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Abstract—The emergency of machine type and ultra-reliable
low latency communication is imposing stringent constraints for
service provisioning. Addressing such constraints is challeng-
ing for network and cloud service providers. As a trending
paradigm, software-defined networking (SDN) plays a significant
role in future networks and services. However, the classical
implementation of the SDN controller has limitations in-terms-
of latency and reliability since the controller is decoupled from
the forwarding device. Several research works have tried to
tackle these challenges by proposing solutions such as Devoflow,
DIFANE, and hierarchical and distributed controller deploy-
ment. Nonetheless, these approaches are not fully addressing
these challenges. This paper tries to address the problem of
latency and reliability by proposing a dynamic controller role
delegation architecture for forwarding devices. To align with the
microservice or multi-agent-based service-based architecture, the
role delegation function as a service is proposed. The dynamic
role delegation enables to predict and (pre-)installed flow rules
in the forwarding devices based on various considerations such
as network state, packet type, and service’s stringent require-
ments. The proposed architecture is implemented and evaluated
for latency and resiliency performance in comparison to the
centralized and distributed deployment of the SDN controller.
We used ComNetsEmu, a softwarized network emulation tool, to
emulate SDN and NFV (Network Function Virtualization). The
result indicated a significant decrease in latency and improved
resilience in case of failure, yielding better network performance.

Keywords: Software Defined Networks, Control Plane,
OpenFlow, Role Delegation

I. INTRODUCTION

Network softwarization paves the way for network flexible
and dynamic network management. Software-defined network-
ing (SDN) and network function virtualization (NFV) are
the two technologies driving network softwarization. They
completely transformed how we design and deploy networks.
However, future networks demand is increasing tremendously,
especially with the arrival of machine type and ultra-reliable
low latency communication. These stringent requirements
should be addressed by future networks such as Beyond 5G
and 6G networks.

The core concept of the SDN is to decouple the control and
the data plane as a way of enhancing network management
through global visualization of the entire network [1]. To
achieve programmable networks that can easily be adjusted
to suit the ever-changing requirements and to simplify man-
agement. Ironically, the advantage of the SDN controller is

its inherent drawback. In other words, the decoupling would
create a distance that induces a delay between the controller
and the forwarding device. For example, a single centralized
architecture, whereby the controller handles all the requests
solemnly, results in long delays, congestion, and a single point
of failure, which could result in network operations disruption
or poor network performance. This limits the effective perfor-
mance of the network reducing SDN’s benefits as a promising
network innovation.

A distributed and hierarchical SDN deployment is proposed
to improve the latency and central point of failure. However,
this is still not enough to reduce the latency and reliability to
the expected level as a controller has to handle a number of
forwarding devices and a controller failure also impacts the
reliability in the particular domain of the controller managing.
Most importantly, network state synchronization impacts the
accuracy of the decision by the controllers.

Moreover, 6G networks are expected to introduce in-
network intelligence [2] to have a dynamic network response.
The approach introduced in [3] is an interesting example,
where agents are used as a service design approach while
introducing intelligence to the smallest network service func-
tions. Therefore, revisiting the design principles and concept
of SDN is necessary. In this regard, in [4] an SDN decompo-
sition technique is presented, which splits the SDN controller
functionalities into sub-functions that can be designed as
microservices in a containerized environment. In this regard,
in contrast to distributed/hierarchical controller deployment,
instead of replicating the entire controller, it enables deploying
only the required functionalities near the forwarding devices.

In line with this approach, in this paper, an additional role
delegation function is designed to enable the forwarding device
to dynamically take control of the forwarding function. The
developed dynamic role delegation technique decreases the
delay due to the communication between the controller and
forwarding device, while also increases resilience in case of
controller failure. The role delegation function reduces the
latency and improves reliability in case of controller failure
or congestion in the network that could potentially delay the
communication between the controller and the forwarding
devices. The suggested approach delegates control roles to
forwarding devices which equips them with anticipated flow
rules in the flow tables, which they use to route traffic across
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the network. The role delegation could be designed as an agent
or microservice that dynamically decides the role delegation
scenario.

In general, this study suggests delegating control roles to
forwarding devices as a way of offloading the controller and
improving network recovery in the event of controller failure.
The paper presents the following sections: Section I introduc-
tion and Section II reviews the literature. The proposed role
delegation architecture is presented in Section III. Section IV
is dedicated to performance evaluation. Conclusion and future
works are provided in Section V.

