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We revisit a recent proposal to model nonadiabatic problems with a complex-valued Hamil-
tonian through a phase-space surface hopping (PSSH) algorithm employing a pseudo-
diabatic basis. Here, we show that such a pseudo-diabatic PSSH (PD-PSSH) ansatz is
consistent with a quantum-classical Liouville equation (QCLE) that can be derived follow-
ing a preconditioning process, and we demonstrate that a proper PD-PSSH algorithm is able
to capture some geometric magnetic effects (whereas the standard FSSH approach cannot).
We also find that a preconditioned QCLE can outperform the standard QCLE in certain
cases, highlighting the fact that there is no unique QCLE. Lastly, we also point out that one
can construct a mean-field Ehrenfest algorithm using a phase-space representation similar
to what is done for PSSH. These findings would appear extremely helpful as far understand-
ing and simulating nonadiabatic dynamics with complex-valued Hamiltonians and/or spin

degeneracy.
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I. INTRODUCTION

Over the last few decades, the quantum-classical Liouville equation (QCLE) has emerged as a
crucial theoretical tool for understanding nonadiabatic dynamics and has functioned as a practical
tool for high accuracy simulations for a small class of systems'™. Most importantly, the QCLE

has been found to have a strong connection to a variety of surface hopping algorithms,®°

espe-
cially with Tully’s fewest switch surface hopping (FSSH)!, one of the most popular nonadiabatic
algorithms. With a decent decoherence algorithm and if momenta are relatively large, FSSH can

capture many features predicted by the QCLE*?13,

Notably, one of the strengths of the QCLE is that the algorithm can account for (at least some)
Berry force effects'® which might arise, for example, when one propagates nuclei over a potential
energy surface generated with a Hamiltonian that lacks time reversal symmetry, i.e. in a magnetic
field.'**> In particular, if one projects all of the QCLE dynamics onto a mean-field electronic state, a
Berry force does emerge.'® That being said, Tully’s original FSSH cannot recover any such Berry
curvature effects at all*’. In fact, Tully’s FSSH algorithm cannot readily treat complex-valued
Hamiltonians in the first place: From a practical perspective, FSSH requires a real-valued direction
for the derivative coupling vector d in order to perform momentum rescaling, but FSSH has a
problematic (non-unique) gauge dependence in the context of a complex-valued Hamiltonian. To
that extent, recently our group has proposed to solve such a problem by using a phase-space surface
hopping (PSSH) approach based on a phase transformed diabatic basis (called ‘pseudo-diabats’)*8.
In our tests of model systems, such a pseudo-diabatic PSSH (PD-PSSH) guess can indeed model
complex-valued Hamiltonians and incorporate Berry curvature effects while retaining much of the

simplicity of standard FSSH.%°

Despite the practical successes demonstrated in Refs.'®9, the underlying theory behind the PD-
PSSH algorithm has heretofore not been known. Whereas Subotnik!? and Kapral'? et al have been
able to understand how the FSSH algorithm can be roughly mapped to the QCLE for a standard
real-valued (non-degenerate) Hamiltonian, such a relationship between a PD-PSSH and the QCLE
has not yet been demonstrated. Thus, with this background in mind, our goal here is to map a broad
class of PSSH algorithms to the QCLE which, as we have noted above, does capture Berry force
effects. Importantly, however, our mapping below will connect a PD-PSSH approach not directly to
the standard QCLE, but rather to a non-standard dressed QCLE, i.e. a QCLE where the Wigneriza-

tion is performed in a certain basis (a basis of “pseudo-diabats”) rather than a purely diabatic basis.



One of the conclusions of the present manuscript is that, just as there many incarnations of surface
hopping dynamics, there are also several valid, different incarnations of the QCLE. In fact, in order to
make our discussion of the QCLE as clear and comprehensive as possible, for future reference
below, it will be essential to have very clear definitions and nomenclature as far as book-keeping
the various QCLE and surface hopping algorithms that can be generated. These conventions are

summarized in Table I.

Basis for Wignerization QCLE Corresponding SH
diabats standard (diabatic) QCLE (D-QCLE)?! Eq. (10) FSSH1!

a preconditioned basis preconditioned QCLE (P-QCLE) Eq. (9) PD-PSSH18
adiabats adiabatic-then-Wigner QCLE (A-QCLE)2° Eq. (11) A-PSSH?!

TABLE I: Our naming conventions for the QCLE and surface hopping (SH) algorithms. Each
surface hopping algorithm is connected to the QCLE in the same row by a set of similar approxi-

mations.

Returning to the central goal of this paper, i.e., mapping the PD-PSSH algorithm to the QCLE,

our approach will be as follows:

1. We will begin by introducing the notion of a “preconditioned” QCLE (P-QCLE), where we
transform the density matrix into a pseudo-diabatic basis (a “preconditioning” process) be-
fore implementing a Wignerization step. We note that this precondition is different from the
standard QCLE (or D-QCLE) that arises when quantum-mechanical operators are Wigner-
ized before representation in any basis' (which is equivalent to Wignerizing in a perfectly
diabatic basis), a "Wigner-then-adiabatic approach". Over the previous two decades, several
groups have transformed the density matrix to an adiabatic basis before Wignerization*2%23
and found that sometimes reasonable results can be obtained as compared with the stan-
dard QCLE*?3. That being said, more recently, Ryabinkin et al have shown that such an
“adiabatic-then-Wigner” QCLE can cause problems near conical intersections as arising
from the double-valued boundary problem?° and the failure to account for geometric phase
effects — which the standard QCLE certainly does include?*?>. For our present paper, we will
assume that a pseudo-diabatic basis is chosen as a smooth function of nuclear configuration,

therefore the problems highlighted in Ref.2° should not emerge. A detailed discussion about



the possibility of the choice is seen in Sec. IV A 3. Moreover, we will show that a P-QCLE
can actually have some advantages, e.g. the algorithm can indirectly include some elements
of a diagonal Born-Oppenheimer corrections (DBOC)?® (which the standard QCLE does not
include). See Sec. IV B.

