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Abstract—In urban environments, tall buildings or structures
can pose limits on the direct channel link between a base station
(BS) and an Internet-of-Thing device (IoTD) for wireless com-
munication. Unmanned aerial vehicles (UAVs) with a mounted
reconfigurable intelligent surface (RIS), denoted as UAV-RIS,
have been introduced in recent works to enhance the system
throughput capacity by acting as a relay node between the BS
and the IoTDs in wireless access networks. Uncoordinated UAVs
or RIS phase shift elements will make unnecessary adjustments
that can significantly impact the signal transmission to IoTDs in
the area. The concept of age of information (AoI) is proposed
in wireless network research to categorize the freshness of the
received update message. To minimize the average sum of AoI
(ASoA) in the network, two model-free deep reinforcement learn-
ing (DRL) approaches – Off-Policy Deep Q-Network (DQN) and
On-Policy Proximal Policy Optimization (PPO) – are developed
to solve the problem by jointly optimizing the RIS phase shift, the
location of the UAV-RIS, and the IoTD transmission scheduling
for large-scale IoT wireless networks. Analysis of loss functions
and extensive simulations is performed to compare the stability
and convergence performance of the two algorithms. The results
reveal the superiority of the On-Policy approach, PPO, over the
Off-Policy approach, DQN, in terms of stability, convergence
speed, and under diverse environment settings.

Index Terms—UAV-RIS, large-scale wireless networks, AoI,
On-Policy, PPO, Off-Policy, DQN.

I. INTRODUCTION

THROUGH technology advances, Internet of Things (IoT)
has become a part of our everyday lives by provid-

ing seamless connectivities to IoT devices, such as smart
microgrid sensors, smart home security systems, wearable
health monitors, remote car locks, smart phones, routers,
smart watches, etc. Every year, there is growing traffic that is
generated by IoT devices, which leads to new requirements of
optimizing the IoT network to improve the network capacity,
driving businesses, companies, academia, and others to evolve
and re-invent current operations and processes to make them
more efficient.
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Capabilities of IoT applications have evolved from con-
nected devices to smart devices, and now are expanding
through the use of artificial intelligence (AI) and machine
learning (ML) [1], [2]. AI or ML can be used to forecast
future shifts, analyze vast amounts of data using complex
algorithm designs (such as identifying security threats on
corporate networks and managing other IoTs or security of
smart homes), smart manufacturing, precision agriculture, etc.
With adaptive IoTDs, and AI and ML techniques integrated to
the core of IoT architecture, the practical deployment of such
a smart autonomous network becomes a vital research topic
of focus in the scientific and industrial communities.

According to the November 2021 Ericsson Mobility Report
[3], 5G (fifth-generation wireless mobile network) is projected
to support 62% of total mobile data traffic by 2027. What
does this mean for IoTs? 5G is opening up new opportunities
and applications of IoTs requiring higher network capacity,
higher data rates, more connectivities, and lower latency, such
as smart microgrids, virtual reality, high-definition streaming,
transportation, and mission-critical communications. However,
5G faces a challenge to meet the data rate and latency re-
quirements of IoT applications. One of the potential solutions
to solve this challenge is to use high frequency bands, such
as mmWave. However, high frequency signals are limited
by line-of-sight (LOS) since they can be easily blocked by
obstacles, such as tall buildings and geological features. As
such, mmWave is better suited for short-range communications
to mitigate the probability of obstruction.

Massive MIMO systems have been a core component to
expand the coverages of 5G and mmWave [4] using high-
directional beamforming antenna arrays at a base station (BS)
and at the IoTDs. However, to achieve the required antenna
gains, signal directivity, and large coverage distances, several
antenna elements may be required at the BS or the IoTDs
to battle the imposing factor of path loss and interference.
Recently, reconfigurable intelligent surface (RIS) devices have
emerged as a cost-effective, energy efficient, and promising
technology for the future generations of wireless networks [5],
[6]. An RIS is a light weight device consisting of multiple
programmable reflectors that offer the capability of passively
(or actively depending on the design) tuning the phase of
each on-board element to enhance and alter the propagating
direction of an incident signal, without the need for several
RF chains at the transmitter end or signal processing onboard
the UAV-RIS unit. A feedback link between a ground station
and the RIS controller (such as an FPGA or microcontroller)
can be established to form the optimal beamforming vector to
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improve the quality of service (QoS) of the IoTDs. Although
RIS devices require low power to operate (i.e. 1W for an
1100-element RIS in [7]), the power consumption could be
optimized for low power applications.

Depending on the environment, direct channel links from
the BS to the IoTDs may not be feasible. Static RIS devices
placed on rooftops or the side of buildings have limitations
when considering dynamic environments and the mobility of
IoTDs. Recent works have shown interest in incorporating
unmanned aerial vehicles (UAVs) with mounted RIS devices,
denoted as a UAV-RIS station, to increase the flexibility of
the system [8]. Fig. 1 demonstrates the system architecture,
where an access network is established to enable a BS to
transmit/receive the network traffic to/from the IoTDs. The
integration of UAVs and RIS devices into wireless networks
comes with many challenges, such as UAV trajectory control,
scheduling, phase shift optimization, transmission or network
delays, resource allocation, channel capacity, LOS and non-
LOS (NLOS) cases, and dense communication scenarios. The
recent research to resolve these challenges are reviewed in Sec-
tion II with the objective of optimizing the UAVs 3D location,
RIS phase shifts, and/or the BS transmit vector, to achieve
secure beamforming or to maximize the throughput/signal
capacity for the IoTDs.

Fig. 1: UAV-RIS assisted wireless cellular architecture.

Conventional methods to optimize the problem formulation
in wireless networks rely on offline optimization theories
such as convex optimization, greedy algorithms, dynamical
programming, and game theory. However, these offline op-
timization tools suffer from low robustness, high overhead
[9], and typically require immense iterations to reach a global
optimum. The orientation of the RIS, building obstacles, the
mobility of IoTDs, and other dynamics and uncertainties
further complicate the problem.

Typically, it is highly desirable for network optimization
control mechanisms to not solely depend on a prior model
design to develop the optimal policy. Instead, the optimal
decision policy should be developed by learning the model,
namely following the ”model-free” decision-making process.
Through interacting with the environment, deep reinforce-
ment learning (DRL) algorithms have been developed as
a promising solution to autonomously solve complex, non-
convex, and model-free optimization problems, especially in
communications and networking [10]. In addition, with the use
of neural networks (NN), DRL has the capability of converging
rapidly to optimal solutions and improving the robustness.

Different from the traditional RL algorithms, which can only
handle low-dimensional optimization problems, DRL can ob-
serve continuous variables from the environment and has the
capability of continuous control in the decision-making.

Even though DRL has been demonstrated to have great
potential in optimizing wireless networks, proper design con-
siderations need to be taken into account when developing the
NN architecture and the RL framework. To better understand
the optimal learning algorithm design strategy for the next
generation UAV-RIS assisted IoT infrastructure, we develop
two DRL-based algorithms to minimize the average sum of
age of information (AoI) of the network. AoI is used as
a performance metric for the freshness of the information
received at an IoTD. The average sum of AoI (ASoA) is
minimized by jointly optimizing the RIS phase shifts, UAV-
RIS location, and IoTD transmission scheduling. We find that
the optimal RIS phase shifts for transmission to an IoTD is
largely dependent on the wave vector of the device, which
comprises appropriate elevation and azimuth angles of arrival
and departure between the BS to the UAV-RIS and from the
UAV-RIS to the scheduled IoTD. The action space framework
of the DRL algorithms is designed to accommodate the
discussed large-scale network through careful consideration
of the decision options. We use two state-of-the-art DRL
algorithms – Off-Policy Deep Q-Network (DQN) and On-
Policy Proximal Policy Optimization (PPO) in order to combat
the high-dimensional input data introduced by the scenario
that is too difficult for conventional optimization methods
to solve. Through analysis of the performance evaluation
functions used to update the policy for each algorithm, and
by executing extensive simulations, we compare the design
framework and the performance of the Off-Policy and On-
Policy based methods in terms of stability, convergence speed,
and under different dynamic environments.

