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Abstract
Many real-world applications require real-time and robust positioning of Internet of Things (IoT) devices. In this context,

visible light communication (VLC) is a promising approach due to its advantages in terms of high accuracy, low cost,

ubiquitous infrastructure, and freedom from RF interference. Nevertheless, there is a growing need to improve positioning

speed and accuracy. In this paper, we propose and prototype a VLC-based positioning solution using retroreflectors

attached to the IoT device of interest. The proposed algorithm uses the retroreflected power received by multiple pho-

todiodes to estimate the euclidean and directional coordinates of the underlying IoT device. In particular, the relative

relationship between reflected light magnitude and reflected power is used as input to trainable machine learning regression

models. Such models are trained to estimate the coordinates. The proposed algorithm excels in its simplicity and fast

computation. It also reduces the need for sensory devices and active operation. Additionally, after regression, Kalman

filtering is applied as a post-processing operation to further stabilize the obtained estimates. The proposed algorithm is

shown to provide stable, accurate, and fast. This has been verified by extensive experiments performed on a prototype in

real-world environments. Experiments confirm a high level of positioning accuracy and the added benefit of Kalman

filtering stabilization.
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1 Introduction

Accurate and timely positioning of devices, tools, and

objects is gaining increasing attention in both home and

industrial environments. Positioning is required in ware-

house workplaces, airports, and shopping malls. As an

example, it is required to keep track of robots in a ware-

house delivery robot team for the purposes of collision

avoidance and latency minimization. Since most Internet of

Things (IoT) devices are typically used indoors, it is

encouraged to use an indoor positioning approach. A tra-

ditional positioning approach is the Global Positioning

System ‘‘GPS’’. However, it is not suitable for indoor

environments and requires expensive communication and

hardware overhead on the target device. A better alterna-

tive is a visible light communication (VLC) based

approach [1]. The main idea behind this approach is to

project light from a light source onto an object of interest

and localize it using information extracted from the signal
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reflected from it. Such information includes intensity, angle

of incidence, polarization, and light distribution pattern.

There are various VLC positioning approaches based on

what information is obtained and how it is used for posi-

tioning. Visible Light Positioning (VLP) technology

describes the capability of indoor positioning using visible

light emitted by existing room lighting fixtures and cap-

turing the emitted light with a receiving unit equipped with

one or more light-sensitive devices [2].

Visible Light Sensing (VLS) extends visible light

capabilities into the realm of sensing and detection [3].

Applications that can be handled by VLS range from

simple pose recognition [4], occupancy or presence

detection [5] to gesture recognition [6], amongst many

more. With VLS, the object of interest reflects the light

emitted by the light source back to the light-receiving

element. Information can be conveyed through the place-

ment of reflective materials or other components (such as

LCD shutters) that modulate the spectrum and/or intensity

of the reflected light. An LCD shutter keeps alternating

between opaque and transparent states thereby allowing

light passage at a controllable frequency. This is important

for the identification of several devices.

The VLC-based approach possesses several attractive

advantages over other solutions. First, it requires minimal

[7] or even no additional hardware complexity [8]. Second,

is the minimized interference in the VLC domain due to its

line-of-sight (LoS) nature promising for very fine-grained

positioning accuracy levels [9]. Moreover, some recent

positioning approaches achieve cm-level accuracy opera-

tion [10]. Also, the usefulness of the VLC approach is more

strongly motivated by the widespread of light-emitting

diodes (LEDs) for illumination in home, office, and

industrial environments.

Although the VLC-based approach has several advan-

tages, it still faces certain challenges. First, is the non-

convexity of positioning when viewed as an optimization

problem. This stems from the non-linear relationship

between object coordinates and signal properties received

by PDs. This creates a barrier to treating positioning as a

standard optimization problem [11] as this solution

framework tends to give local optima. Also, the signal

received by the target device depends on both its position

and orientation. This makes accurate positioning in terms

of coordinates and angles a more challenging problem.