2. We will demonstrate that the pseudo-diabatic PSSH (PD-PSSH) algorithm as proposed in
Ref.181% s consistent with a P-QCLE, much the same way as FSSH is consistent with the stan-
dard QCLE. We will show that Tully’s FSSH misses a coherence term contained within the
QCLE, which in turn arises from coherent interactions between the active diagonal state and
adjacent off-diagonal states and is nonzero only when the derivative couplings are complex-
valued. In the adiabatic limit, this term becomes effectively a Berry force. Luckily, by trans-
forming to a real-valued representation (with real-valued derivative couplings), the PD-PSSH

does not suffer from such a problem.

3. Lastly, we will demonstrate why, even for a system with time-reversal symmetry (for which
the on-diagonal Berry curvature is zero), the PD-PSSH algorithm is able to recover exotic
pseudo-magnetic fields. These wavepacket bending and reflecting effects can arise whenever

one reaches a singlet-triplet crossing.

Throughout this paper, we assume a hat symbol 0 represents a total nuclear-electronic quantum-
mechanical operator, while a bold color symbol A (except g, which represents the electronic de-
grees of freedom) represents a vector in the nuclear space. The vector dotA - B is always performed in
the nuclear space, and if both are matrices, their matrix multiplication is also performed, i.e. (A -
B)jk = A; B, % THe Einstein summation convention will also be used extensively for matrix and
vector multiplications. For maximum clarity, we list our definition of indices in Table || and some

of our symbols in Table IlI.

Indices [What they label

a,B |Nuclear degrees of freedom
jo, ko, lo [Diabats

j, k, | |Pseudo-diabats

m, n, s |Phase-space adiabats

TABLE Il: Definition of Indices



Symbol Meaning

Q Quantum mechanical nuclear position operator

q Quantum mechanical electronic position operator
R, Rq Classical nuclear position
P, Po Classical nuclear momentum
I-i, I-i,-k Total quantum mechanical Hamiltonian

Hw, HjV,:’ Wigner transform of Hina pseudo-diabatic basis

E Phase-space adiabatic energies, i.e., the eigenvalues of Hy
h Electronic quantum mechanical Hamiltonian
hw, h}’}{ Wigner transform of hina pseudo-diabatic basis
h Representation of hy in a phase-space adiabatic basis
) Quantum mechanical density matrix
pw Wigner transformed density matrix in a pseudo-diabatic basis
o Representation of pyw in a phase-space adiabatic basis
D Quantum mechanical derivative coupling operator between pseudo-diabats

Dw,DY, D}"ﬁ"‘ Wigner transform of D in a pseudo-diabatic basis

D,D%, Representation of D in a phase-space adiabatic basis
d,dg, Partial derivative coupling between phase-space adiabats with respect to R
T, T3, Derivative coupling of the phase-space adiabats with respect to P

da Derivative coupling between (position-space) adiabats

TABLE Ill: List of Symbols and Definition

II. THE PRECONDITIONED QUANTUM-CLASSICALLIOUVILLE EQUATION

In our work below, it will be essential to transform the quantum-mechanical Liouville equation
into a pseudo-diabatic basis before we Wignerize and derive a QCLE. To that extent, it is now
appropriate to recapitulate a great deal of the QCLE formalism in an arbitrary basis (basically
following Ref.#2%:23) so that we can easily analyze the resulting coupled nuclear-electronic equation.
We emphasize that in the end, our choice of pseudo-diabatic representation should change smoothly

as a function of nuclear coordinates. In such a case, even though the resulting QCLE may not



be exact for linear models?’, we do not anticipate finding the same large and spurious errors as we
would find if we were to follow an adiabatic-then-Wigner QCLE algorithm around a conical
intersection. The possibility of choosing such basis is discussed in Sec. IV A 3. Moreover, as we
show numerically in Sec. |V B, for certain model Hamiltonians, the resulting non-standard QCLE

can recover some features that the standard QCLE simply cannot.

A. QCLE in an Arbitrary Basis

To begin with, let us consider a general nonadiabatic Hamiltonian with nuclear degrees of free-

dom Q and electronic degrees of freedom q:

- B B2 .
H(Q,a) = - M - 25+ h(Q,q) (1

The corresponding quantum Liouville equation reads

N . h i
0p(Q,q) _ _ i ;

In contrast to the standard approach where Eq. (2) is Wigner transformed and then projected into
a specific basis, we will first apply a preconditioning by transforming Eq. (2) into a new electronic
basis{|j(Q)i} and then we apply a Wigner transformation. We will call this initial basis a “pseudo-
diabatic” basis; in general, we expect this basis to be neither strictly diabatic nor adiabatic. See
below. For simplicity, we assume the pseudo-diabats are single-valued, orthonormal and complete.
Note that mathematically, there are no additional restrictions for our pseudo-diabats, however in
practice, the choice of pseudo-diabats will strongly affect our interpretation and simulations; see
Sec. IV A.

In a pseudo-diabatic basis, Eq. (2) reads

0p; i~ o
%= ‘ﬁ—(HjIplk‘ B 1Hi) (3)
where §;,(Q) = hj(Q)|p[k(Q)i and I-i,-k(Q) = hj(Q)lI:I | k(Q)i are the projected operators.

From Born-Oppenheimer theory, the Hamiltonian element HAJ'k is

2
Hik(Q) = hj(Q) - 2F'\_/| Bq+ D 2 (4)

jk
where I5j « = hj|Bqkiis the derivative coupling.
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At this point, we apply a partial Wigner transform on the nuclear coordinates. For an arbitrary

operator O (which could be, e.g., §, h), we define

Dy vE
Of(R,P) = R+ 0uR- = ermTdy (5)

As pointed in Ref.2?, if the pseudo-diabatic basis is “double-valued” (e.g. the adiabats near a conical
intersection), the Wigner transformation will face some boundary-value problems. However, as
mentioned above, we assume our pseudo-diabats do not suffer from this problem, which is indeed
true for our choices described in Ref.'® orin Sec. IV A. After the Wigner transform, Eq. (3) becomes
pj@ k _ |__ _HW e—ihA/ZPW _ pWe—iﬁ/\/ZHW (6)
T ot R il k jl Ik
where A = Blp - By — Blg~ Bp s the Poisson bracket operator. Eq. (6) is exact.

As in the standard QCLE derivation, we now take only the zeroth and first order terms in h for

the Taylor expansion of the exponential term, i.e. e P2 = 1 - jAA/2. Now Eq. (6) reads
!

