adapting Kilian’s four-round argument. Instead of relying on PCPs
in Kilian’s blueprint, they make use of a one-round complexity-preserving multi-prover inter-
active proof (MIP) of knowledge. In a MIP, there are many provers, and they are crucially not
allowed to interact with each other (otherwise, it would be equivalent to the setting of a single
prover). They show how to compile such a MIP into a succinct argument using function commit-
ments. At a high level, function commitments allow the prover to commit to a function without
evaluating it at every point, so they use the function commitments to commit to the MIP prover
algorithms. In contrast, to commit to a PCP string in Kilian’s protocol, the prover needs to compute
the full PCP string.

In Reference [18], they show how to construct the required function commitments based only on
fully homomorphic encryption (FHE), and so the resulting complexity-preserving succinct
argument of knowledge is based only on FHE. By instantiating our SPARK construction of Sec-
tion 6.2 with their succinct argument, we get the following theorem assuming collision resistance
and FHE:

Theorem 8.1. Suppose there exists a collision-resistant hash function family and a secure FHE
scheme. Then, there exists a space-preserving SPARK for non-deterministic polynomial-time (sequen-
tial) RAM computations.

The space-preserving property follows from the same observations as in the non-interactive
case. However, we note that the round complexity of the resulting SPARK is poly(λ, L, log(t · pM)).
In short, the trick used in Section 7.1 to construct a four-round SPARK using Kilian’s succinct
argument does not immediately work to collapse rounds, as the prover needs to do quasi-linear
work both to commit to the functions of the MIP provers and to homomorphically evaluate their
responses. Additionally, we note that the complexity-preserving succinct argument is private-coin,
so the resulting space-preserving SPARK is also private-coin.

Last, we remark that the complexity-preserving succinct argument of Reference [18] is only
given for RAM (rather than PRAM computations), so the above theorem is also only stated for
sequential RAM computations. We note that it actually holds for computations with moderate
parallelism—namely, machines computable in time t with poly(λ, log t) parallelism. At a high level,
this follows, because SPARKs for sequential RAM computation generically give depth-preserving
succinct arguments for computation with moderate parallelism by ignoring the parallelism of the
underlying computation and treating it as a t ·poly(λ, log t)-time sequential computation. Applying
our transformation to this results in a SPARK for moderately parallel computations. We leave the
extension to full PRAM computation as future work.

Open problems. We comment on open problems left by Bitansky and Chiesa [18], which if
resolved would immediately give results for space-preserving SPARKs. The first is to construct
complexity-preserving PCPs. Using such a PCP in Kilian’s argument would yield a complexity-
preserving, public-coin, succinct argument. In turn, this can be used to construct a space-
preserving, public-coin, four-round SPARK, by the techniques described in Section 7.1. Next, is
it possible to construct a complexity-preserving, public-coin, succinct argument without going
through PCPs and Kilian’s transformation? Again, this would at least give a space-preserving,
public-coin SPARK, although not necessarily with constant round complexity.

8.2 Proof Composition

We recall that in the transformation from succinct arguments to SPARKs, the prover proves
m ≤ (α ? + 1) · log t separate sub-protocols, where recall α ? is the overhead in depth of the under-
lying argument and t is the depth of the computation. This requires that the prover communicate

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:68 N. Ephraim et al.

m proofs, and the verifier needs to check all of them. Even when the underlying argument is
depth-preserving, the number of protocols m � poly(λ, log(t · pM)) may be undesirable.

In the non-interactive setting, the prover can generically compose proofs such that the prover
only has to send—and the verifier only has to verify—a single SNARK proof. Specifically, let
Π1, . . . ,Πm be the m underlying SNARK protocols with statements statementi and witnesses witi

for each i � [m]. The prover will initially compute proofs π1, . . . ,πm for each statement, which
takes at most t + poly(λ, log(t · pM)) time. At this point, the prover can send a hash of all m
statements, witnesses, and proofs to the verifier and additionally use the SNARK to prove that
it knows a set of statements, witnesses, and proofs that (1) the original SPARK verifier would have
accepted and (2) are consistent with the provided hash. This additional work only incurs an addi-
tive poly(λ, log(t ·pM)) delay by the prover, so the resulting protocol still satisfies the optimal prover
depth property required by a SPARK. This is a standard proof composition technique (see Refer-
ences [16, 55] for more details), and because this only requires one level of recursive composition,
the argument of knowledge property is preserved.

In the interactive setting, proof composition does not generically work as described above to
reduce communication and verifier complexity. However, in the case of Kilian’s protocol and our
construction in Section 7.1, we can do proof composition to reduce communication and verifier
complexity at the cost of two extra messages of communication. At a high level, instead of send-
ing the roots of the Merkle tree for all m PCPs, the prover hashes all of the statements and roots
together and sends it to the verifier. This takes at most t + poly(λ, log(t ·pM)) time to finish the first
prover message. At this point in time, the verifier sends randomness to specify challenge queries
for the m PCPs (which can be compressed using a pseudo-random generator). The prover then uses a
four-round succinct argument of knowledge to prove that it knows a set of openings consistent
with the hash answering all of the PCP queries that the verifier would have accepted. The
complex-ity of this statement is only poly(λ, log(t · pM)), so it only incurs an additional
poly(λ, log(t · pM)) delay in the protocol as required. The argument of knowledge analysis
follows similarly to the non-interactive setting. Furthermore, at the end of the protocol, the
verifier only needs to check a single succinct argument of knowledge at the cost of an extra round
of communication.

8.3 Efficiency Tradeoffs

We note that for some applications, requiring optimal prover depth may not be necessary. There
may be a hard constraint on the time to finish the proof (e.g. compute the proof within 1 hour) or on
the number of processors (e.g. compute the proof as fast as possible using p processors). We
emphasize that the construction in Section 6.2 is flexible to these varying needs, depending on the
specific application. Specifically, by choosing γ appropriately (which recall corresponds to the
fraction of the remaining computation to compute and prove at each step), we can handle any
pre-specified prover running time or achieve the best-possible running time given a fixed number of
processors.

9 APPLICATIONS TO VERIFIABLE HARD FUNCTIONS

We observe that any non-interactive SPARK for deterministic computations gives a way to turn any
function implemented in the parallel RAM model into a verifiable function that can be computed in
roughly the same parallel time. In particular, this implies that any sequential function (one that can
be computed in time T but not much faster) can be made into a verifiable delay function (VDF).
Furthermore, if the underlying sequential function satisfies some hardness property, such as
memory-hardness, then this is preserved in the transformation. In the following, we formally
define verifiable hard functions and then show how to construct them using publicly verifiable
non-interactive SPARKs for deterministic computations:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Pr

�
�
�
���

b = 1
�
����
�

λ

λ

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:69

9.1 Defining Verifiable Hard Functions

In the subsequent definitions, we make use of the following algorithms with the specified syntax:

• pp ← Gen(1λ): A PPT algorithm that on input a security parameter λ outputs public parameters
pp. We assume for simplicity that pp contains 1λ .

• x ← Sample(pp): A PPT algorithm that on input a security parameter λ and public parameters
pp outputs a string x � {0, 1}�.

• y = Eval(pp, x): A deterministic algorithm that on input a security parameter λ, public param-
eters pp, and an input x � {0, 1}�, outputs a value y � {0, 1}�.

• (y, π) ← EvalWithProof(pp, x): An algorithm that on input a security parameter λ, public pa-
rameters pp, and an input x � {0, 1}�, outputs a value y � {0, 1}� and a proof π � {0, 1}�.
The value y can be generated by the deterministic algorithm Eval(pp, x). The second output
π can be generated using randomness, so it may not be unique.

• b ← Vf(pp, x , (y, π)): A probabilistic algorithm that on input a security parameter λ, public pa-
rameters pp, an input x � {0, 1}�, a value y � {0, 1}�, and a proof π � {0, 1}�, outputs a bit b
indicating whether to accept or reject.

Using the above syntax, we define a verifiable function in the public parameters model.

Definition 9.1 (Verifiable Function). A verifiable function is a a tuple (Gen, EvalWithProof , Vf)
of algorithms such that the following hold:

• Completeness: For every λ � N, pp � Supp Gen(1λ) , and x � {0, 1}�, it holds that

Pr [Vf(pp, x , EvalWithProof(pp, x)) = 1] = 1.

• Soundness: For every non-uniform PPT algorithm A = {Aλ }λ�N , there exists a negligible
function negl such that for every λ � N, it holds that

� pp ← Gen(1λ)

� (x,y0,π 0) ← Aλ (pp)
� (y, π) ← EvalWithProof(pp, x)

� b ← Vf(pp,x,y0,π 0)

�
�

:

� y , y0

�
≤ negl(λ).

�

Before defining a hard function, we define the notion of a class of algorithms. Recall that an
algorithm A = { A λ }λ�N is a actually sequence of algorithms for each λ � N. A class C is a set of
algorithms satisfying some predicate as a function of λ. Also, we recall the distinction between
uniform and non-uniform algorithms A = { A λ }λ�N . A is uniform if for all λ � N, A λ can be
computed by a constant-size PPT Turing machine on input 1 . A non-uniform algorithm may not
have a constant-size description to eficiently generate A λ for all λ � N. At a high level, a hard
function can be computed by a uniform algorithm in an “honest” class whereas it cannot be
computed even by non-uniform algorithms in an “adversarial” class.

Definition 9.2 (Hard Function). Let CHonest and CAdv be classes of algorithms. A (CHonest, CAdv)-
hard function is a tuple of algorithms (Gen, Sample, Eval) such that the following hold:

• Honest Evaluation: There exists a uniform algorithm A = { A λ }λ�N � CHonest such that for
all λ � N, pp � Supp (Gen(1)), and x � Supp(Sample(pp)),

Aλ (pp, x) = Eval(pp, x).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Pr

������
� A 1 � C Adv

����
�

31:70 N. Ephraim et al.

