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Abstract

Let Kt(x) denote the Levin-Kolmogorov Complexity of the
string x, and let MKtP denote the language of pairs (x, k)
having the property that K¢(x) < k. We demonstrate that:

* MKtP ¢ Heur,  BPP (i.e., MKtP is two-sided error mildly
average-case hard) iff infinitely-often OWFs exist.

* MKtP Z Avg,  BPP (i.e., MKtP is errorless mildly aver-
age-case hard) iff EXP = BPP.

Taken together, these results show that the only “gap”
toward getting (infinitely-often) OWFs from the assump-
tion that EXP = BPP is the seemingly “minor” technical gap
between two-sided error and errorless average-case hard-
ness of the MKtP problem.

1. INTRODUCTION

A one-way function® (OWF) is a function f that can be effi-
ciently computed (in polynomial time), yet no probabilistic
polynomial-time (PPT) algorithm can invert f with inverse
polynomial probability for infinitely many input lengths n.
Whether one-way functions exist is unequivocally the most
important open problem in cryptography (and arguably the
most important open problem in the theory of computa-
tion, see e.g., Levin'?): OWFs are both necessary'? and suffi-
cient for many of the most central cryptographic primitives
and protocols (e.g., pseudorandom generators,*** pseudo-
random functions,’ private-key encryption,® etc.)

While many candidate constructions of OWFs are
known, the question of whether OWFs can be based on
some “standard” complexity-theoretic assumption is
mostly wide open.

In this work, we focus on the question of whether cryptog-
raphy can be based on the “super-weak” complexity-theoretic
assumption that computations cannot be exponentially
speedup using randomness:

Can the existence of OWFs be based on the assumption that
EXP = BPP?

While we are not able to provide a full positive answer to this
problem (which as we shall see later on, would imply that
NP = P), we are able to show that the task of basing OWFs
on the assumption that EXP = BPP is equivalent to a seem-
ingly minor technical problem regarding different notions
of average-case hardness w.r.t. Levin’s notion of Kolmogorov

complexity.'® Toward explaining our main result, let us first
review some recent connections between cryptography and
Kolmogorov complexity.

1.1. On OWFs and Kolmogorov complexity

What makes the string 12121212121212121 less “random”
than 60484850668340357492? The notion of Kolmogorov
complexity (K-complexity), introduced by Solomonoff,*
Kolmogorov,' and Chaitin,® provides an elegant method
for measuring the amount of “randomness” in individual
strings: The K-complexity of a string is the length of the
shortest program (to be run on some fixed universal Turing
machine U) that outputs the string x. From a computational
point of view, however, this notion is unappealing as there
is no efficiency requirement on the program. The notion
of #(-)-time-bounded Kolmogorov Complexity (K'-complexity)
overcomes this issue: K(x) is defined as the length of the
shortest program that outputs the string x within time #(|x|).
As surveyed by Trakhtenbrot,” the problem of efficiently
determining the K-complexity for #(n) = poly(n) has been
studied in the Soviet Union since the 60s as a candidate for
a problem that requires “brute-force search.” The modern
complexity-theoretic study of this problem goes back to
Sipser,* Ko," and Hartmanis® from the early 1980s.

A very recent result by Liu and Pass? shows that “mild”
average-case hardness of the time-bounded Kolmogorov
complexity problem (when the time bound is some polyno-
mial) is equivalent to the existence of OWFs. In this work,
we will extend their work to consider a different variant of
the notion of “resource-bounded” Kolmogorov complex-
ity due to Levin.'® The central advantage of doing so will
be that we will be able to base OWFs on the average-case
hardness of a problem that is average-case complete for
EXP! The only reason that this result falls short of bas-
ing OWF on EXP = BPP is that the notion of average-case

By “mild” average-case hardness, we here mean that no PPT algorithm is
able to solve the problem with probability 1— 1n on inputs of length n, for
all polynomials p(-) P(m

The original version of this paper—which contains
additional results—is entitled “On the Possibility of
Basing Cryptography on EXP = BPP” and was published
in Proceedings of the 2021 International Cryptography
Conference. Here, we focus only on providing an outline
of the main results.
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hardness in the EXP-completeness result is slightly differ-
ent from the notion of average-case hardness for the “OWF-
completeness” result. However, “morally,” this result can
be interpreted as an indication that the existence of OWFs
is equivalent to EXP = BPP (since trivially, the existence of
OWFs implies that EXP = BPP).

1.2. Levin-Kolmogorov complexity
While the definition of time-bounded Kolmogorov com-
plexity, K, is simple and clean, as noted by Leonid Levin'® in
1973, an annoying aspect of this notion is that it needs to be
parametrized by the time-bound ¢. To overcome this issue,
Levin proposed an elegant “non-parametrized” version of
Kolmogorov complexity that directly incorporates the run-
ning time as a cost. To capture the idea that polynomial-time
computations are “cheap,” Levin’s definition only charges
logarithmically for running time. More precisely, let the
Levin-Kolmogorov complexity of the string, Kt(x), be defined
as follows:

Kt(x)= min

e {o,1}, zEN{lnl +|710g t—‘: u(t, 1)= x},

where U is a universal Turing machine, and we let U([I,
1Y) denote the output of the program I after ¢ steps. Note
that, just like the standard notion of Kolmogorov com-
plexity, Kt(x) is bounded by |x| + O(1)—we can simply
consider a program that has the string x hard-coded and
directly halts.

