Data Mining and Knowledge Discovery (2023) 37:627-669
https://doi.org/10.1007/s10618-022-00911-7

n

Check for
updates

DAMP: accurate time series anomaly detection on trillions
of datapoints and ultra-fast arriving data streams

Yue Lu'® - Renjie Wu' - Abdullah Mueen? - Maria A. Zuluaga® -
Eamonn Keogh'

Received: 18 June 2022 / Accepted: 15 December 2022 / Published online: 11 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract

Time series anomaly detection is one of the most active areas of research in data mining,
with dozens of new approaches been suggested each year. In spite of all these creative
solutions proposed for this problem, recent empirical evidence suggests that the fime
series discord, a relatively simple twenty-year old distance-based technique, remains
among the state-of-art techniques. While there are many algorithms for computing
the time series discords, they all have limitations. First, they are limited to the batch
case, whereas the online case is more actionable. Second, these algorithms exhibit poor
scalability beyond tens of thousands of datapoints. In this work we introduce DAMP, a
novel algorithm that addresses both these issues. DAMP computes exact left-discords
on fast arriving streams, at up to 300,000 Hz using a commodity desktop. This allows
us to find time series discords in datasets with trillions of datapoints for the first time.
We will demonstrate the utility of our algorithm with the most ambitious set of time
series anomaly detection experiments ever conducted. We will further show that our
speedup improvements can be applied in the multidimensional case.

Communicated by Johannes Fiirnkranz.

X Yue Lu
ylul75@ucr.edu

Renjie Wu
rwu034 @ucr.edu

Abdullah Mueen
mueen@cs.unm.edu

Maria A. Zuluaga
maria.zuluaga@eurecom.fr

Eamonn Keogh

eamonn@cs.ucr.edu

University of California, Riverside, Riverside, USA

Department of Computer Science, University of New Mexico, Albuquerque, USA

3 Data Science Department, EURECOM, Sophia Antipolis, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00911-7&domain=pdf
http://orcid.org/0000-0003-4812-9658

628 Y.Luetal.

Keywords Time series - Anomaly detection - Streaming data

1 Introduction

Time series anomaly detection is one of the most important and widely used tools
investigated by the data mining community (Audibert et al. 2021; Hundman et al.
2018; Nakamura et al. 2020). It can be applied offline to investigate archival data, or
online, to monitor critical situations where real-time human intervention is possible.
For example, by summoning a doctor or shutting down a machine that may be about
to damage itself. Given its importance, it is unsurprising that this area attracts a lot of
attention from the community, with dozens of algorithms proposed each year. However,
in spite of the plethora of algorithms in the literature, there is increasing evidence thata
twenty-year-old distance-based method called time series discords is still competitive
(Nakamura et al. 2020). Discords are competitive with deep learning methods in spite
(or perhaps because) of their great simplicity. A time series discord is simply the
subsequence of a time series that is maximally far from its nearest neighbor.

At least one hundred papers have reported using discords to solve problems in
diverse domains, and discords seem to be the only time series anomaly detection tech-
nique to produce “superhuman” results (see discussion in Sect. 2). However, discords
have three important limitations that have limited their broader adoption:

e Ifananomalous pattern appears at least twice in the time series, then each occurrence
will be the other nearest neighbor, and thus fail to optimize the discord definition.
This is informally called the twin-freak problem.

e Discords are only defined for the batch case, but anomaly detection is most action-
able in online settings.

e Inspite of extensive progress in speeding up discord discovery, datasets with millions
of datapoints remain intractable.

In this paper we introduce DAMP (Discord Aware Matrix Profile), a novel algorithm
which solves all the above problems.

e DAMP is not confused by repeated anomalies (twin-freaks), it simply flags the first
occurrence. If desired, other occurrences can then be found by simple similarity
searches. These other occurrences can be clustered, average, or otherwise summa-
rized as appropriate.

o DAMP is defined for both online and offline cases. Moreover, DAMP has an extraor-
dinary fast throughput, exceeding 300,000 Hz on standard hardware.

e Asthe previous bullet point suggests, DAMP is extraordinarily scalable. For the first
time, this allows us to consider datasets with millions, billions and even trillions of
datapoints.

The rest of this paper is organized as follows. In Sect. 2 we motivate the use of
discords as the time series anomaly definition most worthy of acceleration and gener-
alization. We also concretely define a new term, effectively online, that allows DAMP
to tackle ultra-fast real-time data sources found in industry and science. Section 3
contains the necessary definition and notation required, and Sect. 4 discusses related

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 629

work, before we introduce our algorithm in Sect. 5. In Sect. 6 we conduct the most
ambitious empirical evaluation of time series anomaly detection ever attempted.

2 Motivation

Before we continue, it is necessary to answer the following question. Why do we
attempt to fix discord’s scalability issues instead of inventing a new algorithm, or
making one of the many dozens of more recently proposed methods more scalable?

The reason is that there is increasing evidence that discords remain competitive
with the state-of-the-art! (Nakamura et al. 2020). Among the hundreds of time series
anomaly detection algorithms proposed in the last two decades, only time series dis-
cords could claim to have been adopted by more than one hundred independent teams to
actually solve a real-world problem. For example, a group of climatologists at France’s
UMR Espace-Dev laboratory uses discords to find anomalies in climate data (Khansa
et al. 2012). A team of researchers at NASA’s JLP lab have applied discord discovery
to planetary data, noting that “(discords) detect Saturn bow shock transitions well”
(Daigavane et al. 2022). A group based in Halmstad University created a tool called
IUSE for applying discord discovery to industrial datasets. One of their first applica-
tions was to a City Bus Fleet dataset, where they noted that the discords discovered
did indeed have an objective meaning “The discords in this case primarily consisted
of significant drops of pressure ... likely correspond to the drainage of the wet tank.”
(Nilsson 2022). Finally, a team of researchers at the National Renewable Energy Lab-
oratory, in Golden, Colorado, have used discords to find anomalies in a large building
portfolio, showing that they could discover anomalies with diverse causes caused by
both “internal (occupant behavior) and external factors (weather conditions).” (Park
et al. 2020). There are several other time series anomaly detection algorithms that are
well cited (Hundman et al. 2018; Su et al. 2019), but most of the citations are from
rival methods comparing these algorithms on a handful of benchmarks (Wu and Keogh
2021). It is not clear that anyone actually uses these algorithms to solve real-world
problems, as a detailed literature search does not produce any examples.

In addition, time series discords seem to be the only anomaly detection algorithm
that has been demonstrated to perform at superhuman levels (Nakamura et al. 2020).
All other algorithms that we are aware of have shown to discover anomalies that are
also readily apparent to the human eye. For example, a recent paper proposed a LSTMs
network for anomaly detection and evaluated it on data retrieved from Mars (Hundman
et al. 2018). However, the only anomaly shown in the paper shows a visually obvious
anomaly where a repeated periodic pattern suddenly transitions to a literal flatline. Of
course, this does not mean that such algorithms have no value, as human attention
is very expensive. However, the literature also offers some examples where discords
have found anomalies that are very subtle, defying the possibility of human discovery.
For example, in Nakamura et al. (2020), their Figs. 8 and 9 both seem to meet that
criterion. For completeness, we will show some additional examples. Consider Fig. 1,

! Note that some papers misattribute the success of their anomaly detection to the Matrix Profile or to
HOTSAX, but these are simple different algorithms to compute time series discords.

@ Springer

630 Y.Luetal.

2 hp Reliance Electric motor, fan-end bearing (20 seconds)

k T T100,000 T T200,000

The anomaly is the length of this red bar m— Zoom-in

0 1000 2000 3000

Fig. 1 Top A 20-s run of an industrial motor. Bottom A zoom-in of the region known to contain an anomaly,
which is the length of (but not necessarily at the location of) the red bar. Here m = 300

which shows the vibration of an industrial motor (Case Western Reserve University
Bearing Data Center 2021; Neupane and Seok 2020).

The data comes for a motor running under no load, however for a brief instant a
load was applied and immediately removed, creating an anomaly. It is clearly fruitless
to visually search for the anomaly in the full dataset, however, even if we zoom into a
local region containing the anomaly, it is not clear where it is. In Fig. 2 we task time
series discords with detecting the anomaly.

Beyond the accuracy of discords prediction here, note that this dataset contains
244,189 datapoints, representing about 20 s of wall clock time recorded at 12,000 Hz.
We are not aware of any anomaly detection algorithm in the literature that could
process this dataset in real-time, however, as we will show, DAMP can.

We also consider a dataset that is dramatically different to the bearing data. In Fig. 3
we show the Left-MP for an ECG which we know contains a single anomaly beat, a
ventricular contraction.

Ground Truth — = 2 hp Reliance Electric motor, fan-end bearing (20 seconds)

20 «— Left-MP top-1 discord

5 _Warm up, no
—prediction made

I

T100,000 T200,000

Fig.2 Top A 20-s run of an industrial motor. Bottom The time series discord discovered by the Left-MP
correctly locates the anomaly. Note that higher values are more anomalous. Here m = 300

ECG (43-year-old male) ‘ Ground Tthh‘
] ‘\ | \‘ \
Wl \‘ STEETERRPOTTANAS
TV TTT T mw
L
q Warm up, no l “~— Left-MP top-1 discord
/predml\on made
5 L i Lo o R e M b g |

Sixty Seconds

Fig. 3 Top A sixty-second snippet of an ECG. Bottom The top-1 time series discord correctly locates the
anomaly. Here m = 150

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 631

L 1)
Anomaly — 100,000

| 1
0 Mackey-Glass anomaly benchmark (MGAB)

15
1@ _ Anomaly
5 e

0

1 | | 1 1 | | | 1
85,000 87,000 89,000

Fig. 4 Top The MGAB dataset was built to defy visual discovery of anomalies. Bottom The Top-1 time
series discord correctly locates the anomaly. Here m = 40

This dataset has a wandering baseline which is diagnostically meaningless, but
which distracts the human eye (and many algorithms). However, once again time
series discords have no problem detecting the anomaly, which noted cardiologist Dr.
Gregory Mason says is on the cusp of his ability to detect by eye.

Finally, in Fig. 4 we consider a dataset that was explicitly created with the sole
purpose of having anomalies that are “difficult to spot for the human eye” (Thill et al.
2020). Here again discords are superhuman.

In summary, both the recent literature and our experiments suggest that time series
discords are at least competitive with recently proposed algorithms, and thus worthy of
accelerating to allow discords to be discovered in settings that are currently infeasible.

2.1 Effectively online anomaly detection

Let us take a moment to make clear what the terms batch and online mean. If we are
tasked with finding the top-k anomalies in a batch setting, we have random access to
all data. For example, we could initially define April 1st as an anomaly, but when we
later see data from say the summer months, we can change our mind, revisit April 1st,
and reduce its anomaly score. For that matter, we could revisit April 1st, and increase
its anomaly score. In contrast, in the online case we see the data incrementally arrive
and must make an irrevocable decision as to the appropriate anomaly score. When
recording this score, we do have access to all the data previously seen, but clearly
we cannot see any future data. For some time series anomaly detection algorithms
this distinction is important, and the algorithm can give different answers in the two
settings. However, as we will show, the algorithm we propose in this work will produce
the exact same answers in either setting.

Now that the terms batch and online are clear, it is helpful to introduce a new term,
effectively online. A true online algorithm reports the instant it detects a monitored
condition. However, let us imagine the following scenario: After a difficult cardiac
surgery, a doctor decides she wants to monitor her patient for anomalous heartbeats,
which may be an indication of postoperative Cardiac Tamponade (CT). If the patient
does have an ECG suggestive of CT symptoms, the doctor has perhaps eight to ten
minutes to confirm CT with an ultrasound and perform pericardiocentesis, a procedure
done to remove fluid that has built up in the sac around the heart (Kirti and Karadi
2012). Clearly, in this situation an algorithm that reported an anomalous heartbeat
ten minutes after its appearance would be unacceptable. However, an algorithm that

@ Springer

632 Y.Luetal.

reported an anomalous heartbeat at most two seconds after it appears would be just as
good as a true online algorithm. As such we propose the following definition:

Definition 1 An algorithm is said to be effectively online, if the lag in reporting a
condition has little or no impact on the actionability of the reported information.

Note that the scale of the permissible lag is problem dependent. In the above sce-
nario, two seconds made sense to the cardiologists we consulted. In an ultrafast arriving
data stream, the permissible lag may be as little as 0.1 s, and for telemetry arriving
from devices with a slow cycle rate, say the daily periodicity of pedestrian traffic, the
permissible lag may be minutes to hours.

We suspect that many algorithms that are referred to as online in the literature, are
really effectively online. The above discussion allows us to frame our contribution. Our
proposed algorithm DAMP is parameterized by a single variable called lookahead.

e If lookahead is zero, DAMP is a fast true online algorithm.

e Iflookahead is allowed to be arbitrarily large, DAMP is an ultrafast batch algorithm.
‘We should not be surprised that a batch algorithm can be much faster, as it has access
to all the information at once.

And now the raison d’etre for our digression:

e Even if lookahead is a small (but non-zero) number, DAMP is effectively online
algorithm, yet it retains most or all the speedup of the arbitrarily large lookahead
algorithm.

As we will show, DAMP allows for the discovery of time series discords in ultra-
fast-moving streams for the first time.

3 Definitions and background

We begin by defining the key terms used in this work. The data we work with is a time
series.

Definition2 A time series T is asequence of real-valued numbers t;: T = [t1, 12, ..., t;]
where n is the length of T'.

Typically, we consider only local subsequences of the times series.

Definition 3 A subsequence T; ,, of a time series T is a continuous subset of data
points from 7 of length m starting at position i. Tj = [fi, tig1, ... figm—1], 1 <
i <n—m+1.

