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Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of re-
search in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees
of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic
dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as
relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully’s
surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic
surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamil-
tonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic
and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for
the study of semiclassical nonadiabatic dynamics in the presence of spin-orbit coupling and/or external magnetic fields.
One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic
and spin degrees of freedom, e.g. experiments displaying chiral induced spin selectivity.

I. INTRODUCTION

Coupled nuclear-electronic, nonadiabatic dynamics under-
lie critical aspects of many photochemical'™ and electron
transfer processes®’. The basic premise is that, when elec-
tronic transitions occur, energy must be provided or absorbed
by the nuclei, and there are a host® of standard approaches
for modeling such nonadiabatic energy conversion, includ-
ing Ehrenfest dynamics®, quasi-classical mapping®'!, surface
hopping'?, multiple spawning'® and exact factorization'*'3.
Although not usually considered within the chemical physics
community, nonadiabatic effects can also arise that conserve
energy within the context of molecular dynamics; i.e., nona-
diabatic effects can arise that bend nuclear trajectories with-
out changing their kinetic energy. For instance, single surface
on-diagonal Berry curvature effects can arise when there is
an external magnetic field and the Hamiltonian is complex-
valued.'®2°, In such a case, the nuclei experience a Lorentz-
like force on their motion. In the adiabatic limit, this force is!’

FZ = inR x (V x D2 ) (1)

where n is the adiabatic surface, R is the nuclear velocity and
Df}” is the derivative coupling (also called Berry connection)
on surface n. More generally, one can argue that nonadia-
batic pseudo-magnetic field effects occur whenever there are
degenerate or nearly degenerate electronic states coupled to-
gether, e.g. when one considers spin states coupled together
with spin-orbit coupling.?! These effects must be accounted
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for when modeling many cutting-edge spin-related chemical
and physical reactions, including chiral induced spin selectiv-
ity (CISS)?>?* or other magnetic chemical reactions®*.

The simplest nonadiabatic model with spin-orbit cou-
pling is an avoided crossing of two doublets. In a basis
{11),121),114),]2 )} (1 and 2 being the two doublet la-
bels), the Hamiltonian reads>-%%:

By v+ik 0 ity
v—iX: By  —ida—2X, 0 ©
0 =X, Ei v—ik
—ide+)y, O v+ik. By

H =

where v is the diabatic coupling and A, Ay, A, are the three
SOC components. If one ignores A; and A, (the spin-flip
terms), Hamiltonian (2) becomes a pair of 2 x 2 complex-
valued blocks corresponding to spin up and down electrons.
For molecular systems, the matrix elements are all functions of
nuclear coordinates which give rise to complex-valued deriva-
tive couplings and Berry curvature.

In order to better understand how nonadiabatic dynamics,
Berry curvature and the presence of spins does or does not af-
fect chemical dynamics, especially in ab initio calculations of
real systems, it is essential to have cheap, inexpensive semi-
classical algorithms. A proper algorithm must capture both
the magnitude of a momentum change upon hopping (in the
spirit of Tully’s trajectory surface hopping'?) and the pseudo-
magnetic Berry force that rotates momentum (in the spirit of
Berry’s half-classical dynamics”); to date, there is no well
established, reliable protocol. Previous attempts to study the
2x 2 complex-valued Hamiltonians by incorporating the Berry
curvature effect with Tully’s fewest switch surface hopping
(FSSH) have had some success®'2"2 but inevitably failed
when the nonadiabatic effects became strong enough?”-?°.

