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This paper presents a methodology for simultaneous fault detection, classification, and topology
estimation for adaptive protection of distribution systems. The methodology estimates the probability
of the ocourrence of each one of these events by using a hybrid structure that combines three
sub-systems, a convolutional neural network for topology estimation, a fault detection based on
predictive residual analysis, and a standard support vector machine with probabilistic output for fault
classification. The input to all these sub-systems is the local voltage and current measurements. A

Keywords:

Distribution systems convolutional neural network uses these local measurements in the form of sequential data to extract
Adaptive protection features and estimate the topology conditions. The fault detector is constructed with a Bayesian stage
Topology estimation (a multitask Gaussian process) that computes a predictive distribution (assumed to be Gaussian) of the
Fault detection

residuals using the input. Since the distribution is known, these residuals can be transformed into a
Standard distribution, whose values are then introduced into a one-class support vector machine. The
structure allows using a one-class support vector machine without parameter cross-validation, so the
fault detector is fully unsupervised. Finally, a support vector machine uses the input to perform the
classification of the fault types. All three sub-systems can work in a parallel setup for both performance
and computation efficiency. We test all three sub-systems included in the structure on a modified
IEEE123 bus system, and we compare and evaluate the results with standard approaches.
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1. Introduction

The protection system is a critical component of power grids
used to detect and isolate faults. A protection system should
ascertain sensitivity and selectivity reguirements. Sensitivity is
defined as the ability to detect and isolate faults fast enough
to avoid their spread. 5Selectivity is the ability to minimize the
number of customers experiencing power outages during the
isolation process [1]. The protection system plays a critical role in
improving the power system reliability and resilience and avoid-
ing major outages with possible cascading effects [2-4]. More
recently, adaptive protection has been introduced as a promising
solution to effectively modify protection responses in real-time
based on the prevailing system conditions.

Adaptive protection is defined as a protection system that can
modify its protection actions in real-time according to the latest
power system changes [2,5-9]. One of the power system changes
that can significantly impact the fault current values is a circuit
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configuration change. Conventionally, adaptive protection sys-
tems rely heavily on the communication infrastructure to monitor
system condition changes [10]. However, the performance of
conventional adaptive protection systems is impaired when the
communication network is down because of cyber-attacks and
communication link failures. In this paper, a communication-free
adaptive protection solution is proposed. The communication-
free adaptive protection devices can replace conventional pro-
tection relays. The proposed protection devices can estimate the
prevailing circuit configuration and detect different types of faults
accordingly. For this, the data needed for the adaptive protection
operation is collected locally in each relay. This local data, con-
sisting of measures of the voltage and current is then used by a
machine learning meta-structure to estimate the grid topology,
the fault, and fault type probabilities given the current measures.

Knowing the configuration of a circuit is of particular im-
portance for the adaptive protection of distribution systems to
adaptively take protection actions depending on the topology of
the circuit [11,12]. In a protection system, fast fault detection is
of particular significance to quickly remove faults before endan-
gering human life and damage to power system equipment [13].
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The estimation of the grid configuration or topology can be com-
plicated by the fact that there are situations where the switches
and circuit breakers lose their communications capabilities, and
in these cases, only local observations are available. In these
cases, topology estimation can be implemented by the use of the
physical model of the grid [14,15], or just using data observed
from the grid. These data consist of the electrical magnitudes of
synchrophasors, smart meters, or measurement equipment in a
given location of the grid [16].

In a modern distribution system, with the possibility of dif-
ferent configurations, the post-fault measurements from the pro-
tection devices are highly impacted by the prevailing circuit
condition. The conventional protection schemes with fixed set-
tings are well-tuned for one circuit configuration. Therefore, upon
the change of the circuit configuration, the protection device may
not be able to satisfy the reliability and selectivity requirement of
a protection system.

To tackle this challenge, this paper proposes the use of ma-
chine learning to effectively account for the different circuit con-
figurations on the actions taken by the protection device. The
proposed innovations of the present work are the following:

e A one-dimensional convolutional neural network (CNN) is
utilized that processes a window of the electrical measure-
ments taken at the circuit relays to estimate the circuit con-
figuration, and whose output is a probabilistic estimation of
the configuration given the observed input.

e Simultaneously with the configuration estimation, auto-
matic fault detection is performed. The novelty consists of
the use of a structure that, with the use of a Gaussian Process
(GP) regressor that estimates the instantaneous values of the
current from the voltages, computes the posterior proba-
bility error covariance (which is assumed to be Gaussian),
whitens it and then, with the help of a one-class SVM (OC-
SVM) [17] structure, the probability of fault is estimated.
The fault detection is fully unsupervised and it works by
computing the residuals of the observation predictions [18].
A set of fault detectors are trained, each one for each of the
configurations, which allows obtaining fault probabilities
conditional to each configuration.

e The configuration and fault probabilities are combined with
the fault type probability, by training a set of fault classifiers,
each one for each configuration. The corresponding condi-
tional fault-type probabilities are combined with the rest
of the probability estimations in order to obtain marginal
probabilities. This combination of probabilistic estimations
(soft decisions) is optimal in a Bayesian sense and it makes
the structure more robust than a structure based merely on
binary (or hard) decisions.

e The proposed fault detection approach is based entirely on
local measurements and thought for these cases where com-
munications are not possible or not consistent, thus graph
modeling of the grid is not possible. This communication-
free, setting-less approach can replace the conventional pro-
tection relays in power grids.

This work is a continuation of the work presented in [19]
where we introduced a preliminary structure for configuration
classification and fault classification. The novelties with respect to
that paper consist of a novel, unsupervised, fully automatic fault
detection procedure that estimates fault probabilities rather than
offering a binary detection of these events. Also, the configura-
tion classification and fault classification are here probabilistic.
Indeed, this structure combines the probabilities corresponding
to each event to optimize the detection.