The length of the subsequence is typically set by the user based on domain knowl-
edge. For example, for most human actions, %2 second may be appropriate, but for
classifying transient stars, three days may be appropriate.

If we take any subsequence T; ,, as a query, calculate its distance from all sub-
sequences in the time series 7 and store the distances in an array in order, we get a
distance profile.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 633

Definition 4 Distance profile D; for time series T refers to an ordered array of
Euclidean distances between the query subsequence 7; ,, and all subsequences in time
series T. Formally, D;=d; 1,d; 2, ...,di y—m+1,Where d; j(1 <i,j <n—-m+1)
is the Euclidean distance between T; ,,, and T ;.

For distance profile D; of query T; ,, the ith position represents the distance
between the query and itself, so the value must be 0. The values before and after
position i are also close to 0, because the corresponding subsequences have overlap
with query. Our algorithm neglects these matches of the query and itself, and instead
focuses on non-self match.

Definition 5 Non-Self Match: Given a time series T containing a subsequence T}
of length m starting at position p and a matching subsequence T, ,, starting at g, T »,
is a non-self match to T, ,, with distance d, 4 if |[p—q| > m.

With the definition of non-self match, we can define time series discords.

Definition 6 Time Series Discord: Given a time series T, the subsequence 7Ty ,, of
length m beginning at position d is said to be a discord of 7 if the distance between Ty,
and its nearest non-self match is maximum. That is, V subsequences T ,, of T, non-
self matching set Mp of Ty ;,,, and non-self matching set M ¢ of T¢ ,,,, min(da mp) >
min(de,mc)-

Although there are many ways to locate time series discord, the most effective one
recently is the matrix profile (Zhu et al. 2018).

Definition 7 A matrix profile P of a time series T is a vector storing the z-normalized
Euclidean distance between each subsequence and its nearest non-self match. For-
mally, P = [min(D1), min(D3), ..., min(Dy_p+1)],where D; (1 <i <n—m+1)
is the distance profile of query 7; ,, in time series 7. It is easy to see that the highest
value of the matrix profile is the time series discord.

As we will explain below, we can compute a special matrix profile which only looks
to the past. We call it the left matrix profile.

Definition 8 A left matrix profile PL of a time series T is a vector that stores the
z-normalized Euclidean distance between each subsequence and the nearest non-self
match appearing before that subsequence. Formally, given a query subsequence T; ,,,

let DI.L= di1,di2,...,dii—m+1 be a special distance profile that records only the
distance between the query subsequence and all subsequences that occur before the
query, then we have PL = [min(DlL), min(DzL), e, min(Drf_mH)].

Note that the term discord in this paper refers to the highest value on the left matrix
profile PL, i.e., left-discord. For the sake of simplicity, we will refer to left-discord
as discord where there is no ambiguity. It is clear that in the online case, we must use
the Left-MP. However, here we argue that even in the offline case we should use it. To
see why, consider the example shown in Fig. 5.

Here left-discords solve the twin-freak problem by reporting the first occurrence of
the anomaly (later occurrences, if of interest, can be trivially found with subsequence
search/monitoring).

@ Springer

634 Y.Luetal.

mit_long_term_ecg_14157

O M T AT

V-tach
P\}ZC Ground Truth
Normal

0 94 seconds 12000
_False negative caused

True positive: Ventricular—_

94 Full-MP “ by “twin freaks” ia (V-

.]) y tachycardia (V-tach) M
) True positive, the first True positive: Ventricular

0] Left-MP <~ occurrence of a PVC tachycardia (V-tach) i

] AN e - N

Fig. 5 Top to bottom A snippet of ECG with two types of anomalous heartbeats indicated by a ground
truth vector. A full Matrix Profile can find the sole occurrence of V-tach, but is confused by the multiple
occurrences of Premature Ventricular Contractions (PVCs), i.e., twin-freaks, and cannot find them. In
contrast, the Left-MP flags the first occurrence of a PVC and the first (and only) V-tach. Here m = 150

4 Related work

In recent years, there has been a surge of research interest in the topic of time series
anomaly detection. For a detailed review, we refer the interested reader to Aubet et al.
(2021), Audibert et al. (2021), Boniol et al. (2021a), Hundman et al. (2018), Nakamura
etal. (2020), Thill et al. (2020) and the references therein. In addition to the work listed
in Sect. 2, we have also compiled a longer annotated biography at (DAMP 2022) that
explicitly discusses discords.

There are two important points that we have gathered from our survey of the liter-
ature. The first is due mostly to a single paper (Wu and Keogh 2021), that forcefully
suggests some of the apparent success of recently proposed algorithms may be ques-
tionable, due to severe problems with the commonly used benchmarks in this area.

Beyond four issues that (Wu and Keogh 2021) notes with benchmarks datasets,
we wish to add another issue. Most of these benchmarks are minuscule. We suspect
that the small datasets that the community has focused on are at least partly due to
the poor scalability of current approaches. For example, a recent paper examines time
series of length 140,256 and notes “Given the length of the dataset, we sub-sample
it by a factor 10.” (Aubet et al. 2021). This paper is by a research group at Amazon,
who presumably does not lack for computational resources. For reference, it takes our
proposed algorithm 0.9 s on the full-sized version of this dataset (DAMP 2022) on a
commodity desktop.

In addition to the problems caused by using poor quality benchmarks, a recent paper
suggests yet another compelling reason why much of the recent apparent success of
recent research efforts should be viewed with caution. Paper (Doshi et al. 2022) notes
that “most recent approaches employ an inadequate evaluation criterion leading to
an inflated F 1 score. (however) a rudimentary Random Guess method can outperform
state-of-the-art detectors in terms of this popular but faulty evaluation criterion.”.

A recent SIGKDD workshop keynote makes arelated point about evaluation (Keogh
2021). Suppose you have a year of data monitoring an industrial boiler, and it happens
that on Christmas, the boiler leaks all day, causing an anomaly. One might imagine
the best way to evaluate an algorithm on the task of discovering this anomaly would
be a binary score, success/failure. However, many papers essentially consider each

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 635

datapoint as if it was an independent event. Suppose they predicted all of Xmas day,
and the first minute of the next day was an anomaly. They would report an F1 score
of 0.9997. The four significant decimal digits imply some extraordinarily careful and
significant measurement was made. However, with a little introspection will allow
the diligent reader to see that this precision is unwarranted and misleading. The Time
Series Anomaly Detection (TSAD) literature is replete with impressively large tables
of numbers with four (and sometimes, five or six!) digits, that simply give the illusion
of progress and rigor.

It is somewhat surprising that so few papers in the literature discuss time complexity.
This can possibly also be attributed to issues with the benchmark datasets. For example,
by far the two most discussed datasets in the literature are Yahoo and NY-Taxi (NAB),
with lengths of 1200 and 10,321 respectively. Even the most sluggish of algorithms
are unlikely to be taxed by such tiny datasets. If building a particular highly-quality
anomaly detection algorithm had a high one-time cost, then we might be willing to
throw whatever computational resources are needed at the task, and then deploy the
model in perpetuity. However, the situation is worse than that. In virtually any domain,
the model will become stale due to concept drift, and need to be periodically retrained,
either on a regular schedule (say once a week), or when the model detects that it has
drifted from the newly arriving data.

Recently a handful of papers have recognized that the slow training times for deep
learning anomaly detectors can be an issue. For example, (Truong et al. 2022) notes that
“fast training times (are needed) to cope with the requirement of frequently re-updating
the learning model”. These authors then went on to introduce a “light-weight”” anomaly
detection system that can complete training in as little as twenty minutes (using GPUs)
in a dataset of size 274,627. This kind of time frame may work for some domains, for
example the three-year-long energy grid/weather data we consider in Sect. 6.1. We
surely could afford a few hours to build the model, and perhaps a few hours at the end
of each month to retrain it. However, consider the machining dataset we examine in
Sect. 6.2. Here we see the first thirty seconds of data, and then must instantly have
a working model. While DAMP can do this, it is not clear that any other anomaly
detector in the literature can. One might imagine that other methods could potentially
look only at say, the first twenty seconds of data, and use the remaining ten seconds to
build their model. However, this would require most of the algorithms in the literature
to be accelerated by several orders of magnitude.

Finally, the reader may wonder why we do not test on the large collection of datasets
during (Paparrizos et al. 2022) in our empirical section. There are two reasons. First,
the data collection includes datasets that (Wu and Keogh 2021) notes are deeply
flawed, including mislabeled ground truth. If a significant fraction of the datasets have
mislabeled ground truth, as Wu and Keogh point out (Wu and Keogh 2021), and which
the authors of Paparrizos et al. (2022) have acknowledged (Palpanas 2022), it is hard
to have any faith in evaluation on the overall data collection. For at least some of the
datasets in this collection, including NAB-NYTaxi, NASA-MSL (trace G-1), YAHOO
(Al-reald6), it is known that at least 50% of the ground truth labels are incorrect (Wu
and Keogh 2021). With that amount of mislabeling, it would be fruitless to claim that
one algorithm is superior to another because it was say 6.3% better than another. In

@ Springer

636 Y.Luetal.

any case, testing on small synthetic or unrealistic datasets seems pointless when we
can test on large real datasets, as we do in this work.

In Table 9 we will compare to several rival methods. We refer the interested reader
to the original papers for more detailed descriptions, but below we present a terse
description of these rival methods.

An Auto-Encoder (AE) is a neural network architecture consisting of a combined
encoder and decoder (Audibert et al. 2021). The encoder maps the input windows
into a set of latent variables, while the decoder maps the latent variables back into
the input space as a reconstruction. The difference between the input window and its
reconstruction is the reconstruction error. The AE learns to minimize this error. The
anomaly score of a window is the corresponding reconstruction error. A window with
a high score is considered abnormal.

The Unsupervised Anomaly Detection (USAD) (Audibert et al. 2021) extends the
AE concept and constructs two AEs sharing the same encoder. The architecture is
driven in two phases. In the first phase, the two AEs learn to reproduce the normal
windows. In the second phase, an adversarial training teaches the first AE to fool the
second one, while the second one learns to recognize the data coming from the input
or the reconstructed by the first AE. The anomaly score is the difference between the
input data and the data reconstructed by the concatenated AEs.

Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) uses an LSTM
to model temporal dependency (Park et al. 2018), whereas the VAE projects the input
data and its temporal dependencies into a latent space. During decoding, the latent
space representation allows to estimate the output distribution. An anomaly is detected
when the log-likelihood of the current data is below a threshold. LSTM-VAE’s have
the capacity to identify anomalies that span over multiple time scales (Park et al. 2018).

Telemanom is a Long Short-Term Memory (LSTMs) networks, a type of Recurrent
Neural Network (RNN) (Hundman et al. 2018). Once model predictions are gener-
ated, we offer a nonparametric, dynamic, and unsupervised thresholding approach for
evaluating residuals.

NORMA can be thought of as a variant of a Golden Batch Matrix Profile, which
uses a clustering preprocessing step to compact the training data into a small, therefore
quickly searched, reference dataset (Boniol et al. 2021a).

SCRIMP is a fast method to compute the classic Matrix Profile.

5 DAMP
5.1 Intuitive overview of DAMP

Before giving a formal explanation of our algorithm, we will first provide an intuitive
description of how it works. We will start with discussing the batch case and then further
generalize to the (minor) steps required for the online case. As shown in Fig. 6, it will
be helpful to explain the algorithm mid-execution, as it is processing the subsequence
T;.

Figure 6 fop shows the time series T being processed, the green bar indicating
the current subsequence being processed at location i. Note that we have created two

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 637

Best-So-Far=12.2 T o

T . ® ./T.\’ ¢
Left-aMP 09 08 11/12 - | - | - -
Pa—

Pruned Vector 1/1 /1 1 10 0 1
— >
Current Subsequence o—""~,

Fig. 6 A sketch of the DAMP algorithm in progress, processing the current subsequence. top) The time
series T. center) The Left-aMP, its values between 1 and i are computed, its values after i have yet to be
computed. bottom) the Pruned Vector indicates subsequences that can be ignored without affecting the final
result

parallel vectors to accompany 7. The Left-aMP is the vector we are computing. It is
an approximation to the true Left-MP, with the following properties:

o If location j is the true left-discord for the time series T'1;j, then the discord value at
aMP; is not an approximation, but the true left-discord value.

e Otherwise, the approximation at aMP; is strictly bounded: MP; < aMPj <
max(MP1;)

These properties tell us that we can take any prefix of 7 (inducing the special case
of the entire length of T'), and the left-discord reported by the Left-aMP will be the
same as that reported by the Left-MP.

In Fig. 6 bottom we show the other parallel vector that accompanies 7" and the Left-
aMP;. The Pruned Vector tells us which subsequences could not be the left-discord,
and hence do not need to be processed. At initialization time, this vector is set to all
‘I’s, indicating that all subsequences must be processed. However, as we process the
data, we may be able to “peek into the future” and cheaply determine locations that
could not be a discord, and flip their corresponding bits to ‘0.

At the ith location, the processing can be divided into two independent steps, back-
ward processing and forward processing.

5.1.1 Backward processing

The main task of backward processing is to discover whether the current subsequence
T;.itm—1 1s the left-discord, for which the naive way would be to compute its nearest
neighbor distance to any subsequences in 7';.;.