II. LITERATURE SURVEY

The quest to improve controller performance has been a
point of concern by many researchers. Various solutions have
been suggested over the years to counter the issue so as
to improve SDN’s performance. The two main architectural
deployment scenarios are;

A. Centralized SDN Controller Architecture

This architecture comprises a single centralized SDN con-
troller that manages the entire network. The forwarding de-
vice’s role is only to route traffic across the network following
instructions formulated and installed in their flow tables by the
controller.

Centralized controller deployment of approaches is close to
the initial concept of SDN as they use a single centralized
controller but with multiple controllers connected to it. All
the controllers play the same roles and in case one fails the
others take over and continue managing network operations. It
uses the master-slave mechanism whereby one controller acts
as a master till it fails then the other assumes the role. This
eliminates the challenge of a single point of failure. However,
these solutions introduce other considerable drawbacks that
range from load balancing, long network downtime in case
the controller fails, latency constraints to mention a few [5]

B. Distributed/Hierarchical SDN Controller Architecture

Several suggested approaches consider distributed controller
deployment, including HyperFlow [6]. These solutions consist
of several instances of the controller performing the same
roles. All the controllers must remain in synchronization to
ensure consistency, nonetheless, this is still challenging and
include controller positioning, which involves determining
where exactly is suitable on the network to place the controller
[7]. Furthermore, such solutions are difficult to configure, set
up, troubleshoot issues, maintenance, communication inconsis-
tency among controllers and long path length [5] [8]. These
limit the effectiveness of the distributed controller approach.

The distributed controllers can be set up in a hierarchical
architecture, with the root controller being at the top and
the sub-controllers being at the bottom [9]. which mostly
has two layers. To sustain communication, the root or main
controller and the local or sub-controllers must always be
inactive synchronization [10]. Before they may handle a set of
forwarding devices near the local controllers, they must first

get authorization from the root controller. They get updated
instructions from the root controller on a regular basis and
transmit them to the switches they govern [11]. Through dele-
gation of power among multiple levels of the control hierarchy,
this technique allows for logically decentralized control. Some
management roles are delegated by the root controller to the
sub-controllers [12]. The sub-controllers can only manage
the sub-domain they are in charge of. Because Packet-IN
messages from multiple forwarding devices are processed by
the respective controller instead of being forwarded to the main
controller, reducing the controller burden which improves the
problem of a single point of failure. Even if the root controller
fails, the local controllers respond to the forwarding devices
for a period of time until the problem is resolved, ensuring
network operations continuity. However, when the hierarchical
levels increase, the path length tends to expand, which leads
to the challenge of high levels of latency [13]. Furthermore, in
large networks, root controllers are overworked because they
receive intra-domain information from local controllers that is
irrelevant to them. The hierarchical-based controller solution
to SDN difficulties does not completely address these issues.

An interesting work that uses a blockchain approach is
presented in [14] aiming at overcoming the problem of a single
point of failure by implementing blockchain technology to de-
velop multi-controller SDN topologies. With blockchain, you
can create a distributed ledger and communicate with multiple
nodes in the network without having to trust each other. It
is possible to construct and run decentralized programs on
several machines using this method. HyperFlow [6], is a NOX
controller enhancement that improves the logical centralization
of many controllers. Hyper flow localizes decision-making to
individual controllers by passively synchronizing the views of
the Openflow controllers. It is conceptually centralized but
physically distributed. Another approach called KANDOO is
discussed in [15], in which the flows are divided into two
tiers in this model: small and elephant, with the elephant flows
being managed by the main controller and the tiny flows by the
sub-controllers. Each tier is made up of controllers that handle
specific traffic. These controllers are completely independent
of one another and no communication between them. This
restricts their usefulness in the second layer, which may con-
tain services that require a global view of the entire network.
Onix [13] may operate in a restricted federated mode, which
allows two Onix instances to exchange summary views of the
networks they administer. This information sharing is limited
to Onix instances under the same authority, and it allows the
Onix NIB to represent enormous data planes in a compact
manner. These two levels can only work effectively when this
communication is maintained. However, they perform different
functions.