The presented results show good error probabilities in config-
uration and error classification and the probability of false alarms
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in fault detection. It should be noted that the possibility of mod-
eling a distribution system with different operating conditions
(e.g., circuit configurations) offers a data-driven approach based
on machine learning. Indeed, when an accurate model of the grid
is available and a large quantity of data corresponding to the
different possible configurations of the grid can be produced, then
supervised machine learning algorithms can be effectively trained
to detect such configurations. In this case, different grid faults can
be also simulated and machine learning algorithms can be trained
to detect and classify these faults. This work is a continuation of
the work presented in [19].

The rest of the paper is organized as follows: the next section
presents the structure and methodology, including the three used
subsystems. The experimental section includes the generation of
data, the training of all substructures, and the results and discus-
sion of the experiments. We finish the paper with the conclusion
section.

2. Related work
2.1. Topology estimation

The recent researches on topology estimation mostly use State
estimation (SE) based techniques. In such approaches, the system
state variables are estimated across a network using physical
laws and measured quantities. Such approaches helped with net-
work forensics, mainly for spotting modeling errors or bad mea-
surements. A weighted least squares (WLS) approach has been
utilized in [20] for obtaining the status of circuit breakers. The
probabilistic model was further improved using additional data
associated with active and reactive power in circuit breakers.
Later, a generalized state estimation (GSE) was proposed in [21]
which combines the two basic power system monitoring mod-
ules, i.e., state estimation and topology processing. Further, [22]
introduces SE in a distribution network and proposes a bayesian
approach using linear least square estimation. The concept of
protection schemes based on the dynamic state estimation (DSE)
was introduced in [23]. Though they were inspired by differential
protection that utilizes limited data, the proposed approach re-
quires all the measurements in the protection zone. Additionally,
they also use all physical laws in the dynamic protection zone for
estimation and the system ignores external faults and identifies
only internal faults. Later on, there were DSE-based protection
techniques such as [24] where support vector machines (SVM)
were utilized to classify line faults. The transmission line models
and the measurement data are utilized by DSE for estimating
the states of the line. The training speed of the approach is
increased using Lasso regression. [25] studies topology estimation
in a distribution system based on time-series measurements of
voltage. This approach uses a lookup table and certain thresholds
to obtain the best result on topology detection. The work in [26]
presents a topology estimation methodology based on sparse
Markov Random fields. In [27], a regression structure adjusted by
second-order methods are used to estimate the structure from
smart meter measurements.

2.2. Fault detection and classification

There are several possible approaches for fault detection in
the related literature, that have been studied extensively. Among
them, the unsupervised anomaly detection methods are the most
suitable ones in the present application, because they do not need
labeled training data and they are robust to the fact that there is a
huge imbalance between normal and faulty data. Non-supervised
novelty detection methods can be taxonomized as density-based,
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bagging, deep learning, and linear methods. Density-based meth-
ods are methods that construct a model of the data based on
a clustering, from which a direct measure of the likelihood of
the data can be estimated. For example, [28] computes data his-
tograms to determine the level of likelihood of the data, and [29]
uses distance measures between data to determine the level
of [sic] “outlierness” of a sample. The works in [30,31] uses
the well-known k-nearest neighbor (KNN), which can be seen
as a simplification of a Gaussian mixture model (GMM) when
this GMM is trained with an Expectation-Maximization (EM)
method [32]. The KNN can be viewed as a mixture of Gaussians
with an identity as a covariance matrix where the posterior prob-
abilities of the model are either O or 1. Thus, in a way, the KNN
provides an indirect measure of the likelihood of the samples.
Bagging models are based on the construction and combination
of different outlier detectors with techniques based on bagging or
subsampling of the data, with the aim of reducing the uncertainty
of the detection (see, e.g. [33,34]).

Deep learning methods for outlier detection using non-
supervised methods that construct a reduced dimensionality dis-
tribution of the data. For example, [35] uses the well-known
autoencoder structure [36]. In [37], autoencoder ensembles are
introduced together with adaptive sampling to construct the
base models of the ensemble. A different technique, based on
generative adversarial networks [38] is used in [39]. The above-
mentioned algorithms are particularly well suited for cases where
the number of data available for training is very high. But in
situations where the number of samples is low, or when the
use of reduced sets is desired in order to reduce further the
computational burden, linear algorithms are a possible choice
when these algorithms can be modified to endow them with
nonlinear properties through the kernel trick (see e.g. [40]) as,
for example, [41] or [42].

A linear algorithm that is specifically designed to be con-
structed together with the kernel trick is the well-known OC-
SVM [17]. The SVM training criterion is particularly well suited
for cases where the available dataset is small or when a low com-
putational burden is required. Also, the number of parameters to
be adjusted by cross-validation is small, and the cross-validation
can be skipped in this application as will be seen further. This is
thus the choice for the present application. A fairly equivalent al-
gorithm also based on SVM is the Support Vector Data Description
(SVDD) method presented in [43].

Most of the works applying fault detection in power sys-
tems utilized traditional feature extraction methods and ML al-
gorithms for performing the detection or classification. In [24],
the difference between measured and estimated values, called
residual values was used to learn more about the fault type.
Additionally, there were several ML-based approaches for iden-
tifying fault locations and fault types in power systems. In [44],
a Discrete wavelet transform (DWT) is used to obtain the tran-
sient information from voltage measurements which are further
passed through an SVM classifier for determining the fault sec-
tions. Later, another wavelet transform (WT) and SVM-based
approach [45] was proposed to extract features from three-phase
fault current using WT and perform statistical measures on them
to be passed to SVM. In [46], the authors propose an approach
for fault diagnosis in a distribution network using a novel opti-
mization algorithm called perturbed particle optimization (PPSO)
to support SVM to improve its performance.

3. Methodology

Our proposed approach creates an ensemble model for the
joint circuit topology estimation, fault detection, and fault clas-
sification. The ensemble model for the joint circuit topology esti-
mation and fault detection classifiers consists of two main blocks
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that operate in parallel (Fig. 1) and whose outputs are combined
later. The first block is a CNN trained with a window of volt-
age and current samples obtained from one of the relays. The
network is trained to detect the configuration, and its output is
an estimation of the probability of each configuration. Thus, the
CNN output can be written as the probability p(Cj|x) where G
represents configuration j and x is the input sample.

