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ABSTRACT: We investigated environmental, landscape, and micro-
bial factors that could structure the spatiotemporal variability in the
nontarget chemical composition of four riverine systems in the Oregon
Coast Range, USA. We hypothesized that the nontarget chemical
composition in river water would be structured by broad-scale
landscape gradients in each watershed. Instead, only a weak
relationship existed between the nontarget chemical composition
and land cover gradients. Overall, the effects of microbial communities
and environmental variables on chemical composition were nearly |y iershad . “x
twice as large as those of the landscape, and much of the influence of  Landcover %
environmental variables on the chemical composition was mediated gﬁe _
through the microbial community (i.e., environment affects microbes, ¢ % Microbes
which affect chemicals). Therefore, we found little evidence to support

our hypothesis that chemical spatiotemporal variability was related to broad-scale landscape gradients. Instead, we found qualitative
and quantitative evidence to suggest that chemical spatiotemporal variability of these rivers is controlled by changes in microbial and
seasonal hydrologic processes. While the contributions of discrete chemical sources are undeniable, water chemistry is undoubtedly
impacted by broad-scale continuous sources. Our results suggest that diagnostic chemical signatures can be developed to monitor
ecosystem processes, which are otherwise challenging or impossible to study with existing off-the-shelf sensors.
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B INTRODUCTION

Chemical allocation and source identification are central topics

discrete sources (e.g., stormwater, animal manure) are binary
in nature (i.e., present or absent) and readily identifiable at a

in chemical forensic analyses. For decades (e.g, refs 1 and 2),
patterns of individual chemical and isotopic tracers have been
essential tools for identifying sources of contamination to the
environment. Specific examples include pharmaceuticals to
detect sewage contamination,3_6 metals to detect industrial
pollution,”™” and trace elements to detect hydraulic fracturing
fluids."” With advances in forensics techniques, tens to
hundreds of chemicals features have been used to generate
“chemical fingerprints” of different sources (e.g., automotive
fluids, stormwater, PFAS/AFFF impacted sites' ' '*). These
examples focus on spatially discrete chemical sources of
anthropogenic origin. In contrast, spatially continuous sources,
which exist across a continuum with no discrete boundaries,
are underrepresented within the chemical forensics literature
despite contributing to the broad-scale chemical composition
of receiving waters.”~'” This imbalance is likely due to
fundamental challenges in collecting and analyzing data
generated from continuous chemical sources.

The success of forensics analyses is affected by the
spatiotemporal variability of a chemical source. Spatially
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point in time and space. Therefore, collecting a sample from a
discrete source is comparatively easy as long as it is accessible.
In contrast, spatially continuous sources exist along a
continuum, and there is no obvious point in space that is
most representative of these sources, thus making sampling
challenging. A strategy for fingerprinting continuous sources
could include sampling across a large enough gradient to
describe the source of interest. In addition to spatial variability,
the chemical composition of continuous sources is likely to be
dynamic due to temporal variability in hydrobiogeochemical
cycles. Factors such as carbon exchange, solar radiation, soil
respiration, streamflow, and others vary hourly, seasonally, and
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annually;'®™*' thus, the composition of chemicals generated

across different gradients are likely to be temporally
heterogeneous, even at the same location.

In addition to spatiotemporal variability, chemical finger-
printing of continuous sources is more challenging computa-
tionally. In previous work, the success of multivariate chemical
fingerprinting decreased as the spatial continuity of the source
increased.”” Multivariate tools used in forensics, such as co-
occurrence analysis and classification,* gravitate to chemical
features that are (largely) unique to a particular source, and
unique chemicals were more common for discrete sources.””
For anthropogenic sources, unique chemicals could arise from
manufacturing processes, but even for natural sources (e.g.,
manure), Davila-Santiago et al. found a greater proportion of
unique features in discrete sources compared to distributed
ones (e.g, agricultural runoff and watershed samples).”” In
some instances, discrete sources may consist of greater
proportions of labile carbon that contain parent features,
whereas continuous sources are likely to contain a greater
proportion of byproducts that can be generated from multiple
metabolic pathways.”>** While fewer unique molecules,
particularly small molecules, may exist for continuous sources,
we argue that all sources generate distinct chemical gradients
that are reflective of the sum of the biogeochemical processes
occurring within the source zone. These chemical gradients
could be particularly useful for fingerprinting continuous
sources when unique chemical features do not exist. We are
unaware of forensics studies that probabilistically predict the
presence or absence of a source based on the relative position
of a sample along a chemical gradient, but such a technique is
theoretically possible.

While forensics studies have been able to fingerprint sources
and identify their presence within individual samples, methods
for identifying the landscape sources from the overall chemical
composition of a receiving body of water are generally
underdeveloped. With the development of high-resolution
mass spectrometry, thousands of nontarget chemical features
can be detected in surface water samples, which allows for a
semiquantitative assessment of the bulk chemical composition
of a water body. Given the diversity of organic molecules,
ecosystem processes, and biogeochemical pathways across
landscapes, we predict that the probability of two different
sources having identical nontarget chemical composition is
virtually zero regardless of spatial continuity. Therefore, it
should be possible to develop a diagnostic chemical signature
associated with any particular source, whether it is
spatiotemporally discrete or continuous; however, current
forensics strategies are poorly equipped to deal with the
spatiotemporal variability in nontarget chemical composition
of sources.