Contributions: In summary, the three key contributions of
this work are as follows:

• A UAV-RIS-assisted 3D urban IoT network is established
while considering the effect of building blockages.

• A generalized RIS phase shift model is proposed to
optimize the signal-to-noise ratio (SNR) at the IoTDs
based on arbitrary RIS orientation and the number of
reflecting elements.

• Two model-free DRL based frameworks for UAV-RIS as-
sisted large-scale IoT networks, and performance analysis
based on loss functions and NN updating process.

• Extensive simulations to validate the analysis of the Off-
Policy DQN vs. On-Policy PPO based framework in
terms of stability, convergence speed, and performance
under different dynamic environments.

Organization: The remainder of this work is organized as
follows. Section II presents related work. Section III presents
the system model. Section IV describes the designed DRL
framework and a discussion of the Off-Policy DQN and On-
Policy PPO algorithm frameworks. In Section V, the sim-
ulation results are presented and evaluated in terms of the
mentioned performance metrics. Section VI concludes and
summarizes the key observations from this work.
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II. RELATED WORK

Minimizing AoI has been widely studied in single hop and
multiple access wireless networks [11]–[17]. More recently,
the authors in [18]–[20] considered minimizing the AoI in
UAV-assisted wireless networks through optimal UAV trajec-
tory planning and time allocation scheduling using a DQN and
incorporated artificial neural networks (ANN), optimization
algorithms, dynamic programming and genetic algorithms,
respectively. The authors in [21] utilized a DQN based strategy
to maximize the ”confidence level” of the AoI through optimal
trajectory planning of vehicular networks. The work in [22]
adapts a lifelong RL (LLRL) approach to enable the UAV
to jointly optimize the IoTDs AoI and energy consumption,
while considering the dynamic changes in the environment by
accumulating history knowledge to make informed decisions
in future processes. Other optimization algorithms have been
proposed in [23] and [24] to jointly optimize the UAV’s
trajectory, it’s energy allocation and scheduling for delivering
status updates, as well as monitoring the number of update
instances.

To fully take advantage of the benefits and communication
enhancements that RIS devices can offer, researchers have
investigated fundamental challenges arising in the channel
models [25], such as optimal active/passive beamforming
design, energy harvesting, resource allocation, channel state
information (CSI) estimation at the RIS, BS, and IoTDs,
reflection optimization, and deployment scheme. In [26], the
power allocation at the BS and the beamforming vector at
the RIS are optimized to maximize the secrecy rate rate in
a RIS-assisted physical-layer service integration system using
optimization algorithms. In [27], a DRL approach is developed
to achieve secure beamforming at the BS and RIS against
eavedroppers in a dynamic system. The work in [28] uses
DRL to maximize the sum rate of multiuser downlink MISO
systems by jointly optimizing the beamforming vectors at the
BS and RIS. The works in [26]–[28] incorporate static RIS
devices in the system model by assuming they are mounted
on a wall or the facade of a building. However, static RIS
systems have limited capabilities since they cannot adapt to
IoT foot traffic or obstacles caused by buildings or walls.

Considering UAV-RIS assisted wireless networks, [29] max-
imizes the secrecy rate for secure communication by iteratively
optimizing the UAV-RIS’s 3D location and the phase shifts of
the RIS. The work in [30] considers a MISO-NOMA two-user
downlink system to maximize the data rate of the ”strong”
user, while meeting QoS requirements of the ”weak” user,
by iteratively optimizing the UAV-RIS horizontal location, the
phase shifts of the RIS, and the BS beamforming vector. In
[31], Q-learning with NNs is used to maximize the downlink
transmission capacity for a single IoTD (whose route is given
by a MDP process) by optimizing the UAV-RIS location (such
that the CSI can be realized) and reflection coefficients of the
RIS. The work in [32] considers the same deployment, but
instead uses distributed RL to maximize long-term downlink
communication in the multi-user case by optimizing the UAV-
RIS location, the precoding matrix at the BS, and the reflection
coefficients of the RIS. It is shown that the integration of

the aerial UAV-RIS with DRL increased the communication
performance by 50% and 25% compared to static RIS and
non-learning UAV-RIS deployments, respectively.

Considering the aforementioned research, minimizing the
AoI in large-scale (or large network capacity) UAV-RIS as-
sisted wireless networks has not been well-explored. Recently,
the authors in [33] minimizes the AoI over a two-minute
period by optimizing the RIS phase shifts, the UAV-RIS
altitude, and the IoTD transmission scheduling. The design
frameworks of the DRL algorithms in [27] and [33] consist of
action spaces whose size is linearly proportional to the number
of IoTDs in the network. Dense urban areas can consist of
tens, hundreds, or thousands of connected devices on a single
network. According to [27] and [33], such a dense network
will result in a massive action space, causing a deterioration
in the convergence performance of DRL algorithms.

Motivated by developing a generalized system model to
serve a large-capacity network, we investigate the problem of
minimizing the ASoA in the UAV-RIS assisted network by
optimizing the UAV-RIS location, while taking into account
obstructions (located between the BS and the UAV-RIS and
between the UAV-RIS and IoTDs), and the transmission IoTD
scheduling process. Owing to the stochastic nature of the
arrival process of the data packets and the IoTD locations,
we develop an Off-Policy DRL algorithm and an On-Policy
DRL algorithm to solve the minimization problem by learning
an optimal decision-making policy. Opposed to [32], our work
delivers a comprehensive comparative study using analytical
and numerical methods, as well as evaluations in a variety
of different environmental settings. New contributions that
need to be highlighted include a low-complexity determina-
tion process of optimal phase shifts considering full phase
variation, scalable action space design, comparative analysis of
neural network updating and loss functions, and thorough and
realistic environmental settings, such as multi-user scheduling
and urban building blockages.

III. SYSTEM MODELS

A. Scenario

This work considers a UAV-RIS assisted wireless commu-
nication system that serves up to K IoTDs distributed in an
area with the size of X × Y km2. IoTDs are clustered into
KM groups of varying size based on the K-Means Clustering
algorithm. As shown in Fig. 1, we consider the scenario that
the links between the IoTDs and the local BS are NLOS
owing to obstacles, such as mountains and buildings, located
in-between. In this case, a single UAV with an RIS mount is
deployed near the edge of the area to establish a virtual link
from the BS and provide wireless connectivity to the IoTDs.
At every time-step t, the UAV-RIS will adjust in altitude, the
phase of the RIS elements will shift, and finally, a cluster of
IoTD(s) is scheduled for data packet transmission for time
t. These parameters are adjusted in order to improve the
collective AoI of the IoTDs and their received SNR. The total
service time is given by T and is divided equally into time-
steps t ∈ [0, T ] of length tS . It is assumed that the only
non-payload information exchanged in the uplink from the
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TABLE I
ENVIRONMENT PARAMETER NOTATIONS