Let MKtP denote the decisional Levin-Kolmogorov com-
plexity problem; namely, the language of pairs (x, k) where
k € {0, 1}"¢ ' having the property that K¢(x) < k. MKtP no
longer seems to be in NP, as there may be strings x that can
be described by a short program ][ (with description size,
e.g., n/10) but with a “largish” running time (e.g., 27'); the
resulting string x thus would have small K¢-complexity (n/5),
yet verifying that the witness program [] indeed outputs x
would require executing it which would take exponential
time. In fact, Allender et al.! show that MKtP actually is EXP-
complete w.r.t. P/poly reductions; in other words, MKtP € P/
poly if and only if EXP C P/poly.

We will be studying (mild) average-case hardness of
the MKtP problem, and consider two standard (see e.g.,
Bogdanov®) notions of average-case tractability for a lan-
guage L with respect to the uniform distribution over
instances:

« two-sided error average-case heuristics: We say that
L € Heur, BPP if for every polynomial p(-), there exists
some PPT heuristic H that decides L (w.r.t. uniform
n-bit strings) with probability 1- p% .

- errorless average-case heuristics:" We say that L €
Avg, . BPP if for every polynomial p(-), there exists some
PPT heuristic H such that (a) for every instance x, with
probability 0.9, H(x) either outputs L(x) or L, and (b),
‘H(x) outputs L with probability at most 200 given uni-

form n-bit strings x.

In other words, the difference between an errorless

and a two-sided error heuristic H is that an errorless
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heuristic needs to (with probability 0.9 over its own
randomness but not the instance x) output either L
(for “I don’t know”) or the correct answer L(x), whereas
a two-sided error heuristic may simply make mistakes
without “knowing it”.

To better understand the class Avg  BPP, it may be use-
ful to compare it to the class Avg _ P (languages solvable by
deterministic errorless heuristics): L € Avg P if for every
polynomial p(:), there exists some deterministic polyno-
mial-time heuristic H such that (a) for every input x, H(x)
outputs either L(x) or L, and (b) the probability over uni-
form n-bit inputs x that H outputs L is bounded by ﬁ.
In other words, the only way an errorless heuristic may
make a “mistake” is by saying L (“I don’t know”); if it ever
outputs a non-L response, this response needs to be cor-
rect. (Compare this to a two-sided error heuristic that only
makes mistakes with a small probability, but we do not
know when they happen.) Avg  BPP is simply the natural
“BPP-analog” of Avg _ P where the heuristic is allowed to be
randomized.

1.3. Our results

Two-sided error average-case hardness of MKtP: Our
first result shows that the characterization of Liu and
Pass?® can be extended to work also w.r.t. MKtP. More
precisely,

TI—?EtOREM 1.1. MKtP & Heur  BPP iff infinitely-often OWFs
exist.

We highlight that whereas® characterized “standard” OWF,
the above theorem only characterizes infinitely-often
OWFs—that is, functions that are hard to invert for infinitely
many inputs lengths (as opposed to all input lengths). The
reason for this is that?® considered an “almost-everywhere”
notion of average-case hardness of K’, whereas the state-
ment MKtP ¢ Heur BPP only considers an infinitely-often
notion of average-case hardness. (As we demonstrate in the
full version, we can also obtain a characterization of stan-
dard “almost-everywhere” OWFs by assuming that MKtP is
“almost-everywhere” mildly average-case hard, but for sim-
plicity, in the this paper, we focus our attention on the more
standard complexity-theoretic setting of infinitely-often
hardness.)

On a high level, the proof of Theorem 1.1 follows the
same structure as the characterization of Liu and Pass.*
The key obstacle to deal with is that since MKtP is not
known to be in NP, there may not exist some polynomial
time bound that bounds the running time of a program
[I that “witnesses” the K¢-complexity of a string x; this
is a serious issue as the OWF construction in Liu and
Pass? requires knowing such a running time bound (and
indeed, the running time of the OWF depends on it). To
overcome this issue, we rely on a new insight about Levin-
Kolmogorov complexity.

We say that the program [ is a Kt-witness for the string
x if ]I generates x within ¢ steps while minimizing |II| +
log t among all other programs (i.e., [] is a witness for the
Kt-complexity of x). The crucial observation (see Fact 3.1) is



that for every 0 <€ < 1, except for an ¢ fraction of n-bit strings
x,x has aKt-witness [[ that runs in time O (). That s, “most”
strings have a Kt-witness that has a “short” running time.
To see this, recall that as aforesaid, for every string x, Kt(x)
< |x| + O(1); thus, every string x € {0, 1}" with a Kt-witness
[T with running time exceeding 0 (1), must satisfy that |I]|
+log oY) =kt(x)=n+0(1),s0[[[| sn+0(1) - log (@) =
n+ 0 (1) +log e. Since the length of [] is bounded by 7 + O(1)
+ log ¢, it follows that we can have at most O(¢)2" strings x
where the Kt-witness for x has a “long” running time.

