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Abstract
Let Kt(x) denote the Levin-Kolmogorov Complexity of the 
string x, and let MKtP denote the language of pairs (x, k) 
having the property that Kt(x) ≤ k. We demonstrate that:

• MKtP Ï HeurnegBPP (i.e., MKtP is two-sided error mildly 
average-case hard) iff infinitely-often OWFs exist.

• MKtP Ï AvgnegBPP (i.e., MKtP is errorless mildly aver-
age-case hard) iff EXP ≠ BPP.

Taken together, these results show that the only “gap” 
toward getting (infinitely-often) OWFs from the assump-
tion that EXP ≠ BPP is the seemingly “minor” technical gap 
between two-sided error and errorless average-case hard-
ness of the MKtP problem.

1. INTRODUCTION
A one-way function6 (OWF) is a function f that can be effi-
ciently computed (in polynomial time), yet no probabilistic 
polynomial-time (PPT) algorithm can invert f with inverse 
polynomial probability for infinitely many input lengths n. 
Whether one-way functions exist is unequivocally the most 
important open problem in cryptography (and arguably the 
most important open problem in the theory of computa-
tion, see e.g., Levin19): OWFs are both necessary12 and suffi-
cient for many of the most central cryptographic primitives 
and protocols (e.g., pseudorandom generators,2, 11 pseudo-
random functions,7 private-key encryption,8 etc.)

While many candidate constructions of OWFs are 
known, the question of whether OWFs can be based on 
some “standard” complexity-theoretic assumption is 
mostly wide open.

In this work, we focus on the question of whether cryptog-
raphy can be based on the “super-weak” complexity-theoretic 
assumption that computations cannot be exponentially 
speedup using randomness:

Can the existence of OWFs be based on the assumption that  
EXP ≠ BPP?

While we are not able to provide a full positive answer to this 
problem (which as we shall see later on, would imply that 
NP ≠ P), we are able to show that the task of basing OWFs 
on the assumption that EXP ≠ BPP is equivalent to a seem-
ingly minor technical problem regarding different notions 
of average-case hardness w.r.t. Levin’s notion of Kolmogorov 

The original version of this paper—which contains 
additional results—is entitled “On the Possibility of 
Basing Cryptography on EXP ≠ BPP” and was published 
in Proceedings of the 2021 International Cryptography 
Conference. Here, we  focus only on providing an outline 
of the main results.

complexity.18 Toward explaining our main result, let us first 
review some recent connections between cryptography and 
Kolmogorov complexity.

1.1. On OWFs and Kolmogorov complexity
What makes the string 12121212121212121 less “random” 
than 60484850668340357492? The notion of Kolmogorov 
complexity (K-complexity), introduced by Solomonoff,26 
Kolmogorov,16 and Chaitin,5 provides an elegant method 
for measuring the amount of “randomness” in individual 
strings: The K-complexity of a string is the length of the 
shortest program (to be run on some fixed universal Turing 
machine U) that outputs the string x. From a computational 
point of view, however, this notion is unappealing as there 
is no efficiency requirement on the program. The notion 
of t(.)-time-bounded Kolmogorov Complexity (Kt-complexity) 
overcomes this issue: Kt(x) is defined as the length of the 
shortest program that outputs the string x within time t(|x|). 
As surveyed by Trakhtenbrot,27 the problem of efficiently 
determining the Kt-complexity for t(n) = poly(n) has been 
studied in the Soviet Union since the 60s as a candidate for 
a problem that requires “brute-force search.” The modern 
complexity-theoretic study of this problem goes back to 
Sipser,24 Ko,15 and Hartmanis9 from the early 1980s.

A very recent result by Liu and Pass20 shows that “mild” 
average-case hardness of the time-bounded Kolmogorov 
complexity problem (when the time bound is some polyno-
mial) is equivalent to the existence of OWFs. In this work, 
we will extend their work to consider a different variant of 
the notion of “resource-bounded” Kolmogorov complex-
ity due to Levin.18 The central advantage of doing so will 
be that we will be able to base OWFs on the average-case 
hardness of a problem that is average-case complete for 
EXP! The only reason that this result falls short of bas-
ing OWF on EXP ≠ BPP is that the notion of average-case 

By “mild” average-case hardness, we here mean that no PPT algorithm is 
able to solve the problem with probability  on inputs of length n, for 
all polynomials p(.)
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heuristic needs to (with probability 0.9 over its own 
randomness but not the instance x) output either ^ 
(for “I don’t know”) or the correct answer L(x), whereas 
a two-sided error heuristic may simply make mistakes 
without “knowing it”.

To better understand the class AvgnegBPP, it may be use-
ful to compare it to the class AvgnegP (languages solvable by 
deterministic errorless heuristics): L  AvgnegP if for every 
polynomial p(.), there exists some deterministic polyno-
mial-time heuristic H such that (a) for every input x, H(x) 
outputs either L(x) or ^, and (b) the probability over uni-
form n-bit inputs x that H outputs ^ is bounded by .  
In other words, the only way an errorless heuristic may 
make a “mistake” is by saying ^ (“I don’t know”); if it ever 
outputs a non-^ response, this response needs to be cor-
rect. (Compare this to a two-sided error heuristic that only 
makes mistakes with a small probability, but we do not 
know when they happen.) AvgnegBPP is simply the natural 
“BPP-analog” of AvgnegP where the heuristic is allowed to be 
randomized.

1.3. Our results
Two-sided error average-case hardness of MKtP: Our 
first result shows that the characterization of Liu and 
Pass20 can be extended to work also w.r.t. MKtP. More 
precisely,

Theorem 1.1. MKtP Ï HeurnegBPP iff infinitely-often OWFs 
exist.