• Hardness: For every non-uniform PPT algorithm A 0 = {A0,λ }λ�N ,13 there exists a negligible
function negl such that for every λ � N, it holds that

� pp ← Gen(1λ)
A 1 ← A0, λ (pp)
x ← Sample(pp)

� y ← A1 (x)

�

:
Eval(pp, x) = y

�
≤ negl(λ).

�
We say that a hard function has bounded output if for any pp in the support of Gen(1λ) and x in
the support of Sample(1λ), it holds that |Eval(pp,x)| ≤ λ.

In the above definition, we emphasize that for hardness, the non-uniform algorithm A 0 is al-
lowed to do arbitrary polynomial-time pre-processing on the public parameters and then must
output a valid algorithm A 1 in the class CAdv that breaks security. In particular, this is stronger
than a definition where the same adversary must work for all public parameters while also coming
from the restricted class CAdv .

Combining the above two notions, we can define a verifiable hard function in the public param-
eters model.

Definition 9.3 (Verifiable Hard Function). Let CHonest and CAdv be classes of algorithms. A veri-
fiable (CHonest, CAdv)-hard function is a tuple (Gen, Sample, EvalWithProof , Vf) such that (Gen,
Sample, Eval) is a (CHonest, CAdv)-hard function and (Gen, EvalWithProof , Vf) is a verifiable
function.

Comparison with Reference [6]. Alwen and Tackmann [6] propose a definitional framework
for moderately hard functions, which has been used in subsequent works defining various notions of
memory-hard function (e.g., Reference [2]). The main goal of Reference [6] is to come up with a
definition that composes nicely in applications. As such, they assume that both the honest and
adversarial executions of a moderately hard function have bounded access to an idealized oracle.
They propose an indifferentiability-style definition so when analyzing applications using moder-
ately hard functions, it sufices to consider only the resource usage in an “ideal world” scenario. In
contrast, our main goal is to show that applying SPARKs to an arbitrary moderately hard function
preserves hardness in a “real world” setting, so we do not want to assume that the function has
access to an idealized oracle. However, when applying SPARKs to a specific hard function in an
idealized model, it would be beneficial to analyze the specific construction within the indifferen-
tiability framework of Reference [6]. We leave this as important and interesting future work when
using specific verifable hard functions in further applications.

9.2 Verifiable Hard Functions from Non-interactive SPARKs

We next give a generic theorem that, at a high level, shows that any hard function that can be
implemented by a parallel RAM algorithm in parallel time T can be bootstrapped into a verifiable
hard function using a publicly verifiable non-interactive SPARK for deterministic computations
while nearly preserving the parallel running time and number of processors.

To formalize this, we define a class of parallel RAM algorithms that can be computed in roughly
time T with p processors. For any functions T ,p,q : N → N, let PT ,p,q be the class of algorithms
such that an algorithm A = { A λ }λ�N is in PT ,p,q if for all λ � N, A λ is a parallel RAM algorithm
running in parallel time T (λ) + q(λ) with at most p(λ) · q(λ) processors. For any T ,p : N → N, we

13We note that we could naturally extend this definition to model hardness with respect to a more expensive preprocessing
attack, but we define polynomial-time attackers for simplicity.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

hard

hard).
hardhard hard

hard

hard
0

hard

hard
hard

hard

hard

hard hard

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:71

define
HonestPT ,p =

Ø
PT ,p,q .

q�poly(λ+log(T (λ)·p(λ)))

We assume that for algorithms A = { A λ }λ�N in HonestPT ,p , the value of q(λ) is given by A λ . We
note that other definitions (e.g. the definition of a sequential function from Reference [20]) consider
honest algorithms that run in time exactlyT (λ) with exactly p(λ) processors. We allow for additive
poly(λ + log(T (λ) · p(λ))) terms in the depth (and multiplicative ones in the number of processors) to
capture overheads roughly independent of the length of the computation. In particular, we do this
to make the class robust under application of a SPARK, which we formalize in the following
theorem. One could also separate q into two functions q1 and q2 defining the additional overheads in
the depth and processors, respectively, but for simplicity, we treat these as a single function.

Theorem 9.4. Let T ,p : N → N be eficiently computable functions and let CAdv be any class of
algorithms. Assuming the existence of publicly verifiable non-interactive SPARKs for deterministic
parallel computations, if there exists a (HonestPT ,p , CAdv)-hard function with bounded output, then
there exists a verifiable (HonestPT ,p , CAdv)-hard function.

By combining this with Theorem 7.8, we get the following:

Corollary 9.5. Let T ,p : N → N be eficiently computable functions and let CAdv be any class of
algorithms. Assuming the existence of collision-resistant hash function families, publicly verifiable
SNARKs for NP, and a (HonestPT ,p , CAdv)-hard function with bounded output, then there exists a
verifiable (HonestPT ,p , CAdv)-hard function.

Proof of Theorem 9.4. Let (Genhard, Sample , Evalhard) be a (HonestPT ,p , CAdv)-hard func-
tion with bounded output. Let (G, P ,V) be a non-interactive SPARK for deterministic computations.
We construct (Gen, Sample, EvalWithProof , Vf) to be a verifiable (HonestPT ,p , CAdv)-hard func-
tion, defined as follows:

• pp ← Gen(1λ): Run crsSPARK ← G(1λ) and pphard ← Genhard(1λ). Output pp = (crsSPARK,
pp

• x ← Sample(pp): Let (crsSPARK, pp) = pp, and output x ← Sample (pp).
• (y, π) ← EvalWithProof(pp, x): Let (crsSPARK, pp) = pp that specifies security parameter λ,

M = {Mλ }λ�N be the uniform algorithm from the honest evaluation property of (Genhard,
Sample , Evalhard), and let q(λ) be the value such that Mλ runs in timeT (λ) = T (λ) +q(λ +
log(T (λ) ·p(λ))), where q is a polynomial guaranteed to exist by the definition of HonestPT ,p .
Output (y,π) ← P(crsSPARK, (Mλ , (pp , x),λ,T 0(λ))). We additionally define Eval(pp, x) as
Mλ(pp , x).

• b ← Vf(pp, x , (y, π)): Let (crsSPARK, pp) = pp and M = {Mλ }λ�N be the uniform algo-
rithm from the honest evaluation property of (Genhard, Sample , Evalhard). Output b ←
V (crsSPARK, (Mλ , (pphard, x),y, λ,T 0(λ)),π).

We now show that (1) (Gen, Sample, Eval) is a (HonestPT ,p , CAdv)-hard function and (2) (Gen,
EvalWithProof , Vf) is a verifiable function, which completes the proof of the lemma.

For (1), note that, by completeness of (G, P ,V), if (y,π) ← P(crsSPARK, (Mλ , (pp , x),λ,T 0(λ))),
then y = Mλ(pp , x) = Evalhard(pp , x) where |y| ≤ λ, since Evalhard has bounded output.

We first argue honest evaluation. Since M � HonestPT ,p , it follows that for all λ � N, Mλ runs
in time T 0(λ) = T (λ) + q(λ + log(T (λ) · p(λ))) using at most p0(λ) = p(λ) · q(λ + log(T (λ) · p(λ)))
processors. By eficiency of the non-interactive SPARK, it holds that P runs in time T 0(λ) + poly(λ,
|(Mλ,x)| , log(T 0(λ) · p0(λ))) using at most p0(λ) · poly(λ, log(T 0(λ) · p0(λ))) processors. As x �
Supp(Sample(pp)), it holds that |x| � poly(λ). Furthermore, |Mλ| is a constant that q may

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ�N

Pr

������
� A 1 � C Adv

����
�

hard

hard

Pr

�������

: 0

�������

> 1/p(λ).

λ

λ hard
? λ

0 0 λ 0

λ

�
���
�

Pr

������

hard λ

hard

b = 1

31:72 N. Ephraim et al.

depend on, so we can assume that |Mλ| � poly(λ, logT (λ)). It follows that there exist a polynomial q0

such that for all λ � N, EvalWithProof runs in time T (λ) + q0(λ + log(T (λ) · p(λ))) using at most p(λ)
· q0(λ + log(T (λ) · p(λ))) processors.

For hardness, suppose there exists a non-uniform PPT adversary A 0 = A0, λ and a poly-
nomial p A such that for infinitely many λ � N,

� pp ← Gen(1λ)
A 1 ← A0,λ (pp)
x ← Sample(pp)

� y ← A1 (x)

�

:
Eval(pp, x) = y

�
> 1/pA (λ).

�

Since x is sampled from Sample (Genhard(1λ)) and y = Evalhard(pp, x), this implies that A 0 also
breaks the hardness of (Genhard, Sample , Evalhard), in contradiction.

For (2), we note that completeness of (Gen, EvalWithProof , Vf) follows immediately by com-
pleteness of (G, P ,V). Soundness follows, since the argument of knowledge property of (G, P ,V)
implies soundness. Specifically, suppose there exists a non-uniform PPT algorithm A = { A λ }λ�N
and a polynomial p such that for all λ � N,

� pp ← Gen(1λ) �
(x,y0,π 0) ← Aλ (pp) b = 1
(y,π) ← EvalWithProof(pp, x) � y , y
b ← Vf(pp,x,y0,π 0)

We construct the adversary P? = P ?
λ�N for the non-interactive SPARK, which has A hardcoded as

non-uniform advice. For all λ � N, P (crsSPARK) samples pp ← Genhard(1), computes
(x,y0,π 0) ← Aλ ((crsSPARK, pphard)), computes Mλ and T 0(λ), and outputs ((Mλ, (pphard, x),y0,λ,
T (λ)),π). Because A λ is PPT, and Genhard(1), Mλ , and T (λ) can be computed in polynomial-
time, this implies that P ? is PPT. Furthermore, by definition of A , we can rewrite the above prob-
ability statement to conclude that

� crsSPARK ← G(1λ)
((Mλ , (pp ,x),y0,λ,T 0(λ)),π 0) ← P ?(crsSPARK)
(y,π) ← P(crsSPARK, (Mλ , (pp , x),λ,T 0(λ)))

� b ← V (crsSPARK, (Mλ, (pphard, x),y0,λ,T 0(λ)),π 0)

�
: � y , y0

�
> 1/p(λ).