1.1 Motivation and related work

Non-VLP positioning approaches include RF-based meth-

ods. This category includes FRID, Bluetooth, WiFi [12].

However, these positioning methods have accuracy levels

in the order of 1 m, whereas ultra-wideband (UWB)-based

positioning can achieve positioning accuracies within 10

cm. Still, this technique has the drawbacks of high hard-

ware cost, short battery life, and lack of interaction with

current devices. Clearly, some of these drawbacks are

eliminated by using the VLC solution.

Traditional VLP approaches are based on exploiting the

geometric relationship between the device of interest and

an intense light source [13]. Despite their simplicity, these

approaches require some knowledge of the target device.

Partial or complete directional information, the known

altitude of the user equipment (UE), or the complete

alignment of the transmitter and UE directions [11].

Another category of VLP approaches is based on opti-

mization. In this setting, the positioning problem is for-

mulated as a standard optimization formulation and the

goal is to optimize the positioning accuracy. Attempts in

this direction include gradient descent, linear search, and

Newton’s method [14]. This approach reduces the need for

prior knowledge of the object of interest required by con-

ventional methods. However, the non-convexity of the

problem limits the results to local optima. As a result, this

approach tends to degrade positioning performance,

depending on the quality of the local solution obtained. The

third category is based on sparse coding, exploiting the

sparsity of the solution to guide optimization searches.

However, there are still challenges associated with

extracting the correct sparsity of the solution. This requires

both using the correct sparsity degree and identifying the

actual areas where the solution is sparse. Both of these

requirements are important and require further research for

this approach to be effective in a variety of operational

situations.

A recent study, RETRO [10], uses an LCD shutter to set

up a real-time reverse VLC channel by modulating

retroreflected light from a corner-cube retroreflector. A

retroreflector is a small device that can reflect light from

the VLC back to the light source with minimal scattering,

minimizing errors in estimating the received power. This

setup allows for identifying an IoT device using LCD

shutters with different operating frequencies. In terms of

performance, RETRO offers centimeter-level precision and

accuracy.

An optical retroreflector (RR) is a device that, unlike a

mirror, reflects the incident light towards the direction of

the source, with minimal scattering. RRs can be imple-

mented with different technologies and are used in many

fields, including free-space optical and satellite communi-

cations. Cheap RR materials are commonly available and

are used for road signs, bicycles, and clothing for road

safety. A popular type of RR is the corner-cube retrore-

flector (CCRR) [15], which is composed of three mirrors

arranged into a 90-degree corner geometry. Regardless of

the relative orientation of the direction of the incident
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beam, the ray will be reflected in the source after three

reflections, as pictorially shown in Fig. 1.

An extension of RETRO is PassiveRETRO [16], where

retroflectors are completely passive. Subsequently, our

previous work [17] exploits the relative relationships

between the magnitudes of reflected light ray power to

estimate the euclidean coordinates. This is achieved by

formulating a direct mapping between the power magni-

tudes and each coordinate. However, that work does not

offer to estimate the angular coordinates, and is, by design,

restricted to positioning in a limited area under the light

source.

Another line of research [18] explores the use of com-

mercially available retroreflective foils for VLC-based

positioning. It is based on the idea that light strikes a

retroreflective sheeting toward a photosensitive device

placed close to the light source. In this line, [19] achieves

high positioning accuracy at the expense of high compu-

tation and excessive memory requirements. Subsequently,

[18, 20] point out that a random forest supervised ML

approach is suitable for the VLC positioning problem,

while at the same time having significant advantages in

computational complexity and memory requirements.

However, this approach still lacks high-precision and real-

time positioning.

1.2 Contributions and organization

Based on the above, our motivation is to improve posi-

tioning accuracy while maintaining real-time performance.

Below is a summary of the contributions featured in this

paper.