We highlight that whereas20 characterized “standard” OWF, 
the above theorem only characterizes infinitely-often 
OWFs—that is, functions that are hard to invert for infinitely 
many inputs lengths (as opposed to all input lengths). The 
reason for this is that20 considered an “almost-everywhere” 
notion of average-case hardness of Kt, whereas the state-
ment MKtP Ï HeurnegBPP only considers an infinitely-often 
notion of average-case hardness. (As we demonstrate in the 
full version, we can also obtain a characterization of stan-
dard “almost-everywhere” OWFs by assuming that MKtP is 
“almost-everywhere” mildly average-case hard, but for sim-
plicity, in the this paper, we focus our attention on the more 
standard complexity-theoretic setting of infinitely-often 
hardness.)

On a high level, the proof of Theorem 1.1 follows the 
same structure as the characterization of Liu and Pass.20 
The key obstacle to deal with is that since MKtP is not 
known to be in NP, there may not exist some polynomial 
time bound that bounds the running time of a program 
Õ that “witnesses” the Kt-complexity of a string x; this 
is a serious issue as the OWF construction in Liu and 
Pass20 requires knowing such a running time bound (and 
indeed, the running time of the OWF depends on it). To 
overcome this issue, we rely on a new insight about Levin-
Kolmogorov complexity.

We say that the program Õ is a Kt-witness for the string 
x if Õ generates x within t steps while minimizing |Õ| + 
log t among all other programs (i.e., Õ is a witness for the 
Kt-complexity of x). The crucial observation (see Fact 3.1) is 

hardness in the EXP-completeness result is slightly differ-
ent from the notion of average-case hardness for the “OWF-
completeness” result. However, “morally,” this result can 
be interpreted as an indication that the existence of OWFs 
is equivalent to EXP ≠ BPP (since trivially, the existence of 
OWFs implies that EXP ≠ BPP).

1.2. Levin-Kolmogorov complexity
While the definition of time-bounded Kolmogorov com-
plexity, Kt, is simple and clean, as noted by Leonid Levin18 in 
1973, an annoying aspect of this notion is that it needs to be 
parametrized by the time-bound t. To overcome this issue, 
Levin proposed an elegant “non-parametrized” version of 
Kolmogorov complexity that directly incorporates the run-
ning time as a cost. To capture the idea that polynomial-time 
computations are “cheap,” Levin’s definition only charges 
logarithmically for running time. More precisely, let the 
Levin-Kolmogorov complexity of the string, Kt(x), be defined 
as follows:

where U is a universal Turing machine, and we let U(Õ, 
1t) denote the output of the program Õ after t steps. Note 
that, just like the standard notion of Kolmogorov com-
plexity, Kt(x) is bounded by |x| + O(1)—we can simply 
consider a program that has the string x hard-coded and 
directly halts.

Let MKtP denote the decisional Levin-Kolmogorov com-
plexity problem; namely, the language of pairs (x, k) where 
k  {0, 1}élog |x|ù having the property that Kt(x) ≤ k. MKtP no 
longer seems to be in NP, as there may be strings x that can 
be described by a short program Õ (with description size, 
e.g., n/10) but with a “largish” running time (e.g., 2n/10); the 
resulting string x thus would have small Kt-complexity (n/5), 
yet verifying that the witness program Õ indeed outputs x 
would require executing it which would take exponential 
time. In fact, Allender et al.1 show that MKtP actually is EXP-
complete w.r.t. P/poly reductions; in other words, MKtP  P/
poly if and only if EXP Í P/poly.

We will be studying (mild) average-case hardness of 
the MKtP problem, and consider two standard (see e.g., 
Bogdanov3) notions of average-case tractability for a lan-
guage L with respect to the uniform distribution over 
instances:

• two-sided error average-case heuristics: We say that 
L  HeurnegBPP if for every polynomial p(.), there exists 
some PPT heuristic H that decides L (w.r.t. uniform 
n-bit strings) with probability .

• errorless average-case heuristics: We say that L  
AvgnegBPP if for every polynomial p(.), there exists some 
PPT heuristic H such that (a) for every instance x, with 
probability 0.9, H(x) either outputs L(x) or ^, and (b), 
H(x) outputs ^ with probability at most  given uni-
form n-bit strings x. 

In other words, the difference between an errorless 
and a two-sided error heuristic H is that an errorless 
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that for every 0 < e < 1, except for an e fraction of n-bit strings 
x, x has a Kt-witness Õ that runs in time . That is, “most” 
strings have a Kt-witness that has a “short” running time. 
To see this, recall that as aforesaid, for every string x, Kt(x) 
≤ |x| + O (1); thus, every string x  {0, 1}n with a Kt-witness 
Õ with running time exceeding , must satisfy that |Õ| 
+ log  ≤ kt (x) ≤ n + O (1), so |Õ| ≤ n + O (1) − log  =  
n + O (1) +log e. Since the length of Õ is bounded by n + O(1) 
+ log e, it follows that we can have at most O(e)2n strings x 
where the Kt-witness for x has a “long” running time.

We can next use this observation to consider a more com-
putationally tractable version of Kt-complexity where we 
cut off the machine’s running time after  steps (where e 
is selected as an appropriate polynomial) and next follow a 
similar paradigm as in Liu and Pass20

Errorless average-case hardness of MKtP. We next show 
how to extend the result of Allender et al.1 to show that 
MKtP is not just EXP complete in the worst case, but also 
EXP-average-case complete; furthermore, we are able 
to show completeness w.r.t. BPP (as opposed to P/poly) 
reductions. We highlight, however, that completeness is 
shown in a “non-black box” way (whereas1 presented a 
P/poly truth table reduction). By non-black box, we here 
mean that we are not able to show how to use any algo-
rithm that solves MKtP (on average) as an oracle (i.e., as 
a black box) to decide EXP (in probabilistic polynomial 
time); rather, we directly show that if MKtP  AvgnegBPP, 
then EXP Í BPP.

Theorem 1.2. MKtP Ï AvgnegBPP iff EXP ≠ BPP.

