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Abstract

Many real-world applications require real-time and robust positioning of Internet of Things (IoT) devices. In this context,
visible light communication (VLC) is a promising approach due to its advantages in terms of high accuracy, low cost,
ubiquitous infrastructure, and freedom from RF interference. Nevertheless, there is a growing need to improve positioning
speed and accuracy. In this paper, we propose and prototype a VLC-based positioning solution using retroreflectors
attached to the IoT device of interest. The proposed algorithm uses the retroreflected power received by multiple pho-
todiodes to estimate the euclidean and directional coordinates of the underlying IoT device. In particular, the relative
relationship between reflected light magnitude and reflected power is used as input to trainable machine learning regression
models. Such models are trained to estimate the coordinates. The proposed algorithm excels in its simplicity and fast
computation. It also reduces the need for sensory devices and active operation. Additionally, after regression, Kalman
filtering is applied as a post-processing operation to further stabilize the obtained estimates. The proposed algorithm is
shown to provide stable, accurate, and fast. This has been verified by extensive experiments performed on a prototype in
real-world environments. Experiments confirm a high level of positioning accuracy and the added benefit of Kalman
filtering stabilization.

Keywords VLC - Positioning - Localization - Retroreflectors - IoT - Kalman filtering stabilization

1 Introduction

Accurate and timely positioning of devices, tools, and
objects is gaining increasing attention in both home and
industrial environments. Positioning is required in ware-
house workplaces, airports, and shopping malls. As an
example, it is required to keep track of robots in a ware-
house delivery robot team for the purposes of collision
avoidance and latency minimization. Since most Internet of
Things (IoT) devices are typically used indoors, it is
encouraged to use an indoor positioning approach. A tra-
ditional positioning approach is the Global Positioning
System “GPS”. However, it is not suitable for indoor
environments and requires expensive communication and
hardware overhead on the target device. A better alterna-
' Northern Border University, 73222 Arar, Saudi Arabia tive is a visible light communication (VLC) based
2 New Jersey Institute of Technology, Newark, NJ 07102, USA approach [1]. The main idea behind this approach is to
project light from a light source onto an object of interest
and localize it using information extracted from the signal
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reflected from it. Such information includes intensity, angle
of incidence, polarization, and light distribution pattern.
There are various VLC positioning approaches based on
what information is obtained and how it is used for posi-
tioning. Visible Light Positioning (VLP) technology
describes the capability of indoor positioning using visible
light emitted by existing room lighting fixtures and cap-
turing the emitted light with a receiving unit equipped with
one or more light-sensitive devices [2].

Visible Light Sensing (VLS) extends visible light
capabilities into the realm of sensing and detection [3].
Applications that can be handled by VLS range from
simple pose recognition [4], occupancy or presence
detection [5] to gesture recognition [6], amongst many
more. With VLS, the object of interest reflects the light
emitted by the light source back to the light-receiving
element. Information can be conveyed through the place-
ment of reflective materials or other components (such as
LCD shutters) that modulate the spectrum and/or intensity
of the reflected light. An LCD shutter keeps alternating
between opaque and transparent states thereby allowing
light passage at a controllable frequency. This is important
for the identification of several devices.

The VLC-based approach possesses several attractive
advantages over other solutions. First, it requires minimal
[7] or even no additional hardware complexity [8]. Second,
is the minimized interference in the VLC domain due to its
line-of-sight (LoS) nature promising for very fine-grained
positioning accuracy levels [9]. Moreover, some recent
positioning approaches achieve cm-level accuracy opera-
tion [10]. Also, the usefulness of the VLC approach is more
strongly motivated by the widespread of light-emitting
diodes (LEDs) for illumination in home, office, and
industrial environments.

Although the VLC-based approach has several advan-
tages, it still faces certain challenges. First, is the non-
convexity of positioning when viewed as an optimization
problem. This stems from the non-linear relationship
between object coordinates and signal properties received
by PDs. This creates a barrier to treating positioning as a
standard optimization problem [I11] as this solution
framework tends to give local optima. Also, the signal
received by the target device depends on both its position
and orientation. This makes accurate positioning in terms
of coordinates and angles a more challenging problem.