�
Because Eval is deterministic, the “witness”w is empty, so the output of the computation is unique.
By completeness, the output is the valuey output by P . Therefore, the argument of knowledge prop-
erty of (G, P ,V) stipulates that any y0 , y cannot be accepted with greater than 1/p(λ) probability for
any polynomial p, in contradiction.

9.3 Applications to VDFs

At a high level, a T -sequential function is a function that can be computed in roughly T time with
“moderate parallelism” but cannot be computed any quicker with much more parallelism.

To capture this notion, for any T : N → N, def ine

HonestPT ,polylog =
Ø

PT ,p,q .
p,q�poly(λ+logT (λ))

Note that this is simply HonestPT ,p restricted to the case where the number of processors p is
logarithmic in T , and so this class captures the honest execution of a T -sequential function. We

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Ø

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:73

next define an adversarial analog, which is allowed to use many parallel processors,

AdvPT = PT ,p,q .
p�poly(λ+log T (λ)),

q�poly(λ+T (λ))

We now formally define a sequential function.

Definition 9.6 (Sequential Function). For any T : N → N, the tuple (Gen, Sample, Eval) is a T -
sequential function if there exists an ϵ � (0, 1) such that it is a (HonestPT ,polylog, AdvP(1−ϵ) ·T)-hard
function. We say that a sequential function has bounded output if for any pp � Supp Gen(1λ)
and x � Supp Sample(1λ) , it holds that |Eval(pp,x)| ≤ λ.

Next, a verifiable delay function is simply a sequential function that is additionally verifiable,
formalized as follows:

Definition 9.7 (Verifiable Delay Function). Let T : N → N. A T -verifiable delay function (T -
VDF) is a tuple (Gen, Sample, EvalWithProof , Vf) such that (Gen, Sample, Eval) is a T -sequential
function and (Gen, EvalWithProof , Vf) is a verifiable function. In the case where each algorithm
takes as input a time bound T , we say the tuple is simply a verifiable delay function if it is a T -
verifiable delay function for any input T .

We note that previous definitions of VDFs are functions that take as input a time bound T and
require that the resulting function is a T -VDF for any valid input T . This models the scenario in
practice where you want to “tune” a function that can be computed in a particular time T but not
faster with more parallelism. We define a T -VDF with respect to a particular time bound T to
capture the case where the underlying sequential function may not be able to be tuned to run in
any given time bound.

Corollary 9.8. Let T : N → N. Assuming the existence of publicly verifiable non-interactive
SPARKs for deterministic computations with moderate parallelism, if there exists a T -sequential func-
tion with bounded output, then there exists a T -verifiable delay function.

Proof. Let ϵ � (0, 1) be the constant sequentiality gap that is guaranteed to exist for the given
T -sequential function. By the definition of a sequential function, there exists a uniform algo-
rithm A in HonestPT ,polylog that computes the evaluation algorithm of the sequential function. It
follows that there exists a polynomials p,q in poly(λ + logT (λ)) such that A is in PT ,p,q �
HonestPT ,q . By setting CAdv = AdvP(1−ϵ) ·T in Theorem 9.4, we get that there exists a verifiable
(HonestPT ,p , AdvP(1−ϵ) ·T)-hard function, which implies a hard function that can be computed by
an algorithm in PT ,p,q0

for a function q0 in poly(λ + log(T (λ) · p(λ))) � poly(λ + log(T (λ))) as p is
in poly(λ + logT (λ)). Therefore, PT ,p,q0 � HonestPT ,polylog, which gives the claim.

For the above corollary, we note that in the case where the sequential function takes as input a
time bound T , the resulting verifiable delay function can also take in a time bound T . We note that
similar to Corollary 9.5, we can instantiate the SPARKs in Corollary 9.8 based on collision-resistant
hash functions and SNARKs for NP.

Candidate sequential functions. We briefly discuss existing candidate sequential functions that
can be used in Corollary 9.8. We note that in all cases we discuss, it was already known how to
construct VDFs, but we emphasize that our transformation is completely independent of the
specific details of the underlying sequential function.

Any iterated sequential function is also a sequential function. An iterated sequential function
has the additional structure that some small sequential component is repeated T times to obtain

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

x

Õ

x

31:74 N. Ephraim et al.

a sequential function with respect to any time bound T . The assumption is that any a priori un-
bounded number of iterations cannot be significantly sped up with parallelism. In other words, it
is not possible to make shortcuts in the computation without computing all intermediate outputs
in order. Boneh et al. [20] show how to construct VDFs from any iterated sequential function us-
ing any succinct non-interative argument for deterministic computations with quasi-linear prover
overhead. Candidate iterated sequential functions include iterated hashing and repeated squaring
in groups of unknown order [53]. For repeated squaring, more practically eficient VDF construc-
tions are known that make use of the additional algebraic structure [51, 56].

Another approach for constructing sequential functions is using secure hardware. The construc-
tion, on input x , simply waits T steps and then outputs the evaluation y of a PRF on x . When
implemented using secure hardware, the key for the PRF is kept hidden, so the only way to com-
pute y is to use the hardware, which incurs the time T delay. This construction can be securely
realized in software assuming indistinguishability obfuscation and the existence of a sequential
decision problem (see, e.g., References [19, 47]). Furthermore, this construction can be turned into a
VDF by making the secure function additionally output a signature on the pair (x ,y). Soundness
follows, since the only way to construct valid signatures is to compute the secure function.

It is an interesting open problem to construct new (non-iterated) sequential functions from sim-
pler assumptions. Based on Corollary 9.8, any such construction immediately implies a VDF as-
suming publicly verifiable non-interactive SPARKs for deterministic computations with moderate
parallelism.

Remark 10. We emphasize the importance that the underlying SPARK in the transformation can
handle (deterministic) parallel computation that uses poly(λ, logT) processors. For most iterated
functions, it is the case that each iteration can be sped up with parallelism, for example, by using
ASICs. However, this amount of parallelism scales only polynomially with the input length, λ, and
does not depend more than logarithmically on the total time bound T .

9.4 Applications to Memory-hard VDFs

We next show how publicly verifiable non-interactive SPARKs for deterministic computations can
be used to construct memory-hard VDFs. A memory-hard VDF in turn implies publicly verifiable,
non-interactive proofs of space [31]. There are various proposed definitions for memory-hardness.
Alwen and Serbinenko [5] def inecumulative memory complexity, which stipulates that the average
memory usage for a function must be large. Alwen, Blocki, and Pietrzak [2] define a conceptually
stronger notion of sustained memory complexity that stipulates a function must use large memory
for many steps (rather than only on average).

We start by giving an overview of the definitions for cumulative and sustained memory com-
plexity. For a parallel RAM machine M , an input x , and an index i � N, let Space(M, x , i) be the
number of non-zero words in memory during the ith (parallel) step of the computation of M on
input x . The cumulative memory complexity of M is

depthM (x)

CMC(M) = max Space(M, x , i),
i =1

where recall that depthM (x) is the parallel running time of M on input x . The s-sustained memory
complexity of M is defined as

s-SMC(M) = max i � [depthM (x)] : Space(M, x , i) > s .

It was observed in Reference [2] that for any function f , there exists a machine M that implements f
with s-SMC � O(T /logT) where T is the depth required to compute f .

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

A λ
S

λ

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:75

For any S : N → N, we def ineCMemS to be the class of algorithms A = { A λ }λ�N such that
CMC(Aλ) ≤ S(λ) · depth for all λ � N. Similarly, we define SMem be the class of algorithms A
= { A λ }λ�N such that as a function of λ, S(λ)-SMC(Aλ) � o(depthA).

For simplicity of presentation, we define the following memory-hardness notions with respect to
sustained memory complexity using SMem. However, we emphasize that we could analogously de-
fine the notion with respect to cumulative memory complexity using CMem or any other recently
proposed memory-hardness definitions such as static memory-hardness [28]. We intuitively define
an (S,T)-memory-hard sequential function is one that requiresT parallel time to compute and can-
not be computed using less than S memory for all but o(T) steps. We formalize this as follows:

Definition 9.9 (Memory-hard Sequential Function). For any S,T : N → N, the tuple (Gen, Sample,
Eval) is a (S,T)-memory-hard sequential function if there exists an ϵ � (0, 1) such that it is a
(HonestPT ,polylog, AdvP(1−ϵ) ·T � SMemS)-hard function.

A memory-hard VDF is simply a memory-hard sequential function that is also verifiable, for-
malized as follows:

Definition 9.10 (Memory-hard Verifiable Delay Function). Let S,T : N → N. A (S,T)-memory-hard
verifiable delay function is a tuple (Gen, Sample, EvalWithProof , Vf) such that (Gen, Sample, Eval)
is a (S,T)-memory-hard sequential function and (Gen, EvalWithProof , Vf) is a verifiable function.
In the case where S � Ω(T /logT) and each algorithm takes as input a time bound T , we say the
tuple is simply a memory-hard verifiable delay function if it is a (S,T)-memory-hard verifiable delay
function for any input T .

Similar to Corollary 9.8, it holds that memory-hardness is also preserved under the transforma-
tion of Theorem 9.4.