Theorem 1.2 follows a similar structure as the EXP-
completeness results of Allender et al.1 Roughly speaking, 
Allender et al. observe that by the result of Nisan and 
Wigderson21 and Impagliazzo and Wigderson,13 the assump-
tion that EXP  P/poly implies the existence of a (subexpo-
nential-time computable) pseudorandom generator that 
fools polynomial-size circuits. But using a Kt-oracle, it is 
easy to break the PRG (as outputs of the PRG have small 
Kt-complexity since its running time is “small”). We first 
observe that the same approach can be extended to show 
that MKtP is (errorless) average-case hard w.r.t. polynomial-
size circuits (under the assumption that EXP  P/poly). We 
next show that if we instead rely on a PRG construction 
of Impagliazzo and Wigderson,14 it suffices to rely on the 
assumption that EXP ≠ BPP to show average-case hardness 
of MKtP w.r.t. PPT algorithms.

Interpreting Thm 1.1 and Thm 1.2. By combining Theorem 
1.1 and Theorem 1.2, we get that the only “gap” toward 
getting (infinitely-often) one-way functions from the 
assumption that EXP ≠ BPP is the seemingly “minor” tech-
nical gap between two-sided error and errorless average- 
case hardness of the MKtP problem (i.e., proving MKtP 

Ï AvgnegBPP Þ MKtP Ï HeurnegBPP). Furthermore, note 
that this “gap” fully characterizes the possibility of bas-
ing (infinitely-often) OWFs on the assumption that EXP 
≠ BPP: Any proof that EXP ≠ BPP implies infinitely-often 
OWFs also shows the implication MKtP Ï AvgnegBPP Þ 
MKtP Ï HeurnegBPP.

As a corollary of Theorem 1.1 and Theorem 1.2, we next 
demonstrate that the implication MKtP Ï AvgnegBPP Þ MKtP 
Ï HeurnegBPP implies that NP ≠ P.

Theorem 1.3. If MKtP Ï AvgnegBPP Þ MKtP Ï HeurnegBPP, then 
NP ≠ P.

This result can be interpreted in two ways. The pessimistic 
way is that closing this gap between two-sided error, and 
errorless, heuristics will be very hard. The optimistic way, 
however, is to view it as a new and algorithmic approach 
toward proving that NP ≠ P: To demonstrate that NP ≠ P, it 
suffices to demonstrate that MKtP can be solved by an error-
less heuristic, given access to a two-sided error heuristic for 
the same problem.

Concurrent work. A concurrent and independent work 
by Ren and Santhanam23 presents related but orthogonal 
characterizations of MKtP. Both works essentially show an 
equivalence between mild average-case hardness of MKtP 
and the existence of OWFs; we next show that errorless 
average-case hardness of MKtP is equivalent to EXP ≠ BPP, 
whereas they instead consider an incomparable notion of 
two-sided error hardness with a “tiny” error and show that 
such average-case hardness of MKtP w.r.t. non-uniform 
polynomial-time adversaries is equivalent to the assumption 
that EXP Ï P/poly.

2. PRELIMINARIES
We assume familiarity with basic concepts and computa-
tional classes such as Turing machines, polynomial-time 
algorithms, probabilistic polynomial-time (PPT) algorithms, 
NP, EXP, BPP, and P/poly. A function m is said to be negligible 
if for every polynomial p(.) there exists some n0 such that for 
all n > n0, . A probability ensemble is a sequence of 
random variables A = {An}n N. We let Un denote the uniform 
distribution over {0, 1}n. Given a string x, we let [x]j denote 
the first j bits of x.

One-way functions. We recall the definition of one-way 
functions.6 Roughly speaking, a function f is one way if 
it is polynomial-time computable, but hard to invert for 
PPT attackers. The standard cryptographic definition of 
a one-way function requires that for every PPT attacker A, 
there exists some negligible function m(.) such that A only 
succeeds in inverting the function with probability m(n) 
for all input lengths n. (That is, hardness holds “almost-
everywhere.”) We will also consider a weaker notion of an 
infinitely-often one-way function,22 which only requires 
that the success probability is bounded by m(n) for infi-
nitely many input lengths n. (That is, hardness only holds 
“infinitely-often,” analogously to complexity-theoretic 
notions of hardness).

This non-black box aspect of our results stems from its use of Impagliazzo 
and Wigderson.14



research highlights 

 

94    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

Definition 2.1. Let f : {0, 1}* ® {0, 1}* be a polynomial-time 
computable function. f is said to be a one-way function (OWF) 
if for every PPT algorithm A, there exists a negligible function m 
such that for all n  N,

f is said to be an infinitely-often one-way function (ioOWF) if 
the above condition holds for infinitely many n  N (as opposed 
to all).

We may also consider a weaker notion of a weak one-way 
function,29 where we only require all PPT attackers to fail with 
probability noticeably bounded away from 1:

Definition 2.2. Let f : {0, 1}* ® {0, 1}* be a polynomial-time 
computable function. f is said to be a a-weak one-way function 
(a-weak OWF) if for every PPT algorithm A, for all sufficiently 
large n  N,

We say that f is simply a weak one-way function (weak OWF) 
if there exists some polynomial q > 0 such that f is a -weak 
OWF. f is said to be an weak infinitely-often one-way function 
(weak ioOWF) if the above condition holds for infinitely many 
n  N (as opposed to all).

Yao’s hardness amplification theorem29 shows that any 
weak (io) OWF can be turned into a “strong” (io) OWF.

Levin-Kolmogorov complexity. Let U be some fixed uni-
versal Turing machine that can emulate any Turing 
machine M with polynomial overhead. Given a descrip-
tion Õ  {0, 1}* which encodes a pair (M, w) where M 
is a (single-tape) Turing machine and w  {0, 1}* is an 
input, let U(Õ, 1t) denote the output of M(w), when emu-
lated on U for t steps. Note that (by assumption that U 
only has polynomial overhead) U(Õ, 1t) can be computed 
in time poly(|Õ|, t). We turn to defining Levin’s notion of 
Kolmogorov complexity18:

Let MKtP denote the decisional Levin-Kolmogorov complex-
ity problem; namely, the language of pairs (x, k) where k  {0, 
1}élog |x|ù having the property that Kt(x) ≤ k. As is well known, we 
can always produce a string by hardwiring the string in (the 
tape of) a machine that does nothing and just halts, which 
yields the following central fact about (Levin)-Kolmogorov 
complexity.