• Regression models for estimating the coordinates of IoT

devices based on reflected VLC power: sensed at a few

photodiodes (PD)s. These power measurements are

quantified and used to estimate the euclidean and

angular coordinates of the object through trainable

regression models. Such models are trained to capture

the correspondence between the coordinates and the

magnitudes of power received by the PDs

• Using a Kalman filtering process as a stabilization aid

for estimated coordinates: Rather than depending solely

on the outcomes of regression models, a Kalman

filtering stage [21] helps reduce abrupt jumps in the

outputs and leads to more stable estimates by incorpo-

rating noise suppression in the measurements.

• Prototyping the proposed algorithm on a real-world

testbed: used to test the operation in real scenarios.

With this testbed, extensive performance evaluation

experiments are conducted to examine its accuracy and

time complexity.

1.2.1 Notation

Lower-case plain-faced, lower-case bold-faced, and upper-

case bold-faced letters represent scalars, vectors, and

matrices, respectively. In a matrix X, the symbol xi denotes

its i- th column. The symbol xt means the realization of a

variable x at time slot t.

1.2.2 Organization

The remainder of this paper is organized as follows. Sec-

tion 2 presents the system model and revises the prelimi-

naries. The proposed positioning algorithm is presented in

Sect. 3. Section 4 details the prototyping and experimen-

tation of a proof of concept of the proposed algorithm, with

the conclusions in Sect. 5.

2 System model and preliminaries

2.1 System model

We adopt a system model similar to the one in [10]. As

shown in Fig. 2, the goal is to obtain estimates of the

Fig. 1 The working principle of a CCRR; reflecting light to the

direction of its incidence with minimized scattering Fig. 2 The main components of the system model
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coordinates of the retroreflector’s euclidean (x̂; ŷ, and ẑ)

and angular coordinates (the evaluation angle ĥ and the

azimuth angle /̂). To achieve this goal, this model consists

of the following components: First is an LED panel that

acts as a (powerful) light source. It is noted that this setting

applies to any available standard light source in a home or

industrial outdoor environment. The second is a retrore-

flector circuit consisting of a retroreflector covered by an

LCD shutter whose closing frequency is controlled. We

especially use a corner cube retroreflector. This is a setting

where the device of interest passively reflects VLC power

and the positioning is done by the source device. Shutters

allow or deny the passage of light by alternating between

opaque and transparent states at a controllable frequency.

To do this, the retroreflector reflects the incident beam into

a parallel reflected beam, which is received by the PD.

However, we need to measure this waveform at a specific

shutter frequency. This way one can position multiple

devices at the same time. To this end, the position of the

device determines the power received by the PD. There-

fore, position coordinates can be estimated using the cor-

respondence between position and power. Those PDs are

placed to uniformly sample the LCD panel as pictorially

represented in Fig. 3. Also, the five coordinates x; y; z; h,
and / are illustrated by Fig. 4. Fundamentally, the

unknowns in this system are the five coordinates. Thus, it is

sound to think of using five PDs as five sources of

information.

2.2 Support vector machine regression

Regression can be cast as minimizing the sum of squared

errors between ground-truth values and the corresponding

estimates. It is thus a least squares estimation and can be

viewed as follows.

min
Xm

i¼1

yi � ŷið Þ2¼
Xm

i¼1

yi � w � xi þ bð Þð Þ2 ð1Þ

where ŷi is the estimate of the true label yi which can be

given by

f ðxÞ ¼ wUðxÞ þ b ð2Þ

where UðxÞ is a higher-dimensional feature space, w is a

weight vector, and b is a threshold. w and b can be esti-

mated by minimizing the following regularized risk

function.

RðCÞ ¼ C
1

n

Xn

i¼1

Lðdi; yiÞ þ
1

2
jjwjj2 ð3Þ

where C is a penalty parameter of error, di is the desired

value, n is the number of observations, and the summation

models the empirical error. This represents the parameter

optimization during the iterations of the training process.