Corollary 9.11. Let S,T : N → N. Assuming the existence of publicly verifiable non-interactive
SPARKs for deterministic computations with moderate parallelism, if there exists a (S,T)-memory-
hard sequential function, then there exists a (S,T)-memory-hard verifiable delay function.

Proof. Let ϵ � (0, 1) be the constant guaranteed to exist for the given (S,T)-memory-hard
sequential function. The corollary follows exactly as in the proof of Corollary 9.8, by setting CAdv =
AdvP(1−ϵ) ·T � SMemS in Theorem 9.4.

We note that by combining the above corollary with Theorem 8.1, we obtain memory-hard ver-
ifiable delay functions based on memory-hard sequential functions, collision-resistant hash func-
tions, and SNARKs for NP.

Candidate memory-hard sequential functions. Most constructions of memory-hard sequen-
tial functions are proven secure in the (parallel) random oracle model and then instantiated with a
suficient hash function h : {0, 1}� → {0, 1}λ , which we will use in the remaining discussion. We
emphasize that, once instantiated with a concrete hash function, the following candidates are only
heuristically secure based on the random oracle methodology. As a result, our resulting transfor-
mations are secure under the same assumptions.

Percival [50] introduced the function Scrypt as a candidate memory-hard function. At a high
level, Scrypt on input x first performs T /2 iterated hashes to generate a “database” D of size T /2,
where D[0] = x and D[i] = h(D[i −1]) for i = 1, . . . ,T /2−1. It then continues the hash chain while
additionally indexing into this database. Specifically, D[i] = h(D[i−1]�D[D[i−1] mod T /2]) for i =
T /2, . . . ,T . The output of the function is defined to be D[T]. The honest evaluation of the function
stores T words in memory. Intuitively, if an adversary stores much less than T /2 words, then if it
encounters an index D[i − 1] mod T /2 that is not stored, it will need to recompute this value from

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:76 N. Ephraim et al.

the closest stored position, which will take much more time. Indeed, Alwen et al. [4] show that
Scrypt requires Ω(T 2) cumulative memory complexity. Furthermore, Scrypt is also sequential (in
the random oracle model), as each subsequent query to h is uniformly random and hard to predict,
so it behaves like an iterated random oracle. Using Scrypt, we can construct a VDF with high
cumulative memory complexity assuming non-interactive SPARKs for deterministic computations.
However, Scrypt does not have high sustained memory complexity, since for any S , it can be
computed in time O(T 2/S) using S memory.

A more general class of memory-hard function are based on labelings of directed acyclic
graphs (DAGs). Let Gn be a DAG on n vertices {v1, . . . ,vn }. The label of a node vi , denoted
`i , is recursively defined as `i = h(i, `p1 , . . . , `pd), where p1, . . . ,pd are the incoming edges to vi .
The function is defined by the graph Gn , the input is a seed to the hash function h, and the
out-put is the label of the sink of the graph. The hash function is evaluated in the parallel
random oracle model, so algorithms can query multiple points in parallel in one “round.” For
honest eval-uation, a parallel RAM algorithm can compute the graph labeling function with time
complexity that scales with the depth of the graph and parallel complexity that scales with the
width.14 Mem-ory lower bounds in this model are proven via pebbling arguments on the
underlying graphs (see, e.g., Reference [5] for more information). The depth of the graph also
serves as a lower bound for the parallel time to compute such functions. Thus, non-interactive
SPARKs for deterministic computations give a way to make such graph labeling functions
verifiable. We emphasize that this implies that many works that give graph labeling constructions
(e.g., References [2, 5]) that sat-isfy stricter memory-hardness requirements also are preserved
under our framework. Specifically, Alwen et al. [2] construct a function that has s-SMC for s �
Ω(T /logT) where T is the depth re-quired to compute the function. Using this function,
Corollary 9.11 implies a memory-hard VDF assuming non-interactive SPARKs for deterministic
computation.

Finally, as with sequential functions, another approach for constructing memory-hard sequen-
tial functions is via secure hardware. We assume that the secure hardware has some a priori
bounded storage capacity of poly(λ) words, and any further required storage is stored externally
to the secure enclave. As in the case of sequential functions, the secure hardware waits at least
T time and then outputs a PRF evaluation on the input x . Additionally, the secure hardware
can externally store a large randomly generated file and perform a simple “proof of storage” to
make sure that it is stored for the entire duration of the execution. This can be implemented,
for example, using a Merkle tree to verify that random locations of the file are being stored while
only keeping the root of the Merkle tree within the secure enclave for authentication. At a high
level, security follows, because the hardware only computes its output if enough time and
memory have been used. As the PRF key is hidden, there is no other way to compute the output
without running the secure hardware. As for the sequential function, this can be further made
verifiable by outputting a signature on the PRF input and output.

We believe it is an interesting open question to construct memory-hard sequential functions in
software without random oracles. Based on Corollary 9.11, this immediately gives a memory-hard
VDF assuming publicly verifiable non-interactive SPARKs for deterministic computations.

APPENDICES

A WITNESS-EXTENDED EMULATION

In this section, we define the notion of witness-extended emulation for succinct arguments and
show that this implies the argument of knowledge definition of Definition 3.2.

14We additionally need to account for the parallel time to compute the hash function, which increases the time and parallel
complexity by at most a factor of poly(λ).

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ λ,z,s λ

?

V

λ,z,s

U

U
?

P P
1 2

λ λ

λ

?

?

1

? ?

V

������

?

1

P ?

�
����
�

U

λ,z,s

r
?

r

?
r

λ,z,s r r

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:77

Recall that for a non-uniform prover P ? = { P ? }λ�N , we let P ? denote the machine P ? with
auxiliary input z and randomness s fixed. Additionally, we let

View
Pλ, z , s (1λ , (M, x ,y, L, t))

denote the distribution representing the view of V when interacting with P ? on input 1λ and
(M, x ,y, L, t). Additionally, we let AccV (view) be the predicate that outputs 1 if a view view is
accepting for V and 0 otherwise. The definition below is based on the definition of Lindell [42] and
extended to the case of arguments similar to Reference [37]. We additionally modify the definition to
capture relations R � R TM similar to Reference [8] as discussed in Section 3.3.

Definition A.1 (Witness-extended Emulation for NP Arguments). Let (P , V) be an interactive
argument for a relation R � RTM. Let WE be a probabilistic machine that is given as input a

security parameter 1λ , a statement (M, x ,y, L, t), and oracle access to a machine Pλ,z, s . We let
? ?

WE λ , z , s (1 , (M, x ,y, L, t)) and WE λ, z , s (1 , (M, x ,y, L, t)) denote the first and second outputs of
the emulator, respectively.

We say that WE is a witness-extended emulator for (P , V) and R if there exists a polynomial q
such that for every non-uniform probabilistic polynomial-time prover P ? = { P ? }λ�N and every
constant c , there exists a negligible function negl such that for every λ � N, (M, x ,y, L, t) with
|(M,x,t,y)| ≤ λ, L ≤ λ, and t ≤ λc , and every z, s � {0, 1}�, the following hold:

(1) WE Pλ , z , s (1λ , (M, x ,y, L, t)) runs in expected polynomial time q(λ, t).
(2) The view output by WE1 is identically distributed to the view of V in a real interaction with

Pλ,z,s . That is, the corresponding distributions satisfy

WE
Pλ , z , s (1λ , (M, x ,y, L, t)) ≡ View

Pλ, z , s (1λ , (M, x ,y, L, t)).

(3) The probability that WE1 outputs an accepting view for V , and yet WE2 does not output a
correct witness, is negligible. That is,

�
Acc V WE

Pλ , z , s (1λ , (M, x ,y, L, t)) = 1 �
Pr ≤ negl(λ).

�
� (M, x ,y, L, t), WE2

λ, z , s (1λ , (M, x ,y, L, t)) < R �

We next show that the above definition of witness-extended emulation implies the argument of
knowledge definition in Section 3.3 for NP relations.

Lemma A.2. Let (P , V) be succinct argument for a relation R � RTM . If there exists a witness-
extended emulator WE for (P , V) and R, then (P , V) satisfies the argument of knowledge for NP
condition in Definition 3.2.

Proof. Using WE, we construct a probabilistic oracle machine E as required. Recall that both
E and WE receive as input (1λ , (M, x ,y, L, t)) and get oracle access to a prover P ? , while E
additionally gets oracle access to a verifier V with uniformly sampled randomness fixed to r . Let
`(λ) denote the length of the randomness r used by V(1λ , ·). We def ineE Pλ , z, s , V as follows:

E Pλ , z , s , V (1λ , (M, x ,y, L, t)):

(1) Emulate the view between P ? and V on input (1λ , (M , x ,y, L, t)). If V rejects in this view,
then output �.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

?

λ

?
r

Pr ?
r

: λ,z,s r ≤ negl(λ).

λ,z,s r

λ,z,s r r

h
λ, r

r

r

λ,z,s

r

?

31:78 N. Ephraim et al.

(2) Sample (view,w) ← WEPλ , z, s (1λ , (M, x ,y, L, t)) until AccV (view) = 1 or 22λ
iterations have

passed.
• If AccV (view) = 1 at any point, then output the corresponding witness w .
• Otherwise, for all strings w � {0, 1}t , output the first one such that ((M, x ,y, L, t),w) � R

or � if none exist.

It remains to prove that E satisfies the argument of knowledge for NP requirements of
Definition 3.2. Specifically, let P ? = { P ? }λ�N be a non-uniform probabilistic polynomial-time
prover and c be any constant. We need to show that there exists a negligible function negl such
that for every λ � N, (M, x ,y, L, t), z, s � {0, 1}� with |(M,x,y,t)| ≤ λ, L ≤ λ, and t ≤ |x|c, the
following hold:

• Running time: E Pλ , z , s , V (1λ , (M, x ,y, L, t)) runs in expected time q(λ, t) for some polynomial q
(independent of P ? and c), where the expectation is over a uniformly chosen r ← {0, 1} `(λ)

and the randomness of E .
• Correctness: It holds that

r ← {0, 1} `(λ) hP ? , V i(1λ , (M , x ,y, L, t)) = 1
w ← E Pλ , z , s , V (1λ , (M, x ,y, L, t)) � ((M, x ,y, L, t),w) < R

We next focus on each of these conditions.