We can next use this observation to consider a more com-
putationally tractable version of Kt-complexity where we
cut off the machine’s running time after = steps (where ¢
is selected as an appropriate polynomial) and next follow a
similar paradigm as in Liu and Pass®

Errorless average-case hardness of MKtP. We next show
how to extend the result of Allender et al.! to show that
MKtP is not just EXP complete in the worst case, but also
EXP-average-case complete; furthermore, we are able
to show completeness w.r.t. BPP (as opposed to P/poly)
reductions. We highlight, however, that completeness is
shown in a “non-black box” way (whereas' presented a
P/poly truth table reduction). By non-black box, we here
mean that we are not able to show how to use any algo-
rithm that solves MKtP (on average) as an oracle (i.e., as
a black box) to decide EXP (in probabilistic polynomial
time); rather, we directly show that if MKtP € Avg  BPP,
then EXP C BPP.

neg

THEOREM 1.2. MKtP & Avg, BPP iff EXP = BPP.

Theorem 1.2 follows a similar structure as the EXP-
completeness results of Allender et al.! Roughly speaking,
Allender et al. observe that by the result of Nisan and
Wigderson* and Impagliazzo and Wigderson," the assump-
tion that EXP ¢ P/poly implies the existence of a (subexpo-
nential-time computable) pseudorandom generator that
fools polynomial-size circuits. But using a Kt-oracle, it is
easy to break the PRG (as outputs of the PRG have small
Kt-complexity since its running time is “small”). We first
observe that the same approach can be extended to show
that MKtP is (errorless) average-case hard w.r.t. polynomial-
size circuits (under the assumption that EXP 5Z P/poly). We
next show that if we instead rely on a PRG construction
of Impagliazzo and Wigderson,'* it suffices to rely on the
assumption that EXP = BPP to show average-case hardness
of MKtP w.r.t. PPT algorithms.

Interpreting Thm 1.1 and Thm 1.2. By combining Theorem
1.1 and Theorem 1.2, we get that the only “gap” toward
getting (infinitely-often) one-way functions from the
assumption that EXP = BPP is the seemingly “minor” tech-
nical gap between two-sided error and errorless average-
case hardness of the MKtP problem (i.e., proving MKtP

This non-black box aspect of our results stems from its use of Impagliazzo
and Wigderson.'

¢ Avg,BPP = MKtP ¢ Heur, BPP). Furthermore, note
that this “gap” fully characterizes the possibility of bas-
ing (infinitely-often) OWFs on the assumption that EXP
= BPP: Any proof that EXP = BPP implies infinitely-often
OWFs also shows the implication MKtP ¢ Avg BPP =
MKtP & Heur, BPP.

As a corollary of Theorem 1.1 and Theorem 1.2, we next
demonstrate that the implication MKtP ¢ Avg . BPP = MKtP
¢ Heur  BPP implies that NP = P.

THEOREM 1.3. IfMKtP ¢ Avg
NP = P.

BPP = MKtP ¢ Heur  BPP, then

neg

This result can be interpreted in two ways. The pessimistic
way is that closing this gap between two-sided error, and
errorless, heuristics will be very hard. The optimistic way,
however, is to view it as a new and algorithmic approach
toward proving that NP = P: To demonstrate that NP = P, it
suffices to demonstrate that MKtP can be solved by an error-
less heuristic, given access to a two-sided error heuristic for
the same problem.

Concurrent work. A concurrent and independent work
by Ren and Santhanam? presents related but orthogonal
characterizations of MKtP. Both works essentially show an
equivalence between mild average-case hardness of MKtP
and the existence of OWFs; we next show that errorless
average-case hardness of MKtP is equivalent to EXP = BPP,
whereas they instead consider an incomparable notion of
two-sided error hardness with a “tiny” error and show that
such average-case hardness of MKtP w.r.t. non-uniform
polynomial-time adversaries is equivalent to the assumption
that EXP ¢ P/poly.

2. PRELIMINARIES

We assume familiarity with basic concepts and computa-
tional classes such as Turing machines, polynomial-time
algorithms, probabilistic polynomial-time (PPT) algorithms,
NP, EXP, BPP, and P/poly. A function p is said to be negligible
if for every polynomial p(-) there exists some 7, such that for
alln>n, u(n) Sp%‘ A probability ensemble is a sequence of
random variables A = {4 } _ . We let !/ denote the uniform
distribution over {0, 1}". Given a string x, we let [x]j denote
the firstj bits of x.

One-way functions. We recall the definition of one-way
functions.® Roughly speaking, a function f is one way if
it is polynomial-time computable, but hard to invert for
PPT attackers. The standard cryptographic definition of
a one-way function requires that for every PPT attacker 4,
there exists some negligible function yx(-) such that 4 only
succeeds in inverting the function with probability p(n)
for all input lengths n. (That is, hardness holds “almost-
everywhere.”) We will also consider a weaker notion of an
infinitely-often one-way function,* which only requires
that the success probability is bounded by pu(n) for infi-
nitely many input lengths n. (That is, hardness only holds
“infinitely-often,” analogously to complexity-theoretic
notions of hardness).
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DEFINITION 2.1. Let f: {0, 1}* — {0, 1}* be a polynomial-time
computable function. fis said to be a one-way function (OWF)
if for every PPT algorithm A, there exists a negligible function
such that foralln € N,

Prx «{0,1}"; y= f(x): A1, y) € £ (FONI< pn)

fis said to be an infinitely-often one-way function (ioOWF) if
the above condition holds for infinitely manyn € N (as opposed
to all).

