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On the Meaning of Berry Force For Unrestricted Systems Treated With Mean-Field

Electronic Structure
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(Dated: 17 May 2022)

We show that the Berry force as computed by an approximate, mean-field electronic
structure can be meaningful if properly interpreted. In particular, for a model Hamil-
tonian representing a molecular system with an even number of electrons interacting
via a two-body (Hubbard) interaction and a spin-orbit coupling, we show that a
meaningful nonzero Berry force emerges whenever there is spin unrestriction—even
though the Hamiltonian is real-valued and formally the on-diagonal single-surface
Berry force must be zero. Moreover, if properly applied, this mean-field Berry force
yields roughly the correct asymptotic motion for scattering through an avoided cross-
ing. That being said, within the context of a ground-state calculation, several nuances
do arise as far interpreting the Berry force correctly, and as a practical matter, the
Berry force diverges near the Coulson-Fisher point (which can lead to numerical

instabilities). We do not address magnetic fields here.
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I. INTRODUCTION

Recent years have seen a dramatic rise in interest in the notion of Berry force'™, i.e. the
notion that classical Born-Oppenheimer (BO) dynamics is dressed by a pseudo-magnetic
field in many cases. From a theoretical point of view, one of the motivations to under-
stand Berry force is predicated on the idea that experimentally, nowadays one can produce
external magnetic fields of size 30T. In the presence of such a large magnetic field, the
electronic wavefunction becomes complex-valued and a Berry force will appear and might be
measurable. As such, recently Helgaker and co-workers have computed the Berry force for
a system of small molecules exposed to strong magnetic fields and propagated some ab initio

molecular dynamics®8

. In a very different context, another drive to investigate Berry forces
arises by considering how molecular motion for a small cluster can be altered when in the
presence of an intrinsic magnetic fields; to that end, Calandra and co-workers analyzed how
vibrational eigenenergies are altered for small clusters of platinum®, and they predict

measurable effects in angular momentum polarization.

From an experimental point of view, interest in Berry force has grown recently along side
the explosion of interest in the phenomenon known as chiral induced spin selectivity (CISS).
As pioneered by Naaman and Waldeck®, and now confirmed by many others!>*?, it is known
that when a current runs through chiral molecules, one can often find a great deal of spin-
selectivity — which raises the tantalizing notion of chiral electrochemistry?!3, chiral catalysis'?,
or even chiral spintronic devices'®. To date, there is no satisfactory explanation for the CISS
effect insofar as the relevant spin-orbit coupling (SOC) matrix elements are too small to
explain the any spin filtering at room temperature. Recently, a handful of researchers'®-23
have argued that the CISS effect (which involves an electronic observable) must be tied to

a breakdown of the Born-Oppenheimer approximation (which involves nuclear motion) and

the emergence of a spin-dependent Berry force.

As a reminder to the reader, the basic premise of Berry force is simple: when the Hamil-
tonian is either complex-valued or allows degenerate or nearly degenerate states, one must be
very careful in choosing the phases of the adiabatic electronic states as a function of
nuclear position; for the most part, even in a small local region of configuration space, one
cannot use parallel transport to generate a smooth gauge. The dynamical consequences of

this failure is that a pseudo-magnetic force appears which alters the BO motion. This
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pseudo-magnetic force can be derived in a host of ways, e.g. by directly integrating the
motion and keeping first order corrections for a mean-field force (as done by Robbins and
Berry?4) or by projecting the quantum-classical Liouville equation (QCLE) (as done by our
research group?®). Berry forces have also been found when considering molecular junctions
out of equilibrium?®=28. In any event, for motion along a discrete eigenvalue of H.(R), the

final result is: |

X 2
ajk(m'akj) (1)

k
where 81' = i@ x dj; defines the Berry curvature of adiabatic state §; and dj, = hy;| B i is
the derivative coupling between adiabatic states §; and yy.

When inspecting the result in Eq. 1, an interesting nuance arises: for a nonzero single-
surface Berry force, one requires a complex-valued derivative coupling. Now, Mead showed
long ago?? that, for a system with an even number of electrons, a diabatic basis (with time-
reversal) exists whereby the entire Hamiltonian is real-valued (so that one can be certain
that the Berry force in Eq. 1 is zero). Nevertheless, for the dynamics in Ref. 9 one does
find a nonzero Berry force for a small cluster with an even number of electrons according to
a density functional theory (DFT) calculation (even with zero external magnetic field). In
other words, because of the mean-field approximation inherent to DFT, the electronic
wavefunction becomes complex and a Berry force arises according to Ref. 9.