We herein report on spatial and seasonal changes in the
nontarget chemical composition in riverine systems in the
central Willamette Valley, OR. Our goal is to advance
computational capabilities in forensics studies and better
understand the spatiotemporal drivers of the nontarget
chemical composition of surface waters. We hypothesize that
the nontarget chemical composition in receiving bodies of
water is driven by the most prevalent landscape (spatial) and
environmental (temporal) gradients present across a water-
shed, similar to other studies on sources of dissolved organic
carbon (DOC).”>~*” Conversely, autochthonous carbon from
autotrophic microbes could structure chemical composition in
surface waters.”** To test our hypothesis, we collected water

samples from four riverine systems over three seasons. For
each watershed, hydrological, weather, and land cover data
were collected as environmental variables, combined with
microbial community data to explain variation in nontarget
chemical composition. Using multivariate computational tools,
our specific aim was to identify the drivers structuring the most
prominent chemical gradients across all systems. By identifying
the specific drivers of these gradients, water quality managers
could identify strategies, when necessary, that have the greatest
improvement on the holistic chemical composition in receiving
bodies of water.

B METHODS

Site Descriptions and Watershed Data Collection.
Samples were collected on the eastern slope of the Oregon
Coast Range in the central Willamette Valley, OR, which has a
Mediterranean climate with warm dry summers and cool wet
winters with 100—200 cm y~! precipitation.”® We collected
water samples from four rivers (Figure S1). Dixon Creek is
~10 km long and located entirely within the city of Corvallis.
Oak Creek is ~24 km long and flows from forested headwaters
through pastures, grass seed fields, and suburban areas in
Corvallis. Marys River is the longest river (~64 km) in this
study and traverses forested headwaters, grass seed fields, and
suburban/urban areas in Philomath and Corvallis. Rickreall
Creek is ~40 km long and located about 40 km north of
Corvallis. Rickreall Creek traverses forested headwaters, grass
seed fields, and urban/suburban area in Dallas, OR.

We collected five longitudinal grab samples (20 L) from
each system during summer (June), fall (October), and winter
(January, February) 2018/19 (Table S1 for latitude and
longitude for each location). Sampling locations were selected
at major transitions in land cover type (Figure S1). Each
location was approximately equidistant along each creek. By
the end of the dry season in fall, Dixon Creek was dry and
samples were not collected. We obtained explanatory variables
from online databases and field measurements. Upstream
watershed characteristics were collected at each point, with
land cover percentages acquired from the National Land Cover
Database (NLCD, Figure S1, Table 82),31 and drainage area
(Env_Area, square miles), basin slope (Env_Slope, degrees),
and mean annual precipitation (Env_AnuPrec, inches) were
collected from the USGS StreamStats database (Table S2,
methods from®>*?). For the 2 weeks preceding the sampling
event, the hourly precipitation (Env_Rain), baseflow-ground-
water runoff (Env_BgRun), and leaf area index (Env_LAI)
were averaged to reflect the conditions leading up to the
sampling event. Watershed hydrological data were retrieved
from the North American Land Data Assimilation System
Noah Land Surface Model (NLDAS-NOAH 0.125 X 0.125
degree V2.0°*). Water pH (Env_pH, unitless) and water
temperature (Env_Temp, °C) were collected in the field.
Additional details on data collection and preprocessing are in
the Supporting Information.

Microbial and Chemical Sampling and Processing.
Water samples were split for microbial 16S rRNA gene
sequencing and nontarget chemical analysis. Detailed descrip-
tions of DNA sequencing and high-resolution mass spectrom-
etry (HRMS) analyses are in the Supporting Information.
Briefly, DNA was extracted and PCR amplified using primers
targeting the V4 region of 16S rRNA genes with forward
primer 515F and reverse primer 806R™ according to Earth
Microbiome Project Protocols, except that PCR primers were
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dual-barcoded following the work of Kozich et al.>° Genetic

data were analyzed using the Quantitative Insights into
Microbial Ecology 2 (QIIME2) software.”” Using QIIME2,
the resulting sequences were demultiplexed, filtered, and
clustered into operational taxonomic units (OTUs) at 97%
sequence similarity. Final taxonomic identity was determined
by comparing OTUs against the Greengenes database.”
HRMS analysis and data processing were described pre-
viously”” and are summarized in the Supporting Information.
Briefly, triplicate samples (1 L each) were filtered, spiked with
deuterated internal standards, and loaded onto C18 SPE
cartridges (1,000 mg of sorbent, Resprep). Samples were
eluted with methanol, dried, and resuspended in 90:10 (v/v)
water:methanol for LC-HR-TOF-MS (Shimadzu Nexera
UHPLC coupled to an AB Sciex 5600 tripleTOF). HRMS
analysis as well as peak picking and retention time alignment
(Sciex Peakview v2.2 and Markerview v1.3.1) were performed
at Oregon State University’s Mass Spectrometry Center.
Instrument performance and quality control procedures are
introduced in the Supporting Information. Overall, 12,638
microbial OTUs were identified in 46 samples and 1,605
chemical features were retained from 5SS samples (Table S1 for
microbial data availability).