Notation Definition Notation Definition
K Number of IoTDs Nc Number of Clusters
X × Y Grid Size (m×m) K1, K2 Rician K-Factors
(xk, yk) IoTD Coordinates (m) dH , dV Spacing of RIS elements in horizontal and ver-

tical direction
(x, y) UAV-RIS Coordinates (m) F , MA Number of Antenna Elements on the RIS, BS
dU,B Euclidean distance between the UAV-RIS and

the BS (m)
HBS Channel Coeff. matrix between the UAV-RIS

and the BS
dk,U Euclidean distance between IoTD k and the

UAV-RIS (m)
hk,RIS Channel Coeff. matrix between IoTD k and the

RIS elements
(xm, ym) BS Coordinates (m) ηU,B Pathloss in ATA Link
hUAV (t) UAV-RIS Height at time t (m) ηLOS

k,U , ηNLOS
k,U Pathloss in ATG Link to IoTD k

hBS Height of BS (m) ηLOS , ηNLOS Mean Additional Path loss in the ATG Link
(dB)

θk,U , ξk,U Elevation and azimuth angles between IoTD k
and the UAV-RIS (rad)

a(θ, ξ,N) Array response vector

θU,B , ξU,B Elevation and azimuth angles between the UAV-
RIS and the BS (rad)

k(θ, ξ) Wave vector

[HU,min, HU,max] Altitude Range of UAV-RIS (m) PT Transmission Power of IoTDs
VMax Velocity of UAV-RIS (m/s) σ2

N0
Noise Variance

αB , β0 Pathloss Parameters in the ATA Link βi Amplitude coefficient of RIS element i ∈ [1, F ]
fc, λ Carrier Frequency (Hz) and wavelength (m) ϕi Phase shift of RIS element i ∈ [1, F ]
c Speed of Light (m/s) γk(t) Received SNR at IoTD k at time t
g0 Antenna gain of RIS elements tS Time-step (sec.)
t0 Initial time t T Time duration of episode (sec.)

IoTD to the UAV-RIS to the BS is CSI. There is a separate
node called the ground control station (GCS) that interacts
with the UAV-RIS and captures spatial/activation information
from the IoTDs. It is responsible for collecting and monitoring
the UAV’s location, location and activation of the IoTDs,
scheduling the IoTD(s) for transmission in the corresponding
scheduled cluster, and control of the RIS phase shifts.

The locations of the IoTDs are given by the horizontal
coordinates (xk, yk) (m), where k ∈ {1, ...,K}. The horizontal
location of the UAV-RIS is fixed and denoted by (x, y) (m).
The location of the BS is static and given by (xm, ym) (m).
The height of the UAV-RIS at time t is denoted as hUAV (t)
(m) and the height of the BS is denoted by hBS (m). The 3D
Euclidean distance, elevation angle, and azimuth angle formed
between the IoTDs and the UAV-RIS are denoted as dk,U (t)
(m), θk,U (t) (rad), and ξk,U (t) (rad), respectively. Similarly,
the 3D Euclidean distance, elevation angle, and azimuth angle
formed between the UAV-RIS and the BS are denoted as
dU,B(t) (m), θU,B(t) (rad), and ξU,B(t) (rad), respectively.

At any time-step t, the UAV-RIS has the capability of tuning
its height, however, it must not drop below or exceed the
range hUAV (t) ∈ [HU,min, HU,max]. The UAV-RIS has a
fixed maximum velocity of VMax (m/s) to transition between
altitudes. Thus, in each time-step, the UAV-RIS can travel at
most Vmax× tS meters. Utilizing a small displacement allows
for finer control of the UAV-RIS altitude adjustment in finding
an optimal height.

B. Path loss Model

In this section, the channel coefficients for the backhaul and
access links from the BS to the UAV-RIS and from the UAV-
RIS to the IoTDs, respectively, are modelled according to the
Rician fading assumption [34].

ATA Link: Assuming the air-to-air (ATA) link between the
BS and UAV-RIS are LOS, then the average path loss between
the BS and UAV-RIS is given by [35]:

ηU,B = β0d
−αB

U,B (dB),

where αB ≥ 2 is the path loss exponent and β0 is the channel’s
power gain at reference distance d0 = 1m.

ATG Links: The access link between the UAV-RIS and
an IoTD follow air-to-ground (ATG) communication channel
properties. Based on the free-space path loss model, i.e.,
FSPLk,U = 20 log10

(
4πfcdk,U

c

)
, the path loss of an ATG

link between the UAV-RIS and an IoTD in LOS and NLOS
can be described as [36]:

ηLOS
k,U = FSPLk,U + ηLOS (dB), and

ηNLOS
k,U = FSPLk,U + ηNLOS (dB),

where fc is the carrier frequency (Hz), c is the speed of light
(m/s), and ηLOS and ηNLOS account for the mean additional
path loss (dB) in the LOS and NLOS scenarios, respectively,
which are determined by the environment.

C. Medium Access Control and Channel Model

The uplink of the wireless communication system is con-
sidered to operate in Time-Division-Multiple-Access (TDMA)
mode where at each time-step, exactly one IoTD cluster is
scheduled to transmit data to the UAV-RIS, i.e., one transmis-
sion per time-step. The BS is equipped with a phased array
with MA antenna elements to transmit data to the UAV-RIS,
which then relays the data to the scheduled IoTD. The RIS
has F reflecting elements spaced a distance of dH = λ/2
and dV = λ/2 in the horizontal and vertical directions,
respectively, where λ (m) is the wavelength of the carrier wave.
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Let HBS ∈ CF×MA denote the channel coefficient matrix
between the the radiating elements at the BS and the reflecting
elements of the RIS. In general, the channel coefficient matrix
for HBS consists of the LOS and NLOS components defined
by the following equations [35], [37], [38]:

HBS(t) =
√
ηU,B

(√
ρ1 ×HBS(t) +

√
ρ̃1 × H̃BS(t)

)
(1)

HBS(t) = arx,BS

(
θAoA
U,B , ξAoA

U,B , F
)

aHtx,BS

(
θAoD
U,B , ξAoD

U,B ,MA

)
H̃BS(t) ∼ CN (0, 1)

where ρ1 = K1

1+K1
, ρ̃1 = 1

1+K1
, K1 is the Rician K-factor,

and the vectors arx,BS and atx,BS are the receive and transmit
array response vectors, which depend on the corresponding
elevation and azimuth angles of arrival (AoA) and angles of
departure (AoD), respectively, shown in Fig. 2. The elements
in H̃BS(t) are i.i.d complex Gaussian random variables with
zero mean and unit variance.

For an N -element array of dimensions NH ×NV = N , the
array response vector is given by [39]:

a(θ, ξ,N) =
[
ejk(θ,ξ)u1 · · · ejk(θ,ξ)uN

]
(2)

where

k(θ, ξ) =
2π

λ

[
cos(θ) cos(ξ), cos(θ) sin(ξ), sin(θ)

]
is the wave vector, which indicates the phase variation of a
plane wave w.r.t. the spherical coordinates θ, ξ ∈

[
−π

2 ,
π
2

]
,

and

un =

 0
mod ((n− 1), NH)dH
⌊(n− 1)/NV ⌋dV

 , n ∈ [1, N ]

denotes the location of the nth antenna element. Similarly,
let hk,RIS ∈ C1×F denote the channel channel coefficient
between the reflecting elements of the RIS and IoTD k. The
channel coefficient matrix for hk,RIS is given by the following
equations [35], [37], [38]:

hk,RIS(t) =
√
ρ2η

LOS
k,U × hk,RIS(t) +

√
ρ̃2ηNLOS

k,U × h̃k,RIS(t)

(3)

hk,RIS(t) = arx,RIS

(
θAoA
k,U , ξAoA

k,U , 1
)

aHtx,RIS

(
θAoD
k,U , ξAoD

k,U , F
)

= aHtx,RIS

(
θAoD
k,U , ξAoD

k,U , F
)

h̃k,RIS(t) ∼ CN (0, 1)

where ρ2 = K2

1+K2
, ρ̃2 = 1

1+K2
, K2 is the Rician K-factor, and

the vectors arx,RIS and atx,RIS are the receive and transmit
array response vectors as defined in (2) with corresponding
AoA and AoD angles as illustrated in Fig. 2. The elements of
h̃k,RIS(t) are also i.i.d complex Gaussian random variables
with zero mean and unit variance. The solid black arrows in
Fig. 2 indicate the facing direction of the corresponding arrays.