At this point, one must ask: Is such a Berry force meaningful? One could imagine arguing
both sides of this argument. On the one hand, one can point out that a typical, spin-
polarized unrestricted Hartree-Fock solution breaks time-reversal symmetry; accordingly,
from the errors of mean-field theory, one might argue that the calculated Berry force is
purely specious. On the other hand, recent work with singlet-triplet crossings (and more
generally, degenerate electronic crossings) has demonstrated that Berry forces can arise even
with an even number of electrons and a real-valued Hamiltonian3°.

The goal of this article is to answer these questions definitively. We will show that, if prop-
erly interpreted, the Berry force computed from a mean-field, spin-polarized unrestricted so-
lution is dynamically meaningful. At the same time, however, propagating dynamics along a
mean-field ground state with a Berry force often highlights the incomplete nature of Born-
Oppenheimer dynamics—one often misses very interesting excited state information. Finally,

as a side note, we also show that one must be careful when propagating mean-field dynamics
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with Berry forces because the Berry force will diverge at the Coulson-Fisher point.3!

In the end, our results justify recent ab initio simulations of molecular dynamics using
mean-field theory but also highlight how much more dynamical information should be re-
coverable if one were to propagate fully nonadiabatic ab initio dynamics in the presence of

many electronic states and Berry forces.

II. MODEL

In order to understand how the meaning of Berry force might or might not be altered
by making a mean-field electronic structure assumption, our approach will be to analyze a
simple two-orbital, two-electron Hubbard model with SOC. We choose the electronic Hamil-

tonian as follows:

He = |"|\0 + |'l|\so (2)
!
1 X X AT A X A T oA x At A AT A
Ho = hic€s€c -t € 4Cj0 + U Calnl (3)
o=\ i=1,2 i=j i=1,2
.X »
Hso = VisjsC 4Cjs (4)

i=]
Here, Hy represents a standard Hubbard Hamiltonian where ¢, and éifo are the electronic
creation and annihilation operators, hj; is the on-site energy at site i = 1,2 with spin index
o =1, t is the hopping term between different sites with the same electronic spin, and U is
the on-site Coulomb repulsion. The term Hso is the single electron SOC coupling where
Visjs is the coupling strength between sites i and j with spins o and 6. Formally, this

operator is

X
Visjs =

Na))
Y
=<
w

o0 (5)
Y

where LY is the electronic angular momentum operator around nucleus y and S is the spin
Pauli matrices. To further simplify the problem, let us imagine a model with S, symmetry

such that only states with the same spin in the z-direction are coupled:

Hso = Vij(f ,]:réj/[s— VjiCN,q\l, (6)
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Notice that the onsite energy h; = hip = hyy, and the hopping terms t are real-valued
variables; the SOC coupling V = V;; = -Vj; is purely imaginary (because of S, symmetry). At

this point, we can write the electronic Hamiltonian in matrix form under a given basis:

|boi = ¢ Cip |0
|Gai = ¢ Gy O
[bai = ¢, iy O
N (7)
[b3i = ¢ Gy [0
Wi = chpcly [0
|Wsi = ¢, cf, |Oi
If we define V. = -t + V, then in this basis, the Hamiltonian reads:
2h;+ U 0 v~ oove 0 0 ~
. 3
0 2h,+ U V¢ B 0 0 I
e ¥? hi+h, 0 0 0o B
He = E
2 ~ ~
v v 0 hi+h 0 . (8)
0 0 hi+hy, 0 B
?
0 0 0 0 0 hi+ h;

At this point, we will allow h; and V to vary as functions of nuclear geometry so that we can
study how the presence of SOC affects the nature of molecular dynamics. We consider a
Hamiltonian that depends on two nuclear coordinates x and y, and we take the electronic

Hamiltonian to be of the form:

h; = -h, = 0.1tanh(x) (9)
2

L= 0lexp - x +iWy (10)

U= 0.2 (11)

We will set W = 5.0 for all calculations in this paper. In Fig. 1a and Fig. 1b, we plot the
diabats (i.e. on diagonal energies) and exact adiabats (eigenvalues) for this Hamiltonian as a
function of x.

