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Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of re-

search in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees

of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic

dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as

relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully’s

surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic

surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamil-

tonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic

and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for

the study of semiclassical nonadiabatic dynamics in the presence of spin-orbit coupling and/or external magnetic fields.

One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic

and spin degrees of freedom, e.g. experiments displaying chiral induced spin selectivity.

I. INTRODUCTION

Coupled nuclear-electronic, nonadiabatic dynamics under-

lie critical aspects of many photochemical1–5 and electron

transfer processes6,7. The basic premise is that, when elec-

tronic transitions occur, energy must be provided or absorbed

by the nuclei, and there are a host3 of standard approaches

for modeling such nonadiabatic energy conversion, includ-

ing Ehrenfest dynamics8, quasi-classical mapping9–11, surface

hopping12, multiple spawning13 and exact factorization14,15.

Although not usually considered within the chemical physics

community, nonadiabatic effects can also arise that conserve

energy within the context of molecular dynamics; i.e., nona-

diabatic effects can arise that bend nuclear trajectories with-

out changing their kinetic energy. For instance, single surface

on-diagonal Berry curvature effects can arise when there is

an external magnetic field and the Hamiltonian is complex-

valued.16–20. In such a case, the nuclei experience a Lorentz-

like force on their motion. In the adiabatic limit, this force is17

F
B
n = ih̄Ṙ× (∇×D

A
nn) (1)

where n is the adiabatic surface, Ṙ is the nuclear velocity and

D
A
nn is the derivative coupling (also called Berry connection)

on surface n. More generally, one can argue that nonadia-

batic pseudo-magnetic field effects occur whenever there are

degenerate or nearly degenerate electronic states coupled to-

gether, e.g. when one considers spin states coupled together

with spin-orbit coupling.21 These effects must be accounted
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for when modeling many cutting-edge spin-related chemical

and physical reactions, including chiral induced spin selectiv-

ity (CISS)22,23 or other magnetic chemical reactions24.

The simplest nonadiabatic model with spin-orbit cou-

pling is an avoided crossing of two doublets. In a basis

{|1 ↑〉 , |2 ↑〉 , |1 ↓〉 , |2 ↓〉} (1 and 2 being the two doublet la-

bels), the Hamiltonian reads25,26:

H =







E1 v + iλz 0 iλx + λy
v − iλz E2 −iλx − λy 0

0 iλx − λy E1 v − iλz
−iλx + λy 0 v + iλz E2






(2)

where v is the diabatic coupling and λx, λy, λz are the three

SOC components. If one ignores λx and λy (the spin-flip

terms), Hamiltonian (2) becomes a pair of 2 × 2 complex-

valued blocks corresponding to spin up and down electrons.

For molecular systems, the matrix elements are all functions of

nuclear coordinates which give rise to complex-valued deriva-

tive couplings and Berry curvature.

In order to better understand how nonadiabatic dynamics,

Berry curvature and the presence of spins does or does not af-

fect chemical dynamics, especially in ab initio calculations of

real systems, it is essential to have cheap, inexpensive semi-

classical algorithms. A proper algorithm must capture both

the magnitude of a momentum change upon hopping (in the

spirit of Tully’s trajectory surface hopping12) and the pseudo-

magnetic Berry force that rotates momentum (in the spirit of

Berry’s half-classical dynamics17); to date, there is no well

established, reliable protocol. Previous attempts to study the

2×2 complex-valued Hamiltonians by incorporating the Berry

curvature effect with Tully’s fewest switch surface hopping

(FSSH) have had some success21,27–29 but inevitably failed

when the nonadiabatic effects became strong enough27,29.