The Support Vector Machine (SVM) algorithm [22] is a

leading regression technique to find the estimated out-

comes of given inputs.

When a given dataset cannot be linearly handled, one

can transform it into a high dimensional feature space using

a nonlinear mapping uðxÞ, where we can carry out the

linear regression despite the nonlinearity of the data. By

defining the kernel function of the inner product of the high

dimension feature space K xi; yið Þ ¼ u xið Þu yið Þ, the inner

product of a variable in the high dimension space can be

obtained by operating in the original space through the

kernel function.

Fig. 3 A top view of the system showing the PD placement on the

light source

Fig. 4 An illustration of the euclidean coordinates x, y, and z and the

elevation and azimuth angles h;/, respectively
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min
1

2

Xl

i;j¼1

a�i � ai
� �

a�j � aj

� �
K xi � xj
� �

(

þe
Xl

i

a�i þ ai
� �

�
Xl

i

yi a
�
i � ai

� �
)

s.t.
Xl

i

ai � a�i
� �

¼ 0

0� ai; a�i �C; i ¼ 1; . . .; l

ð4Þ

where a is dual variable for each data point and � is an error

threshold. Eventually, the regression decision function is

obtained as follows.

f ðxÞ ¼
X

i¼1

ðai � a�i ÞKðxi:xÞ þ b ð5Þ

where b is disclosed in (2).

3 Regression models for estimating
coordinates based on reflected power
observation

3.1 Machine learning regression for estimating
the coordinates

According to the free space optical path loss, one may

model the received optical power as follows [10].

Pr ¼ Pt
ðmlþ 1ÞAs

8pd2
cosmlþ1 ca ð6Þ

where Pt is the transmitted optical power multiplied by

reflector loss (reflector loss includes the transmission loss

of the coating material and the reflection loss of each

reflection surface), m is the Lambertian index, AS is the

effective sensing area of PD, d is the distance between the

PD and the retroreflector, c is the radiance angle, and a is

the ratio of the effective reflecting area to the maximum

effective reflecting area.

Based on the discussion above, the magnitude of

received PD power is directly correlated to how close the

retroreflector is. To verify this assumption, Fig. 6 shows the

power received from five PDs when the retroreflector is

placed 100 cm directly below PD1. The power received on

PD1 is the highest among all PDs. This implies a clear

correspondence between the coordinates of the retrore-

flector’s position and the relative relationship between the

PD powers. This suggests that one can train a machine-

learning model to extract and exploit this correspondence.

A regression model can be used to exploit the rela-

tionship between received power and coordinates. There-

fore, we propose to use 5 regression models, one for each

coordinate. That is the Euclidean angular coordinates of x,

y, z, h, and /. : Different models are needed since operation

scenarios are different. In particular, the power variation

pattern with respect to distance is not the same for the three

coordinates. Thus, we need a separate model for each

coordinate. Figure 5 shows a block diagram description of

the proposed estimation. Each model is trained separately

on a specific data set of performance measures and

respective ground truth coordinates.

A training set can be obtained by setting the object of

interest at known coordinates and angular positions, mea-

suring the power levels received from the five PDs, and

recording this as an example training point. By providing

such a set of training points, the trained model is expected

to generalize well to unforeseen coordinates and produce

accurate estimates of the corresponding coordinates. One

of the key advantages of machine learning models is their

generalization capabilities allowing them to well-adjust to

unforeseen data. Thus, it can be assumed that if the same

hardware and light sources are used, then there is no need

for model retraining as the system is moved from one

location to another. One needs only to retrain it if the

characteristics of the received reflected power magnitudes

change drastically. Besides, one can easily test the accu-

racy of the positioning algorithm by considering a few

sample cases. Therefore, using ML regression in this

application relies on two main advantages over traditional

optimization techniques. First, the estimation accuracy is

due to the generalizability of the ML model. Second is fast

estimation due to the simple computations required for ML

inference.