However, note that in general we may not need to find the nearest neighbor, any
neighbor whose distance is less than the Best-So-Far will disqualify the current sub-
sequence from being the discord. This suggests an early abandoning scheme that we
can optimize with the two following observations:

e Instead of incrementally searching from the beginning, we should expect to be able
to abandon earlier if we search backwards from the ith location. The reason this is
true is that the patterns can drift over time. In other words, the pattern most likely

@ Springer

638 Y.Luetal.

to be similar to the current subsequences is generally the subsequence just before
the current subsequence.?

e The MASS algorithm is optimized for queries with powers of two length. For
example, using the machine that performed all the experiments in this paper, we
find that a MASS search with a query of length 512, takes 0.025 s for a time series
of length 524,288 (i.e., 219). But if we delete a single point to get a 524,287, it takes
0.177 s. This suggests we should attempt to construct a backward search algorithm
that is comprised mostly or solely of such p™€ length queries.

These two observations suggest an algorithm. We should look backwards at the
prefix that is the next power-of-two longer than m. If that yields a neighbor that is less
than the Best-So-Far (BSF) we are done, we simply place that value in aMP; as our
approximation. If that was not the case, we double the length of the prefix to two times
the next power-of-two longer than m, and try again. We continue to iteratively double
until we find a nearest neighbor distance that is less than the Best-So-Far, or until our
prefix includes the full span back to the beginning of 7'. In that latter case, we use the
nearest neighbor distance to update both the Best-So-Far and aMP;.

5.1.2 Forward processing

In the forward processing step, we attempt to discover and prune subsequences that
cannot be left-discord. If we take the current subsequence and compare it to the suffix
of T, that is, to Tjyp., (the search must start at i + m to avoid self-match), any
subsequence that is less than the Best-So-Far distance to the current subsequence can
be pruned (have its corresponding bit in the Pruned Vector set to ‘0’).

In principle, we could do this search from i + m to the end. However, the two
observations in the previous section still apply. While the next few cycles may be
similar and yield a good pruning rate, over time the patterns tend to drift and the
pruning rate falls. The combination of a long expensive similarity search and the
lower pruning rate means that the forward step may not “pay” for itself. So instead,
we can look forward a limited amount, say four times the next power-of-two longer
than m.

After completing both the backward and forward processing, the algorithm incre-
ments the current pointer from i to the next index which has a ‘1’ in the Pruned Vector,
and repeats the two processing steps.

5.2 Formal pseudocode for DAMP

Here we give the pseudocode shown in Table 1 to formalize the intuition of the previous
sections. For ease of explanation, we first consider only the batch case.

In lines 1 and 2 we initialize two vectors that are essentially the same length as
the time series 7', but are actually of length n—m + 1. These are PV (Pruned Vector),
a Boolean vector that indicates which indices can be dismissed without evaluation,

2 This observation is true for heartbeats, gaits, machine cycles etc. One exception is for events tied to a
cultural calendar. For example, for taxi demand or electrical power demand, the most similar day to any
given day, is not the previous day, but the same day one week earlier.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 639

Table 1 The main DAMP algorithm

Function: DAMP (T, m, spIndex)
Input: T: Time series
m: Subsequence length
spIndex: Location of split point between training and test data

Output: aMP: Left approximate Matrix Profile

1 [PV = ones(l,length(T)-m+l)

2 |aMP = zeros(l,length(T)-mt+l)

3 |IBSF =0 // The current best discord score
4 |// Scan all subsequences in the test data

5 |For i = spIndex to length(T) - m + 1

6 If NOT PV: // Skip the pruned subsequence

7 aMP; = aMPi-;

8 Else

9 [aMPi, BSF] = BackwardProcessing (T, m, i, BSF)
10 PV = ForwardProcessing(T, m, i, BSF, PV

11 |return aMP

and aMP, which is the approximate Matrix Profile we wish to compute. The current
highest discord score encountered during execution is stored in the BSF, initialized to
zero in line 3.

In lines 5 to 10, we iterate through all subsequences of length m in the test data. In
each iteration, we first determine whether the current subsequence was pruned, i.e.,
whether it is marked as O in the PV (line 6). If yes, we assign the discord score of the
previous subsequence to the current subsequence and then skip to the next subsequence
(line 7). If the current subsequence was not pruned, we must process it. In line 9 we
call BackwardProcessing to calculate the discord score of the current subsequence. In
particular, if the backward search finds a value higher than the current highest discord
score (BSF), BackwardProcessing returns the exact score of the current subsequence
and updates the BSF; otherwise, BackwardProcessing returns an approximate score
of the current subsequence and does not update the BSF. Note that while this score is
approximate, it is bounded between the true score and the current BSF'.

At this point we have completely processed the current location. However, before
we increment our loop index to process the next location, we take a brief digression.
We will use the current subsequence to look “forward”, finding any subsequences
ahead of it that have a distance to it that is less than the current BSF. It is easy to see
that any such subsequences could not be a better discord than the current BSF, as when
they do BackwardProcessing, they would find the current subsequences to be close
enough to disqualify them. This observation allows us to prune these “near-enough”
neighbors of the current subsequence. Concretely, line 10 invokes ForwardProcessing
to find out the subsequences that can be pruned within a specific range in the future
(if any), and their corresponding vectors are marked as 0 and recorded in the Pruned
Vector PV. Finally in line 11 we return the left approximate Matrix Profile computed
by the DAMP algorithm.

@ Springer

640 Y.Luetal.

Table 2 DAMP backward processing algorithm

Function: [aMPi, BSF] = BackwardProcessing (T, m, i, BSF)
Input: T: Time series
m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
Output: aMP;:Discord value at position 1
BSF': Updated highest discord score so far
aMP; = inf
lprefix = 2”nextpow2(m) // Initial length of prefix
While aMP; > BSF
If the search reaches the beginning of the time series
aMP; = min (MASS (T1:i, Ti:i+m-1))
If aMP; > BSF // Update the current best discord score
BSF = aMP;
break
Else
aMP; = min (MASS (Ti-prefix+1:1, Ti:i+m-1))
If aMP; < BSF
break // Stop searching
Else // Double the length of prefix
prefix = 2*prefix
return aMPi, BSF

0 J o U W N

= = = B = = ©
o s W N R o

Table 1 provides a high-level overview of how the DAMP algorithm works. Let us
now “zoom in”” and look at the two core subroutines of DAMP, BackwardProcessing
and ForwardProcessing. We begin with Table 2 to explain backward processing, whose
intuition we laid out in Sect. 5.1.1.

Inline 1 we begin by initializing the discord score of the current query at position i to
positive infinity. Then in line 2 we specify the initial length of the backward processing
and store it in the variable prefix. We employ 2 nextpow2(m) to define this initial length.
Specifically, when we feed the subsequence length m into 2" nextpow?2(m), it will return
the smallest power of 2 greater than m. Recall that we are doing this because MASS
is significantly faster when the length of the time series is a power of two. Since we
are going to do a “piecewise” search of the time series that precedes the subsequence
being processed, it makes sense to make these pieces be a power of two in length.

The loop in lines 3—14 evaluates the exact or approximate discord score of the
current query. Here we adopt the idea of “iterative doubling”. At the beginning, we
find the nearest neighbor of the current query in the initial length prefix and save the
distance between the current query and the nearest neighbor into aMP; (line 10). If
this distance is lower than the current highest discord score, this means that we find
a nearest neighbor for the current query within prefix that is more similar than the
current discord and its nearest neighbor, so it cannot be a discord, and the iteration
terminates (lines 11-12). However, if the distance between the query and its nearest
neighbor aMP; is higher than the current highest discord score BSF, we double the

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 641

T; .
T.'-O/T.\.'

izitm-1

Left-aMP 09081112 - | - | -

Current Subsequence ,/‘\.

Look back this far, to try to find a
r_subsequence that will disqualify Current
Subsequence from being the Discord...

X
" If not found, double the length and look back this far..
®

" If not found, double the length and look back this far..

Fig. 7 A visualization of the iterative doubling search policy used in lines 10-14 of Table 2. See also Fig. 6

length of the backward processing and continue the search in the next iteration (lines
13—14). This idea is visualized in Fig. 7.

We keep iteratively doubling until we compute a score smaller than the BSF within
the range prefix, or search to the beginning of the time series 7. If the search gets to
the beginning of the time series, we first find the nearest neighbor of the query from
position 1 to i and store the distance to the nearest neighbor in aMP; (lines 4-5). After
that, we will check whether aMP; is still larger than BSF (line 6). If yes, this means
that we cannot find a nearest neighbor that is similar enough to the current query, and
clearly, the current query is the new discord. In this case, we will update the highest
discord score and break out of the loop (lines 7-8). Finally, line 15 returns the result
of backward processing, the score of the current query aMP;, and the current highest
discord value BSF'.

Note that if the search reaches the very beginning of the time series, our computation
is performed in the global region (from 1 to i), not in the local region prefix, in which
case the discord score of the current query aMP; is an exact value; whereas if our score
is computed in the local region prefix, aMP; is an approximate value, but bounded
between the true score and the current BSF.

If we just use the backward processing step (line 9 of Table 1), then we have a
fast online algorithm to compute the aMP. However, the use of forward processing as
outlined in Table 3 can speed up the processing by at least a further order of magnitude.
This is the algorithm whose intuition was laid out in Sect. 5.1.2.

The purpose of forward processing is admissible pruning. That is, if there is evidence
that some future subsequences cannot be a discord, we will ignore these subsequences
and no longer perform expensive processing on them. To achieve this in line 1 we
need to define lookahead, the range of how many subsequences to peek ahead. Here
we also use 2 nextpow2(m), i.e., the smallest power of 2 larger than the subsequence
length m. After that, we need to determine whether the forward search exceeds the
range of T to ensure that our processing is safe and there is no out-of-bounds problem
(line 2). Line 3 defines the start position of the forward search, namely start. To avoid
self-matching, we set the start to the position after the end of the query, that is, i + m.
Line 4 explicitly defines the end position of the forward search, and since the length
of our forward search is lookahead, or n. We can easily conclude that end is start +
lookahead — 1. In line 5, we calculate the distance profile D; by calling the MASS
function.

@ Springer

642 Y.Luetal.

Table 3 DAMP forward processing algorithm

Function: PV = ForwardProcessing(T, m, 1, BSF, PV)
Input: T: Time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

PV: Pruned Vector
Output: PV: Updated Pruned Vector
lookahead = 2”nextpow2 (m) // Length to “peek” ahead

If the search does not reach the end of the time series
start = 1 + m
end = min(start + lookahead - 1,length(T))
D{ = MASS (Tstart:end, Ti:i+tn-1) // Definition 4
indices = all indices in D] with values less than BSF

indices = indices + start - 1 // Convert indices on distance
//profile to indices on time series

PVindgices = 0 // Update the Pruned Vector
Olreturn PV

H O 0 J o U w N

The distance profile D; here is slightly different from the one described in Definition

4 because it is computed under a specific range. That is, D; stores the distance between
the current query and all subsequences in the range of lookahead (from start to end)
instead of the distance between the current query and all subsequences of 7. Once
the distance profile D; is constructed, we can use it for pruning. Suppose there exist
subsequences in the future that are more similar to the current query than the discord
to its nearest neighbor. In that case, these subsequences cannot be a discord, so we can
prune them. Therefore, we can use the current highest discord score BSF as a criterion
to find all the indices in the distance profile with values lower than the BSF (line 6).
Since the indices on the distance profile start at 1 and are not aligned with the true
indices of the time series, we need an additional step in line 7 to convert the indices on
the distance profile to the true indices of the subsequence. After line 7 we get a list of
indices for the subsequences that can be pruned out. The Pruned Vector values at the
corresponding positions specified in the list indices are set to 0 (line 9), indicating that
when later iterations process the subsequences listed in indices we can simply skip
them. At last, line 10 returns the updated Pruned Vector PV.

The forward processing algorithm has exactly one parameter, the lookahead length.
How should we set this? In Fig. 8 left we sketch out the tradeoffs involved. A longer
lookahead can prune more subsequences, but this comes at the cost of more expensive
similarity searches. The good news is that the speedup is dramatic, that the sweet
spot is early (given us effectively online detection), and that the exact value of the
lookahead parameter is not too critical. All datasets we examined exhibit this “U-
shaped” behavior, although the similarity searches. As Fig. 8 right shows, this intuition
is borne out by experiment. The height of the base of the “U” can be lower (smooth
and highly periodic data) or higher.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 643

Time saved by pruning 800

initially grows quickly, but

The empirical curve
matches the sum of two

then suffers from @ .
diminishing returns. 5 theoretical curves.
g 2
= The time required for @
MASS grows almost E
linearly (actually nlog,(n))
-—
Increasingly long lookahead — 0 Increasingly long lookahead — 1024

(multiples of 1024)

Fig. 8 Left The theoretical lookahead tradeoff is based on two factors. As the lookahead grows, the pruning
rate becomes greater, but the cost of the similarity search increases. Right The empirically measured
effectiveness of forward processing (on random walks of length 220y i indeed the sum of the two factors.

Here m = 1,024

Finally, this is a good place to mention an important caveat about interpreting a Left-
aMP that is computed using forward processing. Failure to understand this caveat may
lead a user to think the aMP is indicating an anomaly where there is none. Consider
Fig. 9 which compares the results of Brute Force and DAMP with and without forward
processing for a dataset from the KDD Cup 2021.

As can be seen from Fig. 9, the discord scores calculated by different approaches
look different for the same data set. So how should we interpret these results?

First, the Brute Force illustrated by the blue curve is identical to the one shown in
Fig. 22. It does not have forward and backward processing, and for each iteration, it
searches from the current position to the beginning of the time series. Therefore, each
value on Left-MP generated by Brute Force is an exact value. That is, for any of the
peaks on Left-MP, there could be physical meaning that we can interpret.