With these failures in mind, below we show that the solution
is to run semiclassical phase-space surface hopping (PSSH)
calculations in the spirit of (but not equivalent to) Ref.*’. Ac-
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FIG. 1: (a) A schematic depiction of a curve crossing, where xo and x1 are
two proper diabats. (b) The diabatic and (position-space) adiabatic surfaces
of our test model (see Eq. (14)) as well as typical phase-space adiabatic
surfaces (shifted by — P2 /2M), as functions of nuclear coordinate x. Note
that the position-space adiabats are flat, while the phase-space adiabats have
a barrier, a distinct signature of complex-valued Hamiltonians. The
parameters used to plot the phase-space adiabats are W = —5, Py, = 8 and

Xinit = XO0-

cording to PSSH, trajectories move on phase-space adiabatic
surfaces E(R,P) which are functions of both nuclear posi-
tion and momentum. For a two-state problem, the PSSH ap-
proach effectively transforms a complex-valued Hamiltonian
into a real-valued Hamiltonian, while achieving an accuracy
well beyond previously published algorithms?”?°. Lastly and
equally importantly, a PSSH approach is applicable for mod-
eling dynamics in a magnetic field or under illumination by
circularly polarized light.?!

Il. THEORY
A. Construction of the Phase-Space Hamiltonian

Consider a general two-state nonadiabatic Hamiltonian:

o op2

H = m + hel(R7 f') (3)
where P and R are the nuclear momentum and position op-
erators and t represents the electronic degrees of freedom. A
common situation is an avoided crossing. The typical topol-
ogy of an avoided crossing is shown in Fig. 1a: the two dia-
bats cross each other, and the adiabats are repelled by the dia-
batic couplings. For this paper, we will focus on a very simple
avoided crossing. We assume that (1) the pair of states cross

only once and (2) there is a pair of “proper diabats” that coin-
cides with the adiabats asymptotically, just as shown in Fig. 1a.
Based on these two assumptions, we can write the electronic
Hamiltonian in the proper diabatic basis |x() and |x1) in the
vicinity of the crossing as

h(R)  V(R)e¢®

he = SOV R
T IVR)e*® py(R)

“

where the proper diabatization requires |V| < |hg — h1| out-
side the crossing seam. Physically, this Hamiltonian can be
mapped to a single 2 x 2 spin block in the doublet-doublet
crossing Hamiltonian (2); by ignoring all spin-flips, we effec-
tively choose a model that does not obey time reversal symme-
try.

Within the usual Born-Oppenheimer picture, one rotates the
Hamiltonian (3) to the adiabatic basis, where the nuclear mo-
tion is coupled to electronic amplitudes via the derivative cou-
pling terms®2. However, here we will make a different choice:
we will represent Hamiltonian (3) in a pseudo-diabatic basis
I€0) = |x0)» |€1) = €7 |x1) where we assign phases but
not rotations to a set of diabats. The result is a pseudo Born-
Oppenheimer Hamiltonian:

(P — inD)’ . {ho(R) V(R)}

Hp = oM V(R) hi(R)

&)

where D = —iV¢|&;) (€] is the derivative coupling in this
pseudo-diabatic basis. Note here that i]j, hg, h1 and V are
all real-valued; by performing a pseudo-diabatic transforma-
tion, we have turned the complex-valued Hamiltonian (3) into
areal-valued Hamiltonian (5), which will enable us to use sim-
ple (or simpler) semiclassical approaches for modeling. For a
deeper discussion of the choice pseudo-diabats in the two-state
system, see the SM. Note also that, while this choice of phase
is straightforward for the two-state case, such a phase conven-
tion is impractical for a general multistate dense Hamiltonian;
future work will necessarily need to address the case of many
states all crossing together.

To implement semiclassical (surface-hopping) dynamics,
we first replace the nuclear operators in Hamiltonian (5)
by their classical counterparts (in the spirit of a Wigner
transformation3334):

(P—irD(R))*  [ho(R) V(R)
Hp(R,P) = —n«———— 6

PD( ) ) IM + V(R) hl(R) 6)
Second, after diagonalizing Hamiltonian (6), we arrive at a
basis depending on both position R and momentum P:

Hep(R, P) [¢;(R, P)) = E;(R, P) [¢;(R, P)) ()

We will call the resulting eigenvalues and eigenvectors “phase-
space adiabats.”