3.2 Kalman filtering for stabilization

A common drawback of ML models is their direct

dependence on data. Here, the regression model applied to

estimate the coordinates is prone to erratic behavior if the

measurements provided are perturbed. Therefore, using a

Kalman filtering stage promises more stable results. In

particular, the Kalman filter obtains estimates based on

contributions from both the ML model results and previous

estimates. This effectively prevents abrupt and random

changes in the estimation process. The importance of this

stabilization is particularly seen in the real-time estimation

of dynamically moving object coordinates.

Suppose an object of interest moves in time slots of

equal length, the interval between successive positioning

instances at time t and time t þ 1. Let Dt denote one state

of coordinates at time t. The corresponding dynamic model

can be expressed as:
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Dtþ1 ¼ FDt þ B vt þ wtð Þ; ð7Þ

where F is the state transition matrix and B is the control

matrix applied to the discrete process Dt. The external

uncertainty is modeled as wt, which is Gaussian noise with

covariance Q and Q ¼ E½wtw
T
t �. In the proposed model, we

can assume that the object’s velocity vt (that is, the first

derivative of the variation of Dt) is stable between t and

t þ 1. Therefore, one may assume F=1 and B ¼ Dt. To
refine the predictions by previous estimates, the measure of

(7) is defined as

zt ¼ HDt þ nt; ð8Þ

where zt represents the observed variable, i.e. the distance

traveled Dt calculated based on the results of the ML-based

positioning, and H is the scale matrix for mapping the units

and scales of the states. Also, H=1, because zt is a direct

observation of Dt and nt, is the Gaussian-distributed mea-

surement noise with covariance R.

In its operation, a Kalman filter has two phases in each

time slot: updates and prediction. In the prediction phase,

the prior estimates Dt=t�1 and Pt=t�1 are calculated based on

the posterior estimates Dt�1=t�1 and Pt�1=t�1. In particular,

Dt=t ¼ Dt=t�1 þ Kt zt � HDt=t�1

� �

Pt=t ¼ Pt=t�1 � Pt=t�1KtH
; ð9Þ

where Kt is the Kalman gain defined by

Kt ¼ Pt=t�1H
T HPt=t�1HT þ R
� ��1

: ð10Þ

The update formula for (9) shows the dependence of the

Kalman gain Kt on the observed measurement zt of the

later estimate Dt=t and the prediction Dt. A small mea-

surement noise implies a small value of R. In contrast, if

the external uncertainty imposed on the prediction is small,

which means that the value of Q is small based on (9) and

(10), one can rely on predictions derived from Dt=t�1. The

variables Q and R are set empirically.

Overall, the proposed algorithm is set to merge the

advantages of regression-based estimation and Kalman

filtering stabilization. The main steps of the proposed

algorithm are outlined in Algorithm 1.

Fig. 5 Estimating the coordinates through the respective regression models

Algorithm 1 The proposed positioning algorithm

Require: Power received by the n PDs Pi, i ∈ 1, n, and trained regression
models Mx, My, Mz, Mθ, and Mφ.

Ensure: Estimated coordinates of the retroflector’s position.
Assign the values of the power magnitudes Pi to their location on the PD
array
Set x̂ ← Mx(P ).
Set ŷ ← My(P ).
Set ẑ ← Mz(P ).
Set θ̂ ← Mθ(P ).
Set φ̂ ← Mφ(P ).
Stabilize the estimates using Kalman filtering and previous states.
Update the Kalman filter grain.
Return x̂, ŷ, ẑ, θ̂, and φ̂
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4 Testbed and experiments

4.1 Testbed and setup

A testbed is built according to the system model specified

in Sect. 2. A picture of this testbed is shown in Fig. 8. A

retroreflector is mounted on a tripod such that one can track

its position in the physical world. As a light source, we use

a commercial flat LED panel with uniformly distributed

light from Hyperikon (400W, 4000K, 3770 lumens). The

PD used in this article is Hamamatsu S6968 [23]. Each PD

is operated in the photoconductive mode to allow for

estimating the received power as a voltage across a series

resistor. Figure 7 shows the schematic of the received

power measurement circuit. Specifically, each PD is con-

nected in series with a 6.8 k X resistor, and the series

circuit is reverse-biased by a 10 VDC voltage. Therefore,

the power received by the PD is proportional to the resistor

voltage. As a retroreflector, we use PS976 (uncoated)

manufactured by Thorlabs [24].