We may also consider a weaker notion of a weak one-way
function,” where we only require all PPT attackers to fail with
probability noticeably bounded away from 1:

DEFINITION 2.2. Let f: {0, 1}* — {0, 1}* be a polynomial-time
computable function. fis said to be a a-weak one-way function
(a-weak OWF) if for every PPT algorithm A, for all sufficiently
largen €N,

Prix«{0,1}"; y=f(x): A" y) € f(f(x)]<1-a(n)

We say that f is simply a weak one-way function (weak OWF)
if there exists some polynomial q > 0 such that fis a ﬁ-weak
OWF. fis said to be an weak infinitely-often one-way function
(weak i0OWF) if the above condition holds for infinitely many
n € N (as opposed to all).

Yao’s hardness amplification theorem* shows that any
weak (io) OWF can be turned into a “strong” (io) OWF.

Levin-Kolmogorov complexity. Let U be some fixed uni-
versal Turing machine that can emulate any Turing
machine M with polynomial overhead. Given a descrip-
tion [] € {0, 1}* which encodes a pair (M, w) where M
is a (single-tape) Turing machine and w € {0, 1}* is an
input, let U([], 1‘) denote the output of M(w), when emu-
lated on U for ¢ steps. Note that (by assumption that U
only has polynomial overhead) U(I], 1) can be computed
in time poly(|II|, ). We turn to defining Levin’s notion of
Kolmogorov complexity!®:

min
10,1}, teN

Kt(x) = {0]+[logt |:UuI1,1°) =x}.

Let MKtP denote the decisional Levin-Kolmogorov complex-
ity problem; namely, the language of pairs (x, k) where k € {0,
1}sl"having the property that K¢(x) < k. As is well known, we
can always produce a string by hardwiring the string in (the
tape of) a machine that does nothing and just halts, which
yields the following central fact about (Levin)-Kolmogorov
complexity.

FACT 2.1 (*). There exists a constant ¢ such that for every
x € {0, 1}* it holds that Kt(x) < |x| + c.

Average-case complexity. We will consider average-case

We remark that the constant 0.9 can be made arbitrarily small—any con-
stants bounded away from 2 works as we can amplify it using a standard
Chernoff-type argument.
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complexity of languages L with respect to the uniform distri-
bution of instances. Let Heur, BPP denote the class of lan-
guages that can be decided by PPT heuristics that only make
mistakes on an inverse polynomial fraction of instances.
More formally:

DEFINITION 2.3 (HeurnegBPP). For a decision problem L C
{0, 1}*, we say that L € Heur,  BPP if for all polynomial p(-),
there exists a probabilistic polynomial-time heuristic H, such
that for all sufficiently large n,
Pr[x < {0,1}" : H (x) = L(x)] > 1- ——.
p(n)

We will refer to languages in Heur  BPP as languages that
admit two-sided error heuristics. We will also consider a more
restrictive type of errorless heuristics H: for every instance x,
with probability 0.9 (over the randomness of only H), H(x)
either outputs L(x) or L (for “I don’t know”). More formally:

DEFINITION 2.4 (Avg, BPP). For a decision problem L C {0,
1}*, we say that L € Avg, BPP if for all polynomial p(-), there
exists a probabilistic polynomial-time heuristic H, such that for
all sufficiently large n, for every x € {0, 1}",

Pr[H(x)e{L(x), L}]> 0.9,

and

Prix {0, 1}": H (x) = L] <——.
p(n)

We will refer to languages in Avg BPP as languages that
admit errorless heuristics. As explained in the introduction,
to better understand the class Avg, . .BPP, it may be useful
to compare it to the class Avg P (languages solvable by
deterministic errorless heuristics): L € Avg P if for every
polynomial p(-), there exists some deterministic polyno-
mial-time heuristic H such that (a) for every input x, H(x)
outputs either L(x) or L, and (b) the probability over uni-
form n-bit inputs x that H outputs L is bounded by ()

. In other words, the only way an errorless heuristic may
make a “mistake” is by saying L (“I don’t know”), whereas
for a two-sided error heuristic we do not know when mis-
takes happen. Avg _ BPP is simply the natural “BPP-analog”
of Avg P where the heuristic is allowed to be randomized.

Computational indistinguishability. We recall the definition
of (computational) indistinguishability® along with its
infinitely-often variant.

DEFINITION 2.5. Two ensembles {A } . and {B,} . aresaid
to be ¢(-)-indistinguishable, if for every PPT machine D (the
“distinguisher”) whose running time is polynomial in the
length of its first input, there exists some n, € N so that for
everynz=ng:

‘Pr[D(l”, A)=1]-Pr[D(",B,) = 1]\<g(n)

We say that {A} . and {B}, . are infintely-often



e(-)-indistinguishable (io-e-indistinguishable) if the above
condition holds for infinitely manyn € N (as opposed to all suf-
ficiently large ones).

Pseudorandom generators. We recall the standard defini-
tion of pseudorandom generators (PRGs)? and its infinitely-
often variant.