In some sense, this new basis mimics what Berry has la-
beled “superadiabats™3>3_ i.e. the basis recovered by first di-
agonalizing the electronic Hamiltonian he(R) and then sec-
ond re-diagonalizing the sum of adiabatic electronic energies
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E4(R), the kinetic term and the relevant derivative couplings
D 4303537,

Hsuper(Ra P) =

(P —ihDA(R))’ [EAMR) 0
DA [ )

®

Interestingly, Shenvi proposed phase-space surface-hopping
dynamics more than ten years ago (for real-valued Hamil-
tonians) and the idea has some clear benefits (and a few
problems).’>*® That being said, we must be clear that the
present basis {|v) } defined in Eq. (7) is not exactly the same as
the superadiabatic basis: In Shenvi’s approach, the superadi-
abats are obtained from diagonalizing the Born-Oppenheimer
adiabatic Hamiltonian (which includes derivative couplings)
Eq. (8), while in our present approach the phase-space adiabats
are obtained from diagonalizing the pseudo-diabatic Hamilto-
nian (6). In fact, for a real-valued Hamiltonian where ¢ = 0,
our pseudo-diabatic basis will always give D = 0 and the ba-
sis set {|¢)} is identical to the usual position-space adiabats,
while according to Shenvi’s approach, the tensor D 4 is not
zero — even for real-valued Hamiltonians. Thus, though cer-
tainly related, for clarity, one should not confuse the concept
of a superadiabat and the concept of a phase-space adiabat; one
must also distinguish between Shenvi’s adiabatic PSSH algo-
rithm and the present pseudo-diabatic PSSH algorithm. More
discussion can be found below.

B. Phase-Space Surface Hopping

Following Shenvi*® in spirit, we now propose to propagate
the semiclassical dynamics by moving nuclei along phase-
space eignvalues and then allowing for surface hops. At the
beginning of the simulation, we initialize a swarm of trajecto-
ries, each associated with an electronic amplitude vector ¢ and
an active phase-space adiabatic label n. Note that the phase-
space momentum P is different from the kinetic momentum
Piineic = MR in general, and should be transformed accord-
ing to

Pn = Pkinetic +ih <wn|DW]n> (9)

before the simulation begins.

At each time step of the simulation, we construct Hamilto-
nian (6) and diagonalize it according to Eq. (7) for each trajec-
tory. The trajectory’s equation of motion is then given by

R =V5pE, (10
P=_-VgE, (11)

i

thcj —dfl - Re, —dl, - Pey (12)

¢
where A} = (¢;|Vrir) and df, = (¢;|Vpiy) are the
phase-space analogs of the derivative couplings. Note that
the dynamics above conserve the energy of the relevant phase-
space adiabat, i.e. dE,/dt = 0 along any given trajectory.
Historically, Eq. (10) and (11) have been known as the eikonal

method® and have been applied previously in modeling cer-
tain flavors of semiclassical nonadiabatic dynamics®74°,
Similar to FSSH, within PSSH, trajectories are allowed to
change their active phase-space adiabatic label, or ‘hop’ be-
tween phase-space adiabats at each step. The hopping prob-
ability from surface k to j is computed according to Tully’s

method!2-39:
Jk—j = it
Pkk
2At cs . .
- hlm{cfk(— ihd® R — ihd?, P)} (13)
k

From the perspective of a Monte Carlo process, Eq. (13) is
the hopping rate that is necessary to maintain consistency be-
tween p;; and the number of trajectories moving along surface
74142 Whenever a hop from j — k succeeds, we rescale the
momentum along the direction of dfk (which is real-valued by
construction) to conserve energy. If such momentum cannot
be found, the hop is frustrated and the trajectory keeps moving
along the original surface. Note that, as with the usual FSSH
algorithm, frustrated hops are necessary to maintain detailed
balance.

Finally, to capture the decoherence of a reflected
wavepacket, we further employ the most naive decoher-
ence algorithm possible, similar to what was published in
Ref.?, i.e. we collapse the amplitudes by setting ¢; — 6,
if we find (P - dff;)(Py—o - dff;) < 0. Here, n is the active
surface. We will say more about decoherence below in the
discussion section.