1.1 Motivation and related work

Non-VLP positioning approaches include RF-based meth-
ods. This category includes FRID, Bluetooth, WiFi [12].
However, these positioning methods have accuracy levels
in the order of 1 m, whereas ultra-wideband (UWB)-based
positioning can achieve positioning accuracies within 10

@ Springer

cm. Still, this technique has the drawbacks of high hard-
ware cost, short battery life, and lack of interaction with
current devices. Clearly, some of these drawbacks are
eliminated by using the VLC solution.

Traditional VLP approaches are based on exploiting the
geometric relationship between the device of interest and
an intense light source [13]. Despite their simplicity, these
approaches require some knowledge of the target device.
Partial or complete directional information, the known
altitude of the user equipment (UE), or the complete
alignment of the transmitter and UE directions [11].
Another category of VLP approaches is based on opti-
mization. In this setting, the positioning problem is for-
mulated as a standard optimization formulation and the
goal is to optimize the positioning accuracy. Attempts in
this direction include gradient descent, linear search, and
Newton’s method [14]. This approach reduces the need for
prior knowledge of the object of interest required by con-
ventional methods. However, the non-convexity of the
problem limits the results to local optima. As a result, this
approach tends to degrade positioning performance,
depending on the quality of the local solution obtained. The
third category is based on sparse coding, exploiting the
sparsity of the solution to guide optimization searches.
However, there are still challenges associated with
extracting the correct sparsity of the solution. This requires
both using the correct sparsity degree and identifying the
actual areas where the solution is sparse. Both of these
requirements are important and require further research for
this approach to be effective in a variety of operational
situations.

A recent study, RETRO [10], uses an LCD shutter to set
up a real-time reverse VLC channel by modulating
retroreflected light from a corner-cube retroreflector. A
retroreflector is a small device that can reflect light from
the VLC back to the light source with minimal scattering,
minimizing errors in estimating the received power. This
setup allows for identifying an IoT device using LCD
shutters with different operating frequencies. In terms of
performance, RETRO offers centimeter-level precision and
accuracy.

An optical retroreflector (RR) is a device that, unlike a
mirror, reflects the incident light towards the direction of
the source, with minimal scattering. RRs can be imple-
mented with different technologies and are used in many
fields, including free-space optical and satellite communi-
cations. Cheap RR materials are commonly available and
are used for road signs, bicycles, and clothing for road
safety. A popular type of RR is the corner-cube retrore-
flector (CCRR) [15], which is composed of three mirrors
arranged into a 90-degree corner geometry. Regardless of
the relative orientation of the direction of the incident
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beam, the ray will be reflected in the source after three
reflections, as pictorially shown in Fig. 1.

An extension of RETRO is PassiveRETRO [16], where
retroflectors are completely passive. Subsequently, our
previous work [17] exploits the relative relationships
between the magnitudes of reflected light ray power to
estimate the euclidean coordinates. This is achieved by
formulating a direct mapping between the power magni-
tudes and each coordinate. However, that work does not
offer to estimate the angular coordinates, and is, by design,
restricted to positioning in a limited area under the light
source.

Another line of research [18] explores the use of com-
mercially available retroreflective foils for VLC-based
positioning. It is based on the idea that light strikes a
retroreflective sheeting toward a photosensitive device
placed close to the light source. In this line, [19] achieves
high positioning accuracy at the expense of high compu-
tation and excessive memory requirements. Subsequently,
[18, 20] point out that a random forest supervised ML
approach is suitable for the VLC positioning problem,
while at the same time having significant advantages in
computational complexity and memory requirements.
However, this approach still lacks high-precision and real-
time positioning.

