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Abstract—6G is aiming at fully incorporating in-network intel-
ligence towards automated network management. In this regard,
a multi-agent-based network automation architecture as a service
design is proposed. The architecture introduces in-network intelli-
gence, designing intelligent agents as the fundamental unit which
is used as a building block in autonomous network system design.
This work focuses on the dynamic agent placement problems in
edge/cloud data centers. Agents are softwarized and intelligent
versions of network functions that are traditionally implemented
in hardware such as firewalls, packet gateways, etc. This paper,
based on a combination of proactive and reactive solutions,
considered decision accuracy in developing an intelligent decision
algorithm that can be used in the prediction agent design.
The proactive decision is based on a deep learning prediction
algorithm using time-series workload forecasting. However, in
case of unforeseen events that are missing from the historical
dataset, the proactive decisions could be less reliable. Therefore,
network-state feedback should be considered to determine the
current network conditions using the change in instant arrival
rate as a reactive decision. Then combining it with the proactive
decision should be able to capture the unpredictable traffic spikes.
The result is used to determine the number and type of agents to
instantiate at a given time in the edge/cloud data centers. Using
a public dataset in our algorithms, we predicted the workload
request for a few days. The result shows improved decision
accuracy over the existing solutions using the appropriate amount
of dataset, machine learning models, and rate estimation.

I. INTRODUCTION

In-network intelligence is actively being considered as the
main characteristic for 6G network automation. Therefore, full
network automation is expected to be the feature of future
networks such as 6G [1]. The current trend is to develop these
properties through network softwariziation being supported
by software define networking (SDN) and network function
virtualization (NFV). To enable network automation, a multi-
agent-based architecture for service design is proposed [2], [3].
The architecture introduces in-network intelligence designing
intelligent agents as the fundamental unit which can be used as
a building in autonomous network system design. Multi-agent
architecture is competing with microservice-based service de-
sign approaches having an advantage over microservice-based
service design approaches. This is mainly due to the multi-
agent service design can provide both proactive and reactive
responses while microservice can only respond reactively
(responds to http request).

Agents have to be carefully designed to perform a particular
function. An example of agent design is provided in [4]
which shows a classifying agent design. In the paper, it
has been emphasized that the accuracy of the incorporated
deep learning(DL)/machine learning(ML) model determines
the reliability of the agent as a proactive decision-maker.
However, since the designed agent uses only the proactive
DL/ML model, the accuracy may severely be affected for
reactive events. Such events are never seen in the historical
dataset that is used to train the ML/DL model used as the
brain of the agent in the decision-making process.

One aspect of multi-agent based network automation is
dynamic agent placement, chaining, and orchestration. Agents
are virtualized intelligent units that can be used in multi-agent
system design. Automated agent placement in edge/cloud data
centers is very useful and necessary for Quality of Service
(QoS) improvement in an automated network system. How-
ever, agent placement, chaining, and orchestrations, depending
on various user QoS requirements and service arrival distri-
butions while considering edge computational resources, are
challenging network automation processes.

In this work, we focus on traffic-aware reactive and proac-
tive agent placement in an edge/cloud data center. First,
We formulate an algorithm combining proactive and reactive
decisions. Then, we design the agent using the combination
of DL models as a proactive prediction and rate estimation
algorithms as a reactive adaptation. Using this combined
algorithm, the agent predicts the number and type of agents to
instantiate and create an agent chain. We used long short-term
memory (LSTM), Gated Recurrent Unit (GRU), convolutional
neural network (CNN), and a multilayer perceptron (MLP) as
a comparison of proactive agent prediction. Furthermore, we
used rate estimation based on a given threshold.

In general, our contribution is summarized as:
• Formulate an algorithm combining reactive and proactive

decisions.
• Design a prediction agent using the formulated algorithm

as a brain of the agent.
• Use the design prediction agent, predicting number and

type of service processing agents, creating and allocating
agents in edge/cloud data center as a function of incoming
traffic.