Four fault detectors are trained to detect faults from obser-
vations X of each one of the configurations. The corresponding
structure can be seen in Fig. 1. During the test phase, all fault
detectors are given all data. Therefore, each data is tested for
fault detection assuming all possible hypotheses over the possible
configurations. These detectors provide an estimation of the fault
probability given the sample, under each one of the possible hy-
potheses over configurations C;. These probabilities are denoted
as p(F|G, x), where F represents the event of a fault. Finally, a
set of blocks are trained to classify over faults. These blocks are
trained with faulty data only, and a different classifier is trained
for each one of the possible configurations. Again, during the
test phase, the data is introduced into the classifiers regardless
of the configuration and the fault event. Therefore, the outputs
are the fault classification under the hypothesis that a fault has
happened and under the hypothesis of each one of the possible
configurations. Each classifier outputs probabilities p(Fc;|C;, F, X),
where Fc; represents fault class i. These probabilities are read
as the probability that the fault is class i given the topology
configuration of class j, given a fault has happened, and given
observation X. In Fig. 1 three possible fault classes are considered,
sol<i<3.

Once the estimations of probabilities p(Cj|x), p(F|G;, x) and
p(Fci|G, F, x) are computed in parallel for a given input X, the
estimations of the fault probabilities and the fault classes are
computed as

p(F1x) =) p(GX)p(FIG;, X) (1)
J

and

p(Fcilx) = Y _ p(GIX)p(FcilG, F, X)p(F|Gj, X) 2)

J

This structure is justified by the necessity to minimize the
probability of error in the decision by fully exploiting the capabil-
ities of the machine learning substructures, and also being aware
of their limitations. On the one hand, any ML procedure has a
probability of error. Therefore, in a system like the one presented
here, it is risky to fully trust the decision of the CNN regarding the
present configuration and then choose a single fault detector and
a single fault classifier. Instead, we use the scores that the CNN
provides for a given output. These scores are normalized (i.e., they
add to one), so they have properties of probability mass function.
In particular, these scores are modeled as posterior probabilities
or, in other words, probabilities of each one of the configurations
given the observation x. These scores are used to weigh the
decision of each one of the fault detectors and classifiers. In the
case that the CNN provides a clear classification or a classification
where one of the scores is close to 1 and the rest are close to zero,
the system will automatically select one of the classifiers and
one of the fault detectors. But in case of an unclear classification,
where two or more scores have a significant value, instead of
choosing the classification corresponding to the highest score,
a more parsimonious solution consists of using all classifiers
corresponding to these scores. In the case where the highest score
does not match the actual configuration, the corresponding fault
detector and classifier may not work properly, thus providing
unclear classifications (i.e. with low scores). But one of the fault
classifiers and fault detectors will match the actual configuration,
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Fig. 1. Proposed structure for configuration classification, fault detection, and fault classification probability estimations. The topology estimation block estimates
the configuration. The fault classifiers determine the fault class probability given the configuration. The output corresponding to p(Fc|G;, F, x) for each one of the
classifiers is connected to the corresponding class probabilities p(Cj|x) and then added together to compute the marginal fault class probability. The unconnected
arrows of the classifiers represent the conditional probabilities for Fc, and FC;, with whom the same operation is implemented to compute the corresponding fault
class marginal probabilities, but the corresponding sub-blocks have been omitted for brevity.

and they will provide a good score for one of the classes, and then
the system will select these ones, thus reducing the probability of
error.

On the other hand, instead of just providing a classification,
the system outputs a probability estimation. This can be advan-
tageous in a decision-making process. If the probability of fault or
the probability of fault class for a given class is very high, one can
make a decision safely. In cases where the probability of fault is
close to 0.5 or the probabilities of a fault class are all similar, this
means that the algorithm is not able to provide a safe criterion to
make a decision, and the user may decide not to use the result.

The use of different classifiers and fault detectors for different
configurations is justified by the reduction of the complexity of
the structure, which usually translates into better performance.
Indeed, during the training phase, every subsystem (except the
CNN) is trained with data of a single configuration, which pro-
duces data distributions simpler than the distribution of the

whole data. This helps to improve the performance of the ma-
chines. The drawback of this is a more complex structure that
needs a separate detection of the class. CNNs are best known for
capturing spatial information in images or temporal information
in time series data. Hence, we use CNN for this task due to
its well-known capabilities in solving such complex problems in
temporal data, as long as the quantity of data is sufficient.

The CNN and the fault classifiers are supervised, thus they are
trained with simulated data which has been previously labeled.
The training of the fault classifiers would not be possible if the
data was real, because usually faults have a low likelihood, hence
collecting enough faulty data and labeling it is an impossible task.
Nevertheless, we choose a nonsupervised fault detector, which
is designed by taking into account the characteristics of a real
fault. In other words, the fault detector simply estimates the
likelihood of the observed events, and it classifies a sample as a
fault when its likelihood is low. A supervised method would also
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Fig. 2. Structure of the CNN used for the classification of configurations. The first and second layers perform 1D convolution with a kernel of length 3 which is
followed by ReLU activation. A single max-pooling layer subsamples the outputs, which are converted into a vector (flattened). The final stage consists of two dense
layers. The first one has ReLU activations and the second one has SoftMax activations so the output of the network has properties of probability mass function.

be possible in this context, but a non-supervised one is better
because it is able to distinguish novelties that are not present
in the simulation, which may otherwise be unnoticed. Also, the
nonsupervised structure will be more robust to the different
levels of noise that may appear in real data, which are not present
in the simulated one.

3.1. Configuration classification with CNN

The name of convolutional neural network is given to this
class of deep learning structures because they use the convolution
operation as a means to extract features of the data [47]. The
standard CNN procedure consists of two basic sections. The first
one applies the convolutions, and the second one is a standard
neural network that produces the desired estimation operation.
The first block usually contains a layer that performs a convolu-
tion between the input and a set of convolution kernels, which
are usually matrices of trainable parameters. The outputs of the
convolutions are then subsampled. The subsampling operation
divides the result of the convolutions into small blocks and keeps
the sample with the maximum value in an operation called Max-
Pool, which keeps the dominant data and discards the rest [48].
The outputs of the MaxPool operations are then passed through
a nonlinear function. This function is usually a logistic function
o(z) = H%p(—z} or, more commonly, a rectified linear unit (ReLU)
¢(z) = max(0, z). This output may be processed again with the
same procedure, which results in new convolutions of reduced
dimension (due to the max pooling). The outputs of the last
convolutional layer are considered the extracted features of the
input pattern, and they are then concatenated in a vector and
passed through a dense neural network of one or more layers,
that produces the estimation.