A Measurement Computing USB-1608FS-Plus series

data acquisition device (DAQ) [25] is used to measure the

above-mentioned voltage voltage. The device measures the

voltage corresponding to the power of five PDs in real time

with a sampling frequency of 50,000 samples/s. These

measurements are sent to the PD via the USB port. We then

record the power measurements via MatLab and apply a

fast Fourier transform (FFT) to these power readings to

extract the actual power magnitude at the LCD shutter

switching frequency. An example of an FFT power spec-

trum is shown in Fig. 6. As can be seen from this figure,

Fig. 6 Spectra of power received by PD1 through PD5 from left to right, respectively, with the retroflector placed at 100 cm underneath PD1. The

power received by PD1 is larger than that received by any other PDs

Table 1 System parameters and specifications

Item Value

Refractive index 1.51

No. of PDs 5

PD type S6968

As 150 mm2

Power sampling frequency 50 kHz

retroflector Thorlabs PS976

LCD shutter frequency 20 Hz

LCD shutter Pi-cell

Voltage measurement device USB-1608FS-Plus

Table 2 SVM regression model properties and values

Property Value

Kernel Gaussian

Data standardization TRUE

KernelScale Automatic

Solver ISDA

ShrinkagePeriod 1000
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each spectrum has two major peaks. One at a frequency of

60 Hz because the light source operates at a dominant

frequency of 60 Hz, and another small peak at 20 Hz due to

power reflected from the retroreflector. There are also

several other negligible peaks due to ambient noise and

measurement noise.

DC power is supplied from a standard DC power supply.

Finally, we perform real-time positioning on MatLab

according to the steps outlined in Algorithm 1. Table 1 lists

some other system parameter values.

We tested the performance of the proposed algorithm

using several regression schemes. Our results show that

SVM-based regression performs best among others.

Therefore, we mainly present experiments based on this

method and do not include other experiments to avoid

redundancy. Table 2 gives the specification of the SVM

regression method used.

4.2 Positioning accuracy performance
evaluation

In this experiment, we present a performance evaluation of

the proposed algorithm. The performance metric is the

empirical cumulative distribution function (CDF) of the

position errors of the x, y, z, h, and / coordinates.

Specifically, we place retroreflectors at known points that

randomly sample the positioning system workspace. At

each of these positions, we obtain estimates of the

Fig. 7 PD received power measurement circuit

Fig. 8 A photo of the testbed used showing the main system

components

Fig. 9 Empirical CDF of positioning error for the x, y, and

z coordinates

Fig. 10 Empirical CDF of positioning error for the h and /
coordinates
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retroreflector coordinates, and between these estimates and

the actual x, y, z, h, and / coordinates. Next, we calculate

the absolute error of the physical world. Once the errors for

all positions have been calculated, we draw an empirical

CDF plot of these errors.

In this experiment, we collected measurements at 1000

data points. We then split the measurement set into training

sets, testing each of the 500 mutually exclusive measure-

ment points. Then, we trained the ML model as specified in

Sect. 2. Through extensive experiments, we chose the SVM

regression model for its superior performance.

Figure 9 shows empirical CDF plots of the errors in

estimating the x, y, and z coordinates. A corresponding

angle estimation CDF plot is shown in Fig. 10. Also,

Fig. 11 shows total error of x, y, z and angles h and /.
These figures show that the proposed algorithm achieves

cm-level positioning of x, y, and z. However, performance

is not accurate with respect to angular coordinates.