• Evaluate the performance of the prediction agent.978-1-6654-3540-6/22 © 2022 IEEE
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The rest of the paper is organized as follows. Section II
presents related works. We discuss our method which combine
proactive and reactive decision for agent placement using a
time serious DL and rate estimation technique in Section III.
Section IV is dedicated for performance evaluation of the
proposed method. Finally, we present our concluding remark
in Section V.

II. RELATED WORKS

1) Deterministic VNF resource allocation and manage-
ment: Agent placement has some similarities with VNF
placement with the added in-network intelligence incorporated
in the agent, which could impact the general placement re-
quirements. Since VNF placement is relatively a well-studied
subject in the literature now, let us review some of the
most recent approaches. VNF placement with deterministic
objective has been studied in various literature which uses dy-
namic programming [5], [6]. Some other works, using methods
such as genetic algorithm-based dynamic VNF placement and
service function chaining [7]–[9], have also been presented.
However, they lack the network and service arrival adaptability
that is required by autonomic network management. Few
research works have also discussed resource allocation and
VNF placement considering specific network environments
such as edge and geo-distributed data centers [10], [11].

Autonomic networking requires the self-managing adaptive
capability for unpredictable network and user demands. Ma-
chine learning (ML) exploits information from the network
and users’ data to learn and perform the required change
to suit the demands. In [12], an autonomic VNF placement
is discussed considering a three data center hierarchy for
workload offloading between the data centers depending on
the traffic load. In [13], the authors presented a method called
z-TORCH orchestration mechanism that uses unsupervised
learning to monitor VNF KPI and reinforcement learning to a
find a trade-off solution for reliability and complexity of the
monitoring system. Time series prediction for VNF placement
is presented in [14], [15]. The authors in [14] first analyzed
the traffic characteristics of the data center and devised a
traffic forecasting technique. Based on traffic forecasting,
they develop a deterministic algorithm to determine the VNF
resource scaling.

Our proactive prediction decision is similar to the work in
[16] that uses an LSTM-based prediction for VNF. However,
this the has limitation of capturing the sudden unexpected
traffic spike. In [17], the authors used a reinforcement learning-
based method for reactive VNF placement. However, in addi-
tion to the delay to reach a decision, the cost of online training
in terms of computing to reach a decision is very high which
makes this method sub-optimal.

An interesting deterministic algorithm is presented in [15]
that combining online and offline elastic resource prediction
as a function of incoming traffic for dynamic VNF placement.
This work is the closest to our approach in that attempted to
characterize the normal traffic through an offline processing
method that captures the regular traffic pattern. Moreover, the

work also discussed an online method to capture the sudden
expected traffic spike while evaluating its correlation with the
offline method. Furthermore, they developed an algorithm that
combined the two methods. In addition to the deterministic
nature of the developed algorithm, this work also didn’t
consider other factors such as reliability and latency for a
DL model training and prediction for VNF placement in an
edge data center scenario. A proactive -reactive auto scaling
algorithms using MLP as the proactive decision is proposed
in [18]. This paper has also limitations in-terms as it only
consider data center resource instead of agents. Moreover, they
didn’t evaluate the combine and contradictory effect of consid-
ering service requirements such as reliability, latency, resource
efficiency and energy consumption. To the best of the authors
knowledge, there is no work that combined proactive decision
and reactive decision while considered decision accuracy for
automated agent placement in edge/cloud environment

III. OVERVIEW OF TRAFFIC AWARE AGENT PLACEMENT

A multi agent architecture for network automation provided
in [2] requires designing agents and orchestrating them to
create agent chain to compose the autonomous system. In
a distributed cloud/edge environment, where agents could be
instantiated and chained to provide the workload processing
arriving at the data center, agent instantiating and placement
are directly related to the incoming traffic with the available
resource constraint. The prevalent approach is using classical
forecasting algorithms or ML/DL methods to predict the
number of agent NAg to instantiate at a give time, which
is predicting NAg as a function of users/service workload
request. This requires learning the patter from historic data D.
In mathematical terms, determining the posterior probability
NAg given prior information D. Using Bayes’ Theorem we
will have

P (NAg/D) =
P (NAg)P (D/NAg)

P (D)
(1)

The important factor here is the final decision need to be
achieved with certain level of confidence for the decision
to be reliable. Our aim here is to improve accuracy to be
formulated as a resource forecast problem. Since workload
traffic have hourly, daily, and seasonal pattern, time series
analysis is reasonable to use for proactive agent placements.
However, if an unforeseen event is happens which has never
been seen in the historical or seasonal based dataset that used
to train the DL model, the prediction accuracy of the agent
will significantly affected for the events duration.