0 W . Y W
_&lc_p' - #an@mw‘ Py ew 21 _a_PJ_dH' 6_R|_dp"g + _&P_GHE’a_d_dp»
b« “ (7)
1 OHY opff  OHWY opff
¥ 2 3Ry 0Py | OR 0Pg
The Wigner transform of the Hamiltonian (4) reads?®
(P - iADw (R))?
(R, P) = hL(R)+ TV (8)

where P is an identity matrix of the nuclear momenta. Plugging Eq. (8) into Eq. (7), and writing

the equation in matrix form, we arrive at the preconditioned QCLE:

d W
where ([a, b]+)jk = ajibik + bjai is the matrix anticommutator, and Fo(W = -0Hw /0Rg is the

nuclear force.

Compared to the standard QCLE, the P-QCLE allows for one more degree of freedom in any
optimization process, namely one has the freedom to choose a basis of pseudo-diabats so as to best
match exact quantum mechanics: If we choose the pseudo-diabats to be a set of pure diabats, D

would be zero and Eq. (9) would be equivalent to the standard QCLE*:

M AR, 2 %’ 3P,

0 Py,0O 1 o]
%= ! lhw, pw] - 200w 1w OPw (10)

+



By contrast, if we choose the pseudo-diabats to be the same as a set of adiabats, then D would equal to
adiabatic derivative coupling da and Eq. (9) would be equivalent to the adiabatic-then-Wigner
QCLE?? (here Ha and F, are the analogues in the adiabatic basis of Hy and Fw in a diabatic

basis):
o« hd?

A - F 11
il apfPw T TR gp OPw (1)

o) i H ] P
8& = I=J|- A, Pw ;}_
We will argue below that, in order to construct the most accurate surface hopping approach, the

optimal pseudo-diabatic basis should be neither strictly adiabatic or strictly diabatic.

B. Representation in a Basis of Phase-Space Adiabats

Following Kapral’s approach to surface hopping dynamics'3, the next step is to represent Eq. (9)
in the eigenbasis of Hy (known as the phase-space adiabats'®2!). By multiplying phase-space

adiabats | mi, |ni onto the two sides of Eq. (9), we find

Pm Pw | i |
g 4= n, — n,
= h = - _ hm|[Hw,
ot m| at I R m|[Hw, pw] i .
— iIRDW <
- Thel SR SR nie bl P i (12)
To simplify Eq. (12), we utilize the following identities or definitions:
D2, = hm|DY [ni= hm]ji D}{* hk|ni (13)
= h i= - n~ Mm
e = " Mapm, In' = oplly, T ompt P P gp on
= + m Psn = Pms S
o s %Bn
= aan:"' trispsn - pmsr; (14)
dpmn dpw . .. dpvx .
= h = h —= hk
3R, mldRalm mIJIORa | ni
opW .0 |si .0 hk ni
= mn+ hm | sn — hS kl—ms
3R, l] R I 3R P
dpW
= T8+ diePsn — PmsdS, 15
3R, Psn = P (15)
o D E
Here in Eq. (14) and (15), we have defined d%,,, = hm]ji 62JR':' and t,2, = mapi—“; these quan-

tities are the derivative couplings of phase-space adiabats with respectto R and P.
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Finally, by plugging Egs. (13)-(15) into Eqg. (12) for all possible m and n, and after a little bit

of manipulation, we can transform Eq. (12) into a matrix form:

0 i 1Py - iRD 0 1Py - iRD a 4
p=_ I[Erp]_ * ! 0" P - * ! a:[doup]

ot [ dp2 d 2 M
- = FO(;_ - —lra, oy
 Fegar M, (e 50,

+

Da

:—'E—-F] - > - F
5 | p &81p 2& M I;SEaap' y) a/bpa+ d_p

T

+ ziﬂ[Dou [de, pll, - l[Fa; [ta, PIl, (16)

Note that all the operators in Eq. (16) are defined in a basis of the phase-space adiabats m, n, in
contrast to the operators in Eq. (9) which are defined in a basis of pseudo-diabats j, k. In short,
Eq. (16) is the P-QCLE represented in the phase-space adiabatic basis. Below, this equation, will

be used below to make connections with PD-PSSH algorithms.

I1l. PHASE-SPACE SURFACE HOPPING

Recently, our research group has suggested a pseudo-diabatic phase-space surface hopping (PD-
PSSH) for solving nonadiabatic problems with complex-valued Hamiltonians and/or degeneracy as
would be standard in the presence of several spin states. This algorithm can be described as
follows: A swarm of trajectories are generated according to the Wigner distribution, each assigned
with an active phase-space adiabat A, an electronic density matrix o, position R and momentum

P. These quantities are then propagated according to the following equations of motion:

. h i
| . .
6= - E(R,P)-ifR-d-ifP-T,0 (17)
. P - iRD
R = hA|BEp|Ni= — M (18)
M
P = —hA|BREx|Ni = Faa (19)

The trajectory’s active surface A is changed (i.e. we “hop”) to match the population dynamics o.

The hopping rate from surface m = n is given by
n ! #
R dmnt+ P -
gmsn = max 2Re Onm| mn Tmn) ,0 (20)

(0]
mm

When a hop is attempted, the trajectory’s momentum is adjusted along the d,,, direction in order to

maintain energy conservation, i.e. A P is chosen to satisfyE, (R, P+d,mAP) = E,(R, P). We



will show in Sec. IV A that our choices of the pseudo-diabats will make d,n, real-valued, therefore
we will not encounter any ambiguities about the rescaling direction.

The only difference between PSSH and Tully’s FSSH is the P-dependence of the Hamiltonian,
i.e. we have E (R, P) instead of E(R). Thus, one might reasonably expect that the connection
between FSSH and standard QCLE?'!® should also extend to a connection between PSSH and the
P-QCLE. In this paper, to establish such a connection, we will follow the frameworks of both
Subotnik!? and Kapral'® et al. As a brief review, Tully-style surface hopping dynamics can be

connected to the standard QCLE if one makes the following approximations:

1. Unique-trajectory assumption: We assume that only one single trajectory reaches a given
point in phase space (R,P) and a given surface A at time t. Surface hopping then estimates
the density matrix by

X
Sact)nd (R = R(t), P - P(t)) (21)

traj traj

p>(R, P) =

2. Large velocity assumption: We assume that the momentum adjustment A P during a hop can
be treated as a small variable in the expansion. Depending on the context, this assumption
means we can ignore all O((AP/P)?) and O((AP g—‘;)z) terms (where o is the electronic
density matrix). Moreover, we assume that we can always find a real-valued solution for
the momentum rescaling; there is currently no means to map Tully’s frustrated hops to the

QCLE.