1.2 Contributions and organization
Based on the above, our motivation is to improve posi-

tioning accuracy while maintaining real-time performance.
Below is a summary of the contributions featured in this

paper.

e Regression models for estimating the coordinates of IoT
devices based on reflected VLC power: sensed at a few

Incident ray

reflected ray

X

y

Fig. 1 The working principle of a CCRR; reflecting light to the
direction of its incidence with minimized scattering

photodiodes (PD)s. These power measurements are
quantified and used to estimate the euclidean and
angular coordinates of the object through trainable
regression models. Such models are trained to capture
the correspondence between the coordinates and the
magnitudes of power received by the PDs

e Using a Kalman filtering process as a stabilization aid
for estimated coordinates: Rather than depending solely
on the outcomes of regression models, a Kalman
filtering stage [21] helps reduce abrupt jumps in the
outputs and leads to more stable estimates by incorpo-
rating noise suppression in the measurements.

e Prototyping the proposed algorithm on a real-world
testbed: used to test the operation in real scenarios.
With this testbed, extensive performance evaluation
experiments are conducted to examine its accuracy and
time complexity.

1.2.1 Notation

Lower-case plain-faced, lower-case bold-faced, and upper-
case bold-faced letters represent scalars, vectors, and
matrices, respectively. In a matrix X, the symbol x; denotes
its i- th column. The symbol x; means the realization of a
variable x at time slot ¢.

1.2.2 Organization

The remainder of this paper is organized as follows. Sec-
tion 2 presents the system model and revises the prelimi-
naries. The proposed positioning algorithm is presented in
Sect. 3. Section 4 details the prototyping and experimen-
tation of a proof of concept of the proposed algorithm, with
the conclusions in Sect. 5.

2 System model and preliminaries
2.1 System model

We adopt a system model similar to the one in [10]. As
shown in Fig. 2, the goal is to obtain estimates of the

LCD panel
1
4

Estimated
coordinates

%9.2,0,¢

N |
"PD
Retroflected light

LCD shutter

V Power [ Positioning
measurement algorithm

Retroflector

Incident light

Fig. 2 The main components of the system model
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coordinates of the retroreflector’s euclidean (x,y, and Z2)
and angular coordinates (the evaluation angle 0 and the

azimuth angle qAS). To achieve this goal, this model consists
of the following components: First is an LED panel that
acts as a (powerful) light source. It is noted that this setting
applies to any available standard light source in a home or
industrial outdoor environment. The second is a retrore-
flector circuit consisting of a retroreflector covered by an
LCD shutter whose closing frequency is controlled. We
especially use a corner cube retroreflector. This is a setting
where the device of interest passively reflects VLC power
and the positioning is done by the source device. Shutters
allow or deny the passage of light by alternating between
opaque and transparent states at a controllable frequency.
To do this, the retroreflector reflects the incident beam into
a parallel reflected beam, which is received by the PD.
However, we need to measure this waveform at a specific
shutter frequency. This way one can position multiple
devices at the same time. To this end, the position of the
device determines the power received by the PD. There-
fore, position coordinates can be estimated using the cor-
respondence between position and power. Those PDs are
placed to uniformly sample the LCD panel as pictorially
represented in Fig. 3. Also, the five coordinates x,y,z, 0,
and ¢ are illustrated by Fig. 4. Fundamentally, the
unknowns in this system are the five coordinates. Thus, it is
sound to think of using five PDs as five sources of
information.

40
/ N
20 | PD4
y N y N y \
y 0 | PD2 | . p1 — pp3
(cm) 4 A A /
d \
20 . PD5
N 4
-40 -20 0 20 40
X (cm)

Fig. 3 A top view of the system showing the PD placement on the
light source
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Fig. 4 An illustration of the euclidean coordinates x, y, and z and the
elevation and azimuth angles 6, ¢, respectively

2.2 Support vector machine regression

Regression can be cast as minimizing the sum of squared
errors between ground-truth values and the corresponding
estimates. It is thus a least squares estimation and can be
viewed as follows.

m

min ﬁ:(y,- — y})zz Z(yi —(W-x; + b))2 (1)

i=1

where y; is the estimate of the true label y; which can be
given by

f(x) = wd(x) +b (2)

where ®(x) is a higher-dimensional feature space, w is a
weight vector, and b is a threshold. w and b can be esti-
mated by minimizing the following regularized risk
function.