All three approaches are only guaranteed to
agree at the top-K (here, K = 1) locations

Brute Force

High approximate values
caused by early abandon
N

DAMP: No forward processing

N Long “runs” of admissibly
pruned calculations
| N
DAMP: Forward processing v

133_UCR_Anomaly_lInternalBleeding14

L L L L L L L |
0 1000 2000 3000 4000 5000 6000 7000 8000

Fig. 9 Bottom-to-top top-1 Left-aMP computed with forward processing. The top-1 Left-aMP computed
without forward processing. The Left-MP computed without backward and forward processing. Both top-1
Left-aMPs have a secondary peak at around 6500, which seems to indicate an anomaly, whereas in fact
they are caused by early abandon and are not meaningful. The top-1 Left-aMP computed with forward
processing produces long constant runs that indicate that the algorithm admissibly skipped those regions.
Here m = 180

@ Springer

644 Y.Luetal.

By contrast, when using both DAMP algorithms to search for the top-k left-discords,
the k highest peaks do correctly show the location and strength (the height of the peaks)
of the top-k left-discords (in Fig. 9, k = 1). However, the remaining k + 1 peaks should
not be assumed to indicate slightly smaller anomalies. This is because both DAMP
methods perform the iterative doubling backward search, yielding either approximate
or exact discord scores. Whether the score is exact or approximate depends on two
cases, which we detailed in Sect. 5.2 and will not repeat here. In brief, for most itera-
tions of DAMP, the backward processing is terminated before it reaches the beginning
of the time series, thus producing approximate scores on Left-aMP that are larger than
the exact scores. Therefore, most peaks on Left-aMP except for the top-k ones are
probably "false positives" due to this early abandoning scheme. For example, the Left-
aMPs represented by the orange and green curves in the figure both have a secondary
peak at around 6,500, which seems to indicate an anomaly at that location; however,
by comparing it to the Left-MP results shown by the blue curve, it is clear that the
scores at around 6,500 are actually below average. Thus, these secondary peaks cannot
be interpreted as anomalies.

Further, we can observe a lot of piecewise constant regions on the Left-aMP gener-
ated by DAMP using forward processing, i.e., the green curve. They simply indicate
regions that were pruned by encountering a matching subsequence that was below the
current Best-So-Far and had no practical meaning. For example, at the end of the green
curve, there are two long constant plateaus, one of which has a relatively high value.
As we can see by comparing that region to the corresponding region in the topmost
blue curve, we should not assume that there are any anomalies in that region.

Again, to summarize: The top-k peaks of the top-k Left-aMP should be interpreted
as having the correct values of top-k discords of T, but the remaining values of the
top-k Left-aMP have no meaningful interpretation.

5.2.1 The time and space complexity of DAMP

Since all computation results are stored in a one-dimensional vector of size n, the space
complexity of DAMP is just the size of the original data, O(n). The worst-case time
complexity is O(nlogn) per datapoint ingested, the time required to do a full similarity
search with MASS (Mueen et al. 2017). However, empirically, on diverse real-world
datasets, more than 99.999% of the times we enter the loop in line 3 of Table 2 we will
break out in the first iteration (line 12), making the algorithm effectively O(mlogm)
per datapoint ingested, and linear in the time series length. Figure 24 shows this linear
assumption strongly holds up to at least n = 230,

5.3 DAMP variants
There are more general cases that can be easily handled by modifying the basic DAMP,
for example:

e The algorithm as explained in Table 1 is a batch algorithm. To make it an effectively
online algorithm, we simply must reduce the size of the lookahead (Table 3, line 1)
to the largest delay we are willing to accept (including possibly zero delay).

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 645

e The algorithm as explained in Table 1 computes the Left-aMP, however we can
modify it to compute the classic Full-aMP. If the backward processing step reaches
the beginning of the time series, instead of updating the BSF, we do the same type
of iterative doubling search, but forward from the current index (not to be confused
with forward pruning search in Table 3). We have made this code available at (DAMP
2022), but we do not consider it further here, due to page limits.

e It may be useful to limit how far back the backward processing can look, essentially
redefining anomalies as “the subsequence with the maximum distance to any of the
X subsequences before it”. We call this variant the X-Lag-Amnesic DAMP.

e Instead of searching an ever-growing amount of previously seen data in the Back-
wardProcessing step, we can search a fixed pool of explicit training data. For
example, an engineer could curate a dataset that contains all the allowable behaviors
for a manufacturing process (i.e., the “Golden Batch™).

There are several other useful variants that we have considered, and we suspect the
community will quickly exploit the scalability of the basic DAMP algorithm to invent
further variants.

Below we give more details about the two useful variants of DAMP, X-Lag-Amnesic
DAMP and Golden DAMP mentioned above. To help the reader better understand how
these two variants work, let us start with the most basic variant, namely, Classic DAMP.

The Classic DAMP algorithm illustrated in Fig. 10 top was already discussed in
Sects. 5.1 and 5.2. It is worth noting here that for Classic DAMP, all data collected
before the current time 7'1.;_1 are our training data by default, and our backward search
is executed on this progressively growing training data. This means that to calculate
the discord score of the current subsequence T';.jm—1, Classic DAMP searches all the
way forward from position i by the iterative doubling process, and, in the worst case,
all the way to the beginning of the time series, i.e., T1.;. Therefore, as we process more

Classic DAMP: Look all T .
the way to beginning « . * '/T,}’ ‘ T
of time (if necessary) 0.0/0.0 09/08/11/12 - - | - | - Left-aMP
t I
1|1 1]1/1/1/1/0/0 1 Pruned Vector
—

X-Lag-Amnesic DAMP: Look

back only as far as the it" — X . T .
data point (if necessary) * . * Tiivm-1 ° T
0.5/1.0/0.8 06/07/10/11] - [-[-]- X-Lag-Amnesic Left-aMP
1 X |
111 1/1/1/1 1 0 /0 1 Pruned Vector
—
Golden DAMP: Look all only at a fixed curated
time series, that contains all the allowable T .
behavior of a system. . './T‘\. . T
ism-1
12| - - = - -
. . . J Golden Left-aMP
t)
Golden Batch 1. 1/0/0 1 Pruned Vector
—

Fig. 10 Three variants of DAMP. Top Classic DAMP Middle X-Lag Amnesic DAMP bottom) Golden DAMP

@ Springer

646 Y.Luetal.

and more data points over time, our backward search may also require more and more
time.

As we shall see in our experimental section, empirically this is not a problem on
the dozens of datasets we consider. Nevertheless, X-Lag-Amnesic DAMP and Golden
DAMP allow us to provide a strict bound on the worst-case behavior, in addition to
possessing other useful properties.

5.3.1 X-lag-amnesic DAMP

In some settings we may require an algorithm that can show us the most unusual
behavior in just the last few minutes, days, months, or years. In that case, a DAMP
variant that constrains how far back the backward search can look is required. Formally,
we refer to such a DAMP variant as X-Lag-Amnesic DAMP.

Compared with Classic DAMP, the time overhead of X-Lag-Amnesic DAMP is
bounded and controllable. This is because it only cares about what happened in a fixed
unit of time before the present, and its calculation is based on fixed-size and real-time
updated training data. For example, if we only need to find anomalies that occurred
in the most recent month, X-Lag-Amnesic DAMP will perform an iterative doubling
search in the most recent month’s data rather than searching through all past data.
Consequently, the time cost of X-Lag-Amnesic DAMP is bounded by the length of X
as opposed to increasing gradually.

In addition, X-Lag-Amnesic DAMP can better deal with concept drift. For time
series in some domains, their patterns change over time and the dependence between
their data weakens as the distance increases, at which point it makes no sense to
consider data that is too far from the present. For example, for many batch processes
in the food and beverage industry the time series patterns are known to drift over
each day, due to changes in ambient temperature and humidity. A pattern that happens
during the nightshift may be anomalous because the process is “running hot”. That is
to say, it is exhibiting behaviors that would be normal if it was in the middle of a hot
day, but these behaviors are anomalous given that they are observed in the cool of the
night. It might be obvious if we compare only to the patterns in the previous hour or
so, but it will not be obvious if we allow comparisons back to the previous midday.
Obviously, since X-Lag-Amnesic DAMP focuses only on what happened recently, it
can avoid such issues caused by concept drift. By contrast, Classic DAMP is more
vulnerable to this, as its backward search may cover all data that occurred before
the present, and all these data have the same weight for the discord score calculation
regardless of their proximity to the current subsequence.

Figure 10 middle describes how the X-Lag-Amnesic DAMP works. Here we intro-
duce a new parameter X, the maximum length that the backward processing algorithm
can look back, specified by the user as needed. The framework of the X-Lag-Amnesic
DAMP algorithm is the same as Classic DAMP; it retains the forward and backward
processing steps, in which the forward processing is identical to Classic DAMP. The
only difference between X-Lag-Amnesic DAMP and Classic DAMP is that for the
current subsequence being processed T'j:j+;,—7, we only perform a backward search
on the X data points before it, not on all the previous data. However, the search is
still iteratively doubled: it terminates either when it finds the nearest neighbor with a

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 647

Table 4 Pseudo code snippet for X-Lag-Amnesic DAMP

If Starting position of the search < max(i-X,1) Or X < prefix
If i - Xx<1
aMP; = min (MASS (Ti1:1i, Ti:i+m-1))
Else
aMP: = min (MASS (Ti-x:i, Ti:i+m-1))

g w N

distance smaller than the BSF or when it reaches the beginning of X. Therefore, to
make X-Lag-Amnesic DAMP work, we simply need to change lines 4-5 of Table 2
for Classic DAMP to the five lines shown in Table 4.

In line 1 we added two new criteria for search termination, i.e., reaching the begin-
ning of the time series 7';_yx.;, or the maximum length of looking back X is less than the
initial length of the iterative doubling search prefix. In both cases, we do not iteratively
double our search anymore. We have reached the limit of the history we think should
inform our decision. Instead, we only search for the nearest neighbor of the current
subsequence in the range i—X to i (lines 4-5). Moreover, there is a special case where
the number of data points that arrived has not yet reached X (i < X + 1). In this case,
we can only conduct the backward search in all available data T';.; as shown in lines
2-3.

Others works have noted the utility of amnesic anomaly detection (although not
using that phrase), including the SAND algorithm of Boniol et al. (2021b). However,
SAND requires significant effort to build a reference dataset, and the setting of several
unintuitive parameters.

5.3.2 Golden DAMP

Recall that Classic DAMP has a parameter called spIndex, which sets the location
of the split point between the training and test data in the initial state. When Classic
DAMP processes a time series, it assumes that the data before spindex, T 1.spindex—1
are normal, which may lead to three issues. First, this causes the algorithm to ignore
the potential anomalous behavior present in T'1.gp/ndex—1, Tesulting in certain false-
negative results. Second, this approach may have the algorithm wasting time searching
redundant data. It is possible that the patterns in 7'1spjndex—1 are highly redundant, such
as 1000 heartbeats that are essentially identical. If the heartbeats all have the same
pattern, it would suffice for the algorithm to take just one of them to learn®; there
is no need to consider the same pattern 1000 times, which will waste a lot of time.
Further, it may be difficult for T'1.spimgex—1 to contain every normal pattern, which can
cause the algorithm to incorrectly identify normal behavior that does not appear in
T'\:spIndex—1 as an anomaly. For example, if T'1.spmdex—1 only contains data on the solar
zenith angle during the day, the algorithm may incorrectly identify normal solar zenith

3 Actually, using exactly one heartbeat (or pattern more generally), may make the downstream algorithms
brittle to the choice of the starting point of the heartbeat. To bypass this issue, we always extract two
consecutive beats.

@ Springer

648 Y.Luetal.

angles at night as anomalies. These potential problems can undermine the accuracy
and efficiency of the algorithm.

Golden DAMP is our proposed solution to the above three problems. It processes
each subsequence not by referring to information that occurred before the current time,
but to user-defined, curated, out-of-band information, denoted as Golden Batch. The
Golden Batch implicitly defines every possible legal behavior, such as every possible
dance move, every normal heartbeat, etc. It includes all the things the user expects
to happen in the system. With this correct and comprehensive priori knowledge, the
algorithm will be able to make more accurate and efficient decisions.

This idea of creating a curated collection of data that spans the space of all pos-
sible acceptable behaviors is well known in the process industry (Yeh et al. 2019).
For example, food/beverage engineers will often set aside one day to create a recipe
under all combinations of conditions encountered: under cool conditions, under hot
conditions, with carbonated infeed, with flat infeed etc. However, the use of these
batch profiles is typically human comparison of the evolving process to the Golden
Batch(es) (Yeh et al. 2019). Here we are interested in automatic anomaly detection.
In addition, note that while the Golden Batch data can be hand curated, it can also be
created automatically by various numerosity reduction algorithms (Imani et al. 2020;
Yeh et al. 2021).

Further note that the execution time of Golden DAMP is also bounded because
its training data is the Golden Batch with a fixed size. Therefore, as we explained in
Sect. 5.3.1, the cost of Golden DAMP’s backward search is proportional to the size of
Golden Batch.

Figure 10 bottom illustrates the idea of Golden DAMP. When processing the current
subsequence T';:;—n.+1, Golden DAMP no longer looks backward in the time series T’
but toward the Golden Batch, a vector containing all acceptable patterns. We still use
the iterative doubling search policy shown in Fig. 7 for Golden Batch. The search keeps
iteratively doubling until it finds the nearest neighbor within the prefix whose distance
from T';.;—+1 is less than the BSF, or it gets to the beginning of the Golden Batch. After
computing the approximate or exact discord score for position i, we invoke the same
forward processing procedure as in Classic DAMP to disqualify future subsequences
that are unlikely to become a discord.

The implementation details of Golden DAMP are given in Tables 5 and 6. Since
most of them are the same as Tables 1 and 2, we will highlight the parts that we
changed.