Hypothesis Testing and Data Analysis. We hypothe-
sized that the nontarget chemical composition in rivers is
driven by the most prevalent landscape and environmental
gradients present across watersheds.”” >’ Accordingly, we
made the following predictions. First, sample locations with
similar surroundings and/or upstream land cover will be more
chemically similar and will cluster together in all seasons.
Second, landscape influences on the chemical composition will
be more pronounced during the winter rainy season when
overland runoff increases the chemical loads to surface waters.
Finally, we expected landscape and environmental variables to
explain the greatest amount of variability within the chemical
data set. If these patterns are observed, it suggests that the
dominant chemical gradients present in riverine systems can be
attributed to processes occurring across the landscape.

We evaluated these predictions using multiple tools.
Qualitatively, we used nonmetric multidimensional scaling
(NMS) to evaluate spatiotemporal clustering of the chemical
data (PC-ORD v. 7.0.2%”), which evaluates our first and second
predictions. Instead of analyzing all 1,605 chemical features
and all 12,638 OTUs individually, NMS was used to reduce
the dimensionality of the data to a smaller number of
composite dimensions that summarize the information
contained within the original data set. NMS is not constrained
by assumptions of multivariate normality, linearity, and
homoscedasticity,”” which is advantageous when working
with high-dimensional data. The raw chemical data were
logarithmically transformed (x = log,, (x + 1)) before import
into NMS analysis to reduce the influence of outliers and help
achieve normally distributed data for other analyses. NMS
analyses were performed using the Bray—Curtis distance,
which is appropriate and commonly used for sparse, high-
dimensional, and bounded matrices.>’ A randomization test
was used to determine the appropriate number of NMS
dimensions to retain. The correlation between NMS axes and
explanatory variables was used to help interpret each NMS axis
and identify potential explanatory variables. Complete details
on the NMS analysis and its assumptions are presented in the
Supporting Information.

We were able to amplify microbial DNA from 46 out of the
55 samples with chemical data; therefore, analysis with the
microbial data consisted of a subset of the entire chemical data
set. To illustrate the microbial community distribution, we
used hierarchical cluster analysis with Bray—Curtis distance
and average linkage method, using the “clustermap” function of
the seaborn package (v.0.11.1) in Python to display the
relationships among microbial orders. The assumptions of this
method are the same as NMS (Supporting Information). To
explore the source of microbial populations, we used the text
mining software SEQenv'' (v.1.3.0) to identify sequence
matches (97% identity) for all OTUs in the NCBI nucleotide
(nt) database. Matched sequences were used to extract textual
metadata and parse terms associated with Environmental
Ontology controlled vocabulary in the literature. Default
settings were used except we set “—min_identity 0.97” and
“—max_targets 50”. We manually classified terms into several
categories (Table S3) and added sequences not classified by
SEQenv to the output table categorized as “unclassified.”

We used canonical correspondence analysis (CCA) to
quantify the variability in both chemical and microbial data sets
explained by their associated predictor variables (PC-ORD v.
7.0.2;39), which evaluates our third prediction. Unlike NMS,
CCA is a direct gradient analysis method and only considers
the structure of a matrix that is related to predictor variables of
interest."” We grouped all predictor variables into three broad
categories including environmental (e.g., water temperature,
pH; n = 8), land cover (n = 7), microbial NMS axes (n = 2;
used when predicting chemicals), and chemical NMS axes (n =
3, used when predicting microbes). Because of the unequal
number of variables within each subset, we calculated the
adjusted R-square values based on a permutation procedure to
reduce statistical bias and to better compare the relative
contribution of each variable type.** More details on CCA
assumptions and adjusted methods are in the Supporting
Information.

Finally, we used structural equation modeling (SEM) to
quantify the relationship between the predictor variables and
chemical data, which also addresses our third prediction. SEM
is a causal modeling approach that evaluates the statistical
significance of a hypothesized network, which is developed a
priori, and its drivers. Unlike ordination, SEM allows us to
separate direct, indirect, and total effects of predictor variables
on dependent variables. Additionally, SEM also allows us to
evaluate feedback loops, which cannot be addressed with CCA.
Specifically, microbes could structure the chemical composi-
tion, which could in turn structure the microbial community.
SEM analysis was performed using SPSS AMOS (v2S) with
chemical and microbial NMS axes and summarized environ-
mental and land cover variables as predictors (see the
Supporting Information for complete details on SEM).