Fact 2.1 (25). There exists a constant c such that for every  
x  {0, 1}* it holds that Kt(x) ≤ |x| + c.

Average-case complexity. We will consider average-case 

complexity of languages L with respect to the uniform distri-
bution of instances. Let HeurnegBPP denote the class of lan-
guages that can be decided by PPT heuristics that only make 
mistakes on an inverse polynomial fraction of instances. 
More formally:

Definition 2.3 (HeurnegBPP). For a decision problem L Ì 
{0, 1}*, we say that L  HeurnegBPP if for all polynomial p(.), 
there exists a probabilistic polynomial-time heuristic H, such 
that for all sufficiently large n,

We will refer to languages in HeurnegBPP as languages that 
admit two-sided error heuristics. We will also consider a more 
restrictive type of errorless heuristics H: for every instance x, 
with probability 0.9 (over the randomness of only H), H(x) 
either outputs L(x) or ^ (for “I don’t know”). More formally:

Definition 2.4 (AvgnegBPP). For a decision problem L Ì {0, 
1}*, we say that L  AvgnegBPP if for all polynomial p(.), there 
exists a probabilistic polynomial-time heuristic H, such that for 
all sufficiently large n, for every x  {0, 1}n,

and

We will refer to languages in AvgnegBPP as languages that 
admit errorless heuristics. As explained in the introduction, 
to better understand the class AvgnegBPP, it may be useful 
to compare it to the class AvgnegP (languages solvable by 
deterministic errorless heuristics): L  AvgnegP if for every 
polynomial p(.), there exists some deterministic polyno-
mial-time heuristic H such that (a) for every input x, H(x) 
outputs either L(x) or ^, and (b) the probability over uni-
form n-bit inputs x that H outputs ^ is bounded by 
. In other words, the only way an errorless heuristic may 
make a “mistake” is by saying ^ (“I don’t know”), whereas 
for a two-sided error heuristic we do not know when mis-
takes happen. AvgnegBPP is simply the natural “BPP-analog” 
of AvgnegP where the heuristic is allowed to be randomized.

Computational indistinguishability. We recall the definition 
of (computational) indistinguishability8 along with its 
infinitely-often variant.

Definition 2.5. Two ensembles {An}nN and {Bn}nN are said 
to be e(.)-indistinguishable, if for every PPT machine D (the 
“distinguisher”) whose running time is polynomial in the 
length of its first input, there exists some n0  N so that for 
every n ≥ n0:

We say that {An}nN and {Bn}nN are infintely-often 

We remark that the constant 0.9 can be made arbitrarily small—any con-
stants bounded away from  works as we can amplify it using a standard 
Chernoff-type argument.
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if it satisfies the above definition except that we replace m(n)-indis-
tinguishability with io-m(n)-indistinguishability.

We say that G has rate-1 efficiency if its running time on 
inputs of length n is bounded by n + O(ne) for some con-
stant e < 1. We recall that the existence of rate-1 efficient 
condEP-PRGs can be based on the existence of OWFs, and 
that the same theorem holds in the infinitely-often setting.

Theorem 2.8 (Implicit in Liu and Pass20). Assume that OWFs 
(resp. ioOWFs) exist. Then, for every g > 1, there exists a rate-1 
efficient m-condEP-PRG (resp. m-condEP-ioPRG) Gg : {0, 1}n ® 
{0, 1}n+g log n, where .

3. CHARACTERIZING OWFS
In this section, we prove our main characterization of OWFs 
through two-sided error average-case hardness of MKtP.

Theorem 3.1. MKtP Ï HeurnegBPP iff infinitely-often OWFs exist.

We remark that, in full version, we also characterize “stan-
dard” (as opposed to infinitely-often) OWFs through (almost-
everywhere) mild average-case hardness of MKtP.

Below, we prove each direction of Theorem 3.1 separately 
(in Theorem 3.2 and Theorem 3.3).

OWFs from Avg-case hardness of MKtP. We first show that 
if weak ioOWFs do not exists, then we can compute the 
Kt-complexity of random strings with high probability (and 
thus, MKtP is in HeurnegBPP). On a high-level, we will be using 
the same proof approach as in Liu and Pass20 One immediate 
obstacle to relying on the proof in Liu and Pass20 is that it relies 
on the fact that the program Õ (which we refer to as the “wit-
ness”) that certifies the time-bounded Kolmogorov complex-
ity Kt of a string x has some a priori polynomial running time, 
namely t(.); this polynomial bound gets translated into the 
running time of the constructed OWF. Unfortunately, this fact 
no longer holds when it comes to Kt-complexity: We say that 
the program Õ is a Kt-witness for the string x if Õ generates 
x within t steps while minimizing |Õ| + log t among all other 
programs (i.e., Õ is a witness for the Kt-complexity of x). Note 
that given a Kt-witness of a string x, there is no a priori poly-
nomial time bound on the running time of Õ, since only the 
logarithm of the running time gets included in the complex-
ity measure. For instance, it could be that the Kt-witness is a 
program Õ of length n/10 that requires running time 2n/10, for 
a total Kt-complexity of n/5. Nevertheless, the crucial obser-
vation we make is that for most strings x, the running time of 
the Kt-witness actually is small: For every 0 < e < 1, except for 
an e fraction of n-bit strings x, x has a Kt-witness Õ that runs 
in time . More formally:

Fact 3.1. For all n  N, 0 < e < 1, there exists 1 − e fraction of 
strings x  {0, 1}n such that there exist a Turing machine Õx and  
a running time parameter tx satisfying , |Õx| + 
élog txù = Kt(x), and tx ≤ 2c/e (where c is as in Fact 2.1).

Proof: Consider some n  N, 0 < e < 1, and some set S Ì {0, 
1}n such that |S| > e2n. For any string x  {0, 1}n, let (Õx, tx) be 

e(.)-indistinguishable (io-e-indistinguishable) if the above 
condition holds for infinitely many n  N (as opposed to all suf-
ficiently large ones).