A. Time Series Workload and Throughput Forecasting

The two main areas for time series analysis are classi-
cal time series forecasting, such as seasonal auto-regressive
integrated moving average (SARIMA) and ML/DL such as
LSTM. SARIMA forecasting methods is commonly used for
uni-variate time series data forecasting which captures the
seasonal and trend patterns in the data. However, recently,
DL models such as LSTM, GRU, CNN and MLP are being
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used for time series forecasting. Such DL models improve the
accuracy of prediction. LSTM is best suited for series data as it
accurately predicts memorizing the historic data, sequentially
capturing it through its structure. LSTM is a very specialized
version of RNNs that are able to learn long-term dependencies.
Compared to other sequence learning algorithms such as the
Markov model, SVR and RNNs, LSTM is relatively insensitive
to gap length. Structurally, different versions of LSTM exist.
The common type of LSTM has three information regulating
gates and cells to store information as depicted. We will briefly
describe 4 deep learning model swe used in the next paragraph.

GRU is an improved form of LSTM and was introduced
to solve the vanishing gradient problem faced by RNNs.
It consists of two gates, update gate and reset gate. The
reset gate is like a forget gate in LSTM where it filters out
the unnecessary information from the past. Then the update
gate decides what information needs to be passed to the
output layer. MLP is a classic version of artificial neural
networks consisting of at least three layers, an input layer,
a hidden layer, and an output layer. Each layer is composed
of many perceptrons utilizing a non-linear activation function
to learn the non-linear data. CNN is another type of neural
network extensively used in image classification applications.
In order to process massive images, it leverages a layer called
convolution layer reducing the dimension of the input data
without losing critical features. This allows the network to be
deeper and learn more easily.

B. C-RAN Traffic Generation

In this paper, we focus on C-RAN functions placement that
are design as agent. In this case, we have all the services
arriving to/from all the three type of cells. The data or
workload from mobile end users are generated using equation
2 [19].

Pue = (3A+A2 +
1

3
MCL)(

R

10
) (2)

where A is the number of antennas, M the modulation bits, C
the code rate, L the number of spatial MIMO-layers and R the
number of physical resource blocks (PRBs). The processing
load Pue is measured in GOPS. The CPU usage requirement
to and edge data center for all the mobile users considered in
this case is linearly related to the throughput and is given by
[20]

In addition to the prediction aggregators’ throughput, in
this work, we also would like to show how we can predict
the workload demand on a data center from the incoming
aggregate throughput using equation 3.

PCPU = C × Th(t) + b (3)

Where C and b are constants.

IV. A COMBINED PROACTIVE AND REACTIVE BASED
AGENT PLACEMENT

This section presents our proposed approach of combining
reactive and proactive decisions for agent placement

A. Proactive Decision

We consider the DL (LSTM, GRU, CNN, and MLP) based
agent’s prediction result as the proactive decision. We first train
the DL models using historical dataset. Using the train DL
model as the cognitive component, we design the prediction
agent. The prediction agent then predicates the number and
type of processing agent that should be instantiated at a given
time. The orchestration agent creates the required agent chain.
This is only for classic implementation and comparison with
the combination algorithms that combines the reactive decision
with the predicted proactive values.

B. Proactive and Reactive Decisions with Network State Feed-
back

Proactive decision based on information extracted form the
historically recorded data provides a reasonable estimation ac-
curacy form most data center network and computing resource
management decisions. However, due to the random nature of
users or service distribution which may cause network traffic
spikes, proactive decision could could be sub-optimal decision.
Network traffic spikes could be caused by various reasons.
These could be because of malware outbreak, unexpected user
service demand due to some events in the areas for example a
football match or concert. Therefor, a network state feedback
is needed to determine the current network conditions to
provided the resource demands. The second part of equation
4 is aimed at capturing the current network state through
traffic arrival measurement. For autonomic decision accuracy
is important factor. Therefore, combining different techniques
could be one solution. Moreover proactive decision may not
exactly show the current states since there could be sudden
change. Reactive decision could be incorporated.