The intuitive principle of the CNN is that the model learns
the representation of the data through the feature learning pro-
cess [49] consisting of these convolutions, which add certain
invariant properties to the extracted features. The CNN used
here processes time series, so the convolutions are performed in
one dimension, and the convolutional kernels are simply short
sequences of trainable parameters.

The structure of CNN used for this application can be seen
in Fig. 2. The CNN used here receives a multivariate time series
input. So, the input data at time instant t is in a 2-D format of
N X Npq: consisting of N time steps and Np,q features. The time
steps correspond to a set of consecutive samples in the form of a
data frame. Therefore, at each time instant t and for each one of
the features, a window of N samples (the present sample at time

t plus past N — 1 samples shown in Fig. 2 as X1, X, ..., Xy wWith x;
having Ny, features) is used as an input to each one of the 1-D
convolutions of the CNN.

The data is first processed with two convolutional layers, each
one having 64 kernels of length 3. After that we apply a dropout
layer with a dropout rate defined as 0.5, which corresponds
to dropout probability, followed by maxpooling of dimension 2
(this is, from every two sequential samples at the output of the
convolutions, we keep the one with the maximum amplitude
and we discard the other one). This output is then flattened and
passed onto a dense neural network with two layers. The first
dense layer with 100 outputs has ReLu activation and the final
layer, with K outputs have a softmax activation function

_exp(—z)
i(z) = 3 exp(—2)

with 1 < k < K which generates the probability of the sample
belonging to the given class. In order to provide accurate posterior
probability estimates, the neural network must be trained with a
backpropagation algorithm with cross-entropy objective function.
This criterion maximizes the log posterior probability of the class
given the input (see e.g. [47]), and it provides reasonable proba-
bility estimates, as it will be seen in the experiments. An accurate
posterior probability with the use of SVMs is more difficult given
that the SVM criterion does not optimize a posterior probability.

(3)

3.2. Fault detection

In this section, we introduce a machine learning metastructure
to detect the faults based on an indirect measure of the likelihood
of the observation. Since the faults are assumed to have a low
probability, we consider that an event with a low probability will
be a fault candidate.

One of the advantages of the SVM approaches is that they are
model-free, so the user does not need to make assumptions about
the distribution of the data. Also, their generalization capabilities
make them trainable with low samples [50,51], which is an ad-
vantage with respect to mixtures of experts, which usually need
more data. Both OC-SVM and SVDD are designed to automatically
separate normal data from novel data using maximum margin
criterion. The OC-SVM adapts a strategy that assumes that almost
all data can be separated from the origin of coordinates using a
hyperplane. Novel data, or anomalies, are those samples whose
likelihood is low and, therefore, they will be separated from the
normal data, which is assumed, in this linear approach, to form
a cluster. These are the samples left in the space between the
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Fig. 3. A fault detector is constructed and trained for each one of the possible configurations. The input data x, at instant n is used as a predictor for a sample y;.
The prediction is done with an MTGP, which outputs the mean prediction for that sample, plus the corresponding predictive covariance matrix. Then, the prediction
error is computed and then whitened with the covariance matrix. The whitened sample is introduced in an unsupervised SVM novelty (i.e., fault) detector. The soft

output of the SVM is the estimation of the fault probability.

origin and the separating hyperplane. In order to keep the normal
data the closest possible to the plane and the novelties as far
away as possible, the distance of the hyperplane to the origin
is maximized. Since this linear algorithm is very restrictive, the
data is first transformed into a higher dimension Hilbert space #
through a nonlinear mapping ¢(-). The space is endowed with a
kernel dot product k(x,x') = {(p(x), (X)), where, by virtue of
the Mercer’s theorem [52,53], function k(-, -) only needs to be
positive definite in order to be a dot product into a Hilbert space.
If the separating hyperplane is defined as w' ¢(x) + p = 0, the
optimization criterion can be written as

N
1
.« . . 2
Minimize ||w]|“ + N an —p
= (4)
WT(‘)(XH) +p ==&
£, >0

where &, are slack variables or losses that are positive if sample
¢(x) is between the plane and the origin, and zero otherwise. This
constrained problem may be solved by Lagrange optimization by
multiplying each constraint w'¢(x;) + p > —&, by a Lagrange
multiplier «,, which leads to the dual problem

subject to {

Minimize o " Kot

1
< < —
O<an =g,

subject to Z o =1
n=1

K is the matrix of the kernel dot product between data with
entries K;; = k(x;, X;). This dual can be solved by quadratic
programming in an efficient way. It can be seen from the dual
constraints that v is an upper bound of the number of novelties
present in the training data. After the optimization, detector can
be written as f(x) = Zf’:] k(x;, X) + p, where x; is the set of
training data.

Notice also that this algorithm is unsupervised. During the
test phase, we must only evaluate whether the test sample is
at one or other side of the plane in order to decide if it is a
novelty. There are two free parameters of this algorithm that
need to be adjusted, which are the value of v and the parameters
of the used kernel function. A very popular kernel function is
the square exponential k(x, X') = exp (—yllx - x/||2). Thus, the
second parameter to validate is y. This precludes the use of this
strategy as unsupervised since a set of labeled data is needed to
validate this parameter.

We propose to avoid a strict validation of this parameter by
using a preprocessing of the input data that has the effect of stan-
dardizing it, with the assumption that the error has a Gaussian
distribution with zero mean and some covariance matrix. If the
error can be standardized (i.e. to have zero mean and identity
covariance matrix), the kernel parameter can be easily guessed
(Fig. 3).