3. Decoherence assumption: We must assume that the off-diagonal density matrix element onm
is an accurate estimate of the partial Wigner density matrix pom, i.e.

X ( R P R P
onm(t)d R- (t),P- t)) = pam( , ,1t) (22)

traj traj

Note that for Tully’s original FSSH, Eq. (22) is not satisfied, which yields the so-called de-
coherence problem.'2?° Below, we will not treat decoherence and we will assume that this
problem has been fixed by some decoherence patch or another. We will provide a short dis-

cussion about the applicability of the AFSSH decoherence scheme3%3! for PSSH in Sec. |11 D.

Now, in order to map the PD-PSSH to the P-QCLE, we will adopt all of the approximations

above, and we will also need to make two additional assumptions:
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4.

When propagating the electronic amplitude, we will estimate that the two nested commuta-
tors [Dq, [dq, p]]+ and [Fq, [Ta, p]]+ in Eg. (16) can be approximated with pure commutators

whose matrix elements can be taken from a local trajectory. More precisely, we will approx-

imate
o R h i
- a D (o ] + = - R ’ 2
PIVI_LP*' iEl\[Tl'[d pll sHOx, P (23)
h i
—ZHFa, [te, plls = = PgyTa, P (24)

where Rsy and Pgy are properties of the trajectory estimated by Egs. (18) and (19). We will

discuss these approximation in more details in Sec. |11 B.

. When calculating the momentum rescaling, we will assume that the momentum is large

enough, so that we may simply drop all of the nested commutator terms ([Dq, [do, p]]+ and

[Fo, [Ta, P]]+) entirely.

A. The Structure of the QCLE

Keeping in mind the approximations that we will need to make in order to show the consistency

of PD

parts:

where

-PSSH and the P-QCLE, we will begin by separating the full P-QCLE (Eq. (16)) into three

the electronic part J¢'¢, the off-diagonal force part J°f and the dynamics part J9v":

dpn”' ele off dyn
ot = Jnan,mm + Jnn,mm Pmm t+ J nn'Pnn’ (25)
ele I_ a Pa a Pa
Jnn',mm' = - R (En - En')énmsn'm' - dnm-lvrén'm’ + dmranﬂSnm
h
+ W(Dng(dsﬁqsm’n’ - dr?,’n’ésm) + Dsg'(dn?nam's - dr?q'sénm)) (26)
1 a a a a a a
-2 (Fns(Tsmém'n’ = Tm'nOsm) + an’(Tanm’s - Tm’sénm))
1 .
Z 0 ih 0
3o = — F % ——(1- 6am)+ MDD — Sum
nn’,mm 7' nm dpa( nm) 2 ”dea n'm (27)
1 0 i 0
v gp (1 Bm) 4 E&Dg'"'aRa Onen
I % 0 1 )
19 o fa - ipm P ~ S(FE 4 FO) (28)
n D 2 SR, 2ttt Fanl ey

We will investigate the consistency of each component in the following sections.
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B. Consistency of the Electronic Propagation

The full electronic propagator J¢'¢ consists of two nested commutator terms, which cannot be
simply handled by surface hopping without an expensive calculation of the explicit derivative cou-
plings and forces. Therefore, we adopt the approximations in Egs. (23) and (24) in order to propa-
gate the electronic amplitudes. The final J¢'® is then taken to be of the form:

, '_ a s a s
S = = (En = En)BamSum +=dynRe" = TonPo" Swm

- od% . RSH - g PSH g (29)

The equation dp,, /0t = Ji'ﬁ’.f:m'pmm' is exactly equivalent to the time-dependent Schrodinger
equation (17) in a basis that depends on both R and P. The use of such a Schrodinger equation to
propagate the electronic amplitudes is standard with surface hopping.

At this point, let us analyze the approximations made in Eqgs. (23) and (24) in more detail. For a
trajectory on active surface A, we have R&, = (Po - iAD.X)/M and P& = F,$. If we plug these

identities into Eq. (29), and subtract the result from Eq. (26), we find

ele a

, h o a a
Jnn',mm' - JEhIﬁ,%ﬁ"m' = ziM(Dns - D)\)\6ns)(dsm5m'n' - dm'n'6sm)
+ (D& = DHSsn ) (A% Bms — % 8nm)

n

1 (30)
- E (Fnoé - FA%SHS)(Ts%am'n’ - T%'n'asm)
+ (an' - FM\GSH')(TnmSm’s - Tm'sénm)
a a a o
By using the Hellman-Feynman theorem,
o _ hm|OH/OPy|ni ik Dg,
Tmn = En_ Em - _Mm (31)
we may further simplify the T terms:
h
Jrﬁié,mm' _ Jele”SHm' = . (Dnsa_ D)\)\@ns)(dsmém'n' - dm’(h'SSm) +
nn ,m M
(Dsn' - D)\)\Gsn')(dnmém’s - dm'56nm)
a ol o o
+ QI_PF;q_(Fms_ F)\qéns) EnD'ngs6m’n’_ E | :‘,]nEm’ésm
| - L (32)
i @ E Dnm Dm's
+ M (F® - F™§, 8o — 5
2 ( sn) m_En m's Es—Em’ nm

Thus, we note that all of the terms in Eq. (30) are of order h and are expected to be relatively

small if the trajectory has a large momentum and the P - d/M terms are dominant. Note that,

12



within standard FSSH, there are similarly no terms proportional to h in the electronic Schrodinger

equation.