B RESULTS AND DISCUSSION

Spatiotemporal Variation in Nontarget Chemical
Composition. Following NMS on the chemical data, a stress
of 13.79 was achieved using 3 axes (Figures 1, S2, and S3). The
minimum stress for randomized data was 26.54 (Figure S2),
indicating that the strong structure within the original data was
not due to random chance (p = 0.02). A 3-dimensional
ordination was deemed sufficient because the additional
reduction in stress between axes 3 (ie. 13.79) and 4 (ie,
9.93) was small (Figure S2) and a final stress <20 is considered
a good fit (Supporting Information).”” The final configuration
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Figure 1. Nonmetric multidimensional scaling (NMS) ordination of
nontarget chemical composition (Axes 1 and 2) in water samples,
color coded by sampling months, and symbol coded by watersheds
(Creek). The blue successional vectors indicate sample locations from
upstream to downstream. The overlaid black arrows indicate
environmental variables with an r-square cutoff value of 0.15.

accounted for 63.1% of the total variation in the original data
set by the Bray—Curtis distance, where axes 1, 2, and 3
summarize 32.5%, 15.9%, and 14.6% of variation, respectively.
Chemical NMS-1 was most correlated with seasonal
explanatory variables including water temperature (Env_-
Temp), pH (Env_pH), and baseflow-groundwater runoff
(Env_ BgRun) (rpemon > 0.4, Table S2, Figure 1). Chemical
NMS-2 is correlated with barren (LC_BARE) and herbaceous
(LC_HERB) land cover (Fpeuson = 0.39, Table S2, Figure 1).
Chemical NMS-3 is correlated with pH (Env_pH) and
vegetation coverage (Env_LAI) (rpeuson > 0.4 in Table S2;
Figure S3).

We predicted that the chemical composition would cluster
by land cover, but we found no evidence to support this
prediction. Instead, samples clustered mainly by season in the
NMS ordination. Winter samples (positive values) separated
from summer and fall samples (mostly negative values) along
chemical NMS-1, while fall samples (mostly positive values)
separated from summer and winter samples (mostly
negativevalues) along chemical NMS-2 (Figure 1). Chemical
NMS-1 appears to be a seasonal chemical gradient that is
strongly related to temperature. The nontarget chemical
composition of samples collected in summer and fall overlaps
almost entirely on chemical NMS-1. If chemical NMS-1 is
structured by temperature, this overlap may be expected given
that there was no statistical difference in the average daily
temperature in the week leading up to the sampling events
(June: u = 15.4 °C, 6 = 1.8; October: y = 14.4 °C, 6 = 2.8, two
sample ¢ test assuming unequal variance: ¢t = 1.61, df = 43, p =
0.11). We found evidence of temporal clustering on chemical
NMS-1 but no evidence of clustering by land cover type;
however, we can provide no mechanistic explanation for
temporal clustering by examining the NMS plot.

We predicted that changes in nontarget chemical composi-
tion would shift as each stream traversed major land cover
types; however, we found limited evidence to support this
prediction. Instead, chemical variability between samples
within each river increased within each river system increased
as NMS-2 became more negative (Figure 1). That is, the
longitudinal (along-channel) change in the chemical compo-

sition between samples within each river was small in the fall
(positive values on chemical NMS-2) but large in the summer
and winter (negative values on chemical NMS-2). These
results are consistent with allochthonous inputs from overland
runoff in general but not necessarily from specific landcover
types.”* During the winter rainy season when the vadose zone
is virtually saturated within the Willamette Valley, and even at
the beginning of the dry season (i.e., June), chemicals present
in overland runoff and soil seepage readily discharge into
surface waters. We propose that this chemically enriched water
drove negative values on chemical NMS-2. Conversely, the
most positive values on chemical NMS-2 are from October
Marys River and Oak Creek. In October, Dixon Creek was dry,
so no comparison could be made. October is at the end of the
dry season within the Willamette Valley, so flow is maintained
by groundwater. Furthermore, the chemical data set consists of
nonpolar organics, which are expected to absorb to soil and
removed from the water column.***® Finally, phototrophic
organisms could generate autochthonous inputs that maintain
a relatively constant chemical composition during low flow
periods. Although other tools are needed (e.g., hydrophobic
organic acid fraction'”) to distinguish allochthonous and
autochthonous carbon, a likely explanation of the variability
along chemical NMS-2 is that seasonal changes in hydrology
drive chemical variability during wet periods but help stabilize
the chemical composition during dry periods.