The idea consists of predicting one part of the present obser-
vation, say y, with another part of the present observation X,.
For example, the current at instant n is to be predicted from the

voltage. If the observation is normal, with the use of an adequate
predictor, the current will be predicted with low error. But if the
sample is a novelty (i.e., a fault), the prediction error is expected
to be much higher, as the likelihood of the sample is low, and
similar samples will not be present in the training sample (or
their presence will be negligible), so the prediction scheme will
not have information about it in order to predict it. We use a
multitask Gaussian process algorithm in order to produce the
prediction since this algorithm produces a posterior probabil-
ity distribution of the sample, where a Gaussian assumption is
taken with respect to the prediction error, which can be further
whitened with the use of the covariance matrix of the predictive
error distribution.

A prediction can be constructed for vector X, € R” using a
nonlinear multitask prediction model formulated by means of a
kernel function, which has the form

Vo = CQ k(X))o (5)

where Kk(X;) is a vector whose elements k(X;, X) are the kernel dot
products between the N training samples and the test sample.
Usually, the kernel dot product is defined as

k(x, X') = o?ke(x, X') + o}

where ks(x, X') is a positive definite function and o} and o} are
two positive scalars necessary to determine the covariance and
the mean of the predictions. These parameters must be validated
in a Gaussian Process framework. Vector & € RN contains param-
eters o;; that needs to be optimized, and € € R”*P is a matrix
containing the covariance terms between elements of X, which
has to be validated, and ® represents the Kronecker product.
Matrix C ® k(x,) has thus dimensions D x N.

In order to optimize the estimator, it is assumed that the
training estimation error e, =y, — ¥, has a Gaussian distribution
with covariance matrix X,. Given the kernel dot product, it is
straightforward to prove that the set of dual variables «; are
modeled as latent random variables whose prior distribution is
a multivariate Gaussian with covariance matrix K~'. With this
in mind, a predictive posterior distribution can be constructed
for the test samples y,, which is a Gaussian with mean and
covariance

¥ =C®kx)]" &
5, =T ®@kXy %) — [T @kX,)]" (f( n Epl)_l T ok(x,),
(6)

Then, the prediction algorithm outputs a mean of the pre-
diction and a covariance matrix of this prediction. With this,
a prediction error e, = y, — y, is computed. The whitening
process simply consists of transforming the error into a ran-
dom variable whose covariance matrix is an identity. Indeed, if
error e, is drawn from a Gaussian distribution N(e,|0, X';,) of
zero mean and covariance X/, then its negative log-likelihood is
proportional to

- IOgN(enl()’ En)_l X enTEnen (7)
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Fig. 4. Modified IEEE 123 bus distribution system showing the fault locations, the four tie-lines, and relay locations, indicated as R. Relay tie-lines are shown as RTL.
Three types of faults(C-G, A-B, and A-B-C-G) were introduced at 23 different locations.

The covariance admits a decomposition in eigenvectors Q and
positive eigenvalues included in the diagonal matrix A, with the
form X, = QAQ'. Therefore, the previous expression can be
written as

el ¥ le,=elQA'QTe= eIQA’%IA’%QTe (8)
From Eq. (8), it is clear that vector A_%QTe is a Gaussian ran-
dom variable with identity covariance matrix, and therefore the
whitening process can be written as
& =A7iQ'e (9)
as represented in Fig. 3.

This output is normalized and isotropic, so in principle, a
simple threshold could be used to detect anomalies. The use
of the above-described OC-SVM is justified precisely to avoid
the need for a heuristic to adjust this threshold. Instead, we let
the SVM construct a multidimensional threshold by applying the
OC-SVM criterion.

3.3. Fault classification

In order to classify the faults, we use a standard classifier.
Since several classes of faults are considered (labeled as CG (Phase
C to ground), AB (line to line) or ABCG (three phases to ground)
in Section 4.1) classifiers are multiclass. The fault classification
section contains a set of classifiers intended to estimate the prob-
ability of a fault class given the observation and the hypothesis
over each one of the topologies. Notice that the system does not
assume that a fault has been detected, so the system detects the
classes independently of the decision of the fault detection.

The estimation needs the use of a classifier with a soft output
with the properties of a probability density estimation. In this
case, this simply means that the output is a real number between
0 and 1. In principle, the most suitable method for this would
be a Gaussian process classifier, which is trained with a Bayesian
approach and that makes assumptions about the distribution of
the labels [54]. Nevertheless, the training uses a square matrix

with dimensions equal to the number of training samples. While
the previous section uses a GP regression, that system uses less
number of input samples as it is explained in the experiment
section. Given the quantity of data used during the training, this
leads to classifiers with a very high computational burden both
in training and in tests. A reasonable approach that is sparse
in nature is an SVM classifier with soft output, which is given
probabilistic properties by simply adding a sigmoidal output to
it.

4. Experiments
4.1. Grid simulation

Fig. 4 shows the modified IEEE 123 test note feeder bus sys-
tem [55]. It is known for its convergence stability and capability
to model unbalanced lines. It has a nominal voltage of 4.16 kV.

For this experiment, the IEEE 123 bus system was simulated in
MATLAB/Simulink 2019b. The simulation model of the IEEE 123
node system in Simulink adopts a variable load profile applied to
the model. Similar to all power system simulations, the load and
generation are varying through time (customers have different
numbers of lights on during the day vs night, and use different
amounts of air conditioning in summer vs. winter). The IEEE 123
node uses a simplified model of this where all customer types
(residential vs. commercial) follow the same time-series variation
load profile, and generation follows a PV generation profile. Faults
are then applied at different points in time (hour and day) to
create the range of fault sample data.

Four different configurations were simulated with three sim-
ulation incidents per day for each configuration. Simulations dur-
ing each day start at 9 AM, 12 PM, and 6 PM. Each simula-
tion instance starts with the system’s normal condition (no-
fault), then a fault is applied (the duration of the fault is ran-
domly selected), and finally, the fault is removed and the sys-
tem operates under post-fault condition. The parameters of the
IEEE 123 node are extracted from the https://cmte.ieee.org/pes-
testfeeders/resources/ [56]. The model was simulated with the
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Table 1

Four tie-line based circuit topology configurations.
Configuration RTL1 RTL2 RTL3 RTL4
1 Closed OPEN Closed Closed
2 Closed Closed OPEN Closed
3 Closed Closed Closed OPEN
4 OPEN Closed Closed Closed

Runge-Kutta discrete solver at a time-step of 50 ps. The collected
data included the sequential components of voltage and current
measured at the protection device locations. The simulated fault
locations are shown in Fig. 4. For each protection device, the
datasets were concatenated for all configuration scenarios into
one single file with a length of 5.6 million samples. The system
was modified to only include the relays in Fig. 4.