4.3 Experimenting the Kalman filtering
stabilization

To examine the added benefit of the proposed Kalman

filtering stage, we conduct the following experiment. A set

of measurements is obtained while the object is moving

dynamically in the 3-D space. Then, starting from a known

state, we use the proposed setting in Algorithm 1 to obtain

Fig. 12 The performance with and without a Kalman filtering stage

Fig. 11 Aggregate empirical CDF of positioning errors for the

euclidean and angular coordinates
Fig. 13 Performance comparison of the proposed algorithm to the

approach in [17], denoted by RETRO-VLP

Fig. 14 A CDF plot of execution times for the regression and Kalman

filtering stages of the proposed algorithm
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regulated measurements of the coordinates. Figure 12

compares the performance with and without the use of the

Kalman filtering stage. This figure shows the added benefit

of this filtering stage as the error is constantly smaller

compared to the case where it is not used.

We compare the performance of the proposed algorithm

in estimating the x, y, and z coordinates to that of our

previous work in [17]. The comparison is shown in Fig-

ure 13. As can be seen, the proposed algorithm has a clear

advantage over the algorithm of [17]. This awes to the use

of a Klaman filtering stage and its role in estimation

stabilization.

4.4 Investigating the time complexity

To get an estimate of the time complexity of the proposed

algorithm, we perform 100 positionings measuring the

execution time for each time point. Figure 14 shows a CDF

plot of execution time. Clearly, in over 95% of cases, the

execution time is less than 0.15 ms. The execution time

with the proposed Klaman filter stage is slightly longer

than the case without it. This result ensures the low time

complexity and suitability of the proposed algorithm for

real-time operation. These results are verified using the

Matlab tic-toc command running on Matlab 2021b running

on a laptop with an i5 processor and 8 GB RAM.

4.5 The impact of the regression model

In the following experiment we compare the positioning

accuracy with different regression techniques. Namely, we

consider SVM [22], linear [26], ensemble [27], generalized

additive model (GAM) [28], Gaussian process regression

(GPR) [29], and neural network regression models. We

refer the interested reader to [30] for an elaborate discus-

sion of several regression models.

Figure 15 shows the CDF plots of errors in Euclidean

and angular coordinates. It is noted that SVM has the best

performance compared to the others. On the other hand, the

other regression techniques perform similarly. The result

obtained in this experiment is intuitively expected due to

the fact that the size of the dataset in this application is

small compared to other application areas. Basically, one

needs not have many coordinates to train an SVM model.

On the other hand, SVM models are known to be partic-

ularly well-suited to complex and small datasets [31].

Finally, we compare the time complexity of the pro-

posed algorithm to that of RETRO [10] quantified in terms

of execution time. Figure 16 shows a CDF plot for each of

them. It is clearly seen that the proposed algorithm has a

significant saving in terms of time complexity.

5 Conclusions

In this paper, we presented an algorithm for real-time

object positioning of IoT devices in indoor environments.

The proposed algorithm aims at two main goals; posi-

tioning accuracy and speed. The proposed algorithm is

based on exploiting the relative relationship between the

power of the signal reflected from the retroreflector placed

on top of the object and the set of PDs. We showed how to

render this mapping using a machine-learning regression

model and use it to estimate object coordinates. These

models generalize well to unforeseen coordinates andFig. 16 A sample execution time comparison between the proposed

algorithm and RETRO [10]

Fig. 15 Euclidean error CDF plots of positioning accuracy for several

regression techniques
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environments and excel in fast inference compared to tra-

ditional optimization-based methods. We also showed the

use of Kalman filtering as a stabilizer for the estimates.

Prior knowledge of previous states is used with model

estimates to obtain more robust estimates. This filtering

prevents abrupt changes in estimates due to errors or noise.

Moreover, the proposed algorithm achieves accurate posi-

tioning performance with fast and real-time operation.

These results were verified by real experiments performed

on a prototype testbed.
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