With these failures in mind, below we show that the solution

is to run semiclassical phase-space surface hopping (PSSH)

calculations in the spirit of (but not equivalent to) Ref.30. Ac-
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FIG. 1: (a) A schematic depiction of a curve crossing, where χ0 and χ1 are

two proper diabats. (b) The diabatic and (position-space) adiabatic surfaces

of our test model (see Eq. (14)) as well as typical phase-space adiabatic

surfaces (shifted by −P 2/2M ), as functions of nuclear coordinate x. Note

that the position-space adiabats are flat, while the phase-space adiabats have

a barrier, a distinct signature of complex-valued Hamiltonians. The

parameters used to plot the phase-space adiabats are W = −5, Py = 8 and

χinit = χ0.

cording to PSSH, trajectories move on phase-space adiabatic

surfaces E(R,P) which are functions of both nuclear posi-

tion and momentum. For a two-state problem, the PSSH ap-

proach effectively transforms a complex-valued Hamiltonian

into a real-valued Hamiltonian, while achieving an accuracy

well beyond previously published algorithms27,29. Lastly and

equally importantly, a PSSH approach is applicable for mod-

eling dynamics in a magnetic field or under illumination by

circularly polarized light.31

II. THEORY

A. Construction of the Phase-Space Hamiltonian

Consider a general two-state nonadiabatic Hamiltonian:

Ĥ =
P̂

2

2M
+ ĥel(R̂, r̂) (3)

where P̂ and R̂ are the nuclear momentum and position op-

erators and r̂ represents the electronic degrees of freedom. A

common situation is an avoided crossing. The typical topol-

ogy of an avoided crossing is shown in Fig. 1a: the two dia-

bats cross each other, and the adiabats are repelled by the dia-

batic couplings. For this paper, we will focus on a very simple

avoided crossing. We assume that (1) the pair of states cross

only once and (2) there is a pair of “proper diabats” that coin-

cides with the adiabats asymptotically, just as shown in Fig. 1a.

Based on these two assumptions, we can write the electronic

Hamiltonian in the proper diabatic basis |χ0〉 and |χ1〉 in the

vicinity of the crossing as

ĥel =

[

h0(R̂) V (R̂)eiφ(R̂)

V (R̂)e−iφ(R̂) h1(R̂)

]

(4)

where the proper diabatization requires |V | ≪ |h0 − h1| out-

side the crossing seam. Physically, this Hamiltonian can be

mapped to a single 2 × 2 spin block in the doublet-doublet

crossing Hamiltonian (2); by ignoring all spin-flips, we effec-

tively choose a model that does not obey time reversal symme-

try.

Within the usual Born-Oppenheimer picture, one rotates the

Hamiltonian (3) to the adiabatic basis, where the nuclear mo-

tion is coupled to electronic amplitudes via the derivative cou-

pling terms32. However, here we will make a different choice:

we will represent Hamiltonian (3) in a pseudo-diabatic basis

|ξ0〉 = |χ0〉, |ξ1〉 = e−iφ |χ1〉 where we assign phases but

not rotations to a set of diabats. The result is a pseudo Born-

Oppenheimer Hamiltonian:

ĤPD =
(P̂− ih̄D̂)

2

2M
+

[

h0(R̂) V (R̂)

V (R̂) h1(R̂)

]

(5)

where D̂ = −i∇φ |ξ1〉 〈ξ1| is the derivative coupling in this

pseudo-diabatic basis. Note here that iD̂, h0, h1 and V are

all real-valued; by performing a pseudo-diabatic transforma-

tion, we have turned the complex-valued Hamiltonian (3) into

a real-valued Hamiltonian (5), which will enable us to use sim-

ple (or simpler) semiclassical approaches for modeling. For a

deeper discussion of the choice pseudo-diabats in the two-state

system, see the SM. Note also that, while this choice of phase

is straightforward for the two-state case, such a phase conven-

tion is impractical for a general multistate dense Hamiltonian;

future work will necessarily need to address the case of many

states all crossing together.

To implement semiclassical (surface-hopping) dynamics,

we first replace the nuclear operators in Hamiltonian (5)

by their classical counterparts (in the spirit of a Wigner

transformation33,34):

HPD(R,P) =
(P− ih̄D(R))

2

2M
+

[

h0(R) V (R)
V (R) h1(R)

]

(6)

Second, after diagonalizing Hamiltonian (6), we arrive at a

basis depending on both position R and momentum P:

HPD(R,P) |ψj(R,P)〉 = Ej(R,P) |ψj(R,P)〉 (7)

We will call the resulting eigenvalues and eigenvectors “phase-

space adiabats.”