We have preliminary evidence to support our ad hoc
hypothesis that chemical enrichment is driving chemical NMS-
2. If true, we predict inverse correlations between chemical
NMS-2 and chemical richness (i.e., the number of chemical
features present), Shannon diversity, and mean feature
intensity, which was observed (n = SS; Iopearman = —0.61, p <
0.01; Fpearman = —0:61, p < 0.01; Fypeprman = —0.57, p < 0.01;
respectively; Figure S4). In addition, the influence of
wastewater supports our chemical enrichment assessment of
chemical NMS-2. Unlike October Marys River and Oak Creek,
which were longitudinally chemically homogeneous in
October, Rickreall Creek exhibits some longitudinal chemical
change (Figure 1), particularly at locations 4 and S in all
seasons. These locations are influenced by wastewater from the
city of Dallas, which discharges treated effluent between
locations 3 and 4. In all three seasonal clusters, Rickreall Creek
sampling locations 4 and S are the most negative samples on
chemical NMS-2. Interestingly, treated wastewater effluent is
also discharged into the Marys River between locations 3 and
4, but this only occurs during high flows the winter due to
discharge permit requirements. Accordingly, Marys River
sampling locations 4 and S during the winter exhibit strong
negative values on chemical NMS-2. These chemical additions
appear to drive negative trajectories on chemical NMS-2,
which supports our ad hoc hypothesis. Overall, we find little
evidence to suggest that landcover variation contributes to the
chemical composition of rivers on NMS-2. Because we focus
on small streams to capture locally generated chemicals, it is
possible the landcover gradient is not long enough to exert a
detectable change in the chemical composition.

Finally, we found evidence to suggest that a small proportion
of the chemical composition was unique to each system based
on clustering along chemical NMS-3 (Figure S3). Marys River
samples clustered on negative values of NMS-3, Oak Creek
samples clustered around 0, and Rickreall Creek clustered on
positive values. Dixon Creek exhibited the most seasonal
variability on NMS-3, which was most strongly correlated with
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LAIL Dixon Creek differs from the other rivers because it is
entirely (sub) urban and its watershed is dominated by
deciduous ornamental trees. Therefore, seasonal variability in
LAI is expected to be extreme due to leaf drop in fall and leaf
growth in spring. The chemical variability represented by
chemical NMS-3 may be related to seasonal decomposition of
1eaves,48_ variability in root exudates,” ™' or dynamic
leaching."2 Although the mechanism is unknown, deciduous
trees within a watershed may explain some variability in the
chemical composition of these streams.

Previous studies indicated that anthropogenic chemicals are
significant contributors to water quality degradation in rivers
because river waters transport contaminants from agricultural
and urban areas through watersheds.”>~>’ While specific
pollutants present in rivers are certainly derived from the
landscape,”™* targeted chemical analyses focused on anthro-
pogenic contaminants eliminate signals associated with
environmental processes and ignore their contribution to
water chemistry and ecosystem health. Our results suggest that
the dominant chemical gradients present in receiving waters
are driven by seasonal temperature, hydrological, and perhaps
phenological processes. Seasonal variation of nontargeted
chemical composition in small rivers was also reported in
previous research.””>” While the NMS analysis provides little
mechanistic information, it highlights that the bulk chemical
composition in waters is dynamic. As a result, periodic (e.g,
quarterly) water quality sampling may not be sufficient to
identify the mechanisms driving particular water quality
phenomena.

Testing Causal Drivers of the Chemical Structure.
Canonical correspondence analysis (CCA) was used to
determine the variation in the chemical data set that can be
explained by each variable. We used the microbial NMS axes as
explanatory variables for the chemical variance (more details
below in Microbial Community Interpretation). After control-
ling for differences in the number of variables, the environ-
mental set explained 8.3% of variation in the chemical data set
(inertia) by 3 canonical axes, followed by the microbial set
(5.2% by 2 axes) and land cover set (3.9% by 3 axes). As with
the NMS assessment, the CCA results suggest that land cover
plays a smaller role in structuring the nontarget chemical
composition than the environmental and microbial variables.
While microbial communities may contribute to the structure
of the nontarget chemical composition, it is possible and even
likely that environmental and land cover variables structure the
microbial community and thus indirectly drive the nontarget
chemical composition. The adjusted CCA results suggest that
environmental and land cover variables explain 8.0% and 3.4%
of the variation in the microbial communities, respectively.
These results indicate that environmental variables are drivers
of the microbial community, which is typical of freshwater
communities.”’ In addition, 6.7% of adjusted variation in
microbial communities can be explained by the chemical NMS
axes. Although these results suggest that a feedback loop might
exist where microbial communities affect the chemical
composition which in turn drives the microbial communities,
CCA is not capable of characterizing this type of interaction.
Feedback loops were further explored using SEM. Never-
theless, the large fraction of unexplained variation in these
analyses reveals the complex nature of nontarget chemical
composition in river waters.