There are three points worth mentioning about the Hamiltonian defined in Egs. 8 -11.

First, all of the diabats and adiabats are flat in the y direction and all of the diabatic
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crossings are in the x direction. This state of affairs has been chosen on purpose to make
our analysis of the dynamics easier. In practice, as shown in Fig. 1a and Fig. 1b, the
adiabatic ground state changes its diabatic composition (from diabat |{oi when x = —o= to
two nearly degenerate diabats |{,i and |{si when x = ==). Note that, while there are two
more diabats |4i and |ysi that are degenerate with diabats |y,i and |3i when x = oo,
these two former states are completely uncoupled from the latter (which again makes our
interpretation easier): we will treat the model Hamiltonian in Eq. 8 as if there are only four
states. Second, the phase of the coupling V between | goi and diabat |,i (and V ? between
| Woi and |3i) is modulated in the y direction by a parameter W. Third, the Hamiltonian in
Eg. 8 can be transformed into a completely real-valued form as shown in the appendix and
therefore the exact, on-diagonal Berry force (Berry curvature) formally must be zero

according to Eq.1.

The focus of this article is understanding the consequences of the third point above.
Recently, our group has shown3%32 that a “Berry-like” force can be important in model
systems like Eq. 8. For instance, the complex-valued phase modulation WY in Eq. 10
causes a momentum shift of W in the y direction for nuclear trajectories that transmit
through the crossing adiabatically3%32., Moreover, the nuclear dynamics will be changed
dramatically if the magnitude of W is comparable to nuclear momentum P. But how can
“Berry-like” forces arise with a formally zero on-diagonal single-surface Berry force? One
must conclude that these effects can be captured only with a nonadiabatic (multi-state)
formalism. To that end, recently we have sought to explain such features using a quasi-
diabatic formulation of fewest-switches surface-hopping (FSSH) dynamics as appropriate
for a singlet-triplet crossing33, where we can force the Berry force to be nonzero. From a
more general point of view, we have also proposed a phase-space formulation of the FSSH
that by design takes into account the multi-dimensional nature of degenerate Berry curvature

tensor34.

Now, in considering all of the formal theory above, one important twist is missing: all of
the formal, dynamical theory of Berry forces is predicated on the assumption that one has
knowledge of the exact Hamiltonian eigenstates, eigenforces, and the derivative couplings.
And in such a formal case, as emphasized above repeatedly, the on-diagonal Berry force
corresponding to any exact eigenstate is zero. That being said, however, this formal result

need not hold for such a system with a reduced electronic structure description. As discussed
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in the introduction, for a realistic electronic Hamiltonian with electron-electron interactions
(as in Eq. 8), if one performs a spin unrestricted Hartree-Fock or DFT calculation, the
ground-state electronic wavefunction will be one of a pair of broken symmetry solutions
and therefore likely be complex-valued with a nonzero Berry curvature. Will such a Berry
curvature be meaningful? In practice, single Slater determinant based mean-field methods
such as DFT and HF are dominant in the field of electronic structure calculations of Born-

Oppenheimer dynamics, and so answering this question is quite important going forward.

A. Mean Field Theory

We begin with the details of a mean-field generalized Hartree-Fock (GHF) calculation.

The system is represented in a single-electron spin basis:
[Xioi = &, |0 (12)

Then, each spinor orbital is written as a linear combination of these basis functions:

. X X .
| di = Cio,k |Xiol (13)
o=l i=1,2

Here Cis k are the molecular orbital (MO) coefficients. The Fock operator can be expressed

as:
F=h+aG (14)

where in the matrix form, the single-electron term h and two-electron term G are:

h, V- 0 0
@VN h2 0 O@
h= . (15)
o 0 hy v
0 0V h,
Uhny i 0 0 0
’
B 0 Uhnyi O 0
=g (16)
0 0 Uhnqai 0
0 0 0  Uhnyai
7
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The electron density hnjsi is calculated by hnigi = pisisc, Where the density matrix g is

defined as:

XZ
Picje = Cio,kcj,k (17)
k=1

Next, the system is solved self-consistently by a complex Roothann equation:
FC=¢€C (18)

with the total energy: h i
E = % Tr het + Tr Fg' (19)