Pseudorandom generators. We recall the standard defini-
tion of pseudorandom generators (PRGs)2 and its infinitely-
often variant.

Definition 2.6. Let g : {0, 1}n ® {0, 1}m(n) be a polynomial-
time computable function. g is said to be a e(.)-pseudorandom 
generator (e-PRG) if for any PPT algorithm A (whose running 
time is polynomial in the length of its first input), for all suffi-
ciently large n,

g is said to be an infinitely-often e(.)-pseudorandom genera-
tor (io-e-PRG) if the above condition holds for infinitely many 
n  N (as opposed to all).

Although the standard cryptographic definition of a PRG 
g requires that g runs in polynomial time, when used 
for the other purposes (e.g., for derandomizing BPP), we 
allow the PRG g to have an exponential running time.28 We 
refer to such PRGs (resp. ioPRGs) as inefficient PRGs (resp. 
inefficient ioPRGs).

Conditionally entropy-preserving PRGs. Liu and Pass20 
introduced variant of a PRG referred to as an entropy- 
preserving pseudorandom generator (EP-PRG). Roughly 
speaking, an EP-PRG is a pseudorandom generator that 
expands n-bits to n + O(log n) bits, having the property 
that the output of the PRG is not only pseudorandom, but 
also preserves the entropy of the input (i.e., the seed): The 
Shannon entropy of the output is n – O(log n).20 did not 
manage to construct an EP-PRG from OWFs, but rather 
constructed a relaxed form of an EP-PRG, called a con-
ditionally-secure entropy-preserving PRG (condEP-PRG), 
which relaxes both the pseudorandomness and entropy-
preserving properties of the PRG, to hold only conditioned 
on some event E. We will here consider also an infinitely-
often variant:

Definition 2.7. An efficiently computable function G : {0, 
1}n ® {0, 1}n+g log n is a m(.)-conditionally secure entropy- 
preserving pseudorandom generator (m-condEP-PRG) if 
there exist a sequence of events = {En}nN and a constant µ 
(referred to as the entropy-loss constant) such that the following 
conditions hold:

• (pseudorandomness): {G(Un | En)}nN and {Un+g log n}nN 
are m(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n  N, 
H(G(Un | En)) ≥ n – µ log n.

G is referred to as an m(.)-conditionally secure entropy-preserv-
ing infinitely-often pseudorandom generator (m-condEP-ioPRG) 
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H*(x) ≤ k, and outputs 0 otherwise. Note that if H* succeeds 
on some string x, H will also succeed. Thus,

which is a contradiction.
It remains to construct the heuristic H* that computes 

Kt(x) with high probability over random inputs x  {0, 1}
n, using A. By an averaging argument, except for a fraction 

 of random tapes r for A, the deterministic machine 
Ar (i.e., machine A with randomness fixed to r) fails to 
invert f with probability at most . Consider some such 
“good” randomness r for which Ar succeeds to invert f with 
probability .

On input x  {0, 1}n, our heuristic  runs Ar(i||x) for 
all i  [n + c] where i is represented as a élog(n + c)ù-bit string 
and outputs the smallest i where the inversion on (i||x) suc-
ceeds. Let , and S be the set of strings x  {0, 1}n  
for which (x) fails to compute Kt(x) and x satisfies the 
requirements in Fact 3.1. Note that the probability that a 
random x  {0, 1}n does not satisfy the requirements in  
Fact 3.1 is at most e. Thus,  fails with probability at  
most (by a union bound)

.

Consider any string x  S and let w = Kt(x) be its Kt-complexity. 
Note that x satisfies the requirements in Fact 3.1; that is, 
there exist a Turing machine Õx and a running time param-
eter tx such that , |Õx| + élog txù = Kt(x), and tx  
≤ 2c/e = 2c+2p(n). By Fact 2.1, we have that |Õx| ≤ w ≤ n + c. 
Thus, for all strings (||Õ¢)  {0, 1}n+c+élog(n+c)ù such that  = 
|Õx|, [Õ¢]|| = Õx, it holds that f (||Õ¢) = (w||x). Since  
fails to compute Kt(x), Ar must fail to invert (w||x). But, 
since |Õx| ≤ n + c, the output (w||x) is sampled with prob-
ability at least

in the one-way function experiment, so Ar must fail with 
probability at least

which by assumption (that Ar is a good inverter) is at most 
that . We thus conclude that

Finally, by a union bound, we have that H* (using a uni-
form random tape r) fails in computing Kt with probability 
at most

a pair of strings such that  and |Õx| + élog txù = 
Kt(x); that is, (Õx, tx) is the optimal compression for x. Note 
that for any x  {0, 1}n, such (Õx, tx) always exists due to Fact 
2.1. Let c be the constant from Fact 2.1.

We assume for contradiction that for any x  S, tx > 2c/e. 
Note that by Fact 2.1, it holds that Kt(x) ≤ |x| + c. Thus, |Õx| = 
Kt(x) − élog txù ≤ n + c − élog 2c/eù ≤ n − log 1/e. Consider the set Z = 
{Õx : x  S} of all (descriptions of) Turing machines Õx. Since 
|Õx| ≤ n−log 1/e, it follows that |Z| ≤ 2n−log 1/e = e2n. However, for 
each machine Õ in Z, it could produce only a single string in S. 
So |Z| ≥ |S| > e2n, which is a contradiction. n

We now show how to adapt the proof in Liu and Pass20 
by relying on the above fact.

Theorem 3.2. If MKtP Ï HeurnegBPP, then there exists a weak 
ioOWF (and thus also an ioOWF).