RC) = €13 Ldy) + 2wl 3

where C is a penalty parameter of error, d; is the desired
value, n is the number of observations, and the summation
models the empirical error. This represents the parameter
optimization during the iterations of the training process.
The Support Vector Machine (SVM) algorithm [22] is a
leading regression technique to find the estimated out-
comes of given inputs.

When a given dataset cannot be linearly handled, one
can transform it into a high dimensional feature space using
a nonlinear mapping ¢(x), where we can carry out the
linear regression despite the nonlinearity of the data. By
defining the kernel function of the inner product of the high
dimension feature space K(x;,y;) = @(x;)@(y;), the inner
product of a variable in the high dimension space can be
obtained by operating in the original space through the
kernel function.
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where a is dual variable for each data point and € is an error
threshold. Eventually, the regression decision function is
obtained as follows.

f) =) (ai—a))K(x.x) +b (5)

i=1

where b is disclosed in (2).

3 Regression models for estimating
coordinates based on reflected power
observation

3.1 Machine learning regression for estimating
the coordinates

According to the free space optical path loss, one may
model the received optical power as follows [10].

1+ 1A,
(ml+ DA it Vo (6)

where P; is the transmitted optical power multiplied by
reflector loss (reflector loss includes the transmission loss
of the coating material and the reflection loss of each
reflection surface), m is the Lambertian index, Ag is the
effective sensing area of PD, d is the distance between the
PD and the retroreflector, y is the radiance angle, and o is
the ratio of the effective reflecting area to the maximum
effective reflecting area.

Based on the discussion above, the magnitude of
received PD power is directly correlated to how close the
retroreflector is. To verify this assumption, Fig. 6 shows the
power received from five PDs when the retroreflector is
placed 100 cm directly below PD1. The power received on
PDI1 is the highest among all PDs. This implies a clear
correspondence between the coordinates of the retrore-
flector’s position and the relative relationship between the
PD powers. This suggests that one can train a machine-
learning model to extract and exploit this correspondence.

A regression model can be used to exploit the rela-
tionship between received power and coordinates. There-
fore, we propose to use 5 regression models, one for each

coordinate. That is the Euclidean angular coordinates of x,
v, z, 0, and ¢. : Different models are needed since operation
scenarios are different. In particular, the power variation
pattern with respect to distance is not the same for the three
coordinates. Thus, we need a separate model for each
coordinate. Figure 5 shows a block diagram description of
the proposed estimation. Each model is trained separately
on a specific data set of performance measures and
respective ground truth coordinates.

A training set can be obtained by setting the object of
interest at known coordinates and angular positions, mea-
suring the power levels received from the five PDs, and
recording this as an example training point. By providing
such a set of training points, the trained model is expected
to generalize well to unforeseen coordinates and produce
accurate estimates of the corresponding coordinates. One
of the key advantages of machine learning models is their
generalization capabilities allowing them to well-adjust to
unforeseen data. Thus, it can be assumed that if the same
hardware and light sources are used, then there is no need
for model retraining as the system is moved from one
location to another. One needs only to retrain it if the
characteristics of the received reflected power magnitudes
change drastically. Besides, one can easily test the accu-
racy of the positioning algorithm by considering a few
sample cases. Therefore, using ML regression in this
application relies on two main advantages over traditional
optimization techniques. First, the estimation accuracy is
due to the generalizability of the ML model. Second is fast
estimation due to the simple computations required for ML
inference.

3.2 Kalman filtering for stabilization

A common drawback of ML models is their direct
dependence on data. Here, the regression model applied to
estimate the coordinates is prone to erratic behavior if the
measurements provided are perturbed. Therefore, using a
Kalman filtering stage promises more stable results. In
particular, the Kalman filter obtains estimates based on
contributions from both the ML model results and previous
estimates. This effectively prevents abrupt and random
changes in the estimation process. The importance of this
stabilization is particularly seen in the real-time estimation
of dynamically moving object coordinates.