The final SEM model is depicted in Figure 2. All
connections retained within the SEM analysis were statistically

Microb
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Figure 2. Final structural equation model with estimated weights on
important pathways. Line width is scaled by the standardized
regression coefficients, which were labeled if they are greater than
0.5. Solid lines represent positive direct effects, and dashed lines
represent negative direct effects. LC PCs 1 and 2 are two principal
components representing 7 land cover variables. Env PCs1—3 are
principal components representing 8 environmental variables. Micro-
bial NMS-1 and 2 are scores on NMS ordination axes of microbial
communities. Chemical NMS-1—3 are scores of nontarget chemical
NMS ordination.

significant (i.e., p < 0.05). The Chi-square (y* = 28.5, df = 20,
p = 0.1) and most fit indices were at or above critical
thresholds (CFI = 0.96, NFI = 0.90, GFI = 0.91, TLI = 0.92,
Table S4) indicating that the thothesized model is a good fit
and statistically meaningful.”"®* While the RMSEA was above
our desired threshold (0.097 > 0.08), this fit was near the
threshold, and with the other fit indices indicating a good
model fit, we were confident that the SEM model results were
robust. Overall, the model best characterized the variability of
chemical NMS-1 (R* = 0.79), microbial NMS-1 (R* = 0.76),
and chemical NMS-2 (R* = 0.60). The model performance was
moderate for microbial NMS-2 (R* = 0.44) and chemical
NMS-3 (R? = 0.41).

The standardized total, direct, and indirect effects estimated
in the SEM model are presented in Table S5, and only
standardized effects are discussed herein. Chemical NMS-1
was most strongly driven by Env PC-2 (ie, baseflow-
groundwater runoff) and Env PC-3 (ie., temperature) and
weakly by microbial NMS-1 and -2. Env PCs-1, -2, and -3 had
a moderate direct effect on microbial NMS-1, which added
indirect effects on chemical NMS-1. Overall, the positive direct
effects from Env PC-2 (i, high baseflow and groundwater
runoff) and Env PC-3 (ie, low temperature) to chemical
NMS-1 are consistent with the chemical NMS analysis
discussed previously. Finally, microbial NMS-1 and 2 (see
Microbial Community Interpretation for details on the
microbial community) also have positive direct effects on
chemical NMS-1. Chemical NMS-2 was strongly driven by Env
PCs-1 (i.e., LAI) and -2 (ie., baseflow-groundwater runoff),
microbial NMS-1, and LC PC-1 (urban to forest gradient).
Unlike with chemical NMS-1, environmental variables exerted
moderate to strong effects on chemical NMS-2 and microbial
NMS-1, but the microbial NMS-1 has strong negative direct
effects on chemical NMS-2. Therefore, the total effects of Env
PCs-1 and -2 were moderated by their indirect effect mediated
through microbial NMS-1. Overall, Env PCs-1 and -2 have
positive direct effects, and LC PCs-1 (i.e., low forests) and -2
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Figure 3. Relative contribution of predicted environmental sources to microbial communities based on SEQenv text mining of sources for related
taxa. Samples are grouped by season and by creeks in each season to illustrate the microbial changes from upstream to downstream.

(i.e., high agriculture) have negative direct effects on chemical
NMS-2. Chemical NMS-3 was most strongly driven by Env
PC-3 (i.e., temperature), LC PC-1 (ie., developed land to
forest gradient), and Env PC-1 (i.e., LAI) which is consistent
with the NMS results. All other variable interactions were weak
and not discussed herein.

We considered the possibility that the nontarget chemical
composition could influence the microbial community
composition, resulting in a feedback loop. The SEM results
suggest that the microbial communities helped structure the
chemical composition, yet we know from the literature that the
chemical composition affects the microbial community.®>**
We tested this hypothesis with multiple nonrecursive SEM
models, but all permutations resulted in poor model fit.
Therefore, the observed pattern in the CCA analysis (i.e., the
chemical composition explains the microbial variability) is
likely a result of correlation between the two data sets instead
of causation. The SEM result does not necessarily mean that
chemicals do not structure the microbial community, but it
highlights that the microbial communities within this system
may be more sensitive to changes in environmental conditions
than to the chemical composition.

Research in DOC chemistry has demonstrated that land use,
microbial activities, and seasonality are important drivers to
changes in DOC characteristics in river waters.””®” We also
found their significant contribution to nontarget chemical
composition. Kothawala et al. suggested that land use might
have greater influence in changes in DOC chemistry than
seasonality.”” However, they only used one categorical variable
as seasonality to explain five DOC components, which might
be too simplified to quantify the seasonal contribution. Even
though our land cover data are continuous (i.e., percentages),
the results are derived from static NLCD data. This might
explain why land cover data was less important in the CCA and
SEM analysis, but there was no discernible land cover pattern

in the NMS analysis, suggesting that the absence of a strong
land cover signal in the former analyses is not an artifact of the
data type.

Our interpretation of the SEM model is based on the
extracted gradients, whereas the interpretation of the chemical
NMS results is based on metadata that are not readily captured
by the land cover and environmental variables. As a result,
some of the conclusions drawn from the SEM results,
particularly related to chemical NMS-2, neither support nor
contradict the interpretation of the NMS results. The SEM
results suggest that microbial communities interact strongly
with environmental conditions to structure the nontarget
chemical composition in streams. This does not imply that
landscape and land cover are unimportant, especially
considering that chemical NMS-2 is influenced by hydrology.
Based on the large direct effects of the microbial axes and their
strong intermediary effects, the microbial community is
arguably the most important variable structuring the nontarget
chemical composition in streams.