The main framework of Golden DAMP is shown in Table 5. Golden DAMP has
a new input, GoldenBatch, a long vector that joins all normal patterns together. As
with Table 1, the algorithm starts with initialization in lines 1-3. Since we already
have the training data GoldenBatch, we no longer need to use the first splndex-1 data
of the time series 7. As a result, in line 5 we adjust the processing range of Golden
DAMP from T gpjndex:n—m+1 10 T 1:p-m+1. After that, within the loop, lines 6-7 decide
whether to process the current subsequence T';.; _;;+1 according to the value in the
pruned vector PV. If the subsequence at position i needs to be processed, we first
invoke BackwardProcessing in line 9 to calculate the discord score for position i and
update the current highest discord value, and then call ForwardProcessing in line 10
to determine the subsequences to be pruned in the future. Finally, lines 5-10 iterate

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 649

Table 5 The main golden DAMP algorithm

Function: Golden DAMP (T, m, GoldenBatch)
Input: T: Time series
m: Subsequence length

GoldenBatch: A long time series with all possible normal
patterns

Output: aMP: Left approximate Matrix Profile

1 |PV = ones(l,length(T)-m+l)

2 |aMP = zeros(l,length(T)-m+1)

3 |BSF =20 // The current best discord score

4 // Scan all subsequences in the test data
5 |[For i = 1 to length(T) - m + 1

6 If NOT PV: // Skip the pruned subsequence

7 aMP; = aMPi-g

8 Else

9 [aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch)
10 PV = ForwardProcessing (T, m, i, BSF, PV

11 |[return aMP

Table 6 Golden DAMP backward processing algorithm

Function: [aMPi, BSF] = BackwardProcessing (T, m, i, BSF, GoldenBatch)
Input: T: Time series
m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
GoldenBatch: A long time series with all possible normal
patterns

Output: aMP;:Discord value at position i

BSF: Updated highest discord score so far
1 |aMP; = inf
2 |prefix = min(2"nextpow?2 (m),length (GoldenBatch))
3 |[While aMP; = BSF
4 If the search reaches the beginning of the Golden Batch
5 aMP; = min (MASS (GoldenBatchi:end, Ti:i+m-1))
6 If aMP; > BSF // Update the current best discord score
7 BSF = aMP;
8 break
9 Else
10 aMP; = min (MASS (GoldenBatchend-prefix+i:end, Ti:itm-1))
11 If aMP: < BSF
12 break // Stop searching
13 Else // Double the length of prefix
14 prefix =2*prefix
15 |return aMP;, BSF

@ Springer

650 Y.Luetal.

through each subsequence in T'1.,—,,+1 and line 11 returns the Golden Left-aMP. In
particular, the ForwardProcessing here is identical to that of Classic DAMP, so we do
not repeat it below. However, we partially changed BackwardProcessing from Table
2 of Classic DAMP, so we give Table 6 detailing the backward processing for Golden
DAMP.

Table 6 illustrates the backward processing algorithm of Golden DAMP. As the
backward search is performed on top of Golden Batch, we need to enter GoldenBatch
into the algorithm. The first two lines of Table 6 are still the initialization phase. Line
1 is the same as in Table 2, initializing the discord score of the current subsequence
to positive infinity. In line 2 we define the initial length of the iterative doubling
search prefix. Here we set it as the lower bound of 2"*Po%2(") and Golden Batch
size to prevent possible array out-of-bounds problem at line 10. Then in the loop in
lines 3—14, we perform the iterative doubling search, which starts from the end of
Golden Batch and goes backwards. We keep searching in GoldenBatchend_prefix+1:end
until we find the nearest neighbor whose distance from the current subsequence is
less than BSF (line 11) or reach the beginning of Golden Batch (line 4). Specifically,
if we find the nearest neighbor within the range prefix, we assign the approximate
discord score of the current subsequence to aMP; and stop the search (lines 10-12);
if not, in lines 13 and 14 we double the length of prefix and continue the search in
GoldenBatchenq-prefiv+1:end- 1f the search finally reaches the beginning of Golden Batch
(line 4), we first calculate the exact discord score of the current subsequence using
all the data in GoldenBatch (line 5), and then determine whether the current highest
discord score BSF needs to be updated (line 6). If the discord score of the current
subsequence is still greater than BSF, it means that the subsequence at position i does
not have a nearest neighbor similar enough to it in the Golden Batch and it is a discord,
at which point we should update the current highest discord score BSF in line 7.

This discussion of Golden DAMP is a good place to highlight an interesting and
important property of the general DAMP algorithm. Virtually all other TSAD algo-
rithms, including USAD (Audibert et al. 2021), AE (Audibert et al. 2021), Telemanom
(Hundman et al. 2018), NORMA (Boniol et al. 2021a) and LSTM-VAE (Park et al.
2018), exist only as the implicit equivalent of Golden Batch algorithm. Here the train-
ing data given to the algorithm acts as the Golden Batch. This can be a problem if the
period of the data changes, and we wish to be invariant of that. For example, a healthy
human heartrate can vary between about 40 to 120 beats per minute (bpm). If a batch
algorithm is trained on one heartrate, it may have difficulty generalizing to a different
heartrate. In contrast, classic DAMP will be unaffected, because at every time step it
is using all previously seen data as training data. Thus, so long as the heartrate change
is not instantaneous, it can adjust to the new periodicity.

To illustrate this, in Fig. 11 we perform an experiment comparing classic DAMP
with Telemanom (Hundman et al. 2018), on a dataset that has a changing periodicity.

In a sense, the news is even worse for Telemanom than Fig. 11 suggests. The
algorithm has a stochastic element. We ran it three times, and this is the best of the
three runs. In addition, note that this is an offline experiment. However, as we discuss
in Sect. 6.3, all algorithms except DAMP have a period between the time they are
given the training data, and the time they are ready to begin monitoring (we call this

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 651

NN

Dataset: prcpABP13960m 4
Zoom-in

0 4,500

Fig. 11 Top A snippet of arterial blood pressure (ABP) data from a healthy patient undergoing a tilt-table
test. There are no biological anomalies in the dataset, but near the end there is a short disconnection artifact
(highlighted in green). Middle If we train Telemanom on the prefix of the snippet, before the table was
tilted, it has a hard time adjusting to the post-tilt increased heartrate. It flags eight anomalies (highlighted
in yellow), all false positives, and fails to discover the single true anomaly. Bottom In contrast, because
DAMRP is using all previously seen data, it can adjust to the changing heartrate, and it strongly peaks at the
location of the true anomaly. Here m = 33

“linger”). Thus, in a real-time situation, there would be a period of a few tens of
seconds, for which Telemanom would be undefined.

These observations do open an interesting issue, should we be invariant to changes
in periodicity? This is a domain dependent question. Most biological signals can vary
innocuously within a certain range. For example, heartbeats, respiration, gait cycles
etc. In contrast, cycles guided by the circadian progression of the Earth’s rotation,
traffic patterns, electrical power demand, web traffic etc., will not be expected to have
a change of periodicity, and any apparent change of periodicity probably warrants
flagging as an anomaly. The Golden Batch implementation of DAMP allows the user
to create a curated dataset that reflects the domain constraints. For example, suppose
a user is given normal heartbeats at say 60 bpm. If she wants to be invariant to the
heartrate varying between say 50 and 70 bpm, she can just create such rescaled time
series and add them to her Golden Batch.

5.4 Multidimensional DAMP

The previous sections have shown how to find anomalies in a one-dimensional time
series. We believe that in many cases, anomaly detection of all the one-dimensional
data is sufficient for user demands. For example, in a hospital setting, a doctor may
monitor a patient’s ECG, blood pressure, and respiration. Most life-threatening situa-
tions will show up in at least one of the above. For example, a myocardial infarction,
will first show up in the patient’s ECG, septicemia will first show up in the patient’s
blood pressure, and tracheomalacia will first show up in the patient’s blood respiration.

However, there are also special cases where anomalies occur in only two or more
dimensions. For example, in the low-latitude Pacific West Coast region, typhoons
accompanied by heavy precipitation occasionally make landfall in summer. In order
to identify such unusual weather events, it is insufficient to monitor only precipitation
or wind speed. This is because these areas may have strong winds but sunny weather,
or extreme rainfall but still air. As a result, we need to combine wind speed and
precipitation as two-dimensional data to find out which day has both precipitation and

@ Springer

652 Y.Luetal.

wind speed anomalies. If such anomalies can be identified in two dimensions, there is
a high chance of typhoon weather on that day. Therefore, it is necessary to generalize
our DAMP algorithm to support searching in high-dimensional spaces. We refer to the
DAMP algorithm for multidimensional data anomaly detection as multidimensional
DAMP. We note that there are several ways in which the information from multiple
time series can be combined. This issue is perhaps worthy of a detailed investigation.
Here we show one simple and obvious method and demonstrate that DAMP can easily
support it.

The basic idea of multidimensional DAMP is the same as the one-dimensional
DAMP we introduced in Sect. 5.1, which retains the procedure of backward iterative
doubling and forward pruning. The difference between them is reflected solely in the
calculation of the discord score.

Figure 12 illustrates how the multidimensional DAMP calculates the discord score
for position i. Let T4 be the time series of dimension A in a two-dimensional time
series, while T2 corresponds to dimension B, and the length and frequency of T
and T2 are equal. For position i, we first compute the distances between the current
subsequence of 74 and T8 and the subsequences before position i in their respective
dimensions, forming two distance vectors DA, and D?; (see Definition 4). After that, we
add the elements of the two distance vectors two by two according to their positions to
produce anew vector MD;, which contains the distance information in both dimensions
A and B. Finally, the minimum value on MD; is the discord score at position i. As the
algorithm progresses, the BSF' continuously tracks the current highest discord score
that combines information from both dimensions.

Tables 7 and 8 give the implementation details of multidimensional DAMP. Here we
only demonstrate the two-dimensional version, however the reader can easily modify
it to work with higher dimensional data. Since the basic steps of multidimensional
DAMP and one-dimensional DAMP are the same, the framework of multidimensional
DAMP is identical to Table 1.

Table 7 presents the multidimensional backward processing algorithm. As it is
primarily similar to Table 2, we refer the reader to Sect. 5.2 for more details on the
iterative doubling backward algorithm. Here we only highlight the parts that have
changed. Compared to Table 2, we add two new inputs 74 and 75, the time series in
dimensions A and B. In lines 5 and 10, we change the calculation of the discord score at

7™ o« e 0/774.\0 .
Distance Profile DA, for T 09/ogl11l12] -1 - -
—

TI/Tﬁ‘\. d
Distance Profile D8, for T8 06/22/15 06 - | - - -
P a—

Multidimensional Distance 15/30/26/1.8
Profile MD; for A and B

Current Subsequence "~

Fig. 12 Multidimensional distance profile for position i

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 653

Table 7 Multidimensional DAMP backward processing algorithm

Function: [aMP;, BSF] = BackwardProcessing(T?, T?, m, i, BSF)
Input: T#: Dimension A of the multidimensional time series
T%: Dimension B of the multidimensional time series
m: Subsequence length
i: Index of current query
BSF: Highest discord score so far
Output: aMP;:Discord value at position 1
BSF': Updated highest discord score so far
1 |aMP: = inf
2 |prefix = 2”nextpow2(m) // Initial length of prefix
3 While aMP; = BSF
4 If the search reaches the beginning of the time series
5 aMP; = min (MASS (T?1:i, T®i:i+m-1) + MASS (T%1:i, TPi:i+m-1))
6 If aMP; > BSF // Update the current best discord score
7 BSF = aMPi
8 break
9 Else
10 aMP; = min (MASS (T%i-prefix+1:1, T?i:i+m-1) + MASS (TPi-prefix+1:i, TPi:i+m-1))
11 If aMP; < BSF
12 break // Stop searching
13 Else // Double the length of prefix
14 prefix =2*prefix
15 |[return aMP:, BSF

Table 8 Multidimensional DAMP forward processing algorithm

Function: PV = ForwardProcessing(T?, T%, m, i, BSF, PV)
Input: T#: Dimension A of the multidimensional time series

T2: Dimension B of the multidimensional time series

m: Subsequence length
i: Index of current query
BSF: Highest discord score so far

PV: Pruned Vector
Output: PV: Updated Pruned Vector

1 |lookahead = 2"nextpow2 (m) // Length to peek ahead

2 |If the search does not reach the end of the time series

3 start = 1 + m

4 end = min(start + lookahead - 1,length(T))

5 MD; = MASS (T?start:end, T?i:im-1) + MASS (TPstart:end, T%i:i+m-1)

6 indices = all indices in MD; with values less than BSF

7 indices = indices + start - 1 // Convert indices on distance
8 profile to indices on time series

9 |PVindices = 0 // Update the Pruned Vector

10|/return PV

@ Springer

654 Y.Luetal.

Left-aMP for A

0 500 1000 1500 2000 2500 3000 B0y 2000 4500 5000

M S

Left-aMP for B
5 AWAWAWAWAAAAAAAVAVANANAANANANANY
0 500 1000 ooy 2000 7500 3000 3500 2000 500 5000

Fig. 13 Synthetic time series A and B. Top Synthetic dataset A and its corresponding one-dimensional Left-
aMP. Bottom Synthetic dataset B and its corresponding one-dimensional Left-aMP. Here we set the window
size to be the minimum positive period of the sine wave, i.e., m = 100

position i aMP;. In line 5, to obtain aMP;, we call MASS twice to calculate the distance
between the current subsequence of 74 and T2 and all subsequences before position i
respectively. Next, we add the elements in the two distance vectors returned by MASS
two by two according to the positions to obtain the multidimensional distance profile.
Finally, the minimum value of the multidimensional distance vector is taken as the
exact discord score of position i. Line 10 is similar to line 5. The only difference is that
line 10 only finds the nearest neighbor in the prefixes of 74 and 7% before position i
and aMP; is the approximate discord score for position i.