Proof: We start with the assumption that MKtP Ï HeurnegBPP; 
that is, there exists a polynomial p(.) such that for all PPT 
heuristics H¢ and infinitely many n,

Let c be the constant from Fact 2.1. Consider the function  
f : {0, 1}n+c+élog(n+c)ù ® {0, 1}*, which given an input ||Õ¢ where 
|| = élog(n + c)ù and |Õ¢| = n + c, outputs  + élog tù ||U(Õ, 1t) 
where Õ is the -bit prefix of Õ¢, t is the (smallest) integer ≤ 
2c+2p(n) such that Õ (when interpreted as a Turing machine) 
halts in step t. (If Õ does not halt in 2c+2p(n) steps, f picks t 
= 2c+2p(n).) That is,

Observe that f is only defined over some input lengths, but by 
an easy padding trick, it can be transformed into a function 
f¢ defined over all input lengths, such that if f is (weakly) one-
way (over the restricted input lengths), then f ¢ will be (weakly) 
one-way (over all input lengths): f ¢(x¢) simply truncates its 
input x¢ (as little as possible) so that the (truncated) input x 
now becomes of length m = n + c + élog(n + c)ù for some n and 
outputs f(x).

We now show that f is a -weak ioOWF where q(n) 
= 22c+4np(n)2, which concludes the proof of the theorem. 
Assume for contradiction that f is not a -weak ioOWF;  
that is, there exists some PPT attacker A that inverts f 
with probability at least  for all sufficiently 
large input lengths m = n + c + élog(n + c)ù. We first claim that 
we can use A to construct a PPT heuristic H* such that

If this is true, consider the heuristic H which given a string 
x  {0, 1}n and a size parameter k  {0, 1}élog nù, outputs 1 if 

We note that the choice of (Õx, tx) for some x is not unique. Our argument 
holds if any such (Õx, tx) is chosen.
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string’s Kt-complexity is the minimal sum of (1) the descrip-
tion length of a Turing machine that prints the string and (2) 
the logarithm of its running time. Note that the output of G 
could be printed by a machine with the code of G (of constant 
length) and the seed (of length ne) hardwired in it within 
O (2ng) time. Thus, strings output by G have Kt-complexity 
less than or equal to O(1)+ne + ng ≤ n − 1. On the other hand, 
random strings have high Kt-complexity (e.g., > n − 1) with  
high probability (e.g., ≥ ). It follows that an errorless heu-
ristic for MKtP can be used to break G. Let us highlight why 
it is important that we have an errorless heuristic (as opposed 
to a two-sided error heuristic): while a two-sided error heu-
ristic would still work well on random strings, we do not 
have any guarantees on its success probability given pseu-
dorandom strings (as they are sparse); an errorless heuris-
tics, however, will either correctly decide those strings, or 
output ^ (in which case, we can also guess that the string is 
pseudorandom).

We proceed to a formal statement of the theorem, and its 
proof.

Theorem 4.3. Assume that there exist constants 0 < e, g < 1 and 
an inefficient with running time 

 Then, MKtP Ï AvgnegBPP.

Proof: We assume for contradiction that MKtP  AvgnegBPP, 
which in turn implies that there exists an errorless PPT heu-
ristic H such that for all sufficiently large n, every x  {0, 1}n 
and k  {0, 1}élog nù,

 (1)

and

.

Fix some sufficiently large n, and let k = n − 1. It follows by an 
averaging argument that

 (2)

We next show that we can use H to break the PRG G. On 
input x  {0, 1}n, our distinguisher  outputs 1 if H(x, 
n − 1) = 1 or H(x, n − 1) = ̂ . A outputs 0 if and only if H(x, n − 1) = 0. 
The following two claims conclude that A distinguishes 
Un and G (Une) with probability at least 0.2.

Claim 1.  will output 0 with probability at least 
.

Proof: Note that the probability that a random string x  {0, 1}n  
is of Kt-complexity at most n − 1 is at most  (since the  
total number of machines with description length ≤ n − 1 
is 2n−1). And the probability that H(x, n−1) outputs ^ is at 
most  (over random x  {0, 1}n) by Equation 2. In addi-
tion, the probability that H(x, n − 1) fails to output either 
MKtP(x, n − 1) or ^ is at most 0.1 by Equation 1. Thus, by a 
union bound,

Thus, H* computes Kt with probability  for all suffi-
ciently large n  N, which is a contradiction. n

Avg-case Hardness of MKtP from OWFs. We additionally 
show the converse of Theorem 3.2:

Theorem 3.3. If ioOWFs exist, then MKtP Ï HeurnegBPP.

Theorem 3.3 follows immediately from Theorem 2.8 and the 
following theorem:

Theorem 3.4. Assume that for some g ≥ 4, there exists a rate-1 
efficient m-condEP-ioPRG G : {0, 1}n ® {0, 1}n+g log n where 
m(n) = 1/n2. Then, MKtP Ï HeurnegBPP.

The proof of Theorem 3.4 closely follows the proof in Liu 
and Pass20 and relies only on relatively minor modifications 
to observe that the properties used of the time-bounded 
Kolmogorov complexity function Kt actually also hold for 
Kt—namely that random strings have “high” Kt-complexity, 
whereas outputs of a PRG have “low” Kt-complexity. We refer 
the reader to the full version for the actual proof.

4. CHARACTERIZING EXP
In this section, we will prove the following theorem:

Theorem 4.1. EXP ≠ BPP if and only if MKtP Ï AvgnegBPP.

Roughly speaking, the above theorem is proved in two steps:

• We first observe that, assuming EXP ≠ BPP, there exists 
an (inefficient, infinitely-often) pseudorandom gen-
erator14 that maps a ne-bit seed to a n-bit string in time 
O(2n g) (for some 0 < e, g < 1).

• We will next show that an errorless heuristic for MKtP 
can be used to break such PRGs (since the Kt-complexity 
of the output of the PRG is at most ne + ng + O(1) ≤ n−1), 
which is a contradiction and concludes the proof.

Recall that Impagliazzo and Wigderson14 showed that BPP 
can be derandomized (on average) in subexponential time 
by assuming EXP ≠ BPP. The central technical contribution 
in their work can be stated as proving the existence of an 
inefficient PRG assuming EXP ≠ BPP:

Theorem 4.2 (14, [28, Theorem 3.9]). Assume that 
EXP ≠ BPP. Then, for all e > 0, there exists an inefficient 

 that runs in time 2O (ne).