DEFINITION 2.6. Let g : {0, 1}" — {0, 1}"™ be a polynomial-
time computable function. g is said to be a (-)-pseudorandom
generator (¢-PRG) if for any PPT algorithm A (whose running
time is polynomial in the length of its first input), for all suffi-
ciently large n,

|Pr[x<«{0,1}": A(1", g(x)) =1]
~Pr [y« {0,1}"™: AQ",y)=1]| <e(n).

g is said to be an infinitely-often ¢(-)-pseudorandom genera-
tor (i0-e-PRG) if the above condition holds for infinitely many
n € N (as opposed to all).

Although the standard cryptographic definition of a PRG
g requires that g runs in polynomial time, when used
for the other purposes (e.g., for derandomizing BPP), we
allow the PRG g to have an exponential running time.*® We
refer to such PRGs (resp. ioPRGs) as inefficient PRGs (resp.
inefficient ioPRGS).

Conditionally entropy-preserving PRGs. Liu and Pass®
introduced variant of a PRG referred to as an entropy-
preserving pseudorandom generator (EP-PRG). Roughly
speaking, an EP-PRG is a pseudorandom generator that
expands n-bits to n + O(log n) bits, having the property
that the output of the PRG is not only pseudorandom, but
also preserves the entropy of the input (i.e., the seed): The
Shannon entropy of the output is n - O(log n).”° did not
manage to construct an EP-PRG from OWFs, but rather
constructed a relaxed form of an EP-PRG, called a con-
ditionally-secure entropy-preserving PRG (condEP-PRG),
which relaxes both the pseudorandomness and entropy-
preserving properties of the PRG, to hold only conditioned
on some event E. We will here consider also an infinitely-
often variant:

DEFINITION 2.7. An efficiently computable function G : {0,
1} — {0, 1} s js g u(-)-conditionally secure entropy-
preserving pseudorandom generator (y-condEP-PRG) if
there exist a sequence of events = {En}nEN and a constant o
(referred to as the entropy-loss constant) such that the following

conditions hold:

* (pseudorandomness): {GU, | E )}
are p(n)-indistinguishable;

* (entropy-preserving): For all sufficiently large n € N,
HGWU, | E))=n~ xlogn.

and {U

neN n+y log n}neN

G is referred to as an yu(-)-conditionally secure entropy-preserv-
ing infinitely-often pseudorandom generator (;:-condEP-ioPRG)

if it satisfies the above definition except that we replace j(n)-indis-
tinguishability with io-p(n)-indistinguishability.

We say that G has rate-1 efficiency if its running time on
inputs of length n is bounded by 7 + O(n°) for some con-
stant € < 1. We recall that the existence of rate-1 efficient
condEP-PRGs can be based on the existence of OWFs, and
that the same theorem holds in the infinitely-often setting.

THEOREM 2.8 (Implicit in Liu and Pass?°). Assume that OWFs
(resp. ioOWFs) exist. Then, for every v > 1, there exists a rate-1
efficient p-condEP-PRG (resp. p-condEP-ioPRG) G : {0, 1}" —
{0, 1}m1oen where (1= n% .

3. CHARACTERIZING OWFS

In this section, we prove our main characterization of OWFs
through two-sided error average-case hardness of MKtP.

THEOREM 3.1. MKtP ¢ Heur, _ BPP iff infinitely-often OWFs exist.

We remark that, in full version, we also characterize “stan-
dard” (as opposed to infinitely-often) OWFs through (almost-
everywhere) mild average-case hardness of MKtP.

Below, we prove each direction of Theorem 3.1 separately
(in Theorem 3.2 and Theorem 3.3).

OWFs from Avg-case hardness of MKtP. We first show that
if weak ioOWFs do not exists, then we can compute the
Kt-complexity of random strings with high probability (and
thus, MKtP is in Heur BPP). On a high-level, we will be using
the same proof approach as in Liu and Pass* One immediate
obstacle to relying on the proofin Liu and Pass® is that it relies
on the fact that the program [] (which we refer to as the “wit-
ness”) that certifies the time-bounded Kolmogorov complex-
ity K* of a string x has some a priori polynomial running time,
namely ¢(-); this polynomial bound gets translated into the
running time of the constructed OWF. Unfortunately, this fact
no longer holds when it comes to Kt-complexity: We say that
the program ][ is a Kt-witness for the string x if ][ generates
x within ¢ steps while minimizing |[I| + log t among all other
programs (i.e., [ is a witness for the Kz-complexity of x). Note
that given a Kt-witness of a string x, there is no a priori poly-
nomial time bound on the running time of [, since only the
logarithm of the running time gets included in the complex-
ity measure. For instance, it could be that the K¢-witness is a
program [] of length n/10 that requires running time 2", for
a total K¢-complexity of n/5. Nevertheless, the crucial obser-
vation we make is that for most strings x, the running time of
the K¢-witness actually is small: For every 0 < € < 1, except for
an ¢ fraction of n-bit strings x, x has a K&-witness [] that runs
in time o(%) . More formally:

FACT 3.1. Foralln € N, 0 < ¢ < 1, there exists 1 — ¢ fraction of
strings x € {0, 1}" such that there exist a Turing machine [ _and
a running time parameter t_satisfying U (I1,,1%)=x , |1 | +
log t |=Kt(x), and t_< 2‘/c (where ¢ is as in Fact 2.1).