In some sense, this new basis mimics what Berry has la-

beled “superadiabats”35,36, i.e. the basis recovered by first di-

agonalizing the electronic Hamiltonian hel(R) and then sec-

ond re-diagonalizing the sum of adiabatic electronic energies
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EA(R), the kinetic term and the relevant derivative couplings

DA
30,35–37:

Hsuper(R,P) =
(P− ih̄DA(R))

2

2M
+

[

EA
0 (R) 0
0 EA

1 (R)

]

(8)

Interestingly, Shenvi proposed phase-space surface-hopping

dynamics more than ten years ago (for real-valued Hamil-

tonians) and the idea has some clear benefits (and a few

problems).30,38 That being said, we must be clear that the

present basis {|ψ〉} defined in Eq. (7) is not exactly the same as

the superadiabatic basis: In Shenvi’s approach, the superadi-

abats are obtained from diagonalizing the Born-Oppenheimer

adiabatic Hamiltonian (which includes derivative couplings)

Eq. (8), while in our present approach the phase-space adiabats

are obtained from diagonalizing the pseudo-diabatic Hamilto-

nian (6). In fact, for a real-valued Hamiltonian where φ ≡ 0,

our pseudo-diabatic basis will always give D ≡ 0 and the ba-

sis set {|ψ〉} is identical to the usual position-space adiabats,

while according to Shenvi’s approach, the tensor DA is not

zero – even for real-valued Hamiltonians. Thus, though cer-

tainly related, for clarity, one should not confuse the concept

of a superadiabat and the concept of a phase-space adiabat; one

must also distinguish between Shenvi’s adiabatic PSSH algo-

rithm and the present pseudo-diabatic PSSH algorithm. More

discussion can be found below.

B. Phase-Space Surface Hopping

Following Shenvi30 in spirit, we now propose to propagate

the semiclassical dynamics by moving nuclei along phase-

space eignvalues and then allowing for surface hops. At the

beginning of the simulation, we initialize a swarm of trajecto-

ries, each associated with an electronic amplitude vector c and

an active phase-space adiabatic label n. Note that the phase-

space momentum P is different from the kinetic momentum

Pkinetic =MṘ in general, and should be transformed accord-

ing to

Pn = Pkinetic + ih̄ 〈ψn|D|ψn〉 (9)

before the simulation begins.

At each time step of the simulation, we construct Hamilto-

nian (6) and diagonalize it according to Eq. (7) for each trajec-

tory. The trajectory’s equation of motion is then given by

Ṙ = ∇PEn (10)

Ṗ = −∇REn (11)

ċj = −
i

h̄
Ejcj − d

R
jk · Ṙck − d

P
jk · Ṗck (12)

where d
R
jk = 〈ψj |∇Rψk〉 and d

P
jk = 〈ψj |∇Pψk〉 are the

phase-space analogs of the derivative couplings. Note that

the dynamics above conserve the energy of the relevant phase-

space adiabat, i.e. dEn/dt = 0 along any given trajectory.

Historically, Eq. (10) and (11) have been known as the eikonal

method39 and have been applied previously in modeling cer-

tain flavors of semiclassical nonadiabatic dynamics37,40.

Similar to FSSH, within PSSH, trajectories are allowed to

change their active phase-space adiabatic label, or ‘hop’ be-

tween phase-space adiabats at each step. The hopping prob-

ability from surface k to j is computed according to Tully’s

method12,30:

gk→j =
ρ̇jj∆t

ρkk

=
2∆t

h̄
Im

{

c∗j
c∗k

(

− ih̄dR
jk · Ṙ− ih̄dP

jk · Ṗ
)

}

(13)

From the perspective of a Monte Carlo process, Eq. (13) is

the hopping rate that is necessary to maintain consistency be-

tween ρjj and the number of trajectories moving along surface

j.41,42 Whenever a hop from j → k succeeds, we rescale the

momentum along the direction of dR
jk (which is real-valued by

construction) to conserve energy. If such momentum cannot

be found, the hop is frustrated and the trajectory keeps moving

along the original surface. Note that, as with the usual FSSH

algorithm, frustrated hops are necessary to maintain detailed

balance.

Finally, to capture the decoherence of a reflected

wavepacket, we further employ the most naive decoher-

ence algorithm possible, similar to what was published in

Ref.29, i.e. we collapse the amplitudes by setting cj → δnj
if we find (P · dR

nj)(Pt=0 · dR
nj) < 0. Here, n is the active

surface. We will say more about decoherence below in the

discussion section.