Generally, the Hierarchical control plane approach seems to
partially solve the problem at hand as their root control can
still act as a bottleneck especially when the network consists of
high levels of global flows. Hence calls for a better approach
to this challenge. Besides most of these approaches are still
faced with controller placement problems. As the question of
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where to position each of the controllers to reduce the latency
and ensure some level of reliability is still an open challenge.
With this, there is a need for a better and simple approach to
improve SDN performance.

C. Controller Role delegation Architecture

Several academics have proposed different data plane
methodologies for offloading the SDN controller to improve
the performance of SDN-based networks by lowering signaling
overhead between switches and the controller and improving
network resilience. P4 [16] proposes an approach to making
the data plane stateful with the use of the P4. P4 is a
programming protocol-independent packet processor [17]. It
is an Open source domain-specific programming language
for networking devices. In SDN, it specifies how data plane
devices process packets. With this, every single switch is
programmed with P4 which enables it to perform the port-
knocking application and work as a fully authenticated unit
on the network. It enables the delegation of authentication to
the forwarding plane. It makes use of stateful memories to
store information about various packets. Moreover, it keeps
additional information between the processing stages.

The InSPired switches [18] approach aims at delegating the
SDN control roles by redrawing the line that separates both the
controller and switches roles. This approach enhances control
and switches scalability. Besides, it requires fewer switch
resources to interact with the controller via the OpenFlow
protocol. However, this solution is limited due to the controller
placement problem, which requires optimal placement of
controllers to limit the challenge of long path length. In case
of the long distance between the controller and the switches,
there will be a huge latency. Other existing solutions suggest
installing replicated controllers to solve the problem of a
single point of failure. Nonetheless, these solutions pose other
drawbacks with the use of passive controllers in case the main
controller fails, which results in redundancy.

DevoFlow [19] applies rule cloning and switches local ac-
tion to partially devolve control plane rules to the data plane. It
also decouples global visibility from the controller. Devoflow
uses wild-carded OpenFlow rules, this reduces the interaction
between switches and the controller, as highly frequent events
are handled by the switches, reducing controller visibility
limits the whole network’s effective management. DIFANE
[20] handles traffic in the data plane by the use of intermediate
authorized switches which contain pre-installed rules by the
controller. The controller installs rules in the selected switches.
These rules are based on route traffic across the network
without consulting the controller. However, the solution has
no clear basis on what to consider to divide the workload
between the controller and the underlying authority switches,
this limits the scalability of high-level policies.

III. PROPOSED ARCHITECTURE

In this section, we present the proposed role delegation
technique. The aim of the architecture is to enhance network
latency and resilience. This work is based on the SDN

Fig. 1. Proposed Architecture

controller decomposition architecture proposed in [4]. SDN
controller functions are decomposed into sub-function that
can be dockerized and placed in an edge/fog environment.
And these functions are designed as microservices, which
alternatively could also be developed as multi-agents [3], that
can be deployed in a distributed environment.

A. Architectural Design

Here we proposed an architecture, which is aimed at de-
signing a role delegation function that offloads roles from the
central controller to the forwarding switches in a particular
domain. Figure 1 shows the proposed architecture. The archi-
tecture has three layers and can be considered an evolution
of the hierarchical SDN controller deployment with a role
delegation functionality, which is designed as a microservice.
In other words, instead of replicating the entire SDN controller
in each place, deploying only the required functions at the
vicinity of the forwarding devices that the controller has to
manage. In this case, replicating the role delegation function
in each edge data center while instantiating backups functions
for increased reliability. As can be seen from the figure,
the top layer places the central controller hosting the global
information for the network, including network state and other
common functionalities such as end-to-end path or topology,
inter-domain or intradomain information about the network.

The main principle behind the role delegation function is
to dynamically determine the delegation rules so that the flow
entry is pre-installed on the appropriate forwarding switches.
This depends on the anticipated incoming traffic, network
state, required QoS demand, and available path and bandwidth.
The assumption is that incoming traffic has a set of demands
and constraints so that traffic can be categorized into different
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Fig. 2. Packet Flow

traffic classes. Highly prioritized representing critical service,
medium priority class with better tolerant but with significant
impact with delay and reliability, and low prioritized traffic
comprising of services with least latency and reliability de-
mand. Roles are delegated by pre-installing flow entry rules
into the switch flow tables so as to enable them to forward
traffic without requesting instructions from the controller.