Suppose an object of interest moves in time slots of
equal length, the interval between successive positioning
instances at time ¢ and time ¢ + 1. Let D, denote one state
of coordinates at time 7. The corresponding dynamic model
can be expressed as:
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Fig. 5 Estimating the coordinates through the respective regression models

Dy = FD, + B(Vt + Wt)7 (7)

where F is the state transition matrix and B is the control
matrix applied to the discrete process D;. The external
uncertainty is modeled as w;, which is Gaussian noise with
covariance Q and Q = E[w,w!]. In the proposed model, we
can assume that the object’s velocity v, (that is, the first
derivative of the variation of D;) is stable between ¢ and
t + 1. Therefore, one may assume F=1 and B = Ar. To
refine the predictions by previous estimates, the measure of
(7) is defined as

z = HD, + n,, (8)

where z; represents the observed variable, i.e. the distance
traveled D, calculated based on the results of the ML-based
positioning, and H is the scale matrix for mapping the units
and scales of the states. Also, H=1, because z; is a direct
observation of D, and n;, is the Gaussian-distributed mea-
surement noise with covariance R.

In its operation, a Kalman filter has two phases in each
time slot: updates and prediction. In the prediction phase,
the prior estimates D/, and P;;,_| are calculated based on
the posterior estimates D;_y/,_; and P,_;_;. In particular,

Dt/t = Dt/t—l + K (Zt - HDt/t—l)
Pr/t = Pz/t—l - Pt/tfthH

; ©)

where K, is the Kalman gain defined by
—1
K, =Py, H" (HP, HT +R) ™. (10)

The update formula for (9) shows the dependence of the
Kalman gain K; on the observed measurement z, of the
later estimate D,/ and the prediction D,. A small mea-
surement noise implies a small value of R. In contrast, if
the external uncertainty imposed on the prediction is small,
which means that the value of Q is small based on (9) and
(10), one can rely on predictions derived from D, ;,_;. The
variables Q and R are set empirically.

Overall, the proposed algorithm is set to merge the
advantages of regression-based estimation and Kalman
filtering stabilization. The main steps of the proposed
algorithm are outlined in Algorithm 1.

Algorithm 1 The proposed positioning algorithm

Require: Power received by the n PDs P;,i € 1,n, and trained regression

models M, My, M., My, and M.

Ensure: Estimated coordinates of the retroflector’s position.
Assign the values of the power magnitudes P; to their location on the PD

array

Set & «— M, (P)
Set § «— M,(P)
Set 2 « M, (P)
Set 6 — My(P)
Set ¢ — My(P).

Stabilize the estimates using Kalman filtering and previous states.

Update the Kalman filter grain.
Return #,9, 2,60, and ¢

@ Springer
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4 Testbed and experiments
4.1 Testbed and setup

A testbed is built according to the system model specified
in Sect. 2. A picture of this testbed is shown in Fig. 8. A
retroreflector is mounted on a tripod such that one can track
its position in the physical world. As a light source, we use
a commercial flat LED panel with uniformly distributed
light from Hyperikon (400W, 4000K, 3770 lumens). The
PD used in this article is Hamamatsu S6968 [23]. Each PD
is operated in the photoconductive mode to allow for
estimating the received power as a voltage across a series
resistor. Figure 7 shows the schematic of the received
power measurement circuit. Specifically, each PD is con-
nected in series with a 6.8 k Q resistor, and the series
circuit is reverse-biased by a 10 VDC voltage. Therefore,
the power received by the PD is proportional to the resistor
voltage. As a retroreflector, we use PS976 (uncoated)
manufactured by Thorlabs [24].