D. Optimal Phase Shifts and SNR

The received Signal-to-Noise-Ratio (dB) is given by [37]:

γk(t) =
PT × E

[
∥hk,RIS(t)ΦHBS(t)∥2

]
σ2
N0

(4)

Fig. 2: Channel wave vector architecture.

where PT (dBm) is the transmission power of the IoTDs,
σ2
N0

is the noise variance (dBm), E(·) denotes the expectation
operator, which is necessary due to the stochastic behavior of
NLOS channel coefficient matrices H̃BS(t) and h̃k,RIS(t).
Φ = g0 · diag

([
β1e

jϕ1 , · · · , βF e
jϕF

])
is the RIS reflec-

tion matrix, where g0 (dB) denotes the RIS element gain,
βi ∈ [0, 1] denote the amplitude coefficients, and ϕi ∈ [0, 2π]
denote the induced phase shifts, where i ∈ [1, F ]. We can
see from (4) that an IoTD is able to achieve a higher SNR
by properly tuning the RIS reflection matrix. To form the
phase optimization problem, we provide an upper bound for
maximizing the SNR in the following proposition [37].

Proposition 1: The received SNR for the scheduled IoTD k
at time t in the UAV-RIS assisted wireless network (assuming
k is active at time t) has the upper bound:

γk(t) ≤ γub
k (t) =

PT ηU,B

σ2
N0

(
A2∥hk,RIS(t)ΦHBS(t)∥2 + C

)
(5)

which is maximized under phase shift vector:

ϕ = [ϕ1, · · · , ϕF ] =
[
k(θAoD

k,U , ξAoD
k,U )− k(θAoA

U,B , ξAoA
U,B )

]
U
(6)

where U = [u1, · · · , uF ].
First, we break down ∥hk,RIS(t)ΦHBS(t)∥2 into

∥hk,RIS(t)ΦHBS(t)∥2 = ηU,B∥z1 + z2 + z3 + z4∥2

where

z1 =
√
ρ1ρ2η

LOS
k,U

(
hk,RIS(t)ΦHBS(t)

)
,

z2 =
√
ρ1ρ̃2η

NLOS
k,U

(
h̃k,RIS(t)ΦHBS(t)

)
,

z3 =
√
ρ̃1ρ2η

LOS
k,U

(
hk,RIS(t)ΦH̃BS(t)

)
, and

z4 =
√
ρ̃1ρ̃2ηNLOS

k,U

(
h̃k,RIS(t)ΦH̃BS(t)

)
.

Let A =
√
ρ1ρ2η

LOS
k,U . Given that H̃BS(t) and h̃k,RIS(t) have

zero mean, unit variance, and are i.i.d., then E [zi] = 0 for
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i = 2, 3, 4 and

E
[
∥z1 + z2 + z3 + z4∥2

]
= E

[
MA∑
i=1

(z1,i + z2,i + z3,i + z4,i)
2

]
= E

[
∥z1∥2 + ∥z2∥2 + ∥z3∥2 + ∥z4∥2

]
= ∥z1∥2 + E

[
MA∑
i=1

(
(z2,i)

2
+ (z3,i)

2
+ (z4,i)

2
)]

= ∥z1∥2 + C,

where C is some constant. Based on the definition of z1 and
(4), we obtain the upper bound of (5). Since A,PT , ηU,B , σ

2
N0

are all constants, in order to find the optimal phase shifts that
maximize the recived SNR, we have:

Φopt = max
Φ

(
∥hk,RIS(t)ΦHBS(t)∥2

)
= max

Φ

(
∥aH

tx,RISΦarx,BSaHtx,BS∥2
)

= max
Φ

(
∥aH

tx,RISΦarx,BS∥2 · ∥aH
tx,BS∥2

)
where ∥aHtx,BS∥2 = MA. Expanding Φopt, we find

Φopt = max
Φ
∥

F∑
i=1

ej(−k(θAoD
k,U ,ξAoD

k,U )ui+ϕi+k(θAoA
U,B ,ξAoA

U,B )ui)∥2.

Thus, we obtain (6). We observe that the optimal
phase shifts only depend on the elevation/azimuth angles
(θAoD

k,U , ξAoD
k,U , θAoA

U,B , ξAoA
U,B ), and number/spacing of RIS ele-

ments, such that the GCS control of phase shifts is independent
from the CSI. In order to achieve a reliable signal at the IoTDs,
the SNR received by each IoTD must be above the threshold,
i.e., γk(t) ≥ γmin.

IV. MODEL-FREE DEEP REINFORCEMENT LEARNING:
OFF-POLICY (DQN) VS. ON-POLICY (PPO)

A. DRL Framework

In this work, DQN and PPO based DRL algorithms are de-
veloped with the aim of learning the best coordination between
the scheduling of the IoTDs for signal transmission and the
altitude adjustment of the UAV-RIS. Specific definitions of the
DRL elements are described as follows.

1) State Space: One of the advantages of DRL is that we
can utilize continuous state spaces. In each time-step, the state
s(t) ∈ S , is given by the vector

s(t) = {AoI1(t) AoI2(t) · · · AoIK(t),

γ1(t) γ2(t) · · · γK(t), hUAV (t)} (7)

where AoIk(t) ∈ N, for k ∈ {1, ...,K}, represents the AoI of
IoTD k at the beginning of time-step t. The AoI is computed
for the whole uplink transmission from IoTD k to the BS.
This can be computed by [12]:

AoIk(t+ 1) =


1, if γk(t) ≥ γmin, Ik(t) = 1,

and Wk(t) = 1,

AoIk(t) + 1, otherwise,
(8)

where Wk(t) = 1 means IoTD k is active at time t and
Ik(t) = 1 implies that IoTD k is scheduled for transmission
at time t. If the BS receives a packet update from IoTD k by
the end of time-step t, then AoIk(t + 1) = 1. On the other
hand, if the BS does not receive a packet update from IoTD
k by the end of time-step t, then AoIk(t+ 1) = AoIk(t) + 1
since the information at the IoTD is older by one time-step. In
summary, the AoI of IoTD k will increase iff the transmission
is unsuccessful or if there is no scheduled transmission from
IoTD k. Thus, s(t) is a vector of 2K + 1 elements.

2) Action Space: For any DRL algorithm, the size of the
action space is a major contributing factor on the algorithm’s
convergence and stability performance. Here, we evaluate the
outcome of the algorithms by designing a fixed action space
whose size does not depend on K or KM . At each time-
step, the UAV-RIS will carry out a multi-dimensional action
a(t) ∈ A. One dimension of the action space is given by the
UAVs altitude adjustment, that is, let (∆hUAV ) (t) ∈ {Vmax ·
tS , 0, −Vmax · tS} represent the altitude adjustment of the
UAV-RIS, i.e., Up, Hover, and Down, respectively.