Microbial Community Interpretation. Microbial axes
were statistical drivers of the nontarget chemical composition;
however, our statistical analyses could not determine if the
microbial community is a mechanistic driver of the nontarget
chemical composition (e.g., via metabolic processes) or if their
co-occurrence comes from a shared but uncharacterized
environmental driver. Therefore, we explored patterns within
the microbial community for additional insights into structural
drivers. NMS ordination of the microbial data yielded a stress
of 12.20 using 2 axes (Figure SS). The minimum stress for
randomized data was 21.93 (Figure S2), indicating that the
strong structure within the original data was not due to
random chance (p = 0.02). The final configuration represents
86.3% of total variation of the original data, with 78.9% and
7.4% for NMS axes 1 and 2, respectively. Therefore, a 2-
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dimension configuration was deemed adequate to represent
the microbial community (Figure SS).

In general, winter communities and summer/fall commun-
ities were separated along microbial NMS-1; however, there
was no clear separation in 2 dimensions for the summer and
fall samples (Figure SS). Overall, microbial NMS-1 was most
correlated with water temperature (Env_Temp), pH
(Env_pH), and vegetation cover (Env_LAI). Nearly all creeks
exhibited the same spatiotemporal trend: downstream samples
became increasingly negative on microbial NMS-1. This
suggests a consistent pattern of microbial community change
from upstream to downstream along each creek, potentially
driven by changes in hydrology, vegetation cover, and river
chemistry. For the same creek, trajectories of microbial
community change were similar for summer and fall samples
but differ in winter samples (Figure SS). Microbial
communities also varied weakly by river along microbial
NMS-2, with Marys River samples on the positive side of the
axis, and Oak and Dixon creeks on the negative side. Microbial
NMS-2 is also influenced by hydrology (Env_Rain, Env_B-
gRun), which appear to cause the winter samples to be more
positive on microbial NMS-2. Since microbial NMS-1
represents the largest microbial variation and has greater
impacts on chemical variation from SEM results, we focused
on microbial NMS-1 for further analysis.

The strongest signal of variability in microbial communities
was seasonal differences between winter communities and
summer and fall communities along microbial NMS-1,
matching changes in chemical composition along chemical
NMS-1 (R = 0.64, p < 0.01). There were also moderate
correlations between microbial NMS-2 and chemical NMS 1
and 3 (Figure SS). Seasonal variability is common for river
microbial communities, which form annually repeating season-
al assemblages.”® To explore seasonal changes in microbes we
summed relative abundances of OTUs classified into the 20
most abundant orders (Figure S6) and found these formed
three groupings based on occurrence and abundance across all
samples. The two groups more strongly associated with winter
samples included orders typical of soils and groundwater
including Clostridiales, Legionellales, and Methylophilales. The
group more strongly associated with summer and fall samples
featured orders that include many typical freshwater planktonic
bacteria such as Burkholderiales and Actinomycetales.

We found strong patterns in the predicted sources of OTUs
based on SEQenv analysis (Figure 3). The greatest variability
occurred for OTUs associated with soil, groundwater, and
freshwater sources. Winter samples featured higher proportions
of soil and groundwater taxa, suggesting a terrestrial source for
many of the microbes in these samples. This indicates rainy
conditions in winter lead to greater surface runoff and soil
porewater contributions to the microbial communities. A
similar pattern was found in winter for chemical diversity
(Figure 1). In contrast, summer and fall samples featured much
higher proportions of freshwater taxa, suggesting that higher
temperatures and lower flow rates promoted the growth of
planktonic microbes in these rivers. These planktonic
communities may be responsible for structuring the nontarget
chemical composition in summer and fall. Moreover, the
proportions of freshwater, soil, and groundwater taxa exhibited
small changes from headwaters to downstream sites during the
winter, indicating a continued influence of terrestrial microbes
along the flow path. Unlike winter samples, the proportion of
freshwater taxa increased along the flow path of each river in

summer and fall, suggesting that the consistent trajectories of
change in microbial communities identified in Figure SS are
caused by the development of a planktonic microbial
community in each river.

Similar sourcing information is not available for the
chemicals identified with mass spectrometry in this study,
but the correlation between microbial communities and
organic chemicals suggests strong interactions between these
two complex assemblages. Links between microbes and organic
chemistry in aquatic environments have been discussed in
previous studies.””’" Microbes in river waters modify and
metabolize organic molecules and excrete secondary metabo-
lites into the environment. In microbial ecology, researchers
have reported that microbial community structure is shaped by
organic carbon inputs into aquatic systems.71 However, from
our SEM results, we did not find statistically significant direct
effects from chemical gradients to microbial gradients. In
contrast, our results suggest that microbial communities
respond to the environmental changes directly, causing them
to change their behavior or community structure to adapt to
the environmental conditions. Shifts in community subse-
quently modify the organic chemical composition by trans-
forming molecules and excreting different suites of metabolites
into the environment. Microbial communities in winter likely
correspond to terrestrial organic carbon inputs from ground-
water/soil seepage, while communities in summer are likely
driven by environmental changes in aquatic ecosystems as
planktonic microbial communities develop. The temporal
patterns in microbial communities and nontarget chemicals
suggest different underlying mechanisms of microbial inter-
action with nontarget chemicals in different seasons, which can
be useful for evaluating ecosystem health and the effects of
environmental/land cover changes at ecosystem scales.