The ground state wavefunction is approximated to be a single Slater determinant of the

form:
| Doi = V-lz (Id2(T1)da(T2)i = | da(T2)d2(T1)i) (20)
The ground state Berry curvature is
Qo= i x hDol Blgi= i(B% hdy| B [Psi+ Bx ho| B |65) (21)

or in index form,
X2
QY = i (B hiy|By G5~ By hey| B | 0i) (22)
j=1
Note that the GHF ground state |Qoi is always two-fold degenerate Kramers pair that can

be found by applying the time reversal operator, T :
|Dgi = T | Doi (23)
The Berry curvature of |®oi and |®,i are related by time reversal symmetry as well,

<, © o
Qo=T QT " =- Qo (24)

B. Potential Energy Surfaces

A zoomed-in plot of the exact versus mean-field ground state potential energy surface
(PES) is given in Fig. 1c. Note that the mean-field solution is not smooth; there is a
Coulson-Fisher point xc_¢ near x = 0. A paired GHF solution is preferred when x < xc-f

and an unpaired GHF solution is preferred when x > xc-¢.
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The ground state Berry curvature has been calculated according to Eq. 21 by finite

difference. In Fig. 1d, we see that the Berry curvature is zero on the paired side (x < Xc-f)

since the wavefunction is completely real-valued. However, the Berry curvature is non-zero

on the unpaired side (x > xc-¢); the Berry curvature diverges at the Coulson-Fisher point

Xc-F-
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(a),(b) The exact diabatic and adiabatic PESs of Hamiltonian described by Eq. 8 along the

x direction. (c) Zoomed-in plot of the ground state PESs as calculated from exact diagonalization

and a mean field GHF ansatz. (d) The ground state Berry curvature (for |®pi [see Eq. 20]) as

calculated from the mean field method. The Berry curvature diverges at the Coulson-Fisher point

Xc-f hear x = 0.
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ITII. RESULTS

To assess the validity of the mean-field Berry force, we have run two different sets of
scattering calculations. In the first approach, we simulated exact quantum dynamics for
the Hamiltonian in Eq. 8 using the fast Fourier transform split operator method3>. We
initialized a Gaussian wave packet on the diabat |gi = éIJ,Cltr |Oi as:

I

FVIRE (k- iR

02 ~

= exXp |lIJO| (25)

with initial position Ro = (-3,0) and initial momentum Py = (P2,,0). We set the wave
packet width in the position space to be o, = o, = 1 and the nuclear mass to be M = 1000,

and then propagated four electronic states over two nuclear dimensions.

In the second approach, we simulated Born-Oppenheimer dynamics on the mean-field
ground state surface. We calculated and fit the ground state PES E, and Berry curvature Qg
along the x direction with Ax = 2 x 107%; a linear interpolation was used during the
propagation to reduce the numerical instability and computational cost. Then we sampled
103 classical trajectories according to the Wigner distribution of Eq. 25. The trajectories
were propagated using a standard velocity Verlet method3® with equation of motion:

i -

P
M (26)

P= -+ F5" (27)

where we set Fo*"" = (80 -F)/M for BO dynamics with Berry force and F2*"™ = 0 for BO
dynamics without Berry force. We use a time step of At = 0.001 au and we have checked
that energy is conserved ( AE < 107 during propagation). While velocity Verlet has been
used here, more advanced integration methods’ will likely need to be considered in the future

to address the velocity dependent force in Eq. 27.

Our numerical results are presented as follows in Fig. 2.

10
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FIG. 2. (a) The final transmitted momentum P, . in the y direction as calculated by (1)

exact wave packet dynamics on |{,i; (2) BO mean-field ground state trajectories without a Berry

force; (3) BO dynamics with Berry force as calculated from GHF solution |W0i. (b) The final

momentum P}, . in the x direction. Note that one finds “missing points” for BO dynamics in (a)

and (b) because no classical trajectory can transmit at low momentum. (c) The comparison of
y

total transmission populations nans. Note that, because we set P, ;; = 0, we recover the exact

same transmission results if we employ the Berry force from either GHF solution |W0i or GHF

solution |UJ'Oi. (d) The local spin at site 1 hS,.;i for two GHF solutions that distinguishes the
broken symmetry solutions |®gi from IGjoi. Altogether, BO dynamics with Berry force recapitulate
exact quantum results quite well.