A Measurement Computing USB-1608FS-Plus series
data acquisition device (DAQ) [25] is used to measure the
above-mentioned voltage voltage. The device measures the
voltage corresponding to the power of five PDs in real time
with a sampling frequency of 50,000 samples/s. These
measurements are sent to the PD via the USB port. We then
record the power measurements via MatLab and apply a
fast Fourier transform (FFT) to these power readings to

Table 1 System parameters and specifications

Item Value
Refractive index 1.51

No. of PDs 5

PD type S6968

Ay 150 mm?2
Power sampling frequency 50 kHz
retroflector Thorlabs PS976
LCD shutter frequency 20 Hz

LCD shutter Pi-cell

Voltage measurement device

USB-1608FS-Plus

Table 2 SVM regression model properties and values

Property Value
Kernel Gaussian
Data standardization TRUE
KernelScale Automatic
Solver ISDA
ShrinkagePeriod 1000

extract the actual power magnitude at the LCD shutter
switching frequency. An example of an FFT power spec-
trum is shown in Fig. 6. As can be seen from this figure,
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Fig. 6 Spectra of power received by PD1 through PD5 from left to right, respectively, with the retroflector placed at 100 cm underneath PD1. The

power received by PD1 is larger than that received by any other PDs
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Fig. 8 A photo of the testbed used showing the main system
components

each spectrum has two major peaks. One at a frequency of
60 Hz because the light source operates at a dominant
frequency of 60 Hz, and another small peak at 20 Hz due to
power reflected from the retroreflector. There are also
several other negligible peaks due to ambient noise and
measurement noise.

DC power is supplied from a standard DC power supply.
Finally, we perform real-time positioning on MatLab
according to the steps outlined in Algorithm 1. Table 1 lists
some other system parameter values.

We tested the performance of the proposed algorithm
using several regression schemes. Our results show that
SVM-based regression performs best among others.
Therefore, we mainly present experiments based on this

@ Springer
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Fig. 9 Empirical CDF of positioning error for the x, y, and
z coordinates
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Fig. 10 Empirical CDF of positioning error for the 0 and ¢
coordinates

method and do not include other experiments to avoid
redundancy. Table 2 gives the specification of the SVM
regression method used.

4.2 Positioning accuracy performance
evaluation

In this experiment, we present a performance evaluation of
the proposed algorithm. The performance metric is the
empirical cumulative distribution function (CDF) of the
position errors of the x, y, z, 0, and ¢ coordinates.
Specifically, we place retroreflectors at known points that
randomly sample the positioning system workspace. At
each of these positions, we obtain estimates of the
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Empirical CDF

Location error 4
Angular error

03

02r

0 50 100 150 200 250
Location/Angular error (cm/degree)

Fig. 11 Aggregate empirical CDF of positioning errors for the
euclidean and angular coordinates

Empirical CDF

T L
regression
09 r regression+Kalamnn |

0.6 - 1

F(x)

02r 1

0.1r 1

Fig. 12 The performance with and without a Kalman filtering stage

retroreflector coordinates, and between these estimates and
the actual x, y, z, 0, and ¢ coordinates. Next, we calculate
the absolute error of the physical world. Once the errors for
all positions have been calculated, we draw an empirical
CDF plot of these errors.

In this experiment, we collected measurements at 1000
data points. We then split the measurement set into training
sets, testing each of the 500 mutually exclusive measure-
ment points. Then, we trained the ML model as specified in
Sect. 2. Through extensive experiments, we chose the SVM
regression model for its superior performance.

Figure 9 shows empirical CDF plots of the errors in
estimating the x, y, and z coordinates. A corresponding
angle estimation CDF plot is shown in Fig. 10. Also,

Empirical CDF

0.8 1

Proposed
0.6 F Retro-VLP

0 \ \ \ \ J
0 50 100 150 200

Location error (cm)

Fig. 13 Performance comparison of the proposed algorithm to the
approach in [17], denoted by RETRO-VLP

Empirical CDF

regression
09r regression+Kalamnn | |

0.7 1

0.6 - 1

F(x)

03F 1

02F 1

Fig. 14 A CDF plot of execution times for the regression and Kalman
filtering stages of the proposed algorithm

Fig. 11 shows total error of x, y, z and angles 6 and ¢.
These figures show that the proposed algorithm achieves
cm-level positioning of x, y, and z. However, performance
is not accurate with respect to angular coordinates.