NAg = NAg−DL +
(λave − λ)T

AgCPU
+ C (4)

or
NAg = αNAg−DL + (1− α)

λT

AgCPU
+ C (5)

where NAg is the estimated number of agents to be made
available at a given time, NAg−DL is the estimated number
of agents based on historic data for a particular day and hour
using a DL model, λave is the average workload arrival rate
of the edge/cloud data center at a given time, λ is the average
workload arrival rate in the previous hours of a particular
day of interest, AgCPU is the amount of a given agnet CPU
requirement, T is the duration which could be 60sec/60min
depending on selection, α is the decision factor ratio which
has a value between 0 and 1 and C is constant for over-
provisioning factor for agents.

Here two alternative but similar formulations are provided.
The two formulations are similar but they differ from decision
combining perspective. Equation 5 determines the proactive
decision as the main decision for the number of agent required
to be active at a given instance until a the prediction error
surpasses some threshold. Whenever, the prediction error sur-
passes a given threshold, the reactive value will be added to the
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DL based agent’s prediction result. The second formulation is
using the a both the prediction and rate estimation at the same
time with some percent of (which is determined by the value
of α) proactive decision value and some percent of reactive
decision value.

1) Discussion on performance of the method in terms of de-
cision latency, decision reliability, and decision computational
efficiency: Since DL training incur latency and computational
resources, it needs to be done more efficiently. For example, it
could be possible to periodically retrain the DL models of the
agents using the updated dataset. For proactive decision to be
made periodic updating of the historic data and periodically
evaluating it every night or other day or per week depending
on the operator cost and traffic dynamics. To gain optimal
performance in terms of latency, accuracy, and retraining re-
source consumption [4], the training period has to be carefully
selected. The optimization has to consider the latency as it
impacts the end to end delay. The accuracy is dependent on
the dataset used to (re-)train the DL model. Since system
evolve in time, using the most recent dataset providence better
accuracy. However re-training more frequently consumption of
computation resource and in cures decision delay by the agent.
Rate measurement/estimation feedback for reactive decision is
may not take huge computation demand as well as latency to
get and finally evaluate the number and amount of resources
required.

V. PERFORMANCE EVALUATION

In this section we will discuss our final results and simula-
tion scenarios.

A. Dataset Preparation

We generated the dataset from simulation using ns3 de-
veloping 5G network based on mm-wave module. In the
simulation, we considered the three tier C-RAN architecture
with micro, femto, and picco cell. The scenarios we considered
is for Manchester city where we considered the number of
eNodeBs as 37 and the average fraction of users per tier as 37.
The user and eNodeB distributions are considered as poisson
distributed and is plotted in figure 4a for 24 hours. Moreover,
a Gaussian noise is added to emulate the randomness in the
daily distributions [21]. This is plotted in figure 4b for 7
days. A single traffic aggregating getaway is considered to
collect the incoming traffic and measure the throughput. Based
on this scenario we generated the dataset which is plotted
in figure 4b.The generated data which is the throughput for
the aggregator have hourly pattern during the day which is
repeated in each day. This pattern is directly related to the load
demand in the data center as described by equation 2??. Hence,
we can consider this demand as a sequential data prediction
or regression problem.

B. Model Training

A specialized version of RNN called LSTM is chosen
to be appropriate for such type of time series dataset. We
treated the problem of predicting the throughput at the traffic

aggregating gateway as a linear regression problem where we
predict the pattern of the incoming traffic for several weeks.
Based on the estimated value, we calculated the CPU workload
requirements at the edge data center using equation 2. The
final predicted result is linearly related with the total load
required for the next few days (per day per hour). In the
training procedure, we first prepare the data for the training
through several steps using python code with SciPy and keras
deep learning library. That means we

We then selected the structure of the DL models to have a
single visible input layer, a 2 LSTM blocks or neurons hidden
layer, and an output layer for single value prediction.