For the second dimension, to limit the number of available
actions, we implement a ”Stay or Switch” capability w.r.t.
which IoTD cluster will be scheduled. For example, at time
t, IoTD cluster km is scheduled. At time t + 1, the agent
can choose to schedule the current cluster again, or switch
to another cluster. Let I(t) be a binary variable to imply
if the UAV-RIS downloaded data from an IoTD cluster that
is the same IoTD cluster from the previous time-step (i.e.,
I(t) = 0) or a different IoTD cluster from the previous
time-step (i.e., I(t) = 1). Here, I(t) = 1 implies the UAV-
RIS stops downloading data from an IoTD cluster, which
transferred data to the UAV-RIS in the previous time-step,
and starts downloading data from a new IoTD cluster at
current time-step t. Thus, the action, a(t), is defined by
a(t) = {I(t), (∆hUAV ) (t)} and the action space, A, consists
of six possible actions.

When I(t) = 1, there are two criterias used to determine
which IoTD cluster to switch to. Let k′m ∈ [1,KM ] be the
IoTD cluster the agent served in the previous time-step t− 1.
Criteria 1 is used to find which IoTD cluster, ν, currently has
the highest average AoI:

v = arg where (AoI == max (AoI’)) ,

where AoI = {Akm
(t)}KM

km=1, Akm
(t) is the average AoI

of the IoTDs in cluster km for km ∈ [1,K], and AoI’ =
{Akm

(t)} for km ∈ [1,KM ]\{k′m}. If len(v) = 1, then the
IoTD cluster to be scheduled in the current time-step is IoTD
cluster v. Else, i.e., multiple IoTD clusters have the same high
average AoI, Criteria 2 is used to select the IoTD cluster with
the highest average SNR among the set of the IoTD clusters
with the same average AoI, i.e.,

v′ = arg max
km∈v

(γkm
(t)) .

Then the scheduled IoTD cluster will be nc = v[v′] (i.e. Inc
=

1 for nc ∈ [1,KM ]).
For both algorithms, we eliminate invalid actions from the

action space when the agent is in a certain state. For example,
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TABLE II
DEEP REINFORCEMENT LEARNING PARAMETER NOTATIONS

Notation Definition Notation Definition
S,A State and Action Spaces s(t), a(t), r(t) state, action, and reward at time t
Inc (t) Indicator if cluster nc is scheduled to download

data from the UAV-RIS
Wk(t) Indicator if IoTD k is active at time t

AoIk(t) AoI of IoTD k at time t AoIkm (t) Total AoI for cluster km
πθ(a|s) Current Policy πθold(a|s) Latest version of the policy
Q(s, a|θ) Evaluation Q Network (NN parameter θ) Q(s′, a|θ̂) Target Q Network (NN parameter θ̂)
Tf DQN Target Network update frequency ϵ ϵ-greedy parameter (ϵ ∈ [0, 1])
R Replay Buffer B Minibatch size
Min.Mem.Cap Minimum memory capacity of experiences D PPO Memory
L PPO Memory length Vθ(s), Vθold (s) Estimated and current state-values
SL×1, AL×1, RL×1 Collected states, actions, and rewards in D SB×1

i , AB×1
i Collected states and actions in batch i of batch

size B
L(θ) Loss Function MaxIter Maximum number of episodes
QT Target Q value α NN Learning Rate
γ Discount Factor c1 PPO Loss Coefficient
Neps Number of PPO Epochs ϵclip PPO Policy Clip

if the UAV-RIS is currently at its minimum height, HU,min,
or at its maximum height, HU,max, then we eliminate the
actions involving down and up adjustments of the UAV-RIS’s
altitude, respectively. This ensures the agent does not prioritize
learning the altitude range of the UAV-RIS, but rather focuses
on exploring the best scheduling strategy based on the optimal
RIS phase shifts.

3) Reward Function: The reward function is computed at
the end of each time-step. Since the objective is to minimize
the ASoA of all the IoTDs, we then define the immediate
reward function as follows.

r(t) = −
K∑

k=1

AoIk(t). (9)

B. Deep Q-Network (DQN) and ϵ-greedy Method

DQN seeks to optimize its approximation to the Q-value
from the Bellman equation [40] using an Evaluation Q Net-
work (parameterized by θ and has output Q(s, a|θ)) and
a Target Q Network (parameterized by θ̂ and has output
Q(s′, a|θ̂)), where s′ denotes the next state, i.e., s(t + 1).
Fig. 3 shows the basic architecture of DQN. The agent’s past
experiences with the environment can be stored in memory
using an experience replay buffer (R). DQN requires that

a series of Min.Mem.Cap. experiences must be collected
in memory before learning begins. Experiences are drawn
randomly from memory and stored in a minibatch of size
B for Off-Policy learning. The Evaluation network is trained
and optimized towards the Target network whose weights
are updated with frequency Tf . This approach reduces the
correlation between successive sample experiences as to not
negatively impact the gradients in stochastic gradient descent
(SGD). The Target Q-values are updated according to:

QT =

{
r, if s′ is the end state,
r + γmax

a′∈A
Q(s′, a′|θ̂), otherwise, (10)

where γ is the discount factor.
To perform action selection, we use the ϵ-greedy strategy to

balance exploration and exploitation defined as:

a =

Random action a ∈ A, if r∗ ≤ ϵ,

arg max
a′∈A

(Q(s, a′|θ)) , otherwise, (11)

where r∗ ∼ U [0, 1) and ϵ ∈ [0, 1] is a parameter.
The pseudo-code of the proposed DQN method is summa-

rized in Algorithm 1. The algorithm first randomly initializes
the IoTD and building locations, the IoTD cluster assignments,
sets the initial UAV-RIS 3D location, the BS height and

Fig. 3: DQN Architecture.
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location, the number of RIS and BS antenna elements, and
other environment and hyperparameters parameters listed in
Table IIIa and Table IIIb. At the start of each episode, Kep,
the UAV-RIS’s initial height is reset and the AoI of the
IoTDs is reset to zero. The algorithm then starts stepping
through the environment where the state s(t0) holds the
initial AoI, and SNR of the IoTDs and the UAV-RIS height
location. The algorithm selects a valid action from the action
space via the ϵ-greedy method where the action a(t0) holds
an indicator for switch/stay with the current IoTD cluster
and hover/ascend/descend the UAV-RIS. Once the action is
selected, we compute the current SNR of the IoTDs before
the UAV-RIS adjusts its vertical location depending on the
selected action. Once the SNRs are computed, the processes
outlined in Section IV-A2 are followed for the fixed action
space to perform the IoTD cluster scheduling. Once a cluster
is selected for transmission, the UAV-RIS height is updated.

After executing the current action, the reward is then
computed as the negative of the sum of AoI of all the
IoTDs. The transition {s(t), a(t), r(t), s(t + 1), done(t)}
is then recorded in the replay buffer memory (where
done(t) indicates whether or not the episode duration has
been reached). Once enough samples have been collected
(step > Min.Mem.Cap), then the algorithm enters the
learning portion of the algorithm. At this point, if there have
been a sufficient number of steps through the environment
(step % Tf == 0), then the target Q-network is updated with
the current policy. Otherwise, a batch of interactions is grabbed
randomly from memory and we compute the target Q-values
and the loss from Sections IV-B and IV-D. The objective
function is then optimized via Stochastic gradient descent with
the Adam optimizer and then a new iteration begins. At the
end of each episode, the average sum of AoI of the network
is computed as ASoA(Kep) = − 1

TKE
[∑T−1

t=0 r(t)
]
, where

the expectation is taken due to the stochastic behavior in the
channels.

Algorithm 1: Proposed DQN Algorithm
Input: F,MA,K,KM ,M,Wk activation patterns,
locations, thresholds, step = 0, other parameters.