Multidimensional DAMP also has a similar forward pruning process to that of
one-dimensional DAMP, as shown in Table 8. Compared with Table 3, we need to
only change line 5. In the range of lookahead, the distances between the current
and future subsequences of 74 and T2 are calculated separately. Then the distance
vectors of A and B dimensions are summed to yield a distance vector MD’; containing
two-dimensional information. Our pruning decisions are made based on this two-
dimensional distance vector.

Let us start with a toy data set to understand the difference between multidimen-
sional DAMP and one-dimensional DAMP. The red curves in Fig. 13 illustrate two
synthetic time series A and B. These two time series consist mainly of sine waves.
Specifically, for time series A, the data at positions 3700-3799 (X) are noisier than the
other parts, while for time series B, the data at positions 1700-1799 (Y) are noisier.
If you look closely, you will find that the two time series will have a square wave at
random positions from time to time. It so happens that at positions 2605-2644, both
time series show a square wave simultaneously, which is where our real anomaly lies.
We denote it as Z. We tested the time series A and B with one-dimensional DAMP
and two-dimensional DAMP respectively to see if they could find the true anomaly
Z. Figure 13 also gives the results of performing a one-dimensional DAMP on time
series A and B. It is easy to see by the highest point of the blue curve in Fig. 13 fop that
one-dimensional DAMP is attracted to the noisy sine wave in A and does not notice
the anomaly at position Z. Similarly, as illustrated in Fig. 13 bottom, one-dimensional
DAMP on B also fails to detect the anomaly at Z, instead considers the nosier Y as
the anomaly. Missing information in another dimension, the one-dimensional DAMPs
mistakenly believe that the presence of the square wave at Z is justified because they
observe similar patterns before Z.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 655

Left-aMP for A and B

L I I I I I I I ! I |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 14 Left-aMP generated by two-dimensional DAMP. Here we set the window size to be the minimum
positive period of the sine wave, i.e., m = 100

Next, we combine A and B into a two-dimensional time series and feed it into the
two-dimensional DAMP to see if the results will be different. The Left-aMP generated
by two-dimensional DAMP is shown in Fig. 14. Note that compared with the Left-aMP
generated by the one-dimensional DAMP in Fig. 14, the two-dimensional Left-aMP
captures more anomalies with more “bumps” on its curve. All these bumps can be
interpreted intuitively. For example, when both square and sine waves are present,
or when one of the sine waves is noisier, they are recognized by the algorithm as
a potential anomaly and correspond to a bump in the Left-aMP. What is more, the
position of the highest point of Left-aMP in Fig. 14 corresponds to the coincidence
of two square waves, that is, Z. This is because if you look at the entire time series
of A and B, you will see that the square wave only appears at Z in both dimensions
simultaneously, which cannot be observed at other locations.

We have seen that we can create a synthetic dataset that has an anomaly that can be
discovered only by considering two time series simultaneously. However, can we dis-
cover two-dimensional anomalies in real data? Surprisingly, we are not aware of any
such benchmark dataset. Most datasets in the space are synthetic, or are multidimen-
sional, but have anomalies that are so obvious that it suffices to examine any single
dimension (Audibert et al. 2021; Hundman et al. 2018). However, we can explore
energy grid data published by a consortium of Texas A&M and USC in 2021 (Zheng
et al. 2021), and use out-of-band data to evaluate the returned anomalies. Figure 15
top shows three years of wind speed and relative humidity data from the New York
area between 2018 to 2020 (Zheng et al. 2021).

Figure 15 bottom shows the results of our search on the one-dimensional data of
wind speed and relative humidity, respectively, and the anomalies identified by one-
dimensional DAMP are marked in red. First, for wind speed, the one-dimensional
DAMP reports the constant interval occurring on January 24, 2019, as an anomaly;
however, we do not find any reported climate anomaly in New York State on that date.
That is to say, although the algorithm finds an anomaly with a pattern that is different
from its context, it does not seem to noticeably affect people’s lives. As a result, we
can conclude that the wind speed anomaly is trivial. Second, for relative humidity, the
one-dimensional DAMP identifies the continuous peak occurring on November 23,
2018, as an anomaly. Through a Google search, we found reports of heavy rainfall and
flooding that occurred in New York State on that day (National Weather Service 2019),

@ Springer

656 Y.Luetal.

Wind Speed

Relative Humidity

L
1/1/2018

Three years 31/12/2020

11
S L
D L
g
%) 0.6 :
kel
£ r

B Jan 24th, 2019

01 -

100 Nov 23t, 2018
b -
kel L
S L
=}
T 80
(]
= -
© L
[0]
@ |-

60 — B

Eleven days

Fig. 15 Top Three years of wind speed and relative humidity data for the New York area from (Zheng et al.
2021). Bottom The two corresponding top 2D discord in this dataset. Here m = 1440 (one day in minutes)

which confirms that the anomalies identified in the dimension of relative humidity are
informative and that the one-dimensional DAMP is effective.

However, if we combine wind speed and humidity and search in two dimensions,
will the algorithm give us more interesting results? To investigate this, we took wind
speed as dimension A and relative humidity as dimension B and re-executed this
two-dimensional data using multidimensional DAMP. The results are presented in
Fig. 16. Note that the two-dimensional DAMP reports a different date to either of
the one-dimensional DAMP runs, May 28, 2019. This means that both humidity and
wind speed in New York City showed anomalous patterns on this date. This anomaly
is confirmed by the news “A powerful thunderstorm slammed Staten Island Tuesday
night, pounding the borough with large hail, heavy rain and the threat of a tornado.”
(Silive.com 2022).

We have demonstrated the utility of multidimensional DAMP. However, readers
may wonder if it will pay a large time overhead for it. To investigate this, we used the
data shown in Fig. 15 bottom (wind speed) and Fig. 16 and recorded the time cost of
the one-dimensional and two-dimensional algorithms for increasingly long subsets.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 657

Wind Speed

Dimension A

> 100 May 28, 2019

]

IS

p=}

T 70

[

=

© . .

© Dimension B

A

Eleven days

Fig. 16 Top discord for two-dimensional DAMP. Here m = 1440 (one day in minutes)

700 4
2D DAMP
600 -
500 4
400 +
300
1D DAMP

200

100

Time (seconds)

0 1 million

Data Length

Fig. 17 The scalability of 1D and 2D DAMP over increasingly large datasets. The cost to double the number
of dimensions considered is only slightly worse than double the time, suggesting that multidimensional
DAMP search inherits the efficiency of the 1D version. Here m = 1440 (one day in minutes)

The experimental results are shown in Fig. 17. It can be seen that the time cost of a
two-dimensional DAMP is only a small constant ratio of approximately 3.0 slower
than the cost of a one-dimensional DAMP, which suggests the good scalability for
multidimensional DAMP.

6 Empirical evaluation

To ensure the reproducibility of our experiments, we have built a website (DAMP
2022) containing all the data/code used in this work. All experiments were conducted
on an Intel® Core i7-9700CPU at 3.00 GHz with 32 GB of main memory, unless
otherwise stated.

@ Springer

658 Y.Luetal.

There are two things one normally needs to establish to validate an anomaly detec-
tion algorithm.

o Effectiveness Here we feel less of an obligation. As we noted in Sect. 2, there are at
least one hundred independent papers that have used discords to solve a real-world
problem and that have shown that discords are the only technique that seems to be
able to discover anomalies that are not visually obvious (Fig. 2, Fig. 3 and Fig. 4).
Nevertheless, for completeness we will show examples in Sects. 6.1 and 6.2 that
further demonstrate the excellent effectiveness of discords in diverse domains, and
Sects. 6.3 and 6.4 offer comparisons to several deep learning-based methods.

e Efficiency As this is the main contribution of the paper, here we will attempt an
ambitious set of anomaly detection experiments in terms of both throughput and
scale.

6.1 Energy grid dataset

Recently, a consortium from Texas A&M and USC released a large dataset on decar-
bonized energy grids (Zheng et al. 2021). The dataset contains files representing three
years of measurements of various metrics in sixty-six electrical zones in the conti-
nental USA. As Fig. 18 suggests, each file represents eleven measurements, ten of
which are measured (temperature, wind speed etc.), but one is computed from the first
principles of astronomy, the Solar Zenith Angle.

The total size of this dataset is 12 GB, representing 2174 years of data with
1,142,668,098 datapoints. As such, we believe that it is the largest real dataset ever
searched for anomalies. This complete search took only 2.06 days.

As Fig. 18 shows, most of the anomalies discovered do have a semantic meaning
that can be traced. For example, a temperature trace from California had a discord that
reflected “Valentine’s Day Storm Slams California” (Wastewater News 2021). Even
the computed time series reveals a strange anomaly echoing a biblical event. Joshua
persuades God to stop the sun from moving for a day “There has never been a day
like it before or since (Joshua 10:14)”. In our dataset there is a similarly unique day in
which the sun apparently does not move! The reader will readily appreciate the cause
of this anomaly, after noting it occurs on the 29th of February (Wikipedia 2021). It is
a classic leap year bug. Note that we informed the Texas A&M and USC team of this
bug, so presumably it will be fixed in upcoming releases.

6.2 Machining dataset

The example in Sect. 6.1 demonstrates the utility of anomaly detection in batch data
exploration. However, in some cases if we can do anomaly detection in real-time, we
may be able to perform an intervention to improve an outcome. For example, consider
the process of making parts using a CNC milling machine. Occasionally a problem
arises where an item being machined is not held correctly and it moves. This can cause
a milling machine to “crash” (CNC Crashes 2018). High-end CNC mills can cost over
one million dollars, and crashes resulting in more than $20,000 in damage are known.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 659

Temperature

Solar Zenith Angle
L J
1112018 Three years 31/12/2020
Unusually cold day
25 i
Unusually warm night Feb 14t

20
[2]
e \ i
@ 15 \ 2020
[0 \'/\//\&
O 10 2019

X0 20) X
5 eore O\l@‘c‘a\;@“’\((‘\)(\ea\N ‘ g’é\(\‘? OQB‘&% LG

£
E‘,wo
5 Feb 29t
]
W 407 1

Fig. 18 Top Two examples of time series from (Zheng et al. 2021). Most, like temperature are measured,
but Solar Zenith Angle is computed. Bottom The two corresponding top discords in these datasets. Here
m = 5760 (four days in minutes)

Many (but not all) machining processes can be paused by an operator, so in principle
it may be possible to stop a machine before it crashes. However, with the speed at
which these machines operate, it is unlikely that the operators’ reflexes would be fast
enough.

This suggests the question, could we monitor the process with telemetry, and pause
the process if we detected an anomaly? In order to test this, we recreated a common
scenario in Fig. 19.

A common CNC programming error is to give the wrong coordinates for a cutting
pass, and have the cutter overshoot the intended material to be machined, and inad-
vertently attempt to remove material from the jaws of the vice. Because the jaws are

Milling Machine Vibration Sensor Cutting Cast Iron... then Steel

Top-1 Discord i
Left aMP

' Three Minutes '

Fig. 19 Top Vibration telemetry from a milling machine that was cutting cast iron, but then overshot to start
cutting the steel jaws of the vice. Bottom The Left-aMP discovers the transition. Here m = 16

@ Springer

660 Y.Luetal.

typically harder than the material they hold, and more resistant to cutting, two things
can happen:

e The milling cutter itself will break. This is a $20 to $200 error.
e A much worse possibility is that the cutter will move the vice. If it happens to push

it into the path of later traversal, this could cause a head crash, which is a $2,000 to
$20,000 error.

As Fig. 19 shows, the aMP can detect the change of material, and this could be
used to sound an alarm, or pause the machining process until the operator can inspect
this.

Note that before the true anomaly there are other areas with high discord scores.
They are when the milling cutter changes direction (from Climb milling to Conven-
tional milling). Under our proposed scheme these would have a small cost, the process
would pause until the operator visually confirms all is well, and hits continue.

6.3 Comparison to LSTM deep learning

Although dozens of competing deep learning anomaly detection (DLAD) algorithms
now exist, it is impossible to say which is the state-of-the-art. This is because, as Wu
and Keogh have demonstrated, the amount of mislabeling in the benchmark datasets
dwarfs the reported differences between algorithms (Wu and Keogh 2021). It makes
no sense to say that algorithm A is 5% better than algorithm B, when up to 30% of
the ground truth labels are suspect.

To bypass this issue, here we will compare to just Telemanom. It is the most cited
anomaly detection paper of the last five years (Hundman et al. 2018), and several
independent papers have also found it to be effective. The general idea of this work is
to use LSTM to predict future values, then detect anomalies based on the difference
between predictions and actual data. Can Telemanom detect the anomalies we consider
in this work?

e ECG (Fig. 3) No. Given the same 500 datapoint prefix as training data, it fails to find
the anomaly. If we give it ten times as much training data (the first 5,000 datapoints),
it still fails.

e Bearing (Fig. 2): Yes. However, Telemanom took a total of (517.6 training + 700.4
testing) 1,218 s. This is two orders of magnitude slower than DAMP, which took
16.1 s. More importantly, Telemanom is an order of magnitude slower than real-time,
precluding any possibility of online monitoring.

e Energy Grid (Sect. 6.1) Maybe. There are only objective labels for Solar Zenith
Angle (this anomaly was discovered with DAMP but confirmed with the data cre-
ators). If Telemanom sees only the first week as training data (as DAMP did), then
it only learns that the Solar Zenith Angle can decrease over time, and it will flag as
anomalous anything that happens after the summer solstice. A solution to this prob-
lem is to allow Telemanom to train on the full first year, then test on the subsequent
years. Then it may find the “Joshua” anomaly. However, this will take 59.1 h, over
1300 times slower than DAMP.

e Milling Data (Fig. 19) No. Actually, Telemanom can detect the same anomaly as
DAMP. But recall it can only start training when the first 5,000 datapoints arrive,

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 661

and it takes 411 s to train the model. However, 127 s after it begins training, we
encounter the anomaly, and about 21 s after that, the endmill snaps off. Telemanom
is just too slow to be useful here.