Proof: Consider some n € N, 0 < ¢ < 1, and some set S C {0,
1}"such that |S| > 2" For any string x € {0, 1}",let (I[ , ¢ ) be
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a pair of strings such that U (IT,,1*) = x and |[] | +/log ¢ |=
Kt(x); that is, (Hx, t ) is the optimal compression for x. Note
that for any x € {0, 1}, such (I] , ¢ ) always exists due to Fact
2.1. Let ¢ be the constant from Fact 2.1.

We assume for contradiction that for any x € S, ¢_> 2.
Note that by Fact 2.1, it holds that K¢(x) < |x| + ¢. Thus, |I | =
Kt(x)-llogt l<n+c-llog2‘/el<n-log1/e. Consider the set Z =
{I, : x € S} of all (descriptions of) Turing machines [[ . Since
|I1,| = n-log 1/¢, it follows that | Z| < 2"1°s* = £2". However, for
each machine [] in Z, it could produce only a single string in S.
So |Z| = |S| > 2", which is a contradiction. L]

We now show how to adapt the proof in Liu and Pass*
by relying on the above fact.

THEOREM 3.2. If MKtP ¢ Heur  BPP, then there exists a weak
100WF (and thus also an ioOWF).

Proof: We start with the assumption that MKtP ¢ Heur  BPP;
that is, there exists a polynomial p(-) such that for all PPT
heuristics H and infinitely many 7,

Pr[x {0, 1", k{0, 1)/ "™"":

H' (x, k) = MKtP (x, k)] <1 - ——.
p(n)

Let ¢ be the constant from Fact 2.1. Consider the function
f:40, 1}relostnial —, £0 1}* which given an input /| |[]” where
|| =Mog(n + c)land |II’| = n + ¢, outputs ¢ + [log tI ||U(II, 19
where [ is the ¢-bit prefix of [[/, ¢ is the (smallest) integer <
2¢2p(n) such that [] (when interpreted as a Turing machine)
halts in step ¢. (If [] does not halt in 2¢?p(n) steps, f picks ¢
=2?p(n).) That is,

F (|| = £+ logt]||U(IT, 1).

Observe that fis only defined over some input lengths, but by
an easy padding trick, it can be transformed into a function
f” defined over all input lengths, such that if fis (weakly) one-
way (over the restricted input lengths), then f” will be (weakly)
one-way (over all input lengths): f(x”) simply truncates its
input x” (as little as possible) so that the (truncated) input x
now becomes of length m = n + ¢ +[log(n + ¢)I for some n and
outputs f{x).

We now show that f is a %-Weak i0OWF where g(n)
= 2**np(n)*, which concludes the proof of the theorem.
Assume for contradiction that fis not a %-Weak i00WF;
that is, there exists some PfT atta(iker A that inverts f
with probability at least 1—m< 1_(7771) for all sufficiently
large input lengths m = n + ¢ +1log(n + ¢)I. We first claim that
we can use A to construct a PPT heuristic H* such that

1
Prix«{0,1}": H*(x)=Kt(x)]>1— .
p(n)
If this is true, consider the heuristic H which given a string
x € {0, 1}" and a size parameter k € {0, 1}"¢" outputs 1 if

We note that the choice of (Hx, t ) for some x is not unique. Our argument
holds if any such (I, ¢ ) is chosen.
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‘H*(x) = k, and outputs 0 otherwise. Note that if H* succeeds
on some string x, H will also succeed. Thus,

Pr[x {0, 1}", k{0, """:

H(x, k) =MKtP(x, K)]21-——,

p(n)

which is a contradiction.

It remains to construct the heuristic H* that computes
Kt(x) with high probability over random inputs x € {0, 1}
", using 4. By an averaging argument, except for a fraction
2p(ny ©f random tapes r for A, the deterministic machine
A (i.e., machine A with randomness fixed to r) fails to
1nvertfw1th probability at most q(n) . Consider some such
“good” randomness r for which A _succeeds to invert fwith
probability 122",

On input x € f& 1}, our heuristic Hr runs A (i||x) for
alli € [n+ c]where i is represented as allog(n + ¢)l-bit string
and outputs the smallest i where the inversion on (i]|x) suc-
ceeds. Let € ) ) and S be the set of strings x € {0, 1}"
for which Hr (x) fails to compute Kt(x) and x satisfies the
requirements in Fact 3.1. Note that the probability that a
random x € {0, 1}" does not satlsfy the requirements in
Fact 3.1 is at most ¢. Thus, Hr fails with probability at
most (by a union bound)

B

fail, < e +—
2

Consideranystringx € Sandletw=K¢(x) beits Kt-complexity.
Note that x satisfies the requirements in Fact 3.1; that is,
there exist a Turing machine ][ and a running time param-
eter ¢_such that U (IT,, 1*) = x, |II | + [log ¢ = Kt(x), and ¢,
= 2¢/e = 2°?p(n). By Fact 2.1, we have that |[[ | sw=n+c.
Thus, for all strings (/| |H’) € {0, 1}metosnal guch that ¢ =
L[, [H 1,4= 11, itholds that f(¢| [II) = (w]||x). Since H (@)
fails to compute K#(x), A, must fail to invert (w||x). But,
since |[[ | =7 +c, the output (w]|x) is sampled with prob-
ability at least