Output: Avg. Sum of AoI (ASoA)
Initialization: DQN Hyper-parameters, MaxIter, T .
for Kep = 1 : MaxIter do

Set: UAV-RIS initial height H[0], AoIk(0) = 1, ∀k;
while t ≤ T do

Sample an action a(t) ∈ A using ϵ-greedy;
Perform: IoTD cluster scheduling Ikm(t) and
(∆hUAV )(t);

Compute ϕ from (6);
Compute γk(t) for each k from (4);
Update: AoI for each IoTD;
Compute the reward r(t) using (9);
Store Interaction: s(t), s(t+ 1), a(t), and r(t);
if t > Min. Mem. Cap. then

Agent Learns;
if step % Tf == 0 then

θ̂ ← θ;
end
Grab: Batch of interactions from memory
of size B;

Compute: QT and Loss;
Update optimizer;

end
Transition to s(t+ 1); step = step+ 1;

end
Compute: ASoA(Kep) = − 1

TKE
[∑T−1

t=0 r(t)
]
;

end

C. Proximal Policy Optimization (PPO)

PPO is a policy-based method that uses two deep NNs. The
first network, the Actor, is what we train and it maintains the
current policy πθ(a|s). The Actor takes states in as input and

Fig. 4: PPO Architecture.
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outputs a list of probabilities corresponding to each action
in the action space. These probabilities form a distribution
whereby an action can be sampled. The second network, the
Critic, is used to “critique” the current policy of the Actor
in terms of an estimated state-value, Vθ(s). After an action
is performed, the Critic assesses whether the action taken has
increased or reduced the expected feedback given the current
state.

Unlike DQN, PPO only keeps a memory, denoted by D, of
experiences of size L. Once D is full, PPO iterates through
a number of epochs over the collected data. In each epoch,
the algorithm collects randomly sampled minibatches of the
data in D where each batch holds B experiences, which
are generated by the latest version of the policy, πθold(a|s).
Using the collected rewards and current state-values, Vθold ,
PPO then uses the generalized advantage estimation (GAE)
algorithm [41] to generate the advantage estimate, Â. The
advantage estimate simply gives an evaluation on the existing
policy. For each batch, we pass the collected states into the
Actor and Critic networks to establish the new policy and the
corresponding Critic target values, respectively.

The policy is updated using the stochastic gradient ascent
(SGA) optimization method via the Adam optimizer in python.
Once all the epochs have been executed, PPO clears its
memory and proceeds interacting with the environment using
the new policy πθ(a|s) in the Actor. Fig. 4 shows the basic
architecture of PPO. SL×1, AL×1, and RL×1 are the collected
states, actions, and rewards in memory D, respectively.

The pseudo-code of the proposed PPO method is summa-
rized in Algorithm 2. The initialization process described in
the DQN pesudo-code is the same for the PPO initialization,
except for the hyperparameter settings which are shown in
Table IIIb. At the start of each episode, Kep, the UAV-RIS’s
initial height is reset and the AoI of the IoTDs is reset to zero.
The algorithm then starts stepping through the environment
where the state s(t0) holds the initial AoI, and SNR of
the IoTDs and the UAV-RIS height location. The algorithm
selects a valid action from the action space by observing the
probabilities from the current policy, πθ(a(t0)|s(t0)) where
the action a(t0) holds an indicator for switch/stay with the
current IoTD cluster and hover/ascend/descend the UAV-RIS.
Once the action is selected, we compute the current SNR of the
IoTDs before the UAV-RIS adjusts its vertical location depend-
ing on the selected action. Once the SNRs are computed, the
processes outlined in Section IV-A2 are followed for the fixed
action space to perform the IoTD cluster scheduling. Once
a cluster is selected for transmission, the UAV-RIS height is
updated.

After executing the current action, the reward is then com-
puted as the negative of the sum of AoI of all the IoTDs. The
transition {s(t), a(t), r(t), Vθ(s(t)), πθ(a(t)|s(t)), s(t +
1), done(t)} is then recorded in memory (where done(t) in-
dicates whether or not the episode duration has been reached).
Once enough samples have been collected (step > L), then
the algorithm enters the learning phase. We grab the states,
acitons, advantage values, probabilities, rewards, and done
vlaues under the old policy πθold . We first compute the
advantage estimates according to [39] and sample a minibatch

Algorithm 2: Proposed PPO Algorithm
Input: F,MA,K,M , Wk activation patterns,
Locations, Thresholds, Other Parameters.

Output: Avg. Sum of AoI (ASoA)
Initialization: PPO Hyper-parameters, Actor & Critic
Networks, MaxIter, T .

for Kep = 1 : MaxIter do
Set: UAV-RIS initial height H[0], AoIk(0) = 1, ∀k;
while t ≤ T do

Sample an action a(t) ∈ A using Actor;
Perform: IoTD cluster scheduling Ikm

(t) and
(∆hUAV )(t);

Compute ϕ from (6);
Compute γk(t) for each k from (4);
Update: AoI for each IoTD;
Compute the reward r(t) using (9);
Store Interaction: s(t), s(t+ 1), a(t),
probabilities, values, and r(t);

if t % L == 0 then
Agent Learns using the PPO Objective
Function;

for j = 1, .., Neps do
Grab: Past L interactions from memory;
Compute the Â estimates;
Grab: Randomly sorted batches of past
L interactions of size B;

for Each Batch do
Compute the new: log probabilities,
probability ratio, and total loss
w.r.t. θ;

Pass through to NN optimizer;
Map θold ← θnew;

end
Clear memory;

end
end
Transition to s(t+ 1);

end
Compute: ASoA(Kep) = − 1

TKE
[∑T−1

t=0 r(t)
]
;

end

of experiences from memory. For each batch, we pass through
the states in the minibatch to the actor and critic neural
networks to generate the new policy πθ and target advantage
values, respectively, as described in Sections IV-C and IV-D.
Using these values, the total loss can be computed according
using Eqns. (14)-(16). Once the policy network is updated with
the new NN parameters θ, the objective function is optimized
via SGA using the Adam optimizer and then we repeat this
process for a number of epochs, Neps, to refine the weights.
After completing this process, memory is cleared and we
continue stepping through the environment. At the end of each
episode, the average sum of AoI of the network is computed
as ASoA(Kep) = − 1

TKE
[∑T−1

t=0 r(t)
]
.
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D. NN Updates and the Importance of the Loss Functions

1) Loss Function Background: NNs are trained using opti-
mization algorithms to find the optimal weights that map the
inputs to the outputs. This is done by iteratively adjusting those
weights along gradients that minimize a given loss function,
L(θ). Many types of loss functions exist including mean
squared error (MSE) (L2-loss), mean absolute error (MAE)
(L1-loss), log-cosh, cross-entropy, quantile, hinge, huber, KL
divergence, marginal, binary, behavior cloning, etc. Depending
on the type of problem, some loss functions may be more
suitable to use than others as they affect the direction in which
the model is reconditioned.

If L(θ) is differentiable w.r.t. its parameters, gradient-
descent based optimization is relatively efficient and often
the most preferred in DRL since we aim to quickly find an
optimal solution. The gradient descent procedure modifies the
estimates opposite the direction of the gradient of L(θ). That
is, θi = θi−1 − α∇θL(θ; θi−1) where α > 0 is the learning
rate [42].