We note that the proof in Impagliazzo and Wigderson14 is 
non-black box. In particular, it does not show how to solve 
EXP in probabilistic polynomial-time having black box 
access to an attacker that breaks the PRG.

It remains to show that if there exists an (inefficient)  
io-PRG G : {0, 1)ne® ® {0, 1)n with running time  (for 
some 0 < e, g < 1), then MKtP Ï AvgnegBPP. We recall that a 



research highlights 

 

98    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

� n

Claim 2.  will output 0 with probability at  
most 0.1.

Proof: We first show that for all , Kt(G(z)) ≤ ne + ng 
+ O(1) ≤ n − 1. Note that the string G(z) could be produced by a 
machine with the code of G (of length O(1)) and the seed z (of  
length ne) in time  (which adds  
to its Kt-complexity). In addition, recall that H is a proba-
bilistic errorless heuristics. Thus, H(G(z), n − 1) will out-
put 0 with probability at most 0.1 (by Equation 1), and the 
claim follows. n

This conclude the proof of Theorem 4.3. n

We are now ready to conclude the proof of Theorem 4.1.
Proof: [of Theorem 4.1] We show each direction separately:

• To show that EXP ≠ BPP Þ MKtP Ï AvgnegBPP, assume 
that EXP ≠ BPP and let e= , and g= . By Theorem 4.2, 
there exists an  with 
running time 2O (ne) ≤ O(2ng). We conclude by Theorem 4.3 
that MKtP Ï AvgnegBPP.

• To show that MKtP Ï AvgnegBPP Þ EXP ≠ BPP, assume 
that MKtP Ï AvgnegBPP; this trivially implies that MKtP Ï 
BPP. We observe that MKtP  EXP as by Fact 2.1, Kt(x) ≤ 
|x| + O(1) and thus the running time for a Kt-witness, Õ, 
for x is bounded by 2|x|+O(1). Thus, EXP  BPP, which in 
particular means that EXP ≠ BPP.

� n

5. CONCLUSIONS AND BARRIERS
Recall that in Theorem 4.1, we showed that if we assume 
that EXP ≠ BPP, then MKtP is hard-on-average for errorless 
heuristics. Furthermore, in Theorem 3.2, we showed that 
if MKtP is hard-on-average for two-sided error heuristics, 
then (infinitely-often) one-way functions exist. Combining 
the two theorems together, we have that the implication 
MKtP Ï AvgnegBPP Þ MKtP Ï HeurnegBPP fully characterizes 
when we can base the existence of (infinitely-often) one-
way functions on EXP ≠ BPP. Formally,

Theorem 5.1. MKtP Ï AvgnegBPP Þ MKtP Ï HeurnegBPP holds 
iff EXP ≠ BPP implies the existence of ioOWFs.

Perhaps surprisingly, we observe that the implication by 
itself (without any assumptions) implies that NP ≠ P:

References
 1. Allender, E., Buhrman, H., Koucký, M.,  

Van Melkebeek, D., Ronneburger, D. 
Power from random strings. SIAM J. 
Comput 35, 6 (2006), 1467–1493.

 2. Blum, M., Micali, S. How to generate 
cryptographically strong sequences of 
pseudo-random bits. SIAM J. Comput 
13, 4 (1984), 850–864.

 3. Bogdanov, A., Trevisan, L. Average-
case complexity. Manuscript, 2008. 
http://arxiv.org/abs/cs.CC/0606037.

 4. Buhrman, H., Fortnow, L., Pavan, A. 
Some results on derandomization. In 
Annual Symposium on Theoretical 
Aspects of Computer Science. 
Springer, 2003, 212–222.

 5. Chaitin, G.J. On the simplicity  
and speed of programs for 
computing infinite sets of natural 
numbers. J. ACM 16, 3 (1969), 
407–422.

 6. Diffie, W., Hellman, M. New directions 
in cryptography. IEEE Trans. Inf. 
Theory 22, 6 (1976), 644–654.

 7. Goldreich, O., Goldwasser, S., Micali, S.  
On the cryptographic applications of 
random functions. In CRYPTO. 1984, 
276–288.

 8. Goldwasser, S., Micali, S. Probabilistic 
encryption. J. Comput. Syst. Sci 28, 2 
(1984), 270–299.

 9. Hartmanis, J. Generalized kolmogorov 
complexity and the structure of 

Theorem 5.2. If it holds that MKtP Ï AvgnegBPP Þ MKtP Ï 
HeurnegBPP, then NP ≠ P.

Proof: Assume for contradiction that MKtP Ï AvgnegBPP 
Þ MKtP Ï HeurnegBPP holds, yet NP = P. Recall that BPP Í 
NPNP,24, 17 so it follows that P = BPP, and thus by the time 
hierarchy Theorem,10 EXP ≠ BPP. Then, by Theorem 4.1, 
MKtP Ï AvgnegBPP. It follows from our assumption that 
MKtP Ï AvgnegBPP Þ MKtP Ï HeurnegBPP and from Theorem 
5.1 that ioOWFs exist, which contradicts the assumption 
that NP = P. n

We remark that the above theorem could be strength-
ened to show even that NP is average-case hard (w.r.t. deter-
ministic errorless heuristics), since Buhrman, Fortnow, 
and Pavan4 have showed that unless this is the case, P = 
BPP, which suffices to complete the rest of the proof.

The pessimistic way to interpret Theorem 5.2 is that 
closing the gap between two-sided error, and errorless, 
heuristics for MKtP will be very hard as it requires proving 
that NP ≠ P. The optimistic way to interpret it, however, is 
as a new and algorithmic approach toward proving that NP 
≠ P: To demonstrate that NP ≠ P, it suffices to demonstrate 
that MKtP can be solved by an errorless heuristic, given 
access to a two-sided error heuristic for the same problem. 
Additionally, note that approach also does not “overshoot” 
the NP vs. P problem by too much. In fact, any proof of the 
existence of infinitely often one-way functions needs to 
also show this implication since by Theorem 3.3, the exis-
tence of ioOWFs implies MKtP Ï HeurnegBPP, which in turn 
implies that the implication trivially holds.