These comparisons suggest that the most cited deep learning anomaly detection
algorithm is not as accurate as DAMP, requires more training data, and is much slower.

6.4 Comparison on the KDD Cup 2021 datasets

To further see the limitations of deep learning time series anomaly detection, we
can compare DAMP to DLAD algorithms on publicly available benchmarks. Wu and
Keogh have shown that most benchmarks in this space are too trivial to be interesting,
and in any case are plagued by mislabeling and other problems (Wu and Keogh 2021).
Instead, we consider the KDD Cup 2021 dataset consisting of 250 univariate time
series (Dau et al. 2019). This archive was designed to be diverse, have a spectrum of
difficulties ranging from easy to essentially impossible, and has a detailed provenance
for each of the 250 datasets, giving us some confidence that the ground truth is correct.
Moreover, the datasets include a wide range of domains, including cardiology, industry,
medicine, zoology, weather, human behavior, etc. We use the accuracy metric that
was suggested by the dataset’s creators. In brief, each of the 250 datasets has a single
anomaly. Each algorithm is tasked with predicting the location of that anomaly. Let
the length of the anomaly be L. If the prediction is within plus or minus L data points
of the anomaly’s true location, it is judged correct. If L is less than 100, then it will
be set to 100. The scores in Table 9 show the ratio of correct predictions for the 250
datasets.

Once again, these results show that DAMP is more accurate and faster than deep
learning-based methods. It is important to note that the results for DAMP are com-
pletely free of any human intervention or tuning. We use four hardcoded lines of
Matlab (see DAMP 2022) to find the approximate period in each training dataset, and
used that as the value of m. Likewise, we simply hardcoded a single lookahead value
for all 250 datasets. Further optimizing the former would improve accuracy and per-
sonalizing the latter for each individual problem would improve the speed. However,
we wanted to show that even the most naive out-of-the-box use of DAMP is highly

Table 9 Accuracy and time for eight TSAD methods

Method Accuracy Train and test time
USAD (Audibert et al. 2021) 0.276 8.05h
LSTM-VAE (Park et al. 2018) 0.198 23.6h

AE (Audibert et al. 2021) 0.236 6.11h
Telemanom (Hundman et al. 2018) Out of memory error on longer examples
NORMA (Boniol et al. 2021a) 0.474 17.8 min
SCRIMP (Full-MP) 0.416 24.5 min

DAMP (Left-MP) out-of-the-box 0.512 426h

DAMP (Left-MP) sharpened data 0.632 426 h

@ Springer

662 Y.Luetal.

competitive. As an example of a small intervention that can further improve accuracy,

if we run DAMP on sharpened data (a single extra line of code, see (DAMP 2022)

for details) the accuracy improves to 0.632.

The left-discords of DAMP are significantly more accurate than the full-discords
computed by SCRIMP, because some anomalies have near “twin-freaks” that suppress
the distance of the anomaly to its nearest neighbor. Note that the time for SCRIMP and
NORMA here is relatively good, as there are 250 short time series. In Fig. 22 we will
see that for longer time series this advantage of SCRIMP/NORMA rapidly inverts.

We included a comparison to the recently published NORMA (Boniol et al. 2021a),
which can be seen as a sort of Matrix Profile that uses an automatically discovered
subset of the training data as the reference data. Here we used the original authors’
tools and suggestions to set the parameters (we were able to make the results slightly
better with our own parameter settings (DAMP 2022). The time for NORMA is good,
but it is important to note the following:

e These datasets have tiny training data splits (they were deliberately made that way,
to allow the deep learning community to consider them in a tenable fashion (Dau
et al. 2019). But as Fig. 23 shows the NORMA algorithm scales poorly for large
datasets.

e On these datasets, we can easily close all of the time gap by using either X-Lag-
Amnesic DAMP (Sect. 5.3.1) or Golden DAMP (Sect. 5.3.2), with only a minimal
decrease in accuracy. Indeed, the Golden DAMP algorithm essentially subsumes
NORMA as a special case.

e The results in Table 9 mask a unique timing advantage that DAMP has over not
only NORMA, but all other non-trivial anomaly detectors.* We believe that DAMP
is the only instantaneous TSAD in the literature. To see this, consider the situation
in Fig. 20.

The figure shows a dataset from the KDD Cup 2021. The first forty seconds of wall-
clock time pass, and then we are invited to monitor for anomalies in the remainder of
the data. We define “linger” as the time a TSAD algorithm requires to ingest the training
data, build its model, and be ready to start monitoring. As shown in Fig. 20, the linger
for NORMA on this problem is thirteen seconds. This means that any anomaly that
occurs in the first thirteen seconds will not be detected (or will only be detected post-
mortem). Note that DAMP appears to be unique among TSAD algorithms in having
zero linger. In this example, the linger of NORMA may not be too consequential
(although it grows rapidly with more training data, see Fig. 23). Perhaps the attending
physician can wait with the patient while the model is being built. However, recall
our machining example in Sect. 6.2. Here, if the linger is more than 127 seconds, the
TSAD algorithm would not be able to avoid the expensive head-crash.

Recall that Table 9 notes “Out of memory error on longer examples” for Telemanom
(CNC Crashes 2018). There does not seem to be any simple way to fix this issue, so

4 Here we explain “non-trivial anomaly detector”. Simple rule-based conditionals such as: “if the time series
ever reports a value that is higher than any value you have seen before, then flag anomaly” could be used as an
anomaly detector, and could be instantaneously instantiated. By non-trivial we mean any TSAD algorithm
that examines each subsequence for any information about shape, autocorrelation, Markov properties etc.,
and compares this information (in the most general sense), to a model gleaned from training data. The
reader will appreciate that this includes essentially all proposed anomaly detectors in the literature.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 663

Training data (excerpt): Test data (excerpt)
40 seconds of wall-clock time

243_UCR_Anomaly_tilt12744mtable

Request to monitor happens here

DAMP begins to monitor instantaneously .W\MJ\/\H\WW

NORMA begins model building here...

N
..and is ready to start monitoring here M

Linger = 13 seconds

Fig. 20 Anexcerpt from the 243_UCR_Anomaly_tilt]12744mtable dataset. The task is to exploit information
in the training split, to detect the most significant anomaly in the test split. When requested, DAMP can
instantaneously begin to monitor. However, NORMA (and all other TSAD algorithm), must have a period
of inaction or “linger” while they build their models. Here m = 276

we did the following. We sorted all the datasets from smallest to largest, and kept
evaluating increasingly longer datasets until the first failure. Telemanom failed at the
63" smallest dataset (114_UCR_Anomaly_CIMIS44AirTemperature2). On the first
62 datasets it correctly found the anomaly on 29, giving an accuracy of 0.468. This
took Telemanom 3.4 h. When we run DAMP on just these 62 shorter datasets, it takes
64.9 s. In general, the 62 shorter test cases are the easier ones (they certainly have
a much higher default rate), yet both flavors of DAMP are still significantly more
accurate.

Finally note that Table 9 does not include any comparisons to the algorithms that
entered the KDD Cup in 2021 (Dau et al. 2019). The best performing algorithms
scored an impressive 88.4%. However, note that none of the top performers have made
code publicly available. Moreover, all the top performers use meta-algorithms. For
example, the top place algorithm, DeepBlueAl, used a meta-algorithm that included
at least four different algorithms (“Fourier Transformation based methods”, Matrix
Profile, LightGBM and Dilated CNN). In all cases, the logic used to switch between
or combine the atomic algorithms is not clear (We hope that in at least some cases,
the participants with publishing a publication will make that clear). In contrast, Table
9 compares the leading single algorithms, which have usable public implementations.
Combining them in a meta-algorithm or ensemble would be an interesting project but
is beyond the scope of this paper.

6.5 Threshold learning for DAMP

Up to this point, we have experimentally demonstrated that DAMP can locate the
most anomalous subsequence. However, we have not shown how the algorithm makes
a binary decision thereafter to flag the subsequence as anomalous or not. For this
purpose, we simply need to learn a threshold. To demonstrate, consider the following
experiment. We created 200 random walk time series of length one million. As shown
in Fig. 21 top, into half of them we randomly inserted a subtle anomaly, a low amplitude

@ Springer

664 Y.Luetal.

Injected
anomaly

Random Walk Time Series

T T T T T T T T T

34,000 38,000
r T T

1
0 1,000,000

Threshold Top-1 discord Predicted Predicted
score for anomaly no-
anomaly case anoma]y

Actual 57 987 | 6,013

! U anomaly
S o 01 |
34 36 38 40 42

“ Acual 15502 58,498

no-
anomaly

32

Fig. 21 Top A sample random walk with an anomaly embedded. Left The distribution of top-1 discord scores
for the two cases of interest. Right The confusion matrix for this task. Here m = 1024

random section of length 950 (Why length 950? We found that if we used length 1,000
we got perfect accuracy, which is uninteresting for this experiment. So, we tuned the
value to give an error rate of about 10%). In Fig. 21 left, we show the top-1 discord
score (for m = 1024) for all 200 time series, divided into the two cases. This plot
suggests that a threshold of 36.0 is the optimal value to maximize the accuracy on
future occurrences. To test this, we created and tested an additional million examples,
all of which are also of length one million, classifying an actual anomaly as a true
positive if the correct location of the anomaly was discovered and the top-1 discord
score was above the threshold. Figure 21 right shows the confusion matrix.

We note in passing that this experiment (which took several days distributed across
commodity laptops and desktops), trained on time series with a total length of 200
million, and tested on time series with a total length of 128 billion. To the best of
our knowledge, this is the largest scale time series anomaly detection experiment
ever conducted. Could deep learning do this? We estimate that Telemanom (Hundman
et al. 2018) would take about twelve years to do this, although in practice it gives
out-of-memory errors.

6.6 Scalability comparisons

To find out which elements of our proposed method contribute most to its efficiency,
we have performed an ablation study, in which various elements of DAMP were
progressively crippled. As a baseline, we also compare to SCRIMP (Zhu et al. 2018).
This comparison to SCRIMP is a little unfair, as it discovers motifs as well as discords.

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 665

However, it seems to be the most used discord discovery algorithm in recent years.
Figure 22 summarizes our findings.

It is clear that each element we proposed does actually contribute to speed up, and
that DAMP is effectively linear in 7.

As we earlier noted, most of the benchmark datasets are only hundreds to thousands
of datapoints long (Wu and Keogh 2021), and that seems to have set the limit of the
ambition of most of the community when it comes to scalability. However, a recent
paper pushed that envelope by considering a two million length ECG dataset (Boniol
et al. 2021a). In fact, these authors graciously gave us the exact dataset they used,
(which was in fact even longer than they considered in Boniol et al. 2021a), and helped
us create a perfectly commensurate experiment, as shown in Fig. 23. A real-time video
trace of this experiment is at (DAMP 2022).

Note that of the many approaches considered, some time out (i.e., are not finished
in a four-hour cutoff) at length 500 K. In contrast, DAMP can handle eight million
datapoints in just 22.3 s, this is over 358,000 Hz. In fact, DAMP is so fast, that the

. (] -e
100,000,000 7 Dashed lines are extrapolated Brute ?_:?__C____-..--------'
(3.1 years) _____--.------""'
10,000,000 SRRl f2
- e t power O
(3.8 months) ISPt ons Brute F_czr_(i-ﬁﬂﬁs.s.fe.aci------_
o* mmmmmmmssmmm=E==nEE emmmmmmn PETLEL Ll
1,000,000 | . pmmmmE Tt emmnaee mmmmmemt
(11.5 days) ."' B SPEREEIETL Ly Brute Forcepyass power of 2
* - PL L _-mm-
* =" - ammmmmmamE=
100,000 | & Le*T .= mmmmmmammmmmmm=EY
(27.7 hours) e Bl __.---__.---" opt|m|zed SCR‘MP
10000 - [
(2.7 hours) DAMP
1,000 -
o (16.6 min)
2 100 DAMP gfrectively online
8 (1.6 min)
@
K VI
£
ot ‘

T T
0 Data Length 8 million

Fig. 22 The CPU time vs time series length for various discord discovery algorithms. Note the Y-axis is in
log scale. Note that DAMPeffectively online means that the forward processing algorithm introduced in Table
3 was used. Here m = 94

1omoo Drime ot S Normasmp Eight million datapoints, corresponding to

10000 & = BE%MP 17.36 hours (85,056 heartbeats), processed in
g1ouo X flc;v 22.3 §econds. This is 2,802 times faster than
F 100 . ~-LOF real-time. N
s | Some datapoints are literally “off the chart’

0 r im 2M 4‘M B;V\

Fig. 23 (Most of this figure is taken from (Boniol et al. 2021a) with permission, only the green elements are
new). The scalability of various algorithms on increasing large subsets of a long ECG trace. All algorithms
except DAMP are limited to the first 2 M data points by (Boniol et al. 2021a). Note that the Y-axis is
logarithmic. Here m = 94

@ Springer

666 Y.Luetal.

4000 L (one hour)

~

3000 | One month of ECGs:
2000] 2,628,288sec @ 128Hz Twenty-five years
of barometer: 25*

31,536,000 @1hz
27 230

1000

Time (seconds)

0

Fig. 24 The time taken for DAMP to process a random walk time series of length 230 (just over one billion).
For context, we have labeled the size of two concrete tasks, processing a month of ECGs and twenty-five
years of sensor data. Here m = 128

time it reports for the 50 K length trial is literally off the original chart, taking less
than one second.