We begin by considering the exact dynamics. For conditions that begin on diabat |Uoi

11



AlP

Publishing

(see Eq. 7) with low incoming energy starting at x = —oo, the scattering wavepacket can
branch onto only two surfaces (|,i and |{si); at higher energy, four states are possible.
After the scattering event, each wavepacket picks up a momentum with a magnitude W in
the y direction ( +W for the wave packet that ends up on diabat |{,i and -W for the wave
packet that ends up on the other diabat |{si); recall that no density can emerge on diabats
|si and |Psi as these diabat states are uncoupled. In Fig. 2a and Fig. 2b, we show the
final momenta P, and P, %, for the transmitting wave packet on diabat |{),i according to
exact dynamics.

Next, let us consider BO dynamics along the mean-field ground state surface. The in-
teresting feature of the BO dynamics is that one passes through the Coulson-Fisher point
around xc-f = 0; we find that the (spurious) infinite magnetic field can be integrated out
safely and converged. See Appendix B. After passing through the Coulson-Fisher point,
there are two different unpaired mean-field GHF solutions to the electronic Hamiltonian
in Eq. 14-16. These two different solutions can be characterized by their respective hS,i

values.3” Here, we define the local spin hS;i at site i as:

hsii = ;Ci, C, b 2578 (28) 10

In Fig. 2d, we plot the hS, ;i values of the two GHF solut(i:ons |®oi and |®,i. In this “unpaired
region” when x > xc-g, the values of Eq. 28 are equal and opposite for the two different
mean-field solutions. In Fig. 2a, we show that, if we run dynamics using the ground state
with Berry curvature as calculated for the mean-field solution characterized by |®oi (in Fig.
2d), the resulting observables match exact quantum dynamics for transmission to diabat
|g2i. In particular, trajectories can pick up a quantitatively correct shift in momentum
with consideration of Berry force. Note that, if we were to run dynamics with the mean-
field solution characterized by Idjoi, we would match the asymptotic momentum on diabat
|d3i. Thus, a lot of the correct physics present within a mean-field framework; one must be
careful in how one interprets the mean-field result. This general conclusion is in agreement
with recent studies of electron-phonon interactions in a junction and negative differential
resistance.383°

Finally, we note that the existence of nonzero Berry force changes the energy barrier for
the scattering event. More precisely, we find that the effective energy barrier rises because

Berry force leads to energy being shared between the x and y degrees of freedom, and energy

12



Publishing

AlP

conservation then demands that the barrier be raised in the x-direction. One can quantify
this change by considering the transmission/reflection ratio with and without Berry force, as
shown in Fig.2c. Clearly, mean-field BO dynamics are improved by including Berry force

calculations, where we see less transmission over the range 14 < P,%;, < 16.

(a) (b)

20 1.00

0.75¢
10+

y

trans
Ntrans
o
19,
=)

a
07 3
r.,l—g- O0oocooo0ooo0o( 0.25¢
0.00
10 12 14 16 18 20 10 12 14 16 18 20
pX pX
init init
—@— Exact Total —@— Exact Diabat |yi —@— Exact Diabat |{si
—@— MF BO dynamics w/o Berry Force ©— MF BO dynamics w/ Berry Force |®gi —e— MF BO dynamics w/ Berry Force | Q)

FIG. 3. The result of dynamics similar to Fig. 2a and Fig. 2c, but now the system starts with

initial momentum PY .. = 0.1P¥ For BO dynamics, we show results for both GHF solutions

init init*
(which have equal and opposite Berry forces). We compare against exact results, where momenta
and populations on diabats |{»i and |3i are shown separately (along with the overall [average]
results). In (a), note that one can capture the asymptotic y-momentum of each channel with
BO results, but the total y- momentum cannot be retrieved. In (b), note that the transmission
probabilities are very different for dynamics along |®qi vs I(Ijoi. In particular, if one performs a

calculation with |®pi, one can match the total transmission probability; but if one were to rely on a

calculation with |®,i, one would recover an erroneous transmission probability.