The communication between the role delegation func-
tion and the forwarding switch can be the classic south-
bound interface such as OpenFlow interface. However, the
communication between the role delegation function, which
could be dockerized microservice, should be using RESTfull
API/gRPC/Websocket as suggested in [4]. Moreover, in this
architecture, the role delegation can respond dynamically
which is developed as a modular service function that can
be deployed in an edge/fog/cloud environment. This paves the
way for in-network intelligence.

B. Packet Flow Life-Cycle

The main advantage of role delegation is the possibility of
forwarding an incoming packet directly by using the proac-
tively installed flow roles by the role delegation function.
Specifically, whenever a packet arrives at the forwarding
switches, it is forwarded directly to its destination since the
switch holds the necessary instructions and details on how the
packet should be treated. This is because the role delegation
function provides pre-installs the flow roles to the appropriate
forwarding switches, delegating the switch to handle the
packet forwarding functionality.

Figure 2 depicts the packet flow in pre-installed forwarding
switches. Whenever a packet arrives from the source host to s1
whose flow entry exists in the switch, s1 does not need to send
a packet-In message to c1 instead routes the packet directly as
indicated by the blue dotted arrow to its intended destination.
We assume this packet was coming from a highly prioritized
host that running critical services. In the flow table of the
switch, there is a pre-installed flow entry that matches the
packet received that consists of the src, dst, priority, and action

to be performed. Comparing the flow of packets in SDN with
a single controller, hierarchical control based architectures,
and with packet flow after implementation of role delegation,
several processes lead to high latency in the latter compared to
the former, these processes result from the sole dependence of
the entire network on the controller to carry out its operation.
With delegating the control roles to forwarding devices step 3
and 4 will be eliminated in the packet flow cycle since there
is no need of having packet-IN and packet-OUT messages.
Besides the packet processing which would be done by the
controller is now done by the switches with minimal delays
that would result from setting up flow entry rules and installing
them in the switch flow tables.

IV. PERFORMANCE EVALUATION AND SIMULATION
SCENARIO

Here we present the performance evaluation using latency
and resilience using simulation as a proof of concept.

A. Implementation Scenario

The simulation is performed by setting up three scenarios of
SDN using ComNetsEmu [21]. ComNetsEmu is an emulation
software that combines a dockerized environment and Mininet.
It enables an improved emulation of various computing appli-
cations in a given network. It is an extension of containernet
project that implements its concepts. Mininet is used for
emulating the topology and interacting with genuine virtual
networks that run on real kernels, switches, and software
code. For the virtual switches, OpenFlow is used as a south-
bound interface. Software-based virtual switches, hosts, and
controllers are software-based duplicates of physical hardware
devices. They behave similarly to discrete devices and per-
form the same network operations. Compared to Containernet,
comNetsEmu extends the Mininet using a slightly different
approach. The main aim is to utilize "sibling containers" in
emulating network systems along with network computing.
In comNetsEmu divers Computing In-Network computing
applications are supported. On the other hand, the incorporated
Mininet supports the SDN standard by providing both a CLI
and an API for interactive commands and automation.

Using the above emulation environment, we have imple-
mented three scenarios. In the first scenario, we show the
basic notion of SDN controller where we used a single
central controller managing forwarding devices. In the second
case, we replicate the controller to implement a hierarchical
topology. Finally, we deployed our solution of role delegation.
In each of these scenarios, we use the ping command to test
and assess the network’s latency and dependability by sending
ICMP requests to each node and monitoring the responses.

Here, two hosts are pinged, for example, h2 ping h4, and
the packet reception delays are observed, and the inter-packet
arrival rate from the source to the destination host is calculated.
The pingall command is used to see which nodes are reachable
to each other. In the first and second implementations of this
research, this can only be successful if the controller(s) are
running. However, in the suggested approach, the pingall is
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Fig. 3. Improved Latency Using the Role Delegation Technique

Fig. 4. Overall Latency For The Three SDN Cases

successful regardless of the controller state. The data was
then analyzed and plotted, which are presented in the next
subsection.

B. Evaluation Results and Discussion

By applying the role delegation algorithm, we have cal-
culated the latency. Figure 3 depicts the average latency as
a function of packets, showing the delay incurred by each
packets.