III. COMPUTATIONAL RESULTS

To test the performance our algorithm, we study the sim-

plest (standard) two-state {|χ0〉 , |χ1〉} electronic Hamiltonian

associated with two nuclear degrees of freedom, x and y:

hel(x, y) = A

[

− cos θ eiWy sin θ
e−iWy sin θ cos θ

]

(14)

where θ = π
2 (erf(Bx) + 1), A = 0.03, B = 3 and W =

±5. All parameters above are in atomic units. The diabatic,

(position-space) adiabatic surfaces and typical phase-space

adiabatic surfaces are shown in Fig. 1b. Note that the position-

space adiabats are completely flat, but the phase-space adia-

bats are typically not. The initial wavefunction is chosen as a

Gaussian:

Ψ0(R) = e−(R−R0)
2/σ2+iP0·R |χinit〉 (15)

where σ = 1, R0 = (−3,−3), P0 = (Pinit, Pinit), and

χinit is either the diabat 0 or 1. To make sure that the ki-

netic momentum is equal to the phase-space momentum at

t = 0, in our calculation, the pseudo-diabats {|ξ0〉 , |ξ1〉} are

chosen according to the initial diabat: If χinit = χ0, then

|ξ0〉 = |χ0〉 and |ξ1〉 = |χ1〉 e
−iWy , otherwise |ξ1〉 = |χ1〉

and |ξ0〉 = |χ0〉 e
iWy . The exact quantum mechanics is per-

formed using a split-operator method43 with a 768× 768 grid
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inside a 48× 48 box and a timestep of 0.05 au. For this prob-

lem, the phase-space adiabats and diabats are equivalent as

x→ ±∞, and therefore we can expect the outgoing wavepack-

ets to have an asymptotic momentum shift depending on the

initial and the final pseudo-diabatic states. For example, sup-

pose a wavepacket is incoming along |χ0〉, and without loss

of generality, we choose |ξ0〉 = |χ0〉 and |ξ1〉 = |χ1〉 e
−iWy .

In such a case, we would expect a −h̄W ŷ kinetic momentum

shift for the wavepacket that ends up on the |χ1〉 surface given

the definition in Eq. (9) and the fact that Ṗy = 0 (according to

Eq. (11). For more discussions, see the SM.

The surface hopping simulations were performed with 104

trajectories with a timestep of 0.05 au for each data point. The

initial positions and momenta for surface hopping simulations

are sampled according to the Wigner distribution of Ψ0(R).
At each point in time, the phases of the phase-space adiabatic

basis can be trivially chosen according to the “parallel trans-

port” condition (i.e. 〈φj(t)|φj(t+ dt)〉 ≈ 1 for all j’s). Since

the diabats and phase-space adiabats are equivalent outside the

crossing, the diabatic population can be computed by counting

trajectories on each phase-space surface adiabat.

In Fig. 2, we compare the transmitted and reflected popula-

tions on the different surfaces according to exact wavepacket

simulations, Tully’s FSSH approach12 and our current pseudo-

diabatic PSSH simulations. We find that in many systems, a

considerable fraction of the population will be reflected when

the momentum is relatively low (e.g. Pinit < 12). If one

assumes that trajectories follow position-space adiabatic sur-

faces, such reflection must be a characteristic of a Berry cur-

vature effect; after all, the forces here are completely flat. From

the phase-space point of view, however, the reflection clearly

arises from the barrier present in the phase-space adiabatic

surfaces; see Fig. 1b. Moreover, according to Fig. 2, when

W = 5 and one begins on the upper diabat, the reflected pop-

ulation is distributed over both diabats 0 and 1, indicating that

there can be no clean separation of nonadiabatic dynamics into

energy conserving and energy non-conserving effects. While

the pseudo-diabatic PSSH approach can capture most of the

exact results qualitatively (and often quantitatively), Tully’s

FSSH algorithm has large errors. For more benchmarking re-

sults and a further discussion of the phase-space adiabatic sur-

faces, see the SM.
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FIG. 2: State-to-state transmitted and reflected probabilities according to an exact wavepacket simulation, pseudo-diabatic PSSH and FSSH for our test system