Il. COMPUTATIONAL RESULTS

To test the performance our algorithm, we study the sim-
plest (standard) two-state {|xo) , | x1)} electronic Hamiltonian
associated with two nuclear degrees of freedom, = and y:

—cosf eW¥gind

he(z,y) = A e~ WYging cosf

(14)

where 6 = F(erf(Br) +1), A = 0.03, B = 3and W =
+5. All parameters above are in atomic units. The diabatic,
(position-space) adiabatic surfaces and typical phase-space
adiabatic surfaces are shown in Fig. 1b. Note that the position-
space adiabats are completely flat, but the phase-space adia-
bats are typically not. The initial wavefunction is chosen as a
Gaussian:

Uo(R) = e R-R* /P HiPoOR |y Ly (15)

where 0 = 1, Ry = (=3,-3), Po = (Phit, Pnit), and
Xinit 18 either the diabat O or 1. To make sure that the ki-
netic momentum is equal to the phase-space momentum at
t = 0, in our calculation, the pseudo-diabats {|¢) , |£1)} are

chosen according to the initial diabat: If X = Xo, then
I€0) = Ixo) and |&1) = |x1) eV, otherwise [£1) = [x1)
and |£) = |xo) €Y. The exact quantum mechanics is per-

formed using a split-operator method* with a 768 x 768 grid
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inside a 48 x 48 box and a timestep of 0.05 au. For this prob-
lem, the phase-space adiabats and diabats are equivalent as
x — £o00, and therefore we can expect the outgoing wavepack-
ets to have an asymptotic momentum shift depending on the
initial and the final pseudo-diabatic states. For example, sup-
pose a wavepacket is incoming along |xo), and without loss
of generality, we choose |£y) = |xo) and |€1) = |x1) e WY,
In such a case, we would expect a —h Wy kinetic momentum
shift for the wavepacket that ends up on the |x1) surface given
the definition in Eq. (9) and the fact that Py = 0 (according to
Eq. (11). For more discussions, see the SM.

The surface hopping simulations were performed with 10*
trajectories with a timestep of 0.05 au for each data point. The
initial positions and momenta for surface hopping simulations
are sampled according to the Wigner distribution of ¥4(R).
At each point in time, the phases of the phase-space adiabatic
basis can be trivially chosen according to the “parallel trans-
port” condition (i.e. (¢;(t)|¢;(t + dt)) ~ 1 for all j’s). Since
the diabats and phase-space adiabats are equivalent outside the
crossing, the diabatic population can be computed by counting

W=5, init 0 W=-5, init 0

trajectories on each phase-space surface adiabat.

In Fig. 2, we compare the transmitted and reflected popula-
tions on the different surfaces according to exact wavepacket
simulations, Tully’s FSSH approach'? and our current pseudo-
diabatic PSSH simulations. We find that in many systems, a
considerable fraction of the population will be reflected when
the momentum is relatively low (e.g. P < 12). If one
assumes that trajectories follow position-space adiabatic sur-
faces, such reflection must be a characteristic of a Berry cur-
vature effect; after all, the forces here are completely flat. From
the phase-space point of view, however, the reflection clearly
arises from the barrier present in the phase-space adiabatic
surfaces; see Fig. 1b. Moreover, according to Fig. 2, when
W = 5 and one begins on the upper diabat, the reflected pop-
ulation is distributed over both diabats 0 and 1, indicating that
there can be no clean separation of nonadiabatic dynamics into
energy conserving and energy non-conserving effects. While
the pseudo-diabatic PSSH approach can capture most of the
exact results qualitatively (and often quantitatively), Tully’s
FSSH algorithm has large errors. For more benchmarking re-
sults and a further discussion of the phase-space adiabatic sur-
faces, see the SM.

W=5, init 1 W=-5, init 1
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FIG. 2: State-to-state transmitted and reflected probabilities according to an exact wavepacket simulation, pseudo-diabatic PSSH and FSSH for our test system
(Eq. (14)). We have tested four conditions: W = 5 and initial diabat X,y = O (subfig (a),(e),(i),(m)), W = —5, xinit = 0 (subfig (b),(f),(§),(n)), W =
5, Xinit = 1 (subfig (¢),(g),(k),(0)) and W = —5, xijnir = 1 (subfig (d),(h),(1),(p)). Note that reflections are prevalent at low incoming momentum, which is a
signature of Berry curvature effects. The pseudo-diabatic PSSH results agree reasonably well with the exact simulations while FSSH results deviate significantly

for reflection. Parameters are: A = 0.03, B = 3, M = 1000.