It is to note that the circuit reconfiguration through tie lines is
a common approach in modern distribution systems to accommo-
date load transfer when a portion of the system is experiencing
an overloading condition. Under this scenario, to avoid damaging
the feeders, power is transferred to a feeder with a higher power-
carrying capacity. The IEEE 123 system represents a reduced-
order model of an actual distribution circuit. To accommodate
different circuit configurations, four tie lines were added. How-
ever, out of the four tie lines, only one of them can be open. This
is a common practice in utilities to ensure that the system stays
radial and no part of the system is islanded. The number of circuit
configurations depends on the distribution system architecture
and the number of tie lines. Depending on the system, having
two, three, or four tie lines in a distribution network is a very
standard practice in electric power utilities. For example, in [57],
the authors have considered four tie lines in their study system.

The test circuit can be operated in four different configurations
(Table 1), changed by the status of tie-lines RTL1 to RTL4. Only
one of the four tie-line is in the open position for each circuit con-
figuration. The circuit contains 10 protection devices, including
the four tie-lines.

Three types of faults were simulated in all configurations, as
described in [58], that were applied to the different locations
indicated in Fig. 4. The faults are classified as:

1. CG fault: Phase C to ground fault. It is a single line-to-
ground (SLG) fault caused by one conductor touching the
neutral conductor or contact with vegetation.

2. AB fault: A phase connected to the B phase creates a short
circuit (LL). It is line to line type fault where current arcs
between the two lines.

3. ABCG fault: Three phases A, B, and C are connected together
as well as to the ground. This is a three-phase to-ground
fault (3LG).

The data generated consisted of 5.6M samples for each con-
figuration and for each one of the 10 relay locations. 26% of the
data contained one of the different faults introduced in the 23
locations specified in Fig. 4. 80% of the faults were of type CG,
15% was AB, and 5% of the faults were ABCG. These distributions
are based on the fact that single-line-to-ground faults (e.g., CG)
are the most common faults in power grids and their probability
is around 80%. Line-to-line faults (e.g., AB) are less probable to
occur compared to single-line-to-ground faults (with around 15%
probability). Three-line-to-ground faults are the least probable
faults in power grids with a probability of 5%. The fault type prob-
ability distribution is extracted from [59]. The fault impedances
randomly ranged from 0.1 to 5 £ and was generated using
uniform distribution. The data collected at each relay consisted
of the three-phase RMS voltages and currents.
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4.2. Performance of the CNN-based configuration classifier

Training of the CNN was done using 50% of the total data
from the first half of the year (2.8 million samples) and part of
this training data was used for validation. At each time instant ¢
and for each one of the features, a window of 100 samples (the
present sample plus 99 past ones) is used as an input to each
one of the 1-D convolutions of the CNN. The training was done in
batches of 32 windows of 100 samples for 10 epochs. The rest of
the 50% of the data from the other half of the year was used for
testing. The entire data consisting of faults was passed through
CNN and the classification results were obtained. The model used
Adam optimizer [60] during training that was initialized to min-
imize the categorical cross-entropy loss, hence aiming for higher
accuracy during validation. The Adam optimizer was initialized
with a learning rate of = 0.001, the exponential decay rate
for the first moment (the mean) ; = 0.9, the exponential
decay rate for the second moment (the uncentric variance) 8, =
0.999, and the small constant for numerical stability ¢ = 1e77.
The final dense layer had four softmax outputs for each of the
configurations. An SVM model for circuit topology estimation was
trained for comparison purposes. The hyper-parameter tuning
was done using the Exhaustive Grid Search method. This search
exhaustively generates the optimum values from a grid of a given
range of parameters. Here two grids were investigated: one using
a linear kernel and the C values were chosen from [1, 10, 100],
and the other using a radial basis function (RBF) kernel with
width parameter y. The values of the SVM parameter C were
chosen from [1, 10, 100] and the y values were [0.001, 0.01,
0.1]. The optimum parameter was found to be a linear kernel
with C=100. The criterion for selecting the optimum parameter
was to maximize the validation accuracy. The SVM model was
trained on 50% of the data from the first half of the year. A section
of the training data was used for validation. The bandwidth of
the data is very narrow. In particular, the input data is constant
for long periods of time. Then for training, the data can be sub-
sampled with no loss of information. Additionally, SVM does not
extensively require huge number of samples for training. The data
was downsampled by a factor of 300 according to its bandwidth.
Therefore, a total of 9500 samples were used for the training of
the SVM. The rest of the data comprising of 2.8 million samples
were used for testing.

Fig. 5 shows the comparison of the CNN and the SVM in the
topology classification for all relays, as presented in [ 19]. The CNN
achieved a classification rate very close to 100% for all relays,
while the SVM was not able to achieve good performance in many
relays, particularly in relays R2 and R3. The horizontal axis of
the left pane in Fig. 6 represents the calibration histogram of
the predicted class probabilities of the CNN, this is, the predicted
probabilities of a given class in intervals of 0.1. The vertical
axis represents the fraction of samples that actually belong to
that class (measured probability), averaged for all classes. The
graphic shows that the predicted probability and the actual one
are accurate, except for the range between 0.4 and 0.5, where
the actual probability is much lower than the actual. Since the
predicted probability is less than 0.5, this actually produced a
probability of error much lower than the predicted. This is due to
the fact that the experiment actually produced only a few samples
with patterns similar to the ones that produce a predicted around
0.5, which results in a poor response in that area.