(Eq. (14)). We have tested four conditions: W = 5 and initial diabat χinit = 0 (subfig (a),(e),(i),(m)), W = −5, χinit = 0 (subfig (b),(f),(j),(n)), W =
5, χinit = 1 (subfig (c),(g),(k),(o)) and W = −5, χinit = 1 (subfig (d),(h),(l),(p)). Note that reflections are prevalent at low incoming momentum, which is a

signature of Berry curvature effects. The pseudo-diabatic PSSH results agree reasonably well with the exact simulations while FSSH results deviate significantly

for reflection. Parameters are: A = 0.03, B = 3,M = 1000.

IV. DISCUSSION AND PERSPECTIVE

The present results with pseudo-diabatic PSSH have

demonstrated a surprising degree of accuracy by success-

fully incorporating both nonadiabatic effects and Berry cur-
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vature effects. And yet, interestingly, the entire concept of

Berry force has been replaced: we no longer apply a pseudo-

magnetic field to motion along an adiabat, but rather use the

relevant Hamiltonian dynamics as applicable to a magnetic

field. Thus, one must presume that the present approach would

be optimal for running surface hopping in an external magnetic

field as well. By using phase-space adiabatic surface hop-

ping, it would appear that one can capture very new physics

(all while reducing to normal FSSH when a 2 × 2 Hamil-

tonian is real-valued). In this same spirit, other semiclas-

sical approaches, e.g. multiple spawning, might also ben-

efit by employing a pseudo-diabatic representation and run-

ning along phase-space adiabats whenever one encounters

complex-valued Hamiltonians. More generally, we are con-

fident that the pseudo-diabatic PSSH algorithm proposed here

(or some version thereof) is the optimal framework for semi-

classical simulation of large, complicated nonadiabatic sys-

tems where electronic spin effects are important.

Now, in making the claim above, our confidence is based

on several factors. First, over the past few years, our research

group has worked investigate many different FSSH algorithms

(incorporating Berry curvature effects) within a host of two-

dimensional models Ref.29. We found that for many problems,

if one chooses the right rescaling approach, FSSH can yield

good results; however, the final algorithm29 always felt overly

complicated. By contrast, the present PSSH algorithm is sim-

ple to understand and to implement. Second, the algorithm in

Ref.29 fails when the diabatic coupling is very small; in such

a case, the Berry force is not important and should not play a

role in FSSH; the present PSSH algorithm does not fail in this

limit. See Fig. S4 in the SM. Third, the algorithm in Ref.29 also

fails whenW gets large (even though, one might presume that

the Berry force grows larger and larger). This failure is com-

pletely corrected by the present PSSH approach. See Fig. S5

in the SM. In short, the PSSH ansatz appears to be the opti-

mal approach moving forward; in the future, it might be best

to refer not to Berry forces per se but rather to nonadiabatic

dynamics in phase space.

Looking forward, our initial success here would appear to

be only the first step in a long road towards running on-the-fly

nonadiabatic dynamics with nuclei, electrons and spin. There

are many obstacles that must be addressed and/or overcome.

Here, we will list a few (though the list is not exhaustive). First,

the success of our algorithm relies on the premise that there is

an intrinsic diabatic basis to dress (as in Eq. (4)).44 How should

we select such an optimal basis in practice? For an idealized,

well-defined avoided crossing problem as in Fig. 1a, one can

guess the correct proper diabats almost intuitively. However,

for systems with a complicated topology, e.g. a conical inter-

section or a crossing between a singlet and a set of triplets45,

picking the correct diabats would appear much more difficult.

Semiclassical dynamics can be very sensitive to the choice of

a diabatic basis, and a systematic understanding of the impact

of diabatization (as well as practical algorithms for choosing

diabats) is essential.