1 1 S 1 1 S 1 1

- n220+1 271

n+c 2"l pc 2™
in the one-way function experiment, so A must fail with
probability at least
|S|_ fail. —¢
|S| 2¢+1 ._n: 2¢+1 ’ n 2 2¢+1
n2 2" n2 2 n2

which by assumption (that 4, is a good inverter) is at most
that 22 _We thus conclude that

q(n)
2 np(n)
q(n)

) 224+Z
fail, <

Finally, by a union bound, we have that H* (using a uni-
form random tape r) fails in computing Kt with probability
at most



1 Zc+2

2p(n)

np(n) . 1
q(n) p(n)

Thus, H* computes K¢ with probability 1—p(— for all suffi-
ciently large n € N, which is a contradiction. u

Avg-case Hardness of MKtP from OWFs. We additionally
show the converse of Theorem 3.2:

THEOREM 3.3. IfioOWFs exist, then MKtP ¢ Heur _ BPP.

Theorem 3.3 follows immediately from Theorem 2.8 and the
following theorem:

THEOREM 3.4. Assume that for some -y = 4, there exists a rate-1
efficient pu-condEP-ioPRG G : {0, 1}" — {0, 1}™7'°¢" where
u(n) =1/n Then, MKtP ¢ Heur  BPP.

The proof of Theorem 3.4 closely follows the proof in Liu
and Pass®® and relies only on relatively minor modifications
to observe that the properties used of the time-bounded
Kolmogorov complexity function K* actually also hold for
Kt—namely that random strings have “high” K¢-complexity,
whereas outputs of a PRG have “low” Kt-complexity. We refer
the reader to the full version for the actual proof.

4. CHARACTERIZING EXP
In this section, we will prove the following theorem:

BPP.

neg

THEOREM 4.1. EXP = BPP if and only if MKtP ¢ Avg
Roughly speaking, the above theorem is proved in two steps:

+ We first observe that, assuming EXP = BPP, there exists
an (inefficient, infinitely-often) pseudorandom gen-
erator' that maps a n*bit seed to a n-bit string in time
0(2") (for some 0 <&, v<1).

« We will next show that an errorless heuristic for MKtP
canbeusedtobreak such PRGs(since the Kt-complexity
of the output of the PRG is at most n° + n" + O(1) = n-1),
which is a contradiction and concludes the proof.

Recall that Impagliazzo and Wigderson** showed that BPP
can be derandomized (on average) in subexponential time
by assuming EXP = BPP. The central technical contribution
in their work can be stated as proving the existence of an
inefficient PRG assuming EXP = BPP:

THEOREM 4.2 (™, [*, THEOREM 3.9]). Assume that
EXP = BPP. Then, for all = > 0, there exists an inefficient
io- 10 -PRG G:{0,1}" —{0,1}" that runs in time 2°°.

We note that the proof in Impagliazzo and Wigderson** is
non-black box. In particular, it does not show how to solve
EXP in probabilistic polynomial-time having black box
access to an attacker that breaks the PRG.

It remains to show that if there exists an (inefficient)
i0-PRG G : {0, 1)"— ® {0, 1) with running time 0(2") (for
some 0 < g, v < 1), then MKtP ¢ Avg, BPP. We recall that a

string’s Kt-complexity is the minimal sum of (1) the descrip-
tion length of a Turing machine that prints the string and (2)
the logarithm of its running time. Note that the output of G
could be printed by a machine with the code of G (of constant
length) and the seed (of length 7<) hardwired in it within
0(2") time. Thus, strings output by G have K¢-complexity
less than or equal to O(1)+n° + n” < n - 1. On the other hand,
random strings have hlgh Kt-complexity (e.g., > n — 1) with
high probability (e.g., = 5 1). It follows that an errorless heu-
ristic for MKtP can be used to break G. Let us highlight why
it is important that we have an errorless heuristic (as opposed
to a two-sided error heuristic): while a two-sided error heu-
ristic would still work well on random strings, we do not
have any guarantees on its success probability given pseu-
dorandom strings (as they are sparse); an errorless heuris-
tics, however, will either correctly decide those strings, or
output L (in which case, we can also guess that the string is
pseudorandom).

We proceed to a formal statement of the theorem, and its
proof.

THEOREM 4.3. Assume that there exist constants 0 < e, y< 1 and
an inefficient io- 10-PRG G:{0,1}" —{0, 1}" with running time
0(2"). Then, MKtP ¢ Avg,  BPP.