2) DQN Loss Function: DQN uses a function approxima-
tion method to approximate the original Bellman equation in
Q-learning. The DQN algorithm was first presented in [43]
where the Evaluation Q Network is updated according to the
following MSE loss function:

LTotal(θ) = E(s,a,r,s′)∼U(R)[(QT −Q(s, a|θ))2] (12)

where U(R) denotes the uniformly sampled minibatch of
experiences from the replay buffer. The gradient of the loss
is backpropogated into the parameters, θ, of the Evaluation
network. QT can be thought of as the temporal difference
(TD) target and the value QT −Q(s, a|θ) is the TD error. TD,
in this case, is used to predict a Q-value (QT ) that depends
on the Q-value of the future state. The MSE loss function will
penalize the model when large errors are made by squaring
them. In this way, the loss function minimizes the optimal
Bellman residual. MSE loss is one of the most widely used
loss functions in ML. However, MSE will usually suffer in
robustness due to outliers and uncertainty.

3) PPO Loss Function: Unlike DQN, PPO is a policy-
gradient method that involves optimizing the policy w.r.t.
expected return (or reward) using gradient descent methods.
The PPO loss function serves as the update guidance for the
Actor and is defined in [41], and with the coefficient of the
entropy function equal to zero, we get:

LTotal(θ) = E
[
Lclip(θ)− c1Lcritic(θ)

]
(13)

where Lclip is the loss function of the Actor, Lcritic is the
loss function of the Critic, and c1 is a loss coefficient. For
each batch, LTotal(θ) is computed and the NN parameters are
updated. Lclip and Lcritic are defined as follows.

Lclip(θ) = E[min(Γi(θ) · ÂB×1
i ,

clip(Γi(θ), 1 + ϵclip, 1− ϵclip) · ÂB×1
i )] and (14)

Lcritic(θ) =
[
Vθ

(
SB×1
i

)
− V T

θ (SB×1
i )

]2
, (15)

where ϵclip is a parameter, SB×1
i and AB×1

i are the collection
of states and actions in batch i of batch size B, respectively,

Vθold(S
B×1
i ) are the state-values corresponding to the states in

batch i under the old policy, Vθ(SB×1
i ) = ÂB×1

i +Vθold(S
B×1
i )

are the estimated state-values under the new policy, V T
θ (SB×1

i )

are the target values from the Critic, Γi(θ) =
πθ(AB×1

i |SB×1
i )

πθold
(AB×1

i |SB×1
i )

holds the probability ratios of the new policy over the old
policy, and ÂB×1

i are the advantage estimates for the cor-
responding experience samples in batch i. The advantage
estimates are given by [41]:

Â(tL×1,RL×1, Vθold(S
L×1)) =

δ(t) + (γλp)δ(t+ 1) + · · ·+ (γλp)
T ′−t−1δ(T ′ − 1) (16)

where T ′ is the end time of the current learning iteration,
γ ∈ [0, 1] is the discount factor, λp accounts for variance in
the model, and δ(t) = r(t) + γVθold(s(t+ 1))− Vθold(s(t)).

At each step of SGA, the objective function in (13) is
maximized. To understand this, we discuss the objective
function from the Trust Region Policy Optimization (TRPO):
max

θ

(
E
[
Γ(θ) · Â

])
. This surrogate objective function is max-

imized at every learn iteration to ensure that the new policy
defined by the expected discounted returns has a positive
improvement from the old policy. In other words, the policy
is learned by maximizing the expected returns. However,
under this objective, each time we refine the old policy, the
deviation between the new and old policy increases and thus,
the variance in the estimation of the advantages increases. This
lead the researchers in [41] to develop the modified objective
in (14) with clipping the ratio term to be within 1±ϵclip. This
prevents the algorithm from making significant changes from
the old policy to the new policy when learning updates occur,
reducing the chances of instability in the model.

E. Complexity and Convergence Analysis

The complexity of DRL algorithms such as those imple-
menting the Actor-Critic framework or DQN, is evaluated
by the number of multiplications involved in each iteration.
According to [44], [45], for DQN and PPO, the computational
time complexity per time-step for a fully-connected deep NN
is expressed by O

(∑J−1
j=0 nj · nj+1

)
, where nj is the number

of neurons in the j-th hidden layer and J is the number of
layers.

Analytically, ensuring the convergence of any DRL algo-
rithm is challenging since it can depend on the selection of
the hyperparameters used. The number of neurons present in
each hidden layer can affect the time execution per learning
iteration and it may lead to under or overfitting the training
data set [46].Thus, in this work, the convergence analysis will
be evaluated via simulation studies (see Section V) under
certain hyperparameter and environment settings.

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, we validate the performance of the developed
algorithms via numerical simulations to gain insight into UAV-
RIS aided wireless communications. We first evaluate the
effectiveness of the fixed action space described in Section
IV-A2 and the number of groupings of IoTDs. Second, we
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TABLE III
SIMULATION AND PERFORMANCE EVALUATION PARAMETER SETTINGS

(a) ENVIRONMENT PARAMETERS

Notation Value
(x, y) (−400,−100) m

hUAV (t0) 68 m
(xm, ym) (−3500, 300) m

hBS 65 m
[HU,min, HU,max] [20, 120] m

β0 −30 dB
PT 30 dBm
σ2
N0

−138 dBm
αB 2
fc 24 GHz

ηLOS , ηNLOS 2.3, 34 dB
K1, K2 2, 10
F , MA 64, 100
VMax 1 m/s

(b) ALGORITHM HYPERPARAMETERS

Notation DQN PPO
MaxIter 5000 5000

α 0.001 0.01
γ 0.90 0.99
L – 25
B 32 5

Neps – 4
Tf 100 –
ϵinit 0.95 –
ϵclip – 0.1
c1 – 0.5

Min.Mem.Cap 2000 –
Activation Functions ReLU ReLU,Tanh

Num. of NN Hidden Layers 2 2
Number of Neurons 20, 20 20, 40

discuss the stability and convergence of the two algorithms.
Third, we evaluate the adaptability of the proposed methods
under different environmental conditions. The time-step size
is set to tS = 1 sec. and the episode duration is T = 300 sec.
The environment parameters of the UAV-RIS aided wireless
network are shown in Table IIIa. Unless otherwise specified,
there are K = 250 IoTDs in the network and are assumed
to be spatially spread according to the Uniform distribution
within a grid of size 1 × 1 km2 and are clustered based on
Euclidean distances via the K-Means algorithm. There are also
130 buildings uniformly distributed between the BS to IoTDs,
10 of which are located within the IoTD grid. Hyperparam-
eter values of PPO and DQN are listed in Table IIIb. We
use feedforward NNs with Adam and Adagrad optimization
architecture, which are extensions to the traditional gradient-
descent methods using an adaptive learning rate to accelerate
the optimization process.

A. Effect of Number of Clusters

Scalability is crucial to the design of wireless infrastructures
to keep pace with the increasing numbers of IoTDs. The
fixed action space is designed such that the size does not
increase as the number of IoTDs increases. To demonstrate
the performance of the developed DQN and PPO algorithms,
we plot the ASoA vs. the number of episodes for different
numbers of clusters of IoTDs shown in Figs. 5(a) and 5(b),
respectively. As the number of clusters of IoTDs increases,
the ASoA increases since less and less IoTDs will be grouped
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Fig. 5: (a) DQN and (b) PPO.

into a single cluster and the network starts appearing closer to
a single-scheduled IoTD network. The convergence of DQN
is not as stable as that of PPO, even after 5000 episodes. Both
algorithms appear to approach similar ASoA values as the
number of episodes increases. It is explicit that PPO achieves
higher convergence rate as compared to DQN within the first
500 episodes.