The primary objective of this study was to identify the
environmental drivers structuring the nontarget chemical
composition in watersheds. We hypothesized that the
dominant spatial gradients across a watershed would drive
the chemical composition, but temporal trends were more
prevalent than spatial ones. Our results indicate that the
temporal variability in the nontarget chemical composition was
due to seasonal changes in ecosystem processes, specifically
shifts in microbial communities, changes in runoff, and perhaps
phenology. Microbial communities are the most diverse
members of an ecosystem and are involved in almost all
processes that produce organic molecules; therefore, it is not
surprising that their signal was so prominent. However, this
conclusion is likely biased toward limitations in this study, as
discussed above. Large portions of variation (48.5%; Figure
S7) are unexplained by the explanatory covariates discussed in
this paper. The interaction between sediments and river water,
the contribution of aquatic organisms, and many other
associated contributors to the nontarget chemical composition
in watersheds should be investigated in the future. Incorporat-
ing analysis of water chemistry including total organic carbon,
DOC optical properties, nutrient loading, and macroinverte-
brates could be very useful for identifying causal relationship
between chemical variation and ecosystem processes. These
efforts will ultimately help us better understand the ecosystem
processes that structure the nontarget chemical composition
and design management frameworks to improve ecosystem
health and water quality. Future studies to develop forensic
workflows and identify diagnostic chemical features of specific
ecosystem processes are needed to track temporally and
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spatially distributed chemical sources. Along with ordination
and other gradient analyses, data filtering, normalization (e.g.,
by runoff volumes or flow), transformation (e.g., Fourier
transformation) could be used to filter dominant signals that
represent specific environmental gradients of interest.

Bl LIMITATIONS

Various data considerations exist that limit our ability to make
definitive conclusions about the factors structuring the
nontarget chemical composition in these systems. First and
foremost, all multivariate tools have limitations, and it is
necessary for all researchers to assess whether a data set is
appropriate for a particular tool. We checked all assumptions
(see Supporting Information for details), and most tools were
deemed suitable. The unimodal assumption for CCA was
certainly violated for some microbial OTUs and chemical
features. While CCA is a robust tool, a prudent compromise is
to relax the assumptions to facilitate usage but recognize that
this weakens the strength of the results. Therefore, we used
CCA as a qualitative tool (i.e., assessing the relative importance
of variables to chemical and microbial matrices) instead of a
quantitative one (i.e., using the ordination axis in an SEM
regression). Second, samples in this study were limited in
sampling frequency and geospatial extent. While seasonal
sampling was enough to detect variability, more samples are
needed to evaluate the breadth and dynamism of changes in
the chemical composition and the mechanisms driving that
change. Furthermore, all the watersheds are in the same region
with similar climatic and annual hydrological conditions. It is
possible that the spatial extent was not large enough to capture
chemical variability driven by land cover heterogeneity. Third,
although land cover could be useful for describing chemical
sources, the NLCD land cover data collected from StreamStats
is static and thus cannot explain temporal variability within the
chemical data set. While dynamic variables (e.g., leaf area
index) could be useful for describing temporal variability in the
chemical composition, they are not necessarily attributable to
specific chemical sources (e.g., deciduous vs pine forests). It is
possible that more variability in the chemical composition
could be attributed to landscape processes if temporal data
could be linked with spatially explicit sources and vice versa.
Finally, we are limited by the SPE and HRMS methods used in
this study, where only a subset of chemicals in the organic
carbon pool was collected and analyzed. We used C18 SPE
cartridges in our analysis, which bias our results to nonpolar
molecules. Other SPE cartridges could be used instead of—or
in tandem with—C18 to obtain a broader suite of nontarget
chemical features. In addition, our results are biased by our
HRMS data preprocessing methods. We tried to be as
conservative as possible when retaining features to avoid
false positive (Supporting Information). Our rational is that
chemical gradients used for forensics purposes should contain
as few false positives as possible, but our conservative approach
likely increase the incidence of false negatives. Furthermore, we
are uncertain if restricting our m/z range to small molecules
(i.e, m/z < 1,000) predisposes our analysis to detect gradients
generated by microbes compared to landscapes contributions,
which may have larger molecular weight compounds that are
outside our detection range. It is important to recognize and
acknowledge that chemical extractions and MS techniques will
always bias the results. Further research needs to be done to
examine how methodological approaches bias the chemical
gradients that can be extracted from the environment.
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