IV. DISCUSSION AND PERSPECTIVE

The present results with pseudo-diabatic PSSH have
demonstrated a surprising degree of accuracy by success-

fully incorporating both nonadiabatic effects and Berry cur-
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vature effects. And yet, interestingly, the entire concept of
Berry force has been replaced: we no longer apply a pseudo-
magnetic field to motion along an adiabat, but rather use the
relevant Hamiltonian dynamics as applicable to a magnetic
field. Thus, one must presume that the present approach would
be optimal for running surface hopping in an external magnetic
field as well. By using phase-space adiabatic surface hop-
ping, it would appear that one can capture very new physics
(all while reducing to normal FSSH when a 2 x 2 Hamil-
tonian is real-valued). In this same spirit, other semiclas-
sical approaches, e.g. multiple spawning, might also ben-
efit by employing a pseudo-diabatic representation and run-
ning along phase-space adiabats whenever one encounters
complex-valued Hamiltonians. More generally, we are con-
fident that the pseudo-diabatic PSSH algorithm proposed here
(or some version thereof) is the optimal framework for semi-
classical simulation of large, complicated nonadiabatic sys-
tems where electronic spin effects are important.

Now, in making the claim above, our confidence is based
on several factors. First, over the past few years, our research
group has worked investigate many different FSSH algorithms
(incorporating Berry curvature effects) within a host of two-
dimensional models Ref.?’. We found that for many problems,
if one chooses the right rescaling approach, FSSH can yield
good results; however, the final algorithm29 always felt overly
complicated. By contrast, the present PSSH algorithm is sim-
ple to understand and to implement. Second, the algorithm in
Ref.?? fails when the diabatic coupling is very small; in such
a case, the Berry force is not important and should not play a
role in FSSH; the present PSSH algorithm does not fail in this
limit. See Fig. S4 in the SM. Third, the algorithm in Ref.? also
fails when W gets large (even though, one might presume that
the Berry force grows larger and larger). This failure is com-
pletely corrected by the present PSSH approach. See Fig. S5
in the SM. In short, the PSSH ansatz appears to be the opti-
mal approach moving forward; in the future, it might be best
to refer not to Berry forces per se but rather to nonadiabatic
dynamics in phase space.

Looking forward, our initial success here would appear to
be only the first step in a long road towards running on-the-fly
nonadiabatic dynamics with nuclei, electrons and spin. There
are many obstacles that must be addressed and/or overcome.
Here, we will list a few (though the list is not exhaustive). First,
the success of our algorithm relies on the premise that there is
an intrinsic diabatic basis to dress (as in Eq. (4)).* How should
we select such an optimal basis in practice? For an idealized,
well-defined avoided crossing problem as in Fig. 1a, one can
guess the correct proper diabats almost intuitively. However,
for systems with a complicated topology, e.g. a conical inter-
section or a crossing between a singlet and a set of triplets*’,
picking the correct diabats would appear much more difficult.
Semiclassical dynamics can be very sensitive to the choice of
a diabatic basis, and a systematic understanding of the impact
of diabatization (as well as practical algorithms for choosing
diabats) is essential.