Running time. For the running time, we first note that by succinctness of (P , V) , there exists a
polynomial q1 such that the number of messages and total communication between P ? and V
is bounded by q1(λ, log t). This also bounds the running time of emulating the interaction between
P ? and V given oracle access to each machine. If V rejects, then we are done.

Otherwise, we define the value
i

ϵ = Pr r ← {0, 1} `(λ) : hP ?
z , s , V i(1λ , (M , x ,y, L, t)) = 1 ,

which is greater than 0 in the case that V accepts for some choice of r . For the analysis of the
expected running time, we note that we continue with probability ϵ where V accepts.

In this case, we first try running WE until its first output is an accepting view. By definition of
witness-extended emulation, it holds that the first output of WE is identically distributed to the real
interaction between P ? and V , so this means we will run WE at most 1/ϵ times in expectation.
By definition of WE, there exists a polynomial q2 such that each run of WE takes expected q2(λ, t)
time. So, this contributes at most ϵ · (1/ϵ) · q2(λ, t) = q2(λ, t) to the expected running time.

We last consider the case where 22λ
independent iterations pass without finding an accepting

view. This event occurs with probability (1 − ϵ)22λ

given that V initially accepted. In this case, we
run in time 2t · poly(λ, t) to emulate M on all choices of w of size at most t . Let B be this time to
brute-force, which in particular is bounded by 22λ/2

for suficiently large λ, since t ≤ |x|c. Thus, this

case contributes a factor of at most ϵ · (1 −ϵ)22λ

· B to the expected running time. We show that this is
in fact bounded by 1, at least for suficiently large λ. In the case that ϵ < 1/B, this clearly

holds. When ϵ ≥ 1/B, we can bound (1−ϵ)22λ

≤ (1−1/B)B ·(22λ
/B) ≤ (1/e)22λ/2

≤ 1/B, using the fact

that B ≤ 22λ/2
for suficiently large λ. Thus, for any value of ϵ , it holds that ϵ · (1 − ϵ)22λ

· B ≤ 1 for
suficiently large λ, so in particular is bounded by some polynomial q3(λ, t) (to account for small
values of λ where this is not necessarily bounded by 1).

Putting it all together, we upper bound the expected running time of E by

q1(λ, log t) + q2(λ, t) + q3(λ, t) = q(λ, t),

for some polynomial q, independent of Pλ,z, s , as required.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

Pr ?
r

: λ,z,s r > 1/p(λ).

P ?

?

2

?
r r

?
r

r

r

r

r

Pr
V

≤ Pr .

?

?

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:79

Correctness. For correctness, suppose by way of contradiction that there exists a polynomial p
such that for infinitely many λ � N,

r ← {0, 1} `(λ) hP ? , V i(1λ , (M , x ,y, L, t)) = 1
w ← E Pλ , z , s , V (1λ , (M, x ,y, L, t)) � ((M, x ,y, L, t),w) < R

We show this contradicts the correctness property for WE. For notational convenience, we first
define the following events:

• We say WE1 accepts when AccV (WE1
λ, z , s (1λ , (M, x ,y, L, t))) = 1, and WE2 is valid when

((M , x ,y, L, t), WE
Pλ,z, s (1λ , (M, x ,y, L, t))) � R, where the probabilities are over the random-

ness of WE.
• We say V accepts when hPλ,z, s , V i(1λ , (M , x ,y, L, t)) = 1, and w is valid when ((M,

x ,y, L, t),w) � R, where the probabilities are over a random r ← {0, 1} `(λ) and w ←
E Pλ , z , s , V (1λ , (M, x ,y, L, t)).

Towards a contradiction, we consider the event where the witness w output by E is valid given
that V accepts. Let BF be the event that WE1 fails to accept for 22λ

iterations, at which point E will
always output a valid witness w (if one exists). We note that, since M is a Turing machine that
runs in time at most t , it can only read the first t bits of its input string. Thus, if any valid witness
exists, then there will exist a witness of length at most t , which will be found by brute force
search. When BF does not occur, E samples a uniformly random output of WE2 conditioned on WE1

accepting. In the case where there exists any valid witness w for ((M, x ,y, L, t),w) � R, this implies
that

Pr [w is valid | V accepts] = Pr [BF] · 1 + (1 − Pr [BF]) · Pr [WE2 is valid | WE1 accepts]
≥ Pr [WE2 is valid | WE1 accepts].

For the case where there does not exist a valid witness, note that this inequality still holds, as both
terms are simply zero. Considering the complement events, this implies that

Pr [w is invalid | V accepts] ≤ Pr [WE2 is invalid | WE1 accepts] .

Because Pr [WE1 accepts] = Pr [V accepts], it follows that

r accepts WE1 accepts
� w is invalid � WE2 is invalid

However, this implies that Pr [WE1 accepts � WE2 is invalid] > 1/p(λ) for some polynomial p, in
contradiction.

We conclude this section by relating our argument of knowledge definition for NP
(Definition 3.2) to the standard definition given by Reference [9]. In the standard definition, the
extractor E has oracle access to Pλ,z,s , always extracts a witness, and runs in expected time
p(λ)/(ϵ(λ) − κ(λ)) for a polynomial p, where ϵ(λ) is the success probability of Pλ,z,s and κ(λ) is
the knowledge error (where these functions may additionally depend on the statement length).

Recall that Lindell showed that the standard definition for proofs of knowledge implies witness-
extended emulation for proofs [42]. The difference between that definition of witness-extended em-
ulation for proofs and ours for NP arguments (Definition A.1) is that, in addition to being for argu-
ments rather than proofs, our requirements are for statements (M, x ,y, L, t) with |(M,x,t,y)| ≤ λ,
L ≤ λ, and t ≤ λc . We also allow the emulator to run in time polynomial in λ, t (similar to universal
arguments), rather than simply in λ.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

n

s

λ

λ,z,s λ

λ,z,s

Í
i =1

i,z ,s

λ,z,s i

i

λ,z,sn n

?

?

? ? ?

?
λ,z,s

31:80 N. Ephraim et al.

We observe that upon making these same modifications to the standard argument of knowl-
edge definition, it follows by Reference [42] that the resulting definition implies witness-extended
emulation for arguments. By combining this with Lemma A.2, we conclude that Definition 3.2 is
implied by a more standard definition.

B PROOFS FROM SECTION 6.4

Lemma B.1 (Adaptive Argument of Knowledge). (Gni , Pni , V i) is an adaptive argument of
knowledge for NP.

Proof. Let C be a concurrently updatable hash function, let H = { Hλ }λ�N be a collision-
resistant hash function family ensemble, and let (Gsnark, Psnark, V nark) be a SNARK for the lan-
guage Lupd , given in Figure 2. Consider any non-uniform polynomial-time prover P ? = { P ? }λ�N

and security parameter λ � N. Let P ? denote P ? with auxiliary input z and hardcoded random-
ness s for any z, s � {0, 1}�.

Let (crs, st) ← Gni(1λ). Recall that a proof in the non-interactive SPARK scheme consists of
m sub-proofs, each corresponding to an instance of Lupd , as well as values certifying the output
of the computation. As a subroutine to our full extractor, we first construct a probabilistic oracle
machine Einner that uses extractors for the SNARK to extract witnesses for each sub-proof.

Einner(crs, z, s):

(1) Compute ((M, x ,y, L, t),π) = P ? (crs). Letm be the number of Lupd statements specified by
π , and for each i � [m], let (statementi ,πi) be ith Lupd statement and proof, and let Y ,πfinal

be the opening and proof certifying the output y, all given by π . Let ki be the number of
updates in each Lupd statement for i � [m], and let M have access to n words in memory
and pM processors. Check that m ki = t , n ≤ 2λ , and that Y consists of dL/λe words, and
abort and output � if any of these do not hold.

(2) Parse crs = (crssnark, pp,h). For each i � [m], def ineP ?
0 (crssnark) to be a SNARK prover

with auxiliary input z0 = (pp,h, z) and randomness s hardcoded that runs ((M, x ,y, L,
t),π) ← P ? ((crssnark, pp,h)) and outputs (statementi ,πi) given by π . Let P ? denote this
machine without its auxiliary input or randomness specified, and let Esnark,i be the SNARK
extractor for P ? .

(3) For i � [m], compute witi ← Esnark,i (crssnark, z0, s). Output (wit1, . . . , witm ,Y ,πfinal).

In the following claims, we show that (1) Einner runs in polynomial time (over the randomness of
Gni and its own random coins) and (2) with all but negligible probability (over randomness of Gni,
the coins of Esnark , and randomness for V i), either P ? fails to convinces V i or for all i � [m]
the witness witi extracted by Esnark,i is valid for statementi with respect to Rupd:

Claim B.2. There exists a polynomial qinner such that for every λ � N and z, s � {0, 1}�, the
running time of Einner(crs, z, s) is at most qinner(λ, t · pM), where (crs, st) ← Gni(1λ), t is given by the
statement output by Pλ,z,s (crs) and pM is the number of processors used by the machine M given in the
statement.

Proof. Einner runs Pλ,z,s , does validity checks on its output, and runs Esnark, i for each i � [m].
The running time of Pλ,z, s is bounded by a polynomial q (λ) where q does not depend on λ, z, s .
The checks on the output of P take time polynomial in its output length, which is therefore
bounded by poly(λ). Note that if these checks pass, then it implies that for each i � [m], the number
of updates ki in the ith sub-statement is at most t and that n ≤ 2λ .