As eight million datapoints are about the longest publicly available ECG, in Fig. 24
we conclude this section by searching a single random walk time series of length 239

6.7 Scalability and stability of DAMP

One of Wu and Keogh’s criticisms of common benchmarks is unrealistic anomaly
density (Wu and Keogh 2021). They noted that over 20% of the data is labeled anoma-
lous in many benchmarks, which poses a real problem for the evaluation. Suppose that
an algorithm has near perfect sensitivity, but it will randomly give out a false positive
once in every million datapoints (perhaps due to the numerical instability of streaming
algorithms (Higham 2002). Note that because most benchmarks in the literature only
have a few thousand datapoints, this issue would almost certainly not be observed dur-
ing testing. However, it clearly would be a problem for any real-world deployment. For
example, for a continuous processing system with telemetry reporting every second,
this would give us about thirty-one false positives a year.

To demonstrate DAMP does not have this issue, we did the following test. Recall
the subtle anomaly shown in the 100,000 datapoint MGAB dataset in Fig. 4. We
can append anomaly-free data from the same Mackey—Glass model (but free of the
embedded anomalies (Thill et al. 2020) to make it one thousand times longer, i.e., a
total length of 100 million. When we search this with DAMP (m = 40), we count a
trial successful if the top-1 discord is found in the first 100,000 datapoints (created
by Thill et al. 2020), rather than from the appended ninety-nine million nine hundred
thousand datapoints. Each of the coauthors of this work ran this experiment multiple
times in the background of their desktops over a week, and in total conducted over
16,000 such trials, finding a total of zero false positives.

Note that this experiment required performing anomaly detection on time series
with a total length of 1.648 trillion datapoints, using off-the-shelf hardware. This is
something that would be inconceivable with any other anomaly detection method.

7 Conclusions and future work

In this paper, we created the left-discord anomaly detection framework, generalizing
classic time series discords that previously only handled the batch case, to the online

@ Springer

DAMP: accurate time series anomaly detection on trillions. .. 667

and effectively online case, and solving the twin-freak problem in the process. Further,
we have introduced DAMP, a fast and scalable algorithm to discover such discords.
Experimental results have demonstrated that our proposed left-discords outperform
the current SOTA methods, including the most cited deep learning methods in terms of
accuracy. Moreover, we have further demonstrated that DAMP is orders of magnitude
faster and more scalable than any method in the literature.

We believe that the throughput and scalability of DAMP will allow the community
to address datasets and applications that are currently out of reach, and that this will
open new challenges and research problems. Finally, we have made all our code and
data available to the community to confirm and build upon our work.

In future work, we plan to address the limitations of DAMP. For example, DAMP
uses the Z-normalized Euclidean distance, but you cannot Z-normalize constant
regions of the time series (as you get a divide-by-zero error). Another type of anomaly
that DAMP cannot detect is a sudden decrease in the noise level of a time series, as
smooth time series tend to have a relatively low distance from all other time series. As
of now, we can catch these two special cases with ad-hoc rules, but a more principled
and elegant solution is desirable.

Acknowledgements We sincerely thank the authors of Boniol et al. (2021a) for their help in creating
Fig. 23.

Funding This research was supported by NSF OIA-1757207, CNS-2008910 and R1-2104537, the French
National Research Agency (ANR-19-P3IA-0002), and NSF 2103976, Mitsubishi, Visa and Toyota.

Declarations

Conflict of interest The authors have no conflict of interest.
Ethical approval This research complies with all ethical guidelines at the three institutions represented.

Human or animal rights No human subjects were used by the current authors. The ECG data was collected
by others over a decade ago, under strict human subject protocols.

Appendix: tool to set window size

For most of the experiments in this paper, we use human intuition to manually set
the value of the parameter m. We followed the well-known “folk wisdom” that was
explained and tested in Nakamura et al. (2020). The idea is simply this. Plot a subset
of the data, estimate the length of a single period “by-eye” and set m to a value a little
less than a period. Here we used m = 90% of estimated period length. In (Nakamura
et al. 2020) the authors show that in most cases, the anomalies returned doing this,
would not change even if you set m to twice or half this value (They were using the
full MP, not the left MP, but we found similar results with DAMP).

However, for the experiment in Table 9, we want to completely exclude any human
intervention or tuning. Therefore, we used the following four lines of Matlab code to
automatically calculate the window size for the 250 KDD Cup 2021 datasets.

@ Springer

668 Y.Luetal.

[autocor, lags] = xcorr (T, 'coeff');

[~,m] = findpeaks (autocor (length(T)+10:1length(T)+1000),..

lags (length (T)+10:1length(T)+1000), 'SortStr', 'descend', 'NPeaks', 1) ;
m(isempty(m))= 1000;

m = floor (m);

The window size is obtained by finding the peak of autocorrelation in the range
of 10-1000 (the value of parameter m is limited to the range of 10-1000). To avoid
the “findpeaks’ function returning a null value (very unlikely, but possible), we set the
default value of m to 1000.

References

Aubet F-X, Ziigner D, Gasthaus J (2021) Monte Carlo EM for deep time series anomaly detection. arXiv:
2112.14436 [cs, stat]

Audibert J, Marti S, Guyard F, Zuluaga MA (2021) From univariate to multivariate time series anomaly
detection with non-local information. In: Lemaire V, Malinowski S, Bagnall A et al (eds) Advanced
analytics and learning on temporal data. Springer International Publishing, Cham, pp 186-194

Boniol P, Linardi M, Roncallo F et al (2021a) Unsupervised and scalable subsequence anomaly detection
in large data series. VLDB J 30:909-931. https://doi.org/10.1007/s00778-021-00655-8

Boniol P, Paparrizos J, Palpanas T, Franklin MJ (2021b) SAND: streaming subsequence anomaly detection.
Proc VLDB Endow 14:1717-1729

Case Western Reserve University Bearing Data Center (2021) Available: https://csegroups.case.edu/
bearingdatacenter/home. Accessed: Nov. 15, 2021

CNC Crashes. Video. (15 Feb 2018). from https://youtu.be/t2tBtZCa7j4?t=205. Retrieved December 20,
2021

Daigavane A, Wagstaff KL, Doran G et al (2022) Unsupervised detection of Saturn magnetic field boundary
crossings from plasma spectrometer data. Comput Geosci 161:105040

DAMP (2022) https://sites.google.com/view/discord-aware-matrix-profile

Dau HA, Bagnall A, Kamgar K et al (2019) The UCR time series archive. IEEE/CAA J Autom Sin
6:1293-1305. https://doi.org/10.1109/JAS.2019.1911747

Doshi K, Abudalou S, Yilmaz Y (2022) TiSAT: time series anomaly transformer. arXiv:2203.05167 [cs,
eess, stat]

Higham NJ (2002) Accuracy and stability of numerical algorithms, 2 edn. ISBN: 978-0-89871-521-7

Hundman K, Constantinou V, Laporte C et al (2018) Detecting spacecraft anomalies using LSTMs and non-
parametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. ACM, London United Kingdom, pp 387-395

Imani S, Madrid F, Ding W et al (2020) Introducing time series snippets: a new primitive for summarizing
long time series. Data Min Knowl Disc 34:1713-1743. https://doi.org/10.1007/s10618-020-00702-y

Keogh E (2021) Irrational exuberance why we should not believe 95% of papers on time series anomaly
detection. In: 7th SIGKDD workshop on mining and learning from time series at SIGKDD 2021.
Workshop Keynote https://www.youtube.com/watch?v=Vglp3DouX8w&t=324s

Khansa HE, Gervet C and Brouillet A (2012) Prominent discord discovery with matrix profile: application
to climate data insight. In: 10th international conference of advanced computer science & information
technology (ACSIT 2022) May 21~22, 2022, Zurich, Switzerland

Kirti R, Karadi R (2012) Cardiac tamponade: atypical presentations after cardiac surgery. Acute Med
11:93-96

Mueen A, Zhu Y, Yeh M et al (2017) The fastest similarity search algorithm for time series subsequences
under euclidean distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.htmlAccessed 24
Janurary, 2022

Nakamura T, Imamura M, Mercer R, Keogh E (2020) Merlin: parameter-free discovery of arbitrary length
anomalies in massive time series archives. In: 2020 IEEE international conference on data mining
(ICDM). IEEE, Sorrento, Italy, pp 1190-1195

National Weather Service. January 24, 2019 heavy rain and flooding. From https://www.weather.gov/aly/
24Jan19HeavyRainFlood. Retrieved May 1 2022

@ Springer

http://arxiv.org/abs/2112.14436
https://doi.org/10.1007/s00778-021-00655-8
https://csegroups.case.edu/bearingdatacenter/home
https://youtu.be/t2tBtZCa7j4?t=205
https://sites.google.com/view/discord-aware-matrix-profile
https://doi.org/10.1109/JAS.2019.1911747
http://arxiv.org/abs/2203.05167
https://doi.org/10.1007/s10618-020-00702-y
https://www.youtube.com/watch?v=Vg1p3DouX8w\newentity ampt=324s
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://www.weather.gov/aly/24Jan19HeavyRainFlood

DAMP: accurate time series anomaly detection on trillions. .. 669

Neupane D, Seok J (2020) Bearing fault detection and diagnosis using case western reserve university
dataset with deep learning approaches: A review. IEEE Access 8:93155-93178. https://doi.org/10.
1109/ACCESS.2020.2990528

Nilsson F (2022) Joint human-machine exploration of industrial time series using the matrix profile. In:
Halmstad university, school of information technology, Halmstad embedded and intelligent systems
research (EIS), CAISR—center for applied intelligent systems research

Palpanas T (2022) Personal communication June 4th 2022

Paparrizos J, Kang Y, Boniol P et al (2022) TSB-UAD: An end-to-end benchmark suite for univariate
time-series anomaly detection. In: Proceedings of the VLDB endowment (PVLDB) journal

Park D, Hoshi Y, Kemp CC (2018) A multimodal anomaly detector for robot-assisted feeding using an
LSTM-based variational autoencoder. IEEE Robot Autom Lett 3:1544—1551. https://doi.org/10.1109/
LRA.2018.2801475

Park JY, Wilson E, Parker A, Nagy Z (2020) The good, the bad, and the ugly: data-driven load profile
discord identification in a large building portfolio. Energy Build 215:109892

Silive.com. Wild storm pelts Staten Island with giant hail—‘threat of tornado has passed’ from https://www.
silive.com/news/2019/05/nws-issues-tornado-warning-for-staten-island.html. Retrieved May 1 2022

Su 'Y, Zhao Y, Niu C et al (2019) Robust anomaly detection for multivariate time series through stochastic
recurrent neural network pp 2828-2837

Thill M, Konen W, Béck T (2020) Time series encodings with temporal convolutional networks. Springer,
Cham, pp 161-173

Truong HT, Ta BP, Le QA et al (2022) Light-weight federated learning-based anomaly detection for time-
series data in industrial control systems. Comput Ind 140:103692. https://doi.org/10.1016/j.compind.
2022.103692

Wastewater News. Valentine’s day storm slams California, pushing water agencies to the edge. From www.
news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html. Retrieved Dec 1 2021

Wikipedia. Leap year problem. from https://en.wikipedia.org/wiki/Leap_year_problem. Retrieved Decem-
ber 1, 2021

Wu R, Keogh E (2021) Current time series anomaly detection benchmarks are flawed and are creating the
illusion of progress. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2021.3112126

Yeh C-CM, Zheng Y, Wang J et al (2021) Error-bounded approximate time series joins using compact
dictionary representations of time series. CoRR abs arXiv:2112.12965

Yeh C-CM, Zhu Y, Dau HA et al (2019) Online amnestic dtw to allow real-time golden batch monitoring.
pp 2604-2612

Zheng X, Xu N, Trinh L et al (2021) PSML: a multi-scale time-series dataset for machine learning in
decarbonized energy grids. arXiv preprint arXiv: 2110.06324

Zhu Y, Yeh C-CM, Zimmerman Z et al (2018) Matrix profile XI: SCRIMP++: time series motif discovery
at interactive speeds. In: IEEE pp 837-846

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://doi.org/10.1109/ACCESS.2020.2990528
https://doi.org/10.1109/LRA.2018.2801475
https://www.silive.com/news/2019/05/nws-issues-tornado-warning-for-staten-island.html
https://doi.org/10.1016/j.compind.2022.103692
http://www.news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html
https://en.wikipedia.org/wiki/Leap_year_problem
https://doi.org/10.1109/TKDE.2021.3112126
http://arxiv.org/abs/2112.12965
http://arxiv.org/abs/2110.06324

	DAMP: accurate time series anomaly detection on trillions of datapoints and ultra-fast arriving data streams
	Abstract
	1 Introduction
	2 Motivation
	2.1 Effectively online anomaly detection

	3 Definitions and background
	4 Related work
	5 DAMP
	5.1 Intuitive overview of DAMP
	5.1.1 Backward processing
	5.1.2 Forward processing

	5.2 Formal pseudocode for DAMP
	5.2.1 The time and space complexity of DAMP

	5.3 DAMP variants
	5.3.1 X-lag-amnesic DAMP
	5.3.2 Golden DAMP

	5.4 Multidimensional DAMP

	6 Empirical evaluation
	6.1 Energy grid dataset
	6.2 Machining dataset
	6.3 Comparison to LSTM deep learning
	6.4 Comparison on the KDD Cup 2021 datasets
	6.5 Threshold learning for DAMP
	6.6 Scalability comparisons
	6.7 Scalability and stability of DAMP

	7 Conclusions and future work
	Acknowledgements
	Appendix: tool to set window size
	References