IV. DISCUSSION AND CONCLUSIONS

The conclusion of this article is that, whenever a system is described by a spin-unpaired
GHF state that breaks time-reversal symmetry, the Berry force as computed with running ab

initio mean-field theory is meaningful. One must simply be aware, however, that this Berry

13
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force is one of a pair of Berry forces and there is an equal and opposite Berry force in the
opposite direction attached to the other degenerate state found by time reversibility (which
is in agreement with Ref. 8). Although we have arrived at this conclusion by considering a
problem with degenerate electronic states (at infinity), the same conclusion should hold for
any unpaired solution (no matter how big is the fundamental energy gap). Thus, there is
clearly some merit to running Born-Oppenheimer dynamics calculations on ab initio surfaces
with ab initio Berry forces — even when formally the exact single-state Berry force should be

Zero.

That being said, however, before investing in massive ab initio calculations, several key
guestions should really be addressed in principle. First, here we have addressed a scattering
calculation for which two equal and opposite wave packets are spawned when the molecule
approaches a crossing and goes through a Coulson-Fisher point. What would be the impli-
cations if we were to treat a bound-state problem where wave packets cannot escape? For
instance, would the effect of Berry force on the simulations of vibrational eigenstates be
meaningful when the electronic structure is taken as mean-field theory. We cannot yet be
certain but if so, one has all the more reason to run ab initio nonadiabatic dynamics with

Berry forces, as in Ref. 34.

Second, the data in Fig. 2 makes the simplifying approximation that the momentum of
the initial wave packet is entirely in the x direction (i.e. PY.. = 0). For this Hamiltonian,
although not shown above, one would recover the same transmission function (in Fig. 2)
for either of the two unrestricted mean-field solutions. Unfortunately, however, if one ini-

y

tializes the dynamics with P, = 0O, the situation becomes more complicated. For example,

consider Fig. 3, where we plot the dynamics for P:]it = 0.1Pixnit. In Fig. 3a, we plot the
y-momentum (Pt:ans) as calculated from BO dynamics with two GHF Berry forces. As
one might hope, the latter quantities do agree with corresponding exact dynamics on two
diabats: |,i matches |®oi and |3i matches |050i. The total transmitted y-momentum (in
red) is a weighted average of the latter two quantities. Note that such a weighted average
cannot be simply computed with only a pair of BO calculations; if one were to average the
results from BO simulations with 50% of trajec’tories experiencing the Berry force from | ®oi
and 50% experiencing the Berry force from |®g,i, one would find approximately the purple
curve (which is the result without any Berry force at all). One must know the different

probabilities of populating each channel. Without such probabilities, one cannot match the

14



AlP

Publishing

exact transmitted y-momentum (in red).

Next, consider Fig. 3b where we plot the probability of transmission ny.ans. Here, we find
the transmitted wavepacket population distribution between diabats |{,i and |si changes
with the initial momentum Fj,i:. Surprisingly, we find the the total probability of trans-
mission (in red) matches with the BO dynamics with Berry force from GHF solution |Qyi (in
orange). This quantity is different from the transmission probability as calculated with the
Berry force from the GHF solution |®,i. This difference can be rationalized by realizing that,
according to exact dynamics, at low momentum the transmission is mostly on diabat |{z2i.
At higher momentum (P;,;, > 16), both BO trajectories (with either |®oi or |®'i ) transmit.
Therefore, the orange curve (for |®oi) effectively matches the cumulative exact curve in red
— even though there are considerable amount of population on |3i. Note that the exact
opposite scenario would unfold (where the green curve would match the red curve) were we to
initialize all dynamics with P, = —O.IPTnit. As above, it would seems that one can extract
a reasonable amount of information from a BO calculation when properly inter-preted,
especially if supplemented with experimental or high level branching ratios. Without any
supplementation information, there are limitations to BO dynamics and in many cases, a

nonadiabatic, multi-state simulation is preferred.

15



AlP

Publishing

(a) (b)

10 12 14 16 18 20 10 12 14 16 18 20

X X
I:)init Pinit
—@— Exact Total —@— Exact Diabat |yi —@— Exact Diabat |{si
—@— MF BO dynamics w/o Berry Force ©O— MF BO dynamics w/ Berry Force |®gi —e— MF BO dynamics w/ Berry Force |

Yoo

FIG. 4. The system is initialized the same as in Fig.3 except with the initial momentum P ;, =

p X

ivit- Both (a) transmission and (b) reflection are plotted. Note that no BO calculation can match

the exact transmission data for P X

it > 14; in this range, the dynamics are in the nonadiabatic

regime.