We choose LSTM, GRU, CNN, and MLP for comparison.
LSTM works better on a non-stationary data that shows
growing trend and seasonal pattern [22]. Furthermore, even
if it is computationally complexity of LSTM could predict for
long time more accurately in a changing trend without frequent
updating of the data. This is an advantage in the decision
process a it reduces the frequency of retraining the LSTM
prediction model. This is reduces the overall computational
demand in a longer period.

C. Performance Result and Discussion

This subsection presents the performance evaluation result.
We have measured and compared DL model accuracy for
LSTM,GRU,CNN and MLP based prediction agent as a proac-
tive decision. We then compared them with the combination
algorithm based agent prediction result which uses the proac-
tive and reactive decision together.

1) Accuracy of Prediction With and Without Reactive De-
cision: Figure1 shows a) real traffic versus predicted traffic
employing proactive method and b) real traffic versus predicted
traffic from our proposed solution( Proactive + Reactive). Fig-
ure 2 depicts the RMSE value for different cases. As it can be
seen from the figure, the blue bar evaluates the training process
and how accurate it is. The proactive decision based result
(orange bar) performs better for proactive decision if there is
no event that could cause traffic spike. However, when there
are events that create unexpected traffic arrival, its performance
decreases (green bar). The red bar shows the improvement in
case of spike traffic arrivals by incorporating reactive decision
to the proactive decision. As shown in the figure for different
DL models, LSTM performs better followed by GRU, MLP
and CNN, respectively.

The result also varies with the amount of training dataset
used.

Figure 3 shows the performance comparison of different
proactive decisions while comparing the result against the
combined approaches.

As can be seen from the figure the performance result
improves as we increase the size of the training dataset.
Models trained with large and recent dataset performs better
meaning that adding more recent data as it comes from the
system improves the accuracy. However, this increases the
training frequency impacting the overall latency and resource
consumption.
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Fig. 1: Real traffic Vs Predicted traffic

Fig. 2: Shows a) Accuracy of DL Models on training data
set (consider as baseline for comparison) and on two different
kinds of test data sets; a test set without a traffic spike and a
test set with bursty/spike traffic. b) Accuracy of DL models
when combined with reactive method .

(a) LSTM

(b) MLP

(c) CNN

(d) GRU

Fig. 3: Proactive vs. Reactive on Datasets with/without Event

2) Training Latency Comparison For Proactive Decision:
Since training latency impacts the end-to-end delay for work-
load processing and re-training latency, we evaluate the train-
ing latency of the DL models and compare them. Figure 4
illustrates the training latency of LSTM, GRU, CNN and MLP.
As shown in the figure, training latency increases as the dataset
size grows for different DL models.

We provide the hardware configuration information shown
in Table I as it affects the prediction and CPU usage results.
Therefore, the same hardware was used to run the LSTM,
GRU, CNN, and MLP models.

VI. CONCLUSION

This paper presented an algorithm that combines proactive
and reactive decision to improve the accuracy for workload
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Fig. 4: Comparison of Training Latency for Different Dl
Models.

TABLE I: Hardware Configuration

Hardware Capacity
Memory 16 GB 2133 MHz LPDDR3
Processor 2.7 GHz Intel Core i7
Storage 2 Terabytes

prediction agent. Based on the prediction a agent chain is cre-
ated to execute the incoming workload as per the requirements.
We used LSTM, GRU, CNN, and MLP as a proactive decision
model and compared them. We then develop an algorithm that
combines the decision of the DL models with reactive decision
to improve the performance of the prediction agent. Since
accuracy is related to training frequency that impacts the end to
end latency of the user and resource consumption edge/cloud
data center resources, we have evaluated the training latency
and processing workload for a given round of training the DL
models. We can see that the proactive decision is well suited
for normal traffic. However, the performance degrades if there
is unexpected sudden traffic spike. The combined proposed
approach improves by providing the agent a shorter window
of looking at the most recent event to add reactive decision.
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