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

λ,z,s

m

Pr
���
��

λ,z,s

n
:

���
��

.

Õ

i�[m]

Pr

���
��

λ,z,s

n

�
��
�

Í
i =1

n n

i

Pr

���
������

λ,z,s
V

�
�
�
��
�

,

n i

s

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:81

When the checks pass, Einner continues by running the SNARK extractors. For each i � [m], the
running time of Esnark,i (crssnark, z0, s) is a polynomial qi (λ,wi) independent of λ, z, s , where wi is
the work to verify the ith Lupd statement. As discussed in Section 6.2, this is bounded by ki ·
β(λ, log n) · poly(λ, |(M,x)| ,pM , log t) � poly(λ, |(M,x)| ,pM , t), since ki ≤ t and n ≤ 2λ . As M, x
are part of the output of P ? , it follows that |(M,x)| is bounded by q?(λ), and so the work to
verify the ith statement is bounded by a fixed polynomial q0(λ,pM , t). Putting everything together,
Einner runs in time

qinner(λ, t · pM) � q?(λ) + poly(λ) +
Õ

qi (λ, q0(λ, pM , t)).
i =1

Since the output length of the prover depends multiplicatively on m, then m is also bounded by
q?(λ), so it follows that qinner(λ, t · pM) is polynomial in λ and t · pM .

Claim B.3. There exists a negligible function neglinner such that for all λ � N and z, s � {0, 1}�, it
holds that

� (crs, st) ← Gni(1λ) �
((M, x ,y, L, t),π) = P ? (crs) b = 1 �

� b ← V i(st, (M, x ,y, L, t),π) �i � [m] : (statementi , witi) < Rupd �

� (wit1, . . . , witm ,Y ,πfinal) ← Einner(crs, z, s) �
≤ neglinner(λ),

where statementi is defined to be the statement of the ith sub-proof.

Proof. In all of the following probabilities, m is the number of Lupd statements given in the
proof π , and the statements are denoted statement1, . . . , statementm . We start by applying a union
bound to upper bound the probability in the statement of the claim by

� (crs, st) ← Gni(1λ)
((M, x ,y, L, t),π) ← P ? (crs)

� b ← V i(st, (M, x ,y, L, t),π)
� (wit1, . . . , witm ,Y ,πfinal) ← Einner(crs, z, s)

:

�
b = 1 � �
(statementi , witi) < Rupd �

�

(B.1)

We now upper bound the above for any particular i � [m].
By definition of Einner, whenever the proof π satisfies m ki = t , when M uses at most 2λ words in

memory, and when Y has the right length, then Einner runs a SNARK extractor for each i. Note that
these are also requirements for V i to accept (regardless of the randomness for V i), and so in the
event that b = 1, Einner attempts to extract a witness for each sub-proof. This implies that the above
is equal to the probability where witi is sampled using the extractor Esnark,i (λ, z0, s) for P ? where z0

= (pp, z). Therefore, using the definitions of Gni and Einner , we can write the above probability as

� (crssnark, stsnark) ← Gsnark(1λ)
pp ← C.Gen(1λ , n)

� h ← Hλ

((M, x ,y, L, t),π) ← P ? ((crssnark, pp,h))
b ← ni((stsnark, pp,h), (M, x ,y, L, t),π)

� witi ← Esnark(crssnark, (pp, h, z), s)

:

�
�

b = 1 � �

(statementi , witi) < Rupd �

�
�

where n = 2λ . Whenever b = 1, then V i accepts all sub-proofs, and therefore by definition of P ? ,
it follows that V nark accepts sub-proof i. We can therefore upper bound the above probability by

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

.Pr

���
��
�
�

?

s

�
�
��
�
�

Í
?

?

i

j j

1 t

j j −

0

λ

31:82 N. Ephraim et al.

� (crssnark, stsnark) ← Gsnark(1λ)
pp ← C.Gen(1λ , n)

� h ← Hλ

� (statementi ,πi) ←
Pi,

(
pp,h,z

)
,s (crssnark)

� bi ← V nark(stsnark, statementi , πi)
� witi ← Esnark(crssnark, (pp, h, z), s)

:

�
�

bi = 1 � �
(statementi , witi) < Rupd �

�
�

(B.2)

Next, for any fixed pp in the support of C.Gen and h � Hλ , the above probability is bounded by a
negligible function negli that does not depend on λ, pp,h, z, s by the argument of knowledge
property of the SNARK. It follows by the law of total probability (to sum over each choice of pp)
that Equation (B.2) is bounded by negli .

Finally, by plugging this back into Equation (B.1), we obtain that the probability in the statement
of the claim is upper bounded by i�[m] negli (λ). Since m determines the length of the output of

Pλ,z,s , then m � poly(λ), and so this is negligible as required.

Using Einner to extract the witnesses in the sub-protocols, we now define the full extractor E
that outputs a witness w for (M, x ,y, L, t).

E(crs, z, s):

(1) Run (wit1, . . . , witm ,Y ,πfinal) ← Einner(crs, z, s), and abort and output � if the output of
Einner is �. Let (M, x ,y, L, t) be the statement output by Pλ,z, s when computed by Einner .

(2) Parse each wit as a sequence of updates, which together yield an overall sequence of t
updates uj = (digestj ,V

prev,V rd,πj ,τj) for j � [t] (abort if this is not the case). Specifically,
let (V rd, . . . ,V rd) be the tuples of values read from these updates.

(3) For j = 1, . . . , t , compute (Statej , Opj , Sj ,V
wt) = parallel-step(M, Statej−1,V rd

1) where State0

is the tuple containing the initial RAM state and V rd = (�).
(4) Let DInit � {0, 1}nλ be the string where for each ` � [n], the `th word is set to its value in

Vi
rd, where i is the first iteration with ` � Si , or the `th word in Y if ` is never accessed and

` ≤ dL/λe, or 0 otherwise.
(5) Output w to be the string of length nλ − |x| starting at position |x| in DInit.

We note that while DInit and w above may be as large as n · λ bits, they can be specified while
running M by using at most λ + log n bits for each non-zero value. Furthermore, they can have at
most t + dL/λe non-zero values, since M makes at most t memory accesses, and at most dL/λe
additional positions are accessed in specifying the output. Thus, DInit and w can be computed with at
most poly(λ, L, t , log n) additive overhead in time and space.

Claim B.4. There exists a polynomial q such that E(crs, z, s) runs in time at most q(λ, t · pM).

Proof. E first runs Einner , which has running time bounded by a polynomial qinner(λ, t · pM) by
Claim B.2. Note that if Einner does not output �, then it implies in particular that the number n of
words in memory used by M is at most 2λ . It also implies L is bounded by a fixed polynomial in λ,
since Einner checks that Y , which is part of the proof π , consists of dL/λe words and hence at least L
bits. Using these, we bound the remaining running time of E by a polynomial in λ and t · pM ,
which completes the claim.
After running Einner , E parses its output as a sequence of t updates, where each update has size at

most 2β(λ, log n) ·pM ·λ � poly(λ) by the eficiency of the underlying hash function, which takes

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

?

Pr

���
��

λ,z,s

n U

�
�
���

?
n

?
λ,z,s

�
���

U
t · pM ≤ x |c

�
���

1

Pr

�
�
��

+ Pr

�
�
��

U U

� �
� �
� �� �

≤ Pr

�
�
��

U

�
�
��

+ negl (λ),

inner

Pr

�
�
��

U

�
�
��

> .

?

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:83

time t · pM · poly(λ). Using these updates to determine which values to read, E emulates M for t
steps, which can be done in time t · pM · poly(λ, |M|). This can be bounded by t · pM · poly(λ), since M
is part of the output of Pλ,z,s , so |M| is bounded by a fixed polynomial in λ. Finally, E computes the

initial memory DInit to output a witness w , which, as discussed above, requires specifying at most t
+ dL/λe positions and therefore takes at most poly(λ, L, t , log n) time. This is bounded by poly(λ, t),
as L, log n are in poly(λ). Altogether, E runs in time at most qinner(λ, t · pM) + t · pM · poly(λ) + t
· pM · poly(λ) + poly(λ, t) that can be bounded by a polynomial q(λ, t · pM).

Claim B.5. For every constant c � N, there exists a negligible function negl such that for all λ � N
and z, s � {0, 1}�,

� (crs, st) ← Gni(1λ)
((M, x ,y, L, t),π) ← P ? (crs)

� b ← V i(st, (M, x ,y, L, t),π)
� w ← E(crs, z, s)

b = 1 � �
: ((M, x ,y, L, t),w) < RPRAM � � ≤ negl(λ),

t · pM ≤ |x|c

�
where pM is the number of processors used by M.

Proof. In the following, all probabilities are over (crs, st) ← Gni(1λ), ((M, x ,y, L, t),π) ←
Pλ,z,s (crs), b ← V i(st, (M, x ,y, L, t),π), and w ← E(crs, z, s). We let statementi ,πi for all i � [m]
be the statement and proof given P for the ith Lupd instance, and we define pM to be the num-
ber of processors used by M . Additionally, we let wit1, . . . , witm ,Y ,πfinal be the output of Einner

during the execution of E in each probability.
Suppose by way of contradiction that there exists a polynomial p such that for infinitely many

λ � N,
� b = 1 � �

Pr � ((M,x,y,
|
L, t),w) < RPRAM � � >

p(λ)
.