This last point can be made more explicit by considering a slightly different dynamical
situation. In Fig. 4, we plot transmission and reflection probabilities where we initialize the

system with P, .. =YP, .. (a5 opposed to P, .. = B.1P,., in Fig. 3). For small valuesof P,

init init
the dynamics prefer transmission on diabat state |{,i and the total transmission can be
calculated with BO dynamics according to the GHF solution |®oi. However, this
approximation breaks for P* > 14, where according to exact dynamics there is an increasing
amount of reflection; no such trend is observed with BO dynamics. This phenomenon
can be understood by realizing that the system becomes more and more nonadiabatic as P,
increases; in such a limit, the value of a BO calculation becomes very limited and a

nonadiabatic simulation in the spirit of Ref. 34 is far more useful.

Interestingly, the framework above has some relevance as far as considering the dynamics
of a molecule on a metal surface. Whenever a (slow) molecule interacts with a metal (with
fast electrons), the molecular motion experiences both drag and a random force; the drag

is often referred to as the electronic friction tensor (for which there is a long literature

16
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going back to Suhl*® and then Head-Gordon and Tully*!). Recently, we have argued that,
whenever the Hamiltonian is complex-valued representing a molecule on a metal surface with
spin orbit coupling, the electronic friction tensor can become very asymmetric as a large
Berry force emerges*?. We have further hypothesized that this force may be responsible for
CISS physics*®. Given that mean-field theory can offer a Berry force with some validity, it
would now appear prudent to calculate the asymmetric component of the electronic friction

tensor within DFT, and ascertain whether any new emergent spin physics emerges.

Finally, it is worth noting that most of the interesting physics in this model problem
centers around the Coulson-Fisher point in Fig. 1d that arises when one has a big U
term and the preferred ground state switches from closed to open shell. At the Coulson-
Fisher point, the Berry force diverges and the first derivative of the ground state energy
becomes not smooth (and a related divergence is sometimes found in the context of the
symmetric friction tensor describing molecular dynamics on a metal surface***.) For the
most part, one is usually very hesitant to run dynamics with GHF wave functions because
running dynamics can be unstable and/or chaotic when PESs are not smooth. And vyet,
here we find the divergence of FBe'™Y does not ruin the trajectory (provided we use a small
enough time step [which might or might not be tedious]) and may even help recover the
correct asymptotic physics given the limitations of mean-field theory. Future work will be
necessary as far as understanding if other unanticipated practical problems arise when
running dynamics around Coulson-Fisher points for large systems. As a practical matter,
one can also anticipate that future work will also investigate new techniques in electronic
structure that can capture static correlation for systems with spin-orbit coupling. Indeed,
the future of ab initio nonadiabatic dynamics with Berry forces would appear to be a very

exciting new research direction.
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Appendix A:

Here we show that the exact Hamiltonian in Eq. Al can be made completely real-valued

by a unitary transformation. The Hamiltonian is:

=
=

7
ohy+u O v
. 0 2h,+ UV Vv
He = ~ N/ PR
V Ve h1+ hz 0 '
\7 \7 0 h1+ hz
This Hamiltonian can be transformed as follows:
\'i Vv
B oh,+ U 0 2Re[V¥] 2Im[¢]?
J v
, N Bl 0 2h, + U 2Re[V] ~ 2Im[V B
H = R'HR =
e e \/ .V _ -
2Im[V]  2Im[V] hy+ h, 0
Vv _ -V _ -
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FIG. 5.

Here, we show that the Berry curvature as calculated from Eq. 21 can be integrated out
safely for our model system. To show this, we perform a simple fit of Q,, both very close to
and very far from the Coulson-Fisher point along the x-axis. For the region x B [x¢-f, 1], we
fit Qy to a polynomial of the form a(x - xc-¢ )" + b and we find the power n > -1. For the
region x @ [1, +o=], we fit Q,, to an exponential function Q,, = aexp(-b(x - 1)). The fitting
results are shown in Fig. 5. According to the data, the fits are good, from which we
infer that the integral Rf: Q,ydx converges in all regions at this precision. Therefore, at

least for this model system, one can safely integrate over the Berry curvature as calculated

from Eq. 21 even though the quantity diverges exactly at the Coulson-Fisher point.
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