4.3 Experimenting the Kalman filtering
stabilization

To examine the added benefit of the proposed Kalman
filtering stage, we conduct the following experiment. A set
of measurements is obtained while the object is moving
dynamically in the 3-D space. Then, starting from a known
state, we use the proposed setting in Algorithm 1 to obtain

@ Springer
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Empirical CDF

RegressionSVM
LinearModel ]
RegressionEnsemble
RegressionGAM
RegressionGP
RegressionNeuralNetwork | 7|

100 150 200 250 300
X

Fig. 15 Euclidean error CDF plots of positioning accuracy for several
regression techniques

regulated measurements of the coordinates. Figure 12
compares the performance with and without the use of the
Kalman filtering stage. This figure shows the added benefit
of this filtering stage as the error is constantly smaller
compared to the case where it is not used.

We compare the performance of the proposed algorithm
in estimating the x, y, and z coordinates to that of our
previous work in [17]. The comparison is shown in Fig-
ure 13. As can be seen, the proposed algorithm has a clear
advantage over the algorithm of [17]. This awes to the use
of a Klaman filtering stage and its role in estimation
stabilization.

Empirical CDF
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Proposed

0.5F

CDF
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02r

2 2.5 3 3.5 4 4.5
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Fig. 16 A sample execution time comparison between the proposed
algorithm and RETRO [10]
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4.4 Investigating the time complexity

To get an estimate of the time complexity of the proposed
algorithm, we perform 100 positionings measuring the
execution time for each time point. Figure 14 shows a CDF
plot of execution time. Clearly, in over 95% of cases, the
execution time is less than 0.15 ms. The execution time
with the proposed Klaman filter stage is slightly longer
than the case without it. This result ensures the low time
complexity and suitability of the proposed algorithm for
real-time operation. These results are verified using the
Matlab tic-toc command running on Matlab 2021b running
on a laptop with an i5 processor and 8 GB RAM.

4.5 The impact of the regression model

In the following experiment we compare the positioning
accuracy with different regression techniques. Namely, we
consider SVM [22], linear [26], ensemble [27], generalized
additive model (GAM) [28], Gaussian process regression
(GPR) [29], and neural network regression models. We
refer the interested reader to [30] for an elaborate discus-
sion of several regression models.

Figure 15 shows the CDF plots of errors in Euclidean
and angular coordinates. It is noted that SVM has the best
performance compared to the others. On the other hand, the
other regression techniques perform similarly. The result
obtained in this experiment is intuitively expected due to
the fact that the size of the dataset in this application is
small compared to other application areas. Basically, one
needs not have many coordinates to train an SVM model.
On the other hand, SVM models are known to be partic-
ularly well-suited to complex and small datasets [31].

Finally, we compare the time complexity of the pro-
posed algorithm to that of RETRO [10] quantified in terms
of execution time. Figure 16 shows a CDF plot for each of
them. It is clearly seen that the proposed algorithm has a
significant saving in terms of time complexity.

5 Conclusions

In this paper, we presented an algorithm for real-time
object positioning of IoT devices in indoor environments.
The proposed algorithm aims at two main goals; posi-
tioning accuracy and speed. The proposed algorithm is
based on exploiting the relative relationship between the
power of the signal reflected from the retroreflector placed
on top of the object and the set of PDs. We showed how to
render this mapping using a machine-learning regression
model and use it to estimate object coordinates. These
models generalize well to unforeseen coordinates and
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environments and excel in fast inference compared to tra-
ditional optimization-based methods. We also showed the
use of Kalman filtering as a stabilizer for the estimates.
Prior knowledge of previous states is used with model
estimates to obtain more robust estimates. This filtering
prevents abrupt changes in estimates due to errors or noise.
Moreover, the proposed algorithm achieves accurate posi-
tioning performance with fast and real-time operation.
These results were verified by real experiments performed
on a prototype testbed.
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