We can rewrite this probability as
� b = 1 � � � b = 1 � �
� ((M, x ,y, L, t),w) < RPRAM � � � ((M, x ,y, L, t),w) < RPRAM � �
� t · pM ≤ |x|c � � � t · pM ≤ |x|c � �

� �i � [m] (statementi , witi) � Rupd � � �i � [m] (statementi , witi) < Rupd

�
� b = 1 � �
� ((M, x ,y, L, t),w) < RPRAM �
� t ≤ |x|c � � inner

� �i � [m] (statementi , witi) � Rupd �
by Claim B.3 above. As negl (λ) < 1/(2p(λ)) for infinitely many λ � N, this implies that for
infinitely many λ � N,

� b = 1 � �
� ((M, x ,y, L, t),w) < RPRAM � � 1
� t · pM ≤ |x|c � � 2p(λ)
� �i � [m] (statementi , witi) � Rupd �

(B.3)

Given this, consider the following non-uniform adversary A = { A λ }λ�N that can be used to
break the soundness of either C or H , where A λ has z, s and the description of Pλ hardcoded:

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

? c

final

n

1 t

i i i i

i i

i

0

ii 0

Kj

Kj

final t

0 0

i i i
?

−1
?

ii i i

m

i i

0

j 0 ij j j i i

0

0

31:84 N. Ephraim et al.

Aλ (pp, h):

(1) Sample (crssnark, stsnark) ← Gsnark(1λ). Let crs = (crssnark, pp,h) and st = (stsnark, pp,h).
(2) Compute ((M, x ,y, L, t),π) = Pλ,z,s (crs). Check that t · pM ≤ |x| , where pM is the number of

processors used by M . If this does not hold, then abort and output �. Let (Statefinal,V rd) be the
final states and words in π (corresponding to those sent in the final message).

(3) Run w ← E(crs, z, s). If E outputs �, then abort and output �. Otherwise, let wit1, . . . , witm

be the witnesses output by Einner for statements statement1, . . . , statementm .
(4) Sample b ← V i(st, (M, x ,y, L, t),π). If b = 0, then abort and output �. If b = 1, then let

statementi ,πi be the statement and proof for the ith Lupd instance given by π for i � [m] and
let Y ,πfinal be the opening for the final output given by π .

(5) If there exists a j � [m] such that (statementj , witj) < Rupd, then abort and output �.
Otherwise, parse each witness witj as containing an initial set of states and words read
(State(j),V rd,(j)), as well as a sequence of updates. Let u , . . . ,u be the sequence of t updates
obtained across all m witnesses where ui = (digesti ,V

prev,V rd,π ,τ) for all i � [t]. Addition-
ally, for each i � [t], let Vi be a tuple of |Si | values, where the jth value is that of V rd or V wt

according to the corresponding operation given by Op .
Recall that E ’s emulation defined the starting values (State0,V rd) and values

(Statei , Op , Si ,V wt) for each RAM step. Last, let digest be the initial digest computed by V .
(6) Check that E ’s emulation is consistent with the extracted updates. Specifically, let K0 = 0

and let Kj be the number of updates in sub-statements 1 through j for each j � [m].
If there exists a j � [m] such that (State(j),V rd,(j)) is not equal to (StateKj−1 ,V r

d−1
), then

let j be the smallest such index and output ((State(j),V rd,(j)), (StateKj−1 ,V rd
−1

)). Similarly, if

(Statefinal,V rd) , (Statet ,V rd), then output these four values.
(7) Next, A λ emulates the computation of M(x ,w). To avoid confusion with the values in the

extracted update, we will use a superscript “?” to denote the values computed in this emu-
lation. Let State? be a tuple containing the initial RAM state, V rd? = (�), and D ? = x||w be
the initial memory string for use by M .

For i = 1, . . . , t , do the following:
(a) Compute (State?, Op?, S ?, Vi

wt?) = parallel-step(M , Statei−1,Vi
rd?).

(b) Read from and write to D ? by running V rd? = accessD (Op?, S ?, V wt).
Let Y ? be the tuple containing the first L0 = dL/λe words of D ? , and let y ? be the con-

catenation of the first outlen bits from Y ? , where outlen is the output length specified by
State0 .

(8) If there exists an index i such that V rd , V rd? , then let i be the smallest such index. Compute a
digest of the empty partial string (ptr?, digest?) = C.Hash(pp, D�) and then compute
(�, π ?) = C.Open(pp, ptr?, Si). Output

(i − 1,
n

(digest , S ,V ,τ)
o

, digest , S , (�)|Si |, π ?,V prev,π).
j�[i−1]

(9) If Y , Y ? , then compute a digest of the empty partial string (ptr?, digest?) = C.Hash(pp,
D�) and then compute (�, π ?) = C.Open(pp, ptr?, [L0]). Output

n o
(t , (digestj , Sj ,Vj ,τj)

j�[t]
, digest0, [L0], (�)L , π ?, Y , πfinal).

(10) Otherwise, abort and output �.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

U

c

Pr

�
����

�
����

c c

U U

� �
� �� �� �� �

+ Pr .

λ,z,s
V

?

?

c

n

M

?
| |

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:85

To analyze the success of A in breaking the soundness of C, below we argue that (1) A λ runs in
polynomial time; (2) if A λ outputs in steps 8 or 9, then A λ finds values that breaking the soundness
of C; and (3) if A λ reaches step 10, then it must be the case that ((M, x ,y, L, t),w) � RPRAM.

Given these claims, we can conclude the proof as follows. First, note that A λ outputs in step 6, 8,
9, or 10 whenever b = 1, (statementi , witi) � Rupd for all i � [m], t · pM ≤ |x| , and E does not output
�. Note that if (statementi , witi) � Rupd, then the output of E is not �. We can therefore break the
event that A outputs in step 6, 8, 9, or 10 into two cases as

� b = 1 � � � b = 1 � �
� �i � [m] (statementi , witi) � Rupd � � � �i � [m] (statementi , witi) � Rupd � �

t · pM ≤ |x| � t · pM ≤ |x| �

� ((M, x ,y, L, t),w) � RPRAM
� � ((M, x ,y, L, t),w) < RPRAM

�
We observe that the only dif ference betweenAλ and the adversary given in the proof of Lemma 6.3
for the interactive case is in steps 1, 2, 3, and 4. After step 4, A λ uses the witnesses it obtained
identically to the adversary in the interactive case. It therefore follows by the same logic as in
Subclaim 6.12 that the first term in the above probability is greater than the probability that A λ

outputs in step 10. The second term is greater than 1/(2p(λ)) by Equation (B.3). Putting these
together, we get that the probability that A λ outputs in steps 6, 8, or 9 is greater than 1/(2p(λ)). To
obtain a contradiction, we show below that A λ runs in polynomial time in Subclaim B.6. We
observe that by Subclaim 6.9, if A λ outputs in step 6, then it finds values that violate the soundness
of H . Similarly, by Subclaim 6.11, if A λ outputs in step 8 or step 9, then it finds values that violate
the soundness of C. Therefore, Aλ can be used to break the soundness of C or of H with probability
at least 1/(2p(λ)), in contradiction.

Subclaim B.6. There exists a polynomial q A such that for every pp � Supp C.Gen(1λ , 2λ) and
h � Hλ , the running time of Aλ (pp, h) is at most q A (λ) for all λ � N.

Proof. The running time of A λ is bounded by the sum of (1) the time to run Gsnark, (2) the time to
run P ? and check its output, (3) the total amount of time A λ spends running E , (4) the time to run

ni, (5) the time to check that all (statementi , witi) pairs are in Rupd, (6) the time to check for
and compute an output in step 6, (7) the time to emulate the execution of M , and (8) the time
to check for and compute an output in steps 8 and steps 9. We separately argue that each of these
runs in at most polynomial time in λ.

First, (1) is bounded by a polynomial in λ by the eficiency of Gsnark and C.Gen. (2) is bounded
by a polynomial in λ, since Pλ,z,s runs in fixed polynomial time q?(λ) for any z, s � {0, 1}�. Note
that, since M, x are part of the prover’s output, then |(M,x)| is also bounded q (λ). When A λ does
not abort after running the prover, this implies that t · pM ≤ |x| � poly(λ). Next, (3) is bounded
by a polynomial q E (λ, t · pM) by Claim B.4. This is polynomial in λ by the bounds on |x| , t above.
Note that if A λ does not abort after running E , then by definition of Einner , this implies that
L ≤ q?(λ) and n ≤ 2λ . For (4), by succinctness, the running time of V i is bounded by a f ixed
polynomial poly(λ, |(M,x)| , L,pM , t) � poly(λ) by the aforementioned bounds. For (5), it requires
checking that at most t updates are valid where each check requires a polynomial amount of
work in λ, |(M,x)| , β(λ, log n),pM , log t by definition of Lupd and the eficiency of C. By the above
bounds, this is in poly(λ). Next, (6) requires checking equality of (m + 1) · poly(λ) · p values,
which is bounded by a polynomial in λ, since pM ≤ |x|c and because m � poly(λ) as the output
length of Pλ,z,s depends on m. Next, (7) takes t steps of computation, each of which takes time
bounded by a fixed polynomial in λ, M ,pM by the definition of PRAM computation, which is
polynomial in λ by the above. Last, (8) requires (t + L + 1) · pM · λ time to check equality of all
corresponding values. Computing the initial hash and opening requires 2β(λ, log n) ·pM � poly(λ)

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

31:86 N. Ephraim et al.

by eficiency of C. Then, the full output has size at most t ·pM · poly(λ) � poly(λ) and takes at most t
· pM · poly(λ) � poly(λ) time to compute.

Therefore, the running time of A λ is bounded by some polynomial q A (λ) for all λ � N.

This completes the proof of Claim B.5.

This completes the proof of Lemma B.1.

ACKNOWLEDGMENTS

We thank Krzysztof Pietrzak for a useful discussion regarding memory-hard functions.
The views and conclusions contained herein are those of the authors and should not be inter-

preted as necessarily representing the oficial policies, either expressed or implied, of ODNI, IARPA,
or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright annotation therein.