At this point, it is worthwhile to compare and contrast our
approach with Shenvi’s adiabatic PSSH algorithm?’. As men-
tioned above, formally the two algorithms have the same equa-

tion of motion, but they correspond to different definitions of
the phase-space adiabats. This difference in definition arises
because the two algorithms were designed for distinct goals: in
his construction of PSSH, Shenvi’s goal was to minimize the
number of hops within a surface hopping framework; within
our PSSH address, our goal was to address the possibility of
degenerate electronic states (as present, e.g., with spin degrees
of freedom). While Shenvi’s algorithm has so far not been
applied previously to complex-valued Hamiltonians*®, if one
were to make such an attempt, one would necessarily need to
choose a gauge for the adiabats (before diagonalizing into a
superadiabatic basis). In other words, our present need for a
good diabatic basis would correspond to the need for a good
gauge within Shenvi’s adiabatic PSSH algorithm. There is no
free lunch, but future work will need to run many simulations
to make sure we find the most stable approximations.*’

Second, the question of decoherence must be addressed and
benchmarked. Within standard FSSH, decoherence appears
to be very complicated for complex electronic Hamiltonians.
After all, different Berry forces would appear to lead to wave
packet separation in the vicinity of an avoided crossing®® —
whereas, in the context of real-valued Hamiltonians, deco-
herence arises only after wavepackets leave the vicinity of
a crossing.**3! Within PSSH, however, it would appear that
this distinction is removed and decoherence again is simple —
wavepackets separate only after the packets leave the crossing
region now as driven by a difference in adiabatic phase-space
eigenforces. This hypothesis must be checked in the future. In
the future, we will also need to address the question of veloc-
ity reversal, which is known to be important for many simu-
lations with frustrated hops.*332% See Fig. S3 in the Supple-
mentary Material for some preliminary data. Thus far, our test
cases indicate that momentum reversal and decoherence prob-
lems must be treated correctly for more complicated systems,
e.g., systems with a bounded potential energy surface. See Fig.
S3 in the Supplementary Material for some preliminary data
about decoherence and momentum reversal.

Third, for systems with more than two states and couplings
between each pair of diabats, the construction of pseudo-
diabats may be impossible if we insist on () a one-to-one map-
ping between pseudo-diabats to diabats and (i) a strictly real-
valued the electronic Hamiltonian. For example, consider the
following diabatic electronic Hamiltonian:

h1 Vi el VgeM’Q
he = Vleiiqsl ho ‘/g’)ei¢3 (16)
V2e—i¢z Vge—iqﬁs hs

If ¢1, ¢o2, @3 are not related to each other, there is no choice
of simple pseudo-diabats for making h. real-valued. In
such a case, one will either need to accept a complex-valued
pseudo-diabatic Hamiltonian or apply a more general “pre-
conditioning” diabatization. Future research is clearly re-
quired on this front.

Fourth and finally, it is known that the surface hopping
algorithm can be derived roughly from the mixed quantum-
classical Liouville equation (QCLE)***% if one makes some
very strong approximations—e.g. the single-trajectory approx-
imation, etc. In this paper, upon hopping we have followed
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standard procedure'>3? and conserved energy by rescaling mo-

mentum. Nevertheless, according to Eq. (13), one might pre-
sume that the more rigorous framework is to rescale both po-
sition and momentum®® upon hopping.’” In the future, one
will necessarily need to investigate the formal foundations of
phase-space surface hopping (starting with the QCLE), and
systematically analyze the rescaling approach. Ideally, one
would also like to connect with multicomponent WKB the-
ories as well. %>

V. CONCLUSION

In summary, we have proposed a pseudo-diabatic phase-
space surface hopping (PSSH) for propagating nonadiabatic
dynamics for complex-valued avoided crossing problems. The
approach is simple and intuitive, captures all Berry curvature
effects (without directly applying a pseudo-magnetic field),
and should be applicable for a wide-range of systems with
coupled nuclear, electronic, and spin degrees of freedom. In
short, by performing a basis transformation and generalizing
Tully’s algorithm to phase-space to treat complex-valued sys-
tems, we find results that far exceed what is possible from
any existing standard (surface hopping/mean-field) semiclas-
sical approach. Looking forward, we are very hopeful that
this algorithm can be applied to larger, ab initio systems with
spin-related phenomena, including chemical reactions display-
ing magnetic field effects?* and chiral induced spin separated
dynamics.??

SUPPLEMENTARY MATERIAL

See supplementary material for a discussion about the
choice of pseudo-diabats, an analysis of the phase-space adi-
abatic surfaces and a benchmark of different surface hopping
schemes.
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