B. Stability and Convergence

To test the stability of the proposed methods, we ran the
algorithms for 50 trials, where each trial spans 5000 episodes.
Then, we have 50 samples for each episode where we compute
the 95% confidence interval (CI). The results can be seen in
Fig. 6 with KM = 15 clusters. A random trial number is
selected and the corresponding algorithm results are plotted
using solid lines. The shaded regions show the respective
95% CI for each episode. The zoomed in windows provide
further details on the performance of the algorithms. First, we
note PPO’s convergence is stable within the first few hundred
episodes. Across all three windows, PPO maintains its stability
close to within the confidence bands. DQN, on the other
hand, takes longer to converge and struggles to stay within
the confidence bands as the number of episodes increases.

A lower bound for ASoA is generated by relaxing the UAV
velocity constraint. In each time slot, for all possible altitudes
of UAV, the sum of AoI reduction is computed for every cluster
of IoTDs. The maximum sum of AoI reduction is selected
to compute the immediate reward in (9). According to the
simulation results, the lower bound for ASoA is 66.45 and
the converged ASoA (Fig. 6) is 79 and attains 18.88% above
the lower bound.

C. Performance Under Diverse Environment Settings

1) Environment 1 – BS Location: In densely populated
cities with tall office buildings or skyscrapers (such as New
York City or Chicago), there can be many obstructions be-
tween the IoTDs and the nearest BS. Thus, in this section,
we consider a large-scale scenario where the BS is located at
different distances from the UAV-RIS. The results can be seen
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in Figs. 7 (a) and (e) for DQN and PPO, respectively. First, we
note that the stability of DQN fluctuates similarly compared
to the previous results in Fig. 5 (a). PPO on the other hand
achieves about the same stability performance as in Fig. 5
(b) for all the BS location cases. Due to increased backhaul
distances, slight changes in altitude adjustment only lead to
very slight changes in the received SNR at the IoTDs for low
altitudes. This means it becomes harder for DQN to learn and
converge to an optimal policy since DQN cannot account for
large changes in the policy. PPO’s clipping function enables
it to handle the slight variations in the environment since at
every update, the algorithm cannot change the probability of
any action (desired or undesired) by no more than ϵclip. In
addition, at each update, the PPO objective function described
in sections IV-C and IV-D3 aims to increase the probability
of desired actions, thereby increasing the ratio Γ(θ), while
the probability of bad actions decreases. Due to this feature,
we see more stable results in the PPO performance. Location
3 will have the largest ASoA since this BS location is the
furthest from the UAV-RIS. At location 2 is the closest to the
UAV-RIS and we would expect it to have the lowest ASoA,
however, this BS location is surrounded by buildings on all
sides and thus the UAV-RIS works to find an optimal height
such that the backhual link is not blocked off. Thus, location
2 achieves a similar ASoA to location 1.

2) Environment 2 – IoTD Distribution: In a realistic wire-
less network environment, IoTDs are not uniformly distributed
within a given area. However, this feature is assumed in many
prior works such as [13], [23], [33], [47]. Urban areas can
have several wireless “hot spot” locations. In this section,
we test the performance of the two algorithms when the
IoTD locations are given by three different distributions:
Uniform, Gaussian, and spatially inversed Gaussian, where
the distributions are centered at the center of the grid (i.e.,
(500,500) m).

The results can be seen in Figs. 7 (b) and (f) for DQN
and PPO, respectively. The Uniformly distributed IoTDs result
in the lowest ASoA followed by spatially inverted Gaussian
and Gaussian. The Gaussian and spatially inverted Gaussian

Fig. 6: Average Sum of AoI over T vs. number of episodes.

distributions suffered a higher ASoA primarily due to the
locations of the buildings within the IoTD grid. Buildings
near the center of the grid penalized the Gaussian AoI while
buildings near the edge of the grid penalized the spatially
inverted Gaussian distribution results. Again we see that PPO
rapidly learns and converges while DQN takes more time to
train, but converges to similar values.

3) Environment 3 – IoTD Activation Pattern: In previous
simulations, we assumed the IoTD activation pattern was
uniformly distributed. In reality, the arrival times of packets
are independent of each other. In discrete-time, the arrival
times can be specified by the stochastic Bernoulli process, P,
such that the interarrival times, Z1, Z2, · · · (time between an
arrival and the previous arrival of data packet information), are
i.i.d. random variables. Let νi be the time of the ith arrival

of P defined as νi =
i∑

j=1

Zj where Zj ∼ Geo(p) and p is

the probability. This implies that P follows the memoryless
property in that it restarts after each arrival time so that
the next arrival time is independent of the past. Using the
interarrival times, we can populate Wk (the activation vector)
for each IoTD. By doing this, we can see the performance of
the algorithms under more realistic IoTD activation patterns.
Setting p = {0.4, 0.5, 0.8}, we expect the average number of
activations of each IoTD to be around 40%, 50%, and 80%, re-
spectively, of the time period T , i.e., around {120, 150, 240}
activations.

The results can be seen in Figs. 7 (c) and (g) for DQN and
PPO, respectively. We first note that for both algorithms, the
converged ASoA is higher for p = {0.4} compared to results
in the previous sections. This is expected since in the previous
sections, due to the uniform distribution, on average, IoTDs
were active around 50% of the time period (demonstrated by
p = 0.5). For p = {0.8}, the ASoA is lower since the IoTDs
are more active within the episode so they are more likely
to have a successful transmission as long as their received
SNR is above the threshold. Considering that the AoI is
directly impacted by the IoTD activation, then the freshness
of information is larger since status packet updates are not as
frequent. PPO and DQN converge to similar values, but for
most p cases, PPO converges within the first 500 episodes.

4) Environment 4 – UAV-RIS Location: In this environment
setting, we test the performance of the algorithms when the
horizontal location of the UAV-RIS is changed. The results
can be seen in Figs. 7 (d) and (h) for DQN and PPO,
respectively. The results of all four locations converge to
nearly similar ASoA values. Compared to the performance
of previous environments, we see that DQN and PPO achieve
quick convergence with similar converged values. Practically,
in terms of feasibility, this means that with just a few pa-
rameter adjustments, the UAV-RIS can offer significant aerial
advantages in urban and rural regions where low-altitude appli-
cations are irrational due to obstacles. Even as the complexity
of the environment increases with variable UAV-RIS location,
PPO proves the capability of handling the complexity and
finding an optimal policy for minimizing the ASoA.
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VI. CONCLUSION

This work performs an Off-Policy vs. On-Policy comparison
to better understand the design strategies of model-free DRL
algorithms for UAV-RIS assisted large-scale IoT wireless net-
works. Using experimentally validated channel models, a gen-
eralized optimal RIS phase shift model is derived. DQN and
PPO algorithms, as the Off-Policy and On-Policy candidates,
respectively, are adopted to optimize the average sum of AoI
of all IoTDs in the network. Through a comprehensive analysis
of the two loss functions, PPO demonstrates to have finer
control than DQN over the gradient ascent/descent procedures.
In simulations, three metrics are used for evaluating the
convergence performance of DQN and PPO: (1) impact of
the size of the action space; (2) the stability and convergence
of the algorithms; (3) and variance in performance under dif-
ferent environment settings. In each metric, PPO outperforms
DQN for different environment settings: (1) PPO handles
complicated action spaces more efficiently compared to DQN;
(2) using CIs, as the number of episodes increased, PPO
maintains relatively within a narrow confidence band since
the first few hundred episodes, whereas DQN takes several
thousand episodes to reach a narrow level of confidence; (3)
over the different environment settings, PPO maintains stable
performance for each case and has a faster convergence speed
than DQN. To manifest the importance of 3D movement of
the UAV-RIS, we consider the IoTD mobility in future work.
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Fig. 7: DQN with (a) Environment 1, (b) Environment 2, (c) Environment 3, and (d) Environment 4 and PPO with (e)
Environment 1, (f) Environment 2, (g) Environment 3, and (h) Environment 4.
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