REFERENCES
[1] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. 2017. Depth-robust graphs and their cumulative memory com-

plexity. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 10212). 3–32.
[2] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. 2018. Sustained space complexity. In EUROCRYPT (Lecture Notes

in Computer Science, Vol. 10821). Springer, 99–130.
[3] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof Pietrzak, and Stefano Tessaro. 2016. On the

complexity of scrypt and proofs of space in the parallel random oracle model. In EUROCRYPT (Lecture Notes in
Computer Science, Vol. 9666). Springer, 358–387.

[4] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. 2017. Scrypt is maximally memory-
hard. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 10212). 33–62.

[5] Joël Alwen and Vladimir Serbinenko. 2015. High parallel complexity graphs and memory-hard functions. In STOC.
ACM, 595–603.

[6] Joël Alwen and Björn Tackmann. 2017. Moderately hard functions: Definition, instantiations, and applications. In TCC
(Lecture Notes in Computer Science, Vol. 10677). Springer, 493–526.

[7] Boaz Barak. 2001. How to go beyond the black-box simulation barrier. In FOCS. IEEE Computer Society, 106–115.
[8] Boaz Barak and Oded Goldreich. 2008. Universal arguments and their applications. SIAM J. Comput. 38, 5 (2008),

1661–1694.
[9] Mihir Bellare and Oded Goldreich. 1992. On defining proofs of knowledge. In CRYPTO (Lecture Notes in Computer

Science, Vol. 740). Springer, 390–420.
[10] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner. 2017. Interactive oracle

proofs with constant rate and query complexity. In ICALP (LIPIcs, Vol. 80). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 40:1–40:15.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. 2013. On the concrete eficiency of
probabilistically-checkable proofs. In STOC. ACM, 585–594.

[12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. 2013. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In CRYPTO (Lecture Notes in Computer Science, Vol. 8043).
Springer, 90–108.

[13] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive oracle proofs. In TCC (Lecture Notes in
Computer Science, Vol. 9986). 31–60.

[14] Eli Ben-Sasson and Madhu Sudan. 2008. Short PCPs with polylog query complexity. SIAM J. Comput. 38, 2 (2008),
551–607.

[15] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and Eran Tromer. 2017.
The hunting of the SNARK. J. Cryptol. 30, 4 (2017), 989–1066.

[16] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive composition and bootstrapping for
SNARKS and proof-carrying data. In STOC. ACM, 111–120.

[17] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. 2016. On the existence of extractable one-way functions.
SIAM J. Comput. 45, 5 (2016), 1910–1952.

[18] Nir Bitansky and Alessandro Chiesa. 2012. Succinct arguments from multi-prover interactive proofs and their efi-
ciency benefits. In CRYPTO (Lecture Notes in Computer Science, Vol. 7417). Springer, 255–272.

[19] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent Waters. 2016. Time-
lock puzzles from randomized encodings. In ITCS. ACM, 345–356.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

SPARKs: Succinct Parallelizable Arguments of Knowledge 31:87

[20] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable delay functions. In CRYPTO (Lecture Notes
in Computer Science, Vol. 10991). Springer, 757–788.

[21] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2018. A survey of two verifiable delay functions. IACR Cryptol. ePrint Arch.
2018 (2018), 712.

[22] Elette Boyle and Rafael Pass. 2015. Limits of extractability assumptions with distributional auxiliary input. In
ASIACRYPT (Lecture Notes in Computer Science, Vol. 9453). Springer, 236–261.

[23] Dario Catalano and Dario Fiore. 2013. Vector commitments and their applications. In Public Key Cryptography (Lecture
Notes in Computer Science, Vol. 7778). Springer, 55–72.

[24] Kai-Min Chung, Huijia Lin, and Rafael Pass. 2013. Constant-round concurrent zero knowledge from P-Certificates. In
FOCS. IEEE Computer Society, 50–59.

[25] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan Parno, and
Samee Zahur. 2015. Geppetto: Versatile verifiable computation. In S&P. IEEE Computer Society, 253–270.

[26] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. 2019. Trapdoor hash
functions and their applications. In CRYPTO (Lecture Notes in Computer Science, Vol. 11694). Springer, 3–32.

[27] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. 2020. Tight verifiable delay functions.
In SCN (Lecture Notes in Computer Science, Vol. 12238). Springer, 65–84.

[28] Thaddeus Dryja, Quanquan C. Liu, and Sunoo Park. 2018. Static-memory-hard functions, and modeling the cost of
space vs. time. In TCC (Lecture Notes in Computer Science, Vol. 11239). Springer, 33–66.

[29] Cynthia Dwork, Andrew V. Goldberg, and Moni Naor. 2003. On memory-bound functions for fighting spam. In
CRYPTO (Lecture Notes in Computer Science, Vol. 2729). Springer, 426–444.

[30] Cynthia Dwork, Moni Naor, and Hoeteck Wee. 2005. Pebbling and proofs of work. In CRYPTO (Lecture Notes in Com-
puter Science, Vol. 3621). Springer, 37–54.

[31] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. 2015. Proofs of space. In CRYPTO
(Lecture Notes in Computer Science, Vol. 9216). Springer, 585–605.

[32] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2020. Continuous verifiable delay functions. In
EUROCRYPT (Lecture Notes in Computer Science, Vol. 12107). Springer, 125–154.

[33] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2020. SPARKs: Succinct parallelizable arguments
of knowledge. In EUROCRYPT (Lecture Notes in Computer Science, Vol. 12105). Springer, 707–737.

[34] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to identification and signature problems.
In CRYPTO (Lecture Notes in Computer Science, Vol. 263). Springer, 186–194.

[35] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating computation: Interactive proofs for
muggles. J. ACM 62, 4 (2015), 27:1–27:64.

[36] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The knowledge complexity of interactive proof systems.
SIAM J. Comput. 18, 1 (1989), 186–208.

[37] Jens Groth and Yuval Ishai. 2008. Sub-linear zero-knowledge argument for correctness of a shufle. In EUROCRYPT
(Lecture Notes in Computer Science, Vol. 4965). Springer, 379–396.

[38] Justin Holmgren and Ron Rothblum. 2018. Delegating computations with (almost) minimal time and space overhead.
In FOCS. IEEE Computer Society, 124–135.

[39] Yael Tauman Kalai and Omer Paneth. 2016. Delegating RAM computations. In TCC. 91–118.
[40] Yael Tauman Kalai and Ran Raz. 2008. Interactive PCP. In ICALP (Lecture Notes in Computer Science, Vol. 5126). Springer,

536–547.
[41] Joe Kilian. 1992. A note on eficient zero-knowledge proofs and arguments (extended abstract). In STOC. ACM,

723–732.
[42] Yehuda Lindell. 2003. Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16, 3 (2003),

143–184.
[43] Ralph C. Merkle. 1989. A certified digital signature. In CRYPTO (Lecture Notes in Computer Science, Vol. 435). Springer,

218–238.
[44] Silvio Micali. 2000. Computationally sound proofs. SIAM J. Comput. 30, 4 (2000), 1253–1298.
[45] Silvio Micali and Rafael Pass. 2006. Local zero knowledge. In STOC. ACM, 306–315.
[46] Dalit Naor, Moni Naor, and Jeffery Lotspiech. 2001. Revocation and tracing schemes for stateless receivers. In CRYPTO

(Lecture Notes in Computer Science, Vol. 2139). Springer, 41–62.
[47] Omer Paneth. 2019. Alternative VDF Constructions. Retrieved from: https://dci.mit.edu/video-gallery/2019/5/29/

alternate-vdf-constructions-by-omer-paneth-of-mit-vdf-day-2019.
[48] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio: Nearly practical verifiable computa-

tion. In IEEE Symposium on Security and Privacy. IEEE Computer Society, 238–252.
[49] Rafael Pass and Alon Rosen. 2008. Concurrent nonmalleable commitments. SIAM J. Comput. 37, 6 (2008), 1891–1925.
[50] Colin Percival. 2009. Stronger key derivation via sequential memory-hard functions. In BSDCan.

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

https://dci.mit.edu/video-gallery/2019/5/29/alternate-vdf-constructions-by-omer-paneth-of-mit-vdf-day-2019
https://dci.mit.edu/video-gallery/2019/5/29/alternate-vdf-constructions-by-omer-paneth-of-mit-vdf-day-2019

31:88 N. Ephraim et al.

[51] Krzysztof Pietrzak. 2019. Simple verifiable delay functions. In ITCS (LIPIcs, Vol. 124). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 60:1–60:15.

[52] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. 2016. Constant-round interactive proofs for delegating
computation. In STOC. ACM, 49–62.

[53] Ronald L. Rivest, Adi Shamir, and David A. Wagner. 1996. Time-lock Puzzles and Timed-release Crypto. Manuscript.
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf.

[54] Noga Ron-Zewi and Ron D. Rothblum. 2020. Local proofs approaching the witness length [extended abstract]. In FOCS.
IEEE, 846–857.

[55] Paul Valiant. 2008. Incrementally verifiable computation or proofs of knowledge imply time/space eficiency. In TCC
(Lecture Notes in Computer Science, Vol. 4948). Springer, 1–18.

[56] Benjamin Wesolowski. 2019. Eficient verifiable delay functions. In EUROCRYPT (Lecture Notes in Computer Science,
Vol. 11478). Springer, 379–407.

[57] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. 2018. DIZK: A distributed zero
knowledge proof system. In USENIX Security Symposium. USENIX Association, 675–692.

Received 15 June 2020; revised 24 May 2021; accepted 26 May 2022

Journal of the ACM, Vol. 69, No. 5, Article 31. Publication date: October 2022.

https://people.csail.mit.edu/rivest/pubs/RSW96.pdf