C. Consistency of Momentum Rescaling and Berry Force Effects

According to Ref.!3, momentum rescaling arises from the consecutive applications of the Li-
ouvillian. In particular, the key terms for hopping and momentum rescaling are the off-diagonal
terms in J¢'® and J°®. For the rest of the derivation, it will be convenient to define a hopping prop-
agator as the sum of the off-diagonal terms in J¢'¢ and J °" in Eqgs. (26) and (27) (again ignoring the

commutators [Dq, [dq, p]]+ and [Fq, [Ta, p]+):32

Jnhno'rjmm' = - dgm iLI 6n’m'(1 - 6nm) + dﬁq’n'M6nm(1 - 5n'm’)
(33)
1 0 1 0
- _Fa —6n'm' 1_ 5nm - _Fr-?-.’n'—énm 1_ 6n'm'

Note that through J"°P, a diagonal element p,, interacts only with an off-diagonal element, while an
off-diagonal element talks to both off-diagonal and diagonal elements. This property is important
for our perturbation expansion below.

At this point, Eg. (25) becomes
( (

0 ' i P 4
g“t” T 2 e e O L
= J(rj'n\;n = iWny Pnn' + Jnhno't,)mm'pmm' (34)

Here we define Gnn = (En = En')/A = i(dnn—dan’) - P/M. InEq. (34), JV" - i nn) consists

of all diagonal interactions and Jnhr‘,"p'mmr consists of all off-diagonal interactions. Next, by treating
Jnhn"}fmm, as a perturbation and (J dmr— iWnhn') as the unperturbed part, we can expand the equation of

motion for pn, as a time-dependent perturbation up to second order in J"°P (and reduce the right

hand side to a function of the diagonal elements or p [albeit with memory]):

( ho (
3 nn“) ; P
ot = J 'Ylﬂpnn t) + Jnn,ss'pf'tt) (35)
hop dyn .., . hop -
- de\npnn(t) + Jnn,ss’ eJ -idggr (t t)Jss',mmpmm(t )dt + 0 (J hop)3 (36)

— oo

See Appendix A for a derivation. Note that to simplify our analysis, in Eq. (36), we have assumed
that initially the density matrix is indeed diagonal (i.e., pss'(-==) = 0 for s = s’). It should be

possible to construct a similar analysis including initial off-diagonal terms and terms in higher

13



orders of J"°P, however that approach would be much more tedious and we believe the final result
will not affect our conclusions.
The ss"termsin Eq. (36) are summed over all possible states with a nonzero interacting element.

Depending on whether or not m = n, there are different possible ss’ permutations:
1. If m = n, there are only two possible choices of s, s in Eq. (36): ss = nm and ss = mn.

2. If m = n, ss' can equal ns or sn with s representing all possible states that are different from

n.

To further simplify Eq. (36), we can use the symmetries of the propagator elements. By analyzing
Egs. (28) and (33), we find J &0 = J A, Gmp = ~@pm and J P = (Jnhrﬁ’f’mn) = Jhop =
(J o . Utilizing these equalities and separating the m = n case from the m = n case, Eq. (36)

m,mm

can be evaluated as

(

PIHE L Jamg ). OPFRS , OPamil) (37)

hop coh

where (note that there is now only one dummy index m and we have written the summation explic-

itly)

VA
0 t X t dyn_i& -t B / .
pnn( ) = 2 Re Jnn nthP e] Iwnm(t t )(J hOpnm)erﬁnm(t )dt (38)
ot hop m=n I - I
0 t X Zt dyn_iN Ly , ,
Pan(t) _ 2Re J,, ,hop g 1 Tmlt t’Jnm,hn°nppnn(t )dt (39)
ot coh m=n e

d . . . . . . .
In Eq. (37), the J<Y" term captures the propagation of the electronic density matrix within a strict

dpnn(t)

= term incorporates all the hopping and rescaling as

hop
in surface hopping, and we will show below in Sec. |11 C 1 that this term is consistent with a normal

Born-Oppenheimer framework. The

surface hopping algorithm with a rescaling direction of Re[d _ (P - dn)]. The 2°Pmn(t) i term
represents population sent to the off-diagonal (pnm) and then back to the same surface.COSince
all surface hopping algorithms inspired by Tully allow hops only between different surfaces (not
coherences), there is simply no way to capture the effect on nuclear motion caused by this term.
We will show below in Sec. 11l C 2 that in the adiabatic limit, this term leads to the Berry force

proposed in Ref.16:3334,
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1. Momentum Rescaling

Within a standard surface hopping approach, a trajectory hopping from surface m to a different
surface n corresponds to an exchange of (diagonal) populations within a QCLE formalism (pmm to
Pnn). By defining

M(Em - En)dmn

AP mn = P -d.

(40)

and utilizing the Hellman-Feynman theorem, we can then write down a suggestive form for the

coupling element:

P 1 0 P 1 0
Jnhr?,pnm = dg"mma_ EanaPa = dmf’l' m 1- EAPrgnm (41)
By employing the “momentum jump approximation”! 1 + a(% = %% + O(a?), we may write
Eqg. (41) as
hop P “iapl 2 2
Jonnm = dmn- ™ e 27 mnora + O((APmn)”) (42)

Plugging Eq. (42) into Eq. (38), we find
op t)

= 2Re(dmn ° Mpe_zAEmngPua_
—o— —

t

dyn . . L P o , ,
< Ty T e e Ber e (VA + O((8P ")

— oo

(43)

To further connect with surface hopping, we utilize the fact that e f (P)g(P) = (e“e%f(P ))(e“ag—g(P ))
and the fact that, if a and B are functions of P, e®sePst = e(®*B)st-+ O(ap). By applying the

factor e 74P "n 5% in Eq. (43) on all operators to its right, we find:

op t) z 1Y (PoAPmn/2) =i nm (t-t)
d = zRe (dmn . M) e mn nm
nl’lt( hop P et nm (44)
s P - APnn /2 i} a1 2 s
d° - Tmn e Rel8Pmnlser p m(t)dt + O((APmn)?)

Eq. (44) implies that when a diagonal element pym (2 population) transforms into pn,, the total

momentum shift is Re[APyn] (where AP ., is defined in Eq. (40)):

Re[dmn (P ) dn)]

Re[APmn] = M(Em - En)
|P ' dmnl2

(45)
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Therefore, for a surface hopping simulation, the correct rescaling direction for a hop from surface
mto nis Re[dmn(P - d 2 )]. When dm, is real-valued, this direction reduces to dmn itself, which is
consistent with the standard surface hopping algorithm (and as predicted by Pechukas® and
Herman?3®).