Proof: We assume for contradiction that MKtP € Avg, BPP,
which in turn implies that there exists an errorless PPT heu-
ristic H such that for all sufficiently large n, every x € {0, 1}"

and k € {0, 1}s",

Pr[H(x, k)e {MKtP (x, k), L}]>0.9, (1)
and

Pr[x «{0,1}", k<0, 1}“°g"7 TH(x, k) = 11< % .
n

Fix some sufficiently large n, and let k = n - 1. It follows by an
averaging argument that

2|—l°gn-‘ < (2)
n

Pr{x «{0,1}": H(x,n—-1) = 1]< <

We next show that we can use H to break the PRG G. On
inputx € {0, 1}", our distinguisher A (1" ,x) outputs 1if H(x,
n-1)=1lorH(x,n-1)=_L. Aoutputs 0ifand onlyif H(x,n-1)=0.
The following two claims conclude that A distinguishes
U, and G (U ;) with probability at least 0.2.

cramv 1. A" ,U,) will output 0 with probability at least
1

0.4— ﬁ *

Proof: Note that the probability thata random sfring x € {0, 1}"
is of Kt-complexityat mostn - 1isatmost >, -! (sincethe
total number of machines with descnptlon length =n-1
is 2™ 1).1And the probability that H(x, n-1) outputs L is at
most 3; (over random x € {0, 1}") by Equation 2. In addi-
tion, the probability that H(x, n — 1) fails to output either
MKtP(x, n — 1) or L is at most 0.1 by Equation 1. Thus, by a
union bound,
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Pr[ A(1",U,)=0]
>1-Pr[Kt(U,) < n—1]-Pr [H(U,,n—-1) = 1]
- Pr[ H(U,, n—1) fails |

CramM 2. A(1", G (U.)) will output O with probability at
most 0.1.

Proof: We first show that forall z€ {0, 1} ,Kt(G(2) sn°+n’
+0(1)<n-1.Notethatthe string G(z) could be produced bya
machinewiththe code of G (oflength O(1))and the seed z (of
length n°) in time O(2") (which adds log0O(2" )=n" +0(1)
to its Kt-complexity). In addition, recall that H is a proba-
bilistic errorless heuristics. Thus, H(G(z), n — 1) will out-
put 0 with probability at most 0.1 (by Equation 1), and the
claim follows. |

This conclude the proof of Theorem 4.3. u

We are now ready to conclude the proof of Theorem 4.1.
Proof: [of Theorem 4.1] We show each direction separately:

* To show that EXP = BPP = MKtP ¢ Avg  BPP, assume
that EXP = BPP and let = 5, and 7= . By Theorem 4.2,
there exists an io-%-PRG G:{0,1}" —={0,1}" with
running time 2°¢9)< 0(2""). We conclude by Theorem 4.3
that MKtP ¢ Avg, BPP.

* To show that MKtP ¢ Avg  BPP = EXP = BPP, assume
that MKtP ¢ Avg, BPP; this trivially implies that MKtP ¢
BPP. We observe that MKtP € EXP as by Fact 2.1, K¢(x) <
|x| + O(1) and thus the running time for a K¢-witness, [],
for x is bounded by 2@, Thus, EXP ¢ BPP, which in
particular means that EXP = BPP.

|

5. CONCLUSIONS AND BARRIERS

Recall that in Theorem 4.1, we showed that if we assume
that EXP = BPP, then MKtP is hard-on-average for errorless
heuristics. Furthermore, in Theorem 3.2, we showed that
if MKtP is hard-on-average for two-sided error heuristics,
then (infinitely-often) one-way functions exist. Combining
the two theorems together, we have that the implication
MKtP ¢ Avg, BPP = MKtP ¢ Heur BPP fully characterizes
when we can base the existence of (infinitely-often) one-
way functions on EXP = BPP. Formally,

THEOREM 5.1. MKP ¢ Avg,_ BPP => MK{P ¢ Heur, BPP holds
iff EXP = BPP implies the existence of ioOWFs.

Perhaps surprisingly, we observe that the implication by
itself (without any assumptions) implies that NP = P:
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THEOREM 5.2. If it holds that MKtP ¢ Avg
Heur,  BPP, then NP = P.

BPP = MKIP ¢

neg

Proof: Assume for contradiction that MKtP ¢ Avg BPP
= MKtP ¢ Heur  BPP holds, yet NP = P. Recall that BPP C
NPNP 2417 50 it follows that P = BPP, and thus by the time
hierarchy Theorem,'® EXP = BPP. Then, by Theorem 4.1,
MKtP ¢ Avg  BPP. It follows from our assumption that
MKtP ¢ Avg  BPP = MKtP ¢ Heur  BPP and from Theorem
5.1 that ioOWFs exist, which contradicts the assumption
that NP =P. |

We remark that the above theorem could be strength-
ened to show even that NP is average-case hard (w.r.t. deter-
ministic errorless heuristics), since Buhrman, Fortnow,
and Pavan® have showed that unless this is the case, P =
BPP, which suffices to complete the rest of the proof.

The pessimistic way to interpret Theorem 5.2 is that
closing the gap between two-sided error, and errorless,
heuristics for MKtP will be very hard as it requires proving
that NP = P. The optimistic way to interpret it, however, is
as a new and algorithmic approach toward proving that NP
= P: To demonstrate that NP = P, it suffices to demonstrate
that MKtP can be solved by an errorless heuristic, given
access to a two-sided error heuristic for the same problem.
Additionally, note that approach also does not “overshoot”
the NP vs. P problem by too much. In fact, any proof of the
existence of infinitely often one-way functions needs to
also show this implication since by Theorem 3.3, the exis-
tence of ioOWFs implies MKtP ¢ Heur BPP, which in turn
implies that the implication trivially holds.
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