Fig. 6 shows, in logarithmic units, the normalized histograms
of the probability of configuration P(C;|x), when the actual topol-
ogy corresponds to configuration 1. It can be seen that in most
cases the probability of configuration 1 is high, but in many cases,
the estimation is too conservative. Indeed, errors can only be
observed when the probabilities are between 0.3 and 0.5. This
is, when the configuration probability is high, the probability of
error is low, so the decision can be trusted, as desired in this kind
of classifier.
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Fig. 5. Comparison of test accuracy for topology estimation using SVM and CNN [19].
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Fig. 6. Left: Histogram showing the measured probability of a configuration class as a function of the predicted probability of that class given an observed voltage
and current. Right: Histogram of the probability of error in the prediction of a class as a function of the predicted probability of that class.

4.3. Performance of the SVM for fault classification

In the case of fault classification, two different SVM classifiers
were trained: a four-class SVM that classifies the input data into
normal data (NF) and data with three fault types (CG, AB, and
ABCG) and a three-class SVM to classify only the faults. The
training procedure was exactly the same as the one described in
Section 4.2 for the topology classification SVM. The three-class
SVM is designed to be used in combination with the fault detector
described in Section 3.3.

Fig. 7 shows the confusion matrices of both systems. It can
be seen that the four-class classifier has reasonable performance,
It is able to detect non-faulty samples with a 99.63% of detection
rate, and it has a similar performance in the classification of faults.
If a three-class classifier is used for the classification of faulty
samples only, the classification performance is slightly increased.
Fig. 8 shows a more detailed perspective, as presented in [19].
Here, four different classifiers are trained with data from each
one of the configurations. In these classifiers, specialized in each
configuration, we measured their error rate for each one of the
relays. It can be seen that when a 3-class classifier for faulty
samples only is used, the performance of the classifier increases
due to the reduced complexity of this classifier with respect to
the four class one. The probabilities obtained with this classifier,

nevertheless, are not accurate, since the outputs are saturated to-
wards one or zero. This effect is due to the fact that the multiclass
classifier is not trained with a probabilistic criterion, but using the
maximum margin criterion. Therefore, a calibration histogram is
not provided.

When a classifier is trained with data corresponding to each
one of the configurations, the configuration classifier described
above is needed to select the fault classifier corresponding to the
current topology. Besides when a 3-class fault classifier only is
used, a fault detector is needed to determine whether the fault
has happened. We test the three systems together in the next
subsection.

4.4, Combined performance of the three subsystems

The fault detector consists of two stages that are trained in a
non-supervised way, that is, all data needed to train the structure
consists of available observations of current and voltage, where
the information about the presence or absence of a fault was not
provided. Nevertheless, for the structure to function properly, it
is assumed that a fault is a rare event, thus having a very low
likelihood. Therefore, both structures were trained with normal
data only, which assumes that in a real situation the presence of
faults is low enough for them to be ignored by the GP section.
This section is trained in order to estimate the three values of
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Fig. 7. Confusion matrix showing the percentage of detection for Left: fault classification trained with normal data along with faulted data (using a four class SVM)
and right: with faults only data (using a three-class SVM) averaged for all relays and configurations.
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the current from the three values of the voltage. The GP produces
predictive means of the prediction and the predictive covariance
(for the case of MTGP) or the predictive variance (for the case of
independent GPs). This is used to normalize the error, assumed to
be Gaussian into a unitary zero mean distribution. The normalized
errors are used to train the OC-SVM that detects the errors. Thus,
during the training, no faults are expected but, if they are present,
they will be detected by the OC-SVM.

The GPs are linear and their hyperparameters are optimized
through the maximization of the training error likelihood. The
0OC-SVM uses square exponential kernels, with a width hyperpa-
rameter o2, The OC-SVM has a hyperparameter v. Since in a real
situation there are not faults available for cross-validation, the
values are chosen heuristically. Since the input to the OC-SVM
are unitary Gaussians (identity covariance or variance equal to
1), the kernel parameter is simply fixed to o2 = 1. Parameter
v is arbitrarily fixed to 0.1 This parameter fixes a lower bound
on the fraction of the support vectors, which will be in this case
equal to 10% of the training data. The fault detector is trained with
10° consecutive samples and then tested with 10° consecutive
samples, corresponding to about 5 days and 18 h.

10

Table 2
Final fault classification error rates (x1073) of the proposed combined
metastructure in Eq. (2).

R1 R2 R3 R4 R5 R6 RTL1 RTL2 RTL3 RTL4
pe 62 655 841 399 106 36.0 259 455 26.1 245
Table 3

Probabilities of false alarm py, and of no detection 1—pq (x 10~2) of the proposed
structure.

R1 R2 R3 R4 R5 R6 RTL1 RTL2 RTL3 RTL4
Pra 79 4.1 46 64 88 75 75 7.1 7.7 7.0
1-ps 13 764 176 19 13 18 18 1.7 1.6 15

The three subsystems are tested by implementing (2), where
each subsystem provides a probabilistic estimate of the configu-
ration, fault class, and fault event.

Table 2 shows the fault classification error rates for all relays
and all configurations of the combined metastructure when the
fault detector has been tested with 5 x 10* consecutive samples,
corresponding to about 3 days after the training. The minimum
error was of 6.2 x 1073 in relay R1, while the worse cases were
reported in relays R2 and R3, with values of 65.5 x 10~ and
84.1 x 1073. These are the relays where the configuration is
classified with the highest probability.

The fault detection loss or 1—pg, where py is the probability of
detection, and the probability of false alarm py, for the metastruc-
ture, obtained by the implementation of Eq. (1). The probability of
false alarm is less than 102 in all cases, while the probability of
loss is less than 2 x 1073 in all cases except for relays R2 and R3,
which are the most difficult ones, as it has been seen while testing
the configuration classification. This decreased performance has
here the consequence of a lower probability of detection (see
Table 3).