Let us now show that this hop is indeed consistent with energy conservation (as one usually
assumes in surface hopping) to first order in h. Note that unlike FSSH, the total energy in PSSH is a
non-quadratic function of P, so we can only approximate E, (R, P+ AP ) by Taylor expansion to

the first order:

1

a n
En(R, P)+ Re[AP %,
0P

a

En(R, P+ Re[APmn])

- ihD
En(R,P)+ WRE[APm‘%1 (46)

As above, we assume P is large and drop the A D term. Therefore,

En(R, P+ Re[APmn]) = En(R, P) + R‘/’IiRe[APm,h]

e[(P 'dn (P 'dmn]
|P'd)mn|2 )

Em(R, P) (47)

En(RI P) + (Em(Rr P) - En(RI P))R

where in the second to last step, we have used Eq. (45).

2. The Coherence Term and the Berry Force

We have just shown that, according to the QCLE, the clear semiclassical interpretation of the

9pan{t) term is that one must hop between surfaces and rescale momenta accordingly. Next,
at
hop

let us address the term 2P (t) (Eq. (39)), which describes a diagonal element that hops to an

coh
off-diagonal position and then returns to its original position at a later time. For such a process,

there will be a change in momentum when the Hamiltonian is complex-valued, but such a change

cannot be captured by any standard Tully-style surface hopping approach.

Since the term 2P (t) has no simple hopping interpretation, in order to understand such a
coh
term intuitively, we will need to restrict ourselves to the adiabatic limit where we can make several

approximations (and will eventually find that a Berry force emerges). First, in the adiabatic limit,

we assume the |@ym | Jn::/”, so that we can drop the dynamical propagation. Second, we make

16



a Markovian approximation so that the integral is dominated by integration of t close to t and we

can replace p(t') by p(t). We can then rewrite Eq. (39) as:

Z coh
dpm(t) X L : ,
pnn( ) ~ ZReJhopnth hoplnrh e—lwnm(t—t)pnn(t)dt
ot .. noMhm T
- FRe 1yt gme o) (48)
m=n 1Wnm

Third, in the adiabatic limit, we can approximate |(dy, — dmm) - P|/M B |E, - Emn|, and there-

fore we can replace Gnm by (E, - Em)/h:

9pnn(t) X R hop  hop
ot coh m=n2 Re e — Em)'l nnoamynman o (t) (49)
By substituting in the definitions for J fioe “and J hee  “in Eq. (33), we have
op t) E
= X Im dmn * M 1 - A mn
e e AN ( R1= ) APmngp d
1 0
dnm-l@l- 1+ Z(ap2)? nn(t
X )1+ 5 (8P &) 5] pult)
X 2R(dmn * &) (dam- =) IM[AP& ] dp,al(t
s=n Em~ En 0P o (50)

Finally, by plugging in AP » from Eq. (40) and dropping the ((APmn)?) terms, we arrive at

3 1) 3 1)
=~ 2h X Imd, (Mp dum)
e, - a P dpPon
X dpn (t
S 2R Im de (Rh - dpy) 2Pn(®) (51)
3P,

m=n
Eq. (51) is exactly the Lorentz-like Berry force term found in Ref.'®34. If all of the derivative
couplings d,n were real-valued, the Berry force would be zero. However, for a general complex-
valued Hamiltonian, the Berry force does not vanish and leads to an additional momentum shift for
motion along a fixed adiabatic surface — which, again, surface hopping is not able to capture. Note
that, outside of the adiabatic limit, the meaning of such Berry force effects is complicated and
capturing such affects is an outstanding goal for modern semiclassical theories. Note also that such
Berry forces can be found using any flavor of a QCLE; it is not an artifact of our introducing any
preconditioning for the P-QCLE.

In conclusion, for a system where d can be made real-valued, we can find that a consistency

between a PD-PSSH scheme and the P-QCLE can be achieved, and the correct rescaling direction
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for a hop from surface m to n is dmn. Thus, obviously, one of the reasons to work with a P-QCLE
(rather thana QCLE) is to transform a complex-valued operator into a real-valued operator in phase

space. For models with complex-valued derivative couplings, a hopping direction can be formally

dpn_ (t)

chosen as Re[dnm (P - dmn)]; however the effect of the term o1

is missing. In particular,
coh
in the adiabatic limit, Berry force effects will not be included. This finding is consistent with our

observation in Ref.'’.

D. Consistency of The Dynamical Propagation and Decoherence

When n = n’, the dynamical propagator reads

on_ _Pa-iADg 8 o O
T M OR,  ""dP,

(52)

which is consistent with the surface hopping dynamics in Egs. (18) and (19) with active surface
A=n.Ifn=n’,orn= n" = A, asurface hopping trajectory estimates the force and velocity by

its active surface A, i.e., it approximates J 4" by

onsa__P - iRDR 0 0 -
nn - M ORQ AN apa ( )
dyn,SH

According to Refs.'21330 the difference between J and the actual QCLE propagator J d:: can

nn’

lead to decoherence. The decoherence rate of pn, is defined by:

Ynn'
jjynnn’ - J:K?ISH Pnn’
- pnn’
1 1 0pan 1 1 9pnn’
= _2_(6Dr(11n+ 6Dr?en')p ; aRnn - E(SFr?n'l' 6Fno'Ln')p ] (3|: (54)
nn a nn a
where D%, = -ih(DZ, - D{y)/M and 6F% = F2 - F3. The second term in the RHS of

Eq. (54) is a standard expression for decoherence; since the early work of Rossky3”-*® and Truhlar3?,
it has been well known that a decoherence correction for FSSH must be proportional to the differ-
ence in forces between different surfaces as these different forces lead to wavepacket separation.
Over the last decade, our research group has sought to estimate this term using a so-called AFSSH
algorithm?®? whereby we aim to estimate the factor that multiplies the § F term using the history of a
given trajectory.