Fig. 5. Improved Resilience Using the Role Delegation Technique

Fig. 6. Resilience Of The Three SDN Cases

Fig 4 represents the overall latency for the three different
SDN deployment scenarios. The black line represents latency
in a single centralized controller SDN. Blueline represents
the hierarchical-based controller case. And red line indicates
the latency in the case of the delegation scenario. As can be
observed from the figure, the latency for the three cases varies,
where the third case having a considerably low latency with
an average of 0.157ms. The hierarchical controller deployment
shows the next best with an average latency of 22.19ms. And
the single controller case incurs the biggest average latency
of 32.8ms among the implemented scenarios. In each case,
the latency is measured in the same way, by pinging two
hosts that intend to communicate with each other where one is
considered as the source and the other as the destination. The
variation in the level of latency is because of the difference in
the architecture of each scenario with the main emphasis made
due to the involvement and granularity in the packet handling
decision of the controller(s).

As a reliability measure, we have tested the proposed
architecture using the resilience parameter. Fig 6 depicts the
resilience of the three emulated scenarios. Resiliency measures
network downtime. As can be seen from the figure, the
network downtime varies for each case. The single controller
scenario is observed to have long downtime. Whereas the
hierarchical-based deployment is the next to see longer net-
work downtime. The least network downtime was observed for
the control role delegation scenario. In the role delegation case,
only a few (5) packets are lost as a result, whereas 15 packets
and 30 packets of 100 packets are lost in the hierarchical
and single controller case, respectively. This is due to the
long time lag between controller failure and recovery for the
central controller and hierarchical controller. The loss is 30%
and 15% in the single controller and hierarchical controller
scenarios. This significantly impacts the network performance.
Especially, for network services such as ultra-reliable low
latency (URLL) services with stringent requirements in terms
of reliability and latency.

1) Latency: The overall latency results for the three SDN
instances are summarized in Table I. According to the findings,
the maximum level of latency encountered by SDN with a

0209
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 04,2023 at 14:48:45 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
OVERALL LATENCY LEVELS

Scenario Highest Lowest Average
Single controller 59ms 10ms 32.44ms
Hierarchy based controller 35ms 5ms 21.79
Roles delegated to switches 0.4ms 0.05ms 0.157ms

TABLE II
OVERALL RESILIENCE LEVELS

Scenario Total packets lost Average packets lost
Single controller 30 packets 15 packets
Hierarchical based 15 packets 7packets
After role delegation 5 packets 2 packets

single centralized controller is 59ms, with the lowest level
being 10ms and an average of 32.44ms. These levels are very
high for a busy network environment such as data centers.
The adoption of the hierarchical controller-based was thought
to alleviate the problem by lowering these levels, but the
latency remained quite high, with the maximum being 35ms
and 5ms and the lowest and average being 21.79ms and
21.79ms, respectively. When compared to levels after control
role delegation, the levels drop dramatically, with 0.4ms being
the highest and 0.05ms, 0.157ms being the lowest and average,
respectively. In comparison to the hierarchy technique, this is
a tremendous improvement.

2) Resilience: Table II shows a summary of overall SDN
resilience for the three simulated cases. According to the
findings presented in the previous section, network downtime
continues to decrease in each case, with the greatest reduction
occurring after control role delegation, and only a few packets
are lost as a result, whereas 30 packets and 15 packets of 100
packets are lost in the first and second cases, respectively, due
to the long time lag between controller failure and recovery.
The loss is 30% and 15% in each scenario, which is a
significant amount, especially in networks with vital services
operating over them.

V. CONCLUSION AND FUTURE WORKS

This work presented an architecture that enables delegating
roles to forwarding switches. A role delegation function is
designed that considers the network state within the domain
while communicating with the central controller/network state
database/ which could be placed in a cloud. This function
could be designed as a microservice or agent and the it can
be dockerized and deployed in an edge or fog environment.
As proof of concept, a simulation scenario is designed using
ComNetsEmu emulation tool. Using the simulation scenario,
we have evaluated and compared three different cases. The
three SDN scenarios were with a single centralized controller,
hierarchical control and our proposed roles delegation deploy-
ment. We used the ping command to obtain results in each
of the SDN scenarios, which measures the time lag of a
single packet from its source to its intended destination. For
latency, the number of packets in the flow was then analyzed

corresponding to the delays experienced, while for resilience,
the delay and number of dropped packets when the controller
was down were measured. As a future work we are aiming
to use a machine learning based role delegation prediction to
enable autonomous role setting.
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