Acknowledgments
This work is supported in part by NSF Award SATC-1704788, 
NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, 
and a JP Morgan Faculty Award. This material is based 
upon work supported by DARPA under Agreement No. 
HR00110C0086. Any opinions, findings and conclusions 
or recommendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of 
the U.S. Government or DARPA. We are very grateful to Salil 
Vadhan for helpful discussions about the PRG construc-
tion of Impagliazzo and Wigderson.14 The first author also 
wishes to thank Hanlin Ren for helpful discussions about 
Levin’s notion of Kolmogorov Complexity. Finally, we are 
grateful to the CRYPTO’21 PC for their helpful comments 
(Y.V. and R.P.). 



 

MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     99

7, 1 (1964), 1–22.
 27. Trakhtenbrot, B.A. A survey of Russian 

approaches to perebor (brute-force 
searches) algorithms. Ann. Hist. 
Comput. 6, 4 (1984), 384–400.

 28. Trevisan, L., Vadhan, S. 
Pseudorandomness and average-case 
complexity via uniform reductions. 
In Proceedings 17th IEEE Annual 

Conference on Computational 
Complexity. IEEE Computer Society, 
2002, 0129–0129.

 29. Yao, A.C. Theory and applications 
of trapdoor functions (extended 
abstract). In 23rd Annual Symposium 
on Foundations of Computer Science, 
Chicago, Illinois, USA, 3-5 November 
1982. 1982, 80–91.

Yanyi Liu (yl2866@cornell.edu), Cornell 
Tech, New York, NY, USA.

Rafael Pass (rafael@cs.cornell.edu), 
Cornell Tech, New York, NY, and Tel-Aviv 
University, Israel.

feasible computations. In 24th 
Annual Symposium on Foundations 
of Computer Science (sfcs 1983). Nov 
1983, 439–445.

 10. Hartmanis, J., Stearns, R.E. On 
the computational complexity of 
algorithms. Trans. Amer. Math. Soc 
117, 1965, 285–306.

 11. Håstad, J., Impagliazzo, R., Levin, L.A., 
Luby, M. A pseudorandom generator 
from any one-way function. SIAM J. 
Comput. 28, 4 (1999), 364–1396.

 12. Impagliazzo, R., Luby, M. One-way 
functions are essential for complexity 
based cryptography (extended 
abstract). In 30th Annual Symposium 
on Foundations of Computer 
Science, Research Triangle Park, 
North Carolina, USA, 30 October - 1 
November 1989. 1989, 230–235.

 13. Impagliazzo, R., Wigderson, A. P = BPP 
if e requires exponential circuits: 
Derandomizing the xor lemma. In 
STOC ‘97. 1997, 220–229.

 14. Impagliazzo, R., Wigderson, A. 
Randomness vs. time: de-
randomization under a uniform 
assumption. In Proceedings 39th 
Annual Symposium on Foundations 
of Computer Science (Cat. No. 
98CB36280). IEEE, 1998, 734–743.

 15. Ko, K. On the notion of infinite 
pseudorandom sequences. Theor. 
Comput. Sci 48, 3 (1986), 9–33.

 16. Kolmogorov, A.N. Three approaches 
to the quantitative definition of 
information. Int. J. Comput. Math. 2 
1-4 (1968), 157–168.

 17. Lautemann, C. BPP and the 
polynomial hierarchy. Inf. Process. 
Lett 17, 4 (1983), 215–217.

 18. Levin, L.A. Universal search problems 
(russian), translated into English by 
BA Trakhtenbrot in {27]. Prob. Inf. 
Transm 9, 3 (1973), 265–266.

 19. Levin, L.A. The tale of one-way 
functions. Prob. Inf. Transm 39, 1 
(2003), 92–103.

 20. Liu, Y., Pass, R. On one-way functions and 
Kolmogorov complexity. In 61st IEEE 
Annual Symposium on Foundations of 
Computer Science, FOCS 2020, Durham, 
NC, USA, November 16-19, 2020. IEEE, 
2020, 1243–1254.

 21. Nisan, N., Wigderson, A. Hardness vs 
randomness. J. Comput. Syst. Sci 49, 2 
(1994), 149–167.

 22. Ostrovsky, R., Wigderson, A. One-way 
fuctions are essential for non-trivial 
zero-knowledge. In ISTCS, 1993, 3–17.

 23. Ren, H., Santhanam, R. Hardness of KT 
characterizes parallel cryptography. 
Electron. Colloquium Comput. 
Complex 28, 57 (2021).

 24. Sipser, M. A complexity theoretic 
approach to randomness. In 
Proceedings of the 15th Annual 
ACM Symposium on Theory of 
Computing, 25-27 April, 1983, Boston, 
Massachusetts, USA. ACM, 1983, 
330–335.

 25. Sipser, M. Introduction to the theory 
of computation. ACM Sigact News 27, 
1 (1996), 27–29.

 26. Solomonoff, R. A formal theory of 
inductive inference. Part i. Inf. Control 

Learn more about ACM Student Research Competitions:  https://src.acm.org

The ACM Student Research Competition (SRC) o! ers a unique forum for undergraduate and graduate students 
to present their original research before a panel of judges and attendees at well-known ACM-sponsored and co-
sponsored conferences. The SRC is an internationally recognized venue enabling undergraduate and graduate 
students to earn many tangible and intangible rewards from participating:

• Awards: cash prizes, medals, and ACM student memberships

• Prestige: Grand Finalists receive a monetary award and a Grand Finalist certi" cate that can be framed  
and displayed

• Visibility: opportunities to meet with researchers in their " eld of interest and make important connections

• Experience: opportunities to sharpen communication, visual, organizational, and presentation skills in 
preparation for the SRC experience

ACM Student Research Competition
Attention: Undergraduate and Graduate

Computing Students

© 2023 ACM 0001-0782/23/5 $15.00