Fig. 9 (left) shows the fault probability calibration histogram
or the measured probability of fault given the input sample as a
function of the predicted probability of fault given that sample.
The histogram has been constructed by grouping the events that
produced probabilities in the ten intervals p and p = 0.1 for 0 <
p < 1. The probability of fault of the events in all these groups is
represented in the histogram, which is normalized between zero
and 1. Similarly, the right graph of the figure shows the error
probability relative to each one of these groups. The probability
estimation is less accurate than the class probabilities of the
CNN because the optimization of the SVM does not contain a
probabilistic criterion. Nevertheless, the prediction is reasonable,
except in the interval between 0.4 and 0.5, with an estimation
below the actual value, which increases the error rate above 0.5.
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Fig. 9. Left: Histogram of the measured probability of fault as a function of the predicted probability of fault. Right: the measured probability of error in fault

detection as a function of the predicted probability of fault.

This phenomenon is an accuracy due to the lack of events in this
interval, and it produces an effect analogous to the one in the
calibration histogram of the CNN (Fig. 6).

Fig. 10 shows the performance of the fault detector as the
length of the sample sequence increases. The experiment is an
example of the fact that the fault classifier must be periodically
retrained (or retrained online). It corresponds to a single training
followed by a test with a sequence of 10° samples. The test
is repeated for data with the four possible configurations, and
the results are averaged. The graphs represent the accumulated
probability of loss (1 — Pd) (left) and the accumulated probability
of false alarm (Pf,). Therefore, there is a peak when a loss or a false
alarm is recorded, and then, as time increases, the probabilities
decrease until a loss or a false alarm is registered again. Due to
the non-stationary nature of the data (as explained in Section 4.1),
its probability distribution changes with time. There is a moment
(around sample number 6 x 10%) where a single fault produces
a burst of detection errors in two of the relays that significantly
increases the probability of loss. A similar effect occurs for 7 of
the relays in the probability of false alarm. There are two more
such events later that increase the probabilities again. One such
event is illustrated in the left pane of Fig. 11. The probability
of loss is all the time higher for relays R2 and R3. Here it can
be seen that, conversely, the corresponding probability of a false
alarm is lower, which suggests that a manual readjustment of the
threshold (automatically adjusted by the OC-SVM) could improve
the performance in relays R2 and R3.

Regarding to the relatively high probability of false alarms
(1 out of 100 cases), these false alarms are mostly due to the
transient produced by the simulated IEEE 123 bus system at
the output of the fault detector when the fault is removed. An
example of this behavior can be seen in Fig. 11, which shows
a transient while a fault of type 1 is disabled, and the fault
detection data is taken from relay RTL3 in topology configuration
1. If these transients can be ignored, since they happen once a
fault has been already detected, then the probability of a false
alarm decreases dramatically, as it can be seen in Table 4 and
Fig. 12. While the minimum pgreported in the graph is zero,
actually these measures simply mean that zero false alarms were
reported during the corresponding intervals. The table shows the
probability of a false alarm for a sequence of 5 x 10* samples,
which means that the measured false alarm rate is less than
2 x 1075,
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Table 4
Probabilities of false alarm py, and of no detection 1—pq (x 10~2) of the proposed
structure when the transients at the end of the fault period are ignored.

R1 R2 R3 R4 R5 R6

Pra >0.002 >0002 032 >0.002 >0.002 > 0.002

1—-ps 13 76.4 1765 1.9 13 1.8
RTL1 RTL2 RTL3 RTL4

Dia 0.01 >0002 > 0002 > 0.002

T—ps 18 1.7 16 15

4.5. Computational complexity of each subsystem

Each of the subsystems was trained individually using the
system with RAM memory of 16 GB and NVIDIA GeForce GTX
1060 GDDRS5 GPU with graphic RAM memory of 6 GB. CNN-based
topology estimation system was implemented using Keras library
in Tensorflow. The total training time for this algorithm was
around 2.5 h for the data using 2.8 million samples. The test time
per sample is around 0.4 ms. As for the SVM classifier for the Fault
classification, lesser training samples resulted in smaller training
duration and the test time was in the order of microseconds.
The implementation of this classifier was done using the Scikit-
learn library in python. The fault detection subsystem made use
of two different modules, i.e., the Multi-task Gaussian process
and OC-SVM. The MTGP implementation was implemented using
the GPyTorch library in PyTorch and the OC-SVM module was
implemented using the Scikit-learn library in python. The overall
training time for the entire module was in the range of 7-10 min
and the test time was computed to be in the order of 1075
seconds. The complete implementation and code files can be
accessed through link https://github.com/Fviramontes8/LAMP to
GitHub repository.

5. Conclusion

This work presents a meta-structure that uses different ma-
chine learning methods to simultaneously estimate the topology
of the grid and detect and classify faults. In our approach, a CNN is
in charge of estimating the probability that a given configuration
is present in the network, and, independently, a set of classifiers,
by assuming that there is a fault in the bus, classifies it for any
possible configuration of the bus, by providing conditional prob-
abilities of the type of fault. A third subsystem uses a predictive
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Fig. 10. Left: Probability of loss (1 — Py) for all relays as a function of the length of the sequence of test samples. Right: Probability of false alarm for all relays.
When the number of samples approaches 6 x 104, corresponding to about 3 days, the performance of the detector decreases.
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Fig. 12. Probability of loss and probability of false alarm in fault detection when the transient after the error is not accounted for. While the probability of loss is
about the same as in Fig. 10, the probability of false alarm is dramatically lower when the number of test samples is less than 5 x 10%.
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approach to indirectly determine the likelihood of a sample and
then estimates the probability of that a fault is present, condi-
tional to each configuration. The combination of the three outputs
provides the marginal probability of fault class, probability of
fault, and probability of configuration. The experimental data
was simulated in Simulink® using the modified IEEE 123 bus.
The data contained four different circuit configurations and we
simulated three different faults in this data, at different positions
of the bus. This is a continuation of work [19], where we pre-
sented a non-probabilistic methodology for topology estimation
and fault classification. In this continuation, we use a probabilistic
approach, introduce the fault detection methodology and provide
the formulation for the fusion of all subsystems. The results show
a high probability of fault classification and detection and a very
low probability of false alarms. In our future work, we will assess
the sensitivity of this type of structure against the signal-to-noise
and interference ratio. We will also test different non-supervised
structures for fault detection based on deep learning. Finally, the
sensitivity of the methodology against non-stationary signals and
adaptive approaches need to be tackled.
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