Compared with previous estimates of decoherence times, according to Eq. (54), there is now

one new additional term proportional 6D, which corresponds to an new channel for decoherence as
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induced by the difference in vector potentials. This term is on the order of h, which we expect will
usually be much smaller than the 6 F term, and so therefore our expectation is that most existing
frameworks for treating decoherence (including AFSSH) should apply in general to the current
phase space surface hopping approach as well. That being said, in certain cases, especially when
the adiabatic force differences are small, one can imagine scenarios whereby decoherence might be
induced by the difference in vector potentials, for example, the wavepacket splitting in singlet-

triplet crossings®. The consequence of such decoherence will require further investigation.*°

IV. DISCUSSION

A. Why and When Will Pseudo-Diabatic PSSH Be Accurate

1. The Pseudo-Diabatic PSSH Algorithm

In Sec. Ill, we have shown that a surface hopping algorithm can be consistent with the QCLE
only if a slew of conditions are satisfied, including the fact that the derivative coupling must real-
valued. For standard (adiabatic) fewest-switches surface hopping, such a choice will not be possible
for a complex-valued Hamiltonian if the real and imaginary parts of the derivative coupling point in
different directions. We have recently sought to address this problem in Refs.'®% through the
present pseudo-diabatic PSSH (PD-PSSH) approach. To best illustrate how the method works,

consider a Hamiltonian of the form (in a basis |joi, |j1i, ...):

=
=l

ho V1€id>1 Vzeid)2
Vle_i(I>1 h]_ O O

>
]
) ) S 28 ) ) )

| SRR

. (55)
Vye ez h, 0
0 0
For such a Hamiltonian, we choose a pseudo-diabatic basis of the form
B joi jo= 0
ji = | (56)
B joie ™ jo=0



In such a pseudo-diabatic basis, the Hamiltonian becomes real-valued:

hep =

2N EvENIEN BV 28 V)|

and the derivative couplings d between the corresponding phase-space adiabats becomes real-
valued as well. This real-valued nature is essential for the surface hopping algorithm to function

properly as illustrated in Sec. |11 C 2. Moreover, in this pseudo-diabatic basis, the Dy matrix reads

00 0 ..H0
?
¢ 0 o
Dw=-i[] (58)
50 0 Bh, 0f
0 o

which indicates that the Hamiltonian will have a non-trivial dependence on momentum (assuming
the Bd’s are nonzero). As discussed below, these terms result in something akin to a pseudo

magnetic-field for the dynamics.

2. Inclusion of Nuclear Berry Curvature Effects

It has been known for a long time that within the realm of nonadiabatic dynamics, the on-
diagonal derivative couplings can be regarded as a vector potential®¥*42, The curl of the on-
diagonal derivative coupling is called the Berry curvature3**3, which is analog to a magnetic field in
electrodynamics, and it can lead to the Lorentz-like “Berry force” for the nuclear motion'®34,
However, standard surface hopping cannot capture such geometric magnetic effects, as shown in
Sec. I11 C2 and in Ref.'®, This failure arises because according to the standard QCLE approach,
Berry curvature effects arise from the oscillating phase of off-diagonal elements — which surface

hopping cannot maintain correctly.

In the current P-QCLE formalism Eq. (16), geometric effects come from two sources: The
coherence effects (which appear in the standard QCLE, see Eq. (51)), and the direct vector potential

terms iR D (which appear in J9Y" in Eq. (28)). To better show the effect of the iR D terms, here we
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write the equation of motion on a single surface (from Eq. (28)):

0pPnn dyn Po —aihD,,
ap“:a{ sinpgnlen = M
ORqy B 8
B . . (59)
+ -oh- - P——ihb—8ihbD+; Opmm
ORg M O0Rgy 0Py

nn

This equation of motion is equivalent to the equation of motion of a swarm of charged particles in

a magnetic field. The forces on the particles are (see Appendix B for a derivation):

B a
fa= - —é'h— + 'P—B é—i—ﬁ'Dﬁ— é—'—ﬁ'Dﬁ (60)
dRa nn M aRa ORB

Therefore, altogether, according to a P-QCLE, there appear to be two magnetic fields operating at
the same time (Egs. (51) and (60) ). In the adiabatic limit (where population on only one surface n
is dominant), the total geometric magnetic field that the nuclei feel is then the sum of the fields

from the two sources (d and D):
af ad%n dd%n 6Drl?n 6Dr?‘n
= ih - + -
nn ORx  ORpg ORq« oRg

(61)

In practice, when d is real-valued, all of the field effects are caused by the ih D term and will be
included in PSSH equations of motion (see Egs. (18) and (19)); this realization explains the
success of PD-PSSH as far as treating complex-valued Hamiltonians and why it is so important
that one keep d real-valued (or as real-valued as possible). Again, surface hopping will not be able to
capture the magnetic field effects as caused by a complex-valued d tensor.

Lastly, note that, since the phase-space adiabats can be different from the position-space adia-
bats, the Berry curvature of the phase-space adiabats can also be different from the Berry curvature

of the position-space adiabats. For example, the following singlet-triplet crossing Hamiltonian

cos® sinBe® sinB sinfe®

Bsin Be-'® - cos@ 0 o B
h=AF . (62)
sin © 0 -cosB 0
sinfe ¢ 0 0 -cosh

has zero on-diagonal Berry curvature on all of its position-space adiabats®® (so any naive use of a
Berry force** would be ineffectual). However, the on-diagonal Berry curvature is nonzero for the
phase-space adiabats if the pseudo-diabats are chosen according to Eq. (56). For a set of model
systems, we have found that our PD-PSSH can successfully model the momentum alterations and
reflections encoded by Hamiltonian (62)*°, which implies that the off-diagonal (non-Abelian) part

of the Berry curvature can also be captured by PD-PSSH.

21



3. The Optimal Choice of Basis

Despite the success of PD-PSSH for certain model problems, it should be noticed that the PD-
PSSH algorithm is highly basis-dependent. If the diabats were to be chosen differently for a given
Hamiltonian, we would end up with completely different pseudo-diabats and therefore different

effective magnetic fields. For example, as pointed in Ref.'®>, Hamiltonian (62) becomes real-valued

after a unitary transformgtion of diabats:

cos 0 2sinfcos¢d inB V2sing in o2
\/
. ZsinBcos -cos6 S0 0sS &
h=A (63)
sin® 0 -cosH 0
2sinBsind 0 0 -cosH

Since Hamiltonian (63) is already real-valued, the pseudo-diabats prescribed above will equal the
diabats, and therefore the resulting phase-space adiabats and position-space adiabats will become
equivalent — each with zero on-diagonal Berry curvature.