At this point, it is worthwhile to compare and contrast our

approach with Shenvi’s adiabatic PSSH algorithm30. As men-

tioned above, formally the two algorithms have the same equa-

tion of motion, but they correspond to different definitions of

the phase-space adiabats. This difference in definition arises

because the two algorithms were designed for distinct goals: in

his construction of PSSH, Shenvi’s goal was to minimize the

number of hops within a surface hopping framework; within

our PSSH address, our goal was to address the possibility of

degenerate electronic states (as present, e.g., with spin degrees

of freedom). While Shenvi’s algorithm has so far not been

applied previously to complex-valued Hamiltonians46, if one

were to make such an attempt, one would necessarily need to

choose a gauge for the adiabats (before diagonalizing into a

superadiabatic basis). In other words, our present need for a

good diabatic basis would correspond to the need for a good

gauge within Shenvi’s adiabatic PSSH algorithm. There is no

free lunch, but future work will need to run many simulations

to make sure we find the most stable approximations.47

Second, the question of decoherence must be addressed and

benchmarked. Within standard FSSH, decoherence appears

to be very complicated for complex electronic Hamiltonians.

After all, different Berry forces would appear to lead to wave

packet separation in the vicinity of an avoided crossing29 –

whereas, in the context of real-valued Hamiltonians, deco-

herence arises only after wavepackets leave the vicinity of

a crossing.48–51 Within PSSH, however, it would appear that

this distinction is removed and decoherence again is simple –

wavepackets separate only after the packets leave the crossing

region now as driven by a difference in adiabatic phase-space

eigenforces. This hypothesis must be checked in the future. In

the future, we will also need to address the question of veloc-

ity reversal, which is known to be important for many simu-

lations with frustrated hops.48,52,53 See Fig. S3 in the Supple-

mentary Material for some preliminary data. Thus far, our test

cases indicate that momentum reversal and decoherence prob-

lems must be treated correctly for more complicated systems,

e.g., systems with a bounded potential energy surface. See Fig.

S3 in the Supplementary Material for some preliminary data

about decoherence and momentum reversal.

Third, for systems with more than two states and couplings

between each pair of diabats, the construction of pseudo-

diabats may be impossible if we insist on (i) a one-to-one map-

ping between pseudo-diabats to diabats and (ii) a strictly real-

valued the electronic Hamiltonian. For example, consider the

following diabatic electronic Hamiltonian:

hel =





h1 V1e
iφ1 V2e

iφ2

V1e
−iφ1 h2 V3e

iφ3

V2e
−iφ2 V3e

−iφ3 h3



 (16)

If φ1, φ2, φ3 are not related to each other, there is no choice

of simple pseudo-diabats for making hel real-valued. In

such a case, one will either need to accept a complex-valued

pseudo-diabatic Hamiltonian or apply a more general “pre-

conditioning” diabatization. Future research is clearly re-

quired on this front.

Fourth and finally, it is known that the surface hopping

algorithm can be derived roughly from the mixed quantum-

classical Liouville equation (QCLE)33,54,55 if one makes some

very strong approximations–e.g. the single-trajectory approx-

imation, etc. In this paper, upon hopping we have followed
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standard procedure12,33 and conserved energy by rescaling mo-

mentum. Nevertheless, according to Eq. (13), one might pre-

sume that the more rigorous framework is to rescale both po-

sition and momentum56 upon hopping.57 In the future, one

will necessarily need to investigate the formal foundations of

phase-space surface hopping (starting with the QCLE), and

systematically analyze the rescaling approach. Ideally, one

would also like to connect with multicomponent WKB the-

ories as well.58,59

V. CONCLUSION

In summary, we have proposed a pseudo-diabatic phase-

space surface hopping (PSSH) for propagating nonadiabatic

dynamics for complex-valued avoided crossing problems. The

approach is simple and intuitive, captures all Berry curvature

effects (without directly applying a pseudo-magnetic field),

and should be applicable for a wide-range of systems with

coupled nuclear, electronic, and spin degrees of freedom. In

short, by performing a basis transformation and generalizing

Tully’s algorithm to phase-space to treat complex-valued sys-

tems, we find results that far exceed what is possible from

any existing standard (surface hopping/mean-field) semiclas-

sical approach. Looking forward, we are very hopeful that

this algorithm can be applied to larger, ab initio systems with

spin-related phenomena, including chemical reactions display-

ing magnetic field effects24 and chiral induced spin separated

dynamics.22

SUPPLEMENTARY MATERIAL

See supplementary material for a discussion about the

choice of pseudo-diabats, an analysis of the phase-space adi-

abatic surfaces and a benchmark of different surface hopping

schemes.
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