Now, a change of basis does not mean that any underlying physics has changed according to
exact quantum mechanics. In fact, if one were to run a standard (basis-independent) QCLE simu-
lation for Hamiltonian (63), one expects the wavepackets will still undergo similar separations and
reflections arising from coherence effects between different states. That being said, semiclassical
PSSH simulations based on Egs. (62) and (63) will yield completely different results (as shown in
Fig. 2 in Ref.%®) after a change of basis for two reasons. First, a suboptimal choice of basis can lead to
a loss of accuracy by missing out on part of the Berry curvature. Second, a poor choice of basis may
also break the unique trajectory assumption (referenced above in Sec. Ill) that is required for
meaningful surface hopping dynamics. Obviously, to recover accurate results, a good choice of
basis is essential.

For instance, one item that we have not yet addressed in this paper is continuity. In Ref.??,
Ryabinkin et al showed that the adiabatic-then-Wigner QCLE suffers from the double-valued
boundary problem around a conical intersection (Cl) — since the adiabatic basis is not continuous
there. Our P-QCLE will encounter similar problems for a complex-valued CI if the pseudo-diabats
are chosen according to Eq. (56). For example, consider the following Hamiltonian with three
nuclear DOFs x, y and z:

X + iz
h= y (64)



According to Eq. (56), the pseudo-diabats can be chosen as |0i = |Opi and |1i = e~® |15i, where ¢
= arctan(z/y). Such a basis is clearly not continuous aty = 0. A related but different problem is
that the derivative coupling D defined in Eq. (58) (which is proportional to Bid) diverges atx = y
= z = 0, which might cause some numerical difficulties (even if physically motivated). For such
problems, it might be better to use a definition of pseudo-diabats other than Eq. (56) (e.g., one might
simply use the diabats themselves).

Looking forward, in practice, one would like to run nonadiabatic dynamics for a real molecular
system with an ab initio Hamiltonian—which need not resemble Eq. (62)— and the question of how to
choose the optimal set of pseudo-diabats is a crucial direction for future research. One sorely
requires a set of reasonably smooth pseudo-diabats for which most Berry curvature effects can be

revealed with PSSH.

B. A Comparison with Shenvi’s Adiabatic PSSH Algorithm

At this point, it is appropriate to put the present work in the context of the seminal work of
Shenvi. To our knowledge, the first reasonable PSSH algorithm?? was proposed by Shenvi, who
suggested propagating nuclear dynamics along Berry’s so-called superadiabats (as parameterized
by both position R and momentum P)*>. In particular, Shenvi suggested running dynamics through

the following approach. First, the nonadiabatic Hamiltonian is transformed to the adiabatic basis:

- 1 2
Ha(R, P) = %+ ha(R) (65)

where d, is the derivative coupling between adiabats and h, is the adiabatic electronic Hamiltonian
(which should be diagonal). Second, H » is diagonalized, giving the superadiabatic energy Es and
superadiabatic basis. The derivative couplings between superadiabats ds (with respecttoR) and ts
(with respect to P) are calculated in the same way as of the phase-space adiabats (Egs. (14) and

(15)). Third, just like other surface hopping methods, a swarm of trajectories are propagated

according to the following equation of motion:

. h i
c:-F:_ Ea(R,P)- iRR -ds - iAP -Ts, 0 (66)
R = hA|BRE,S|Ai (67)
P = — hA|BgE,5Ai (68)

Given the similarity between Eq. (8) and (65), it is clear that the A-PSSH dynamics should

mimic P-QCLE dynamics if we choose the (positional) adiabats to be the “pseudo-diabats” in the

23



preconditioning step. In other words, with all of the caveats mentioned above for the validity of
surface hopping, the present paper has shown that Shenvi’s A-PSSH can be rationalized as an

approximation to the A-QCLE.

Now, as mentioned in Sec. |, the standard assumption in quantum dynamics it that the D-QCLE
is often superior than the A-QCLE?°. For instance, only the D-QCLE recovers geometric phase
around a conical intersection; only the D-QCLE is exact for the spin boson model.?’” Neverthe-
less, studies by Gherib et al*® have shown that Shenvi’s A-PSSH can capture some diagonal Born-
Oppenheimer corrections (DBOC) and therefore can perform better than FSSH when the system
is extremely adiabatic. Thus, one might be curious about the performance of the A-QCLE in the
extreme adiabatic limit. After all, the previous benchmarks between D-QCLE and A-QCLE (e.g.,
from Ryabinkin et al) were performed near conical intersections or normal avoided crossings, which
are usually far from the adiabatic limit. One must wonder: will the D-QCLE still outperform the
A-QCLE even in the adiabatic limit? The answer is not clear because so much is hidden in these
differential equations; we do not know, for example, whether the D-QCLE can capture any DBOC

effects indirectly or not.

To find out the answer, we simulated Shenvi’s second model (from his original PSSH paper??)
on a grid and compared the A-QCLE (Eqg. (11)) vs the D-QCLE (Eq. (10)). As shown in Fig. 1,
the A-QCLE predicts a significant portion of reflection for initial momentum P = 5.5 as the exact
result, while the standard D-QCLE has very little reflections. This result indicates that the standard
D-QCLE does not include substantial DBOC effects and therefore is not the optimal choice for
this model, at least as compared to the A-QCLE. In other words, the assumption that there is one
optimal QCLE is likely not correct; different QCLE’s may be optimal for different Hamiltonians
and conditions. As a side note, we mention that Shenvi’s second model is an extreme model where
the diabatic couplings are highly oscillatory; future work will need to assess whether the A-QCLE

ever outperforms the standard D-QCLE for a realistic chemical problem of interest.
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FIG. 1: QCLE and quantum wavepacket simulations of Shenvi’s second model, with initial momentum Pg = 5.5. All
parameters are same as the original paper?’. (a) (b) Snapshot of the phase-space distribution density matrix p11 (R, P)
in the adiabatic basis at t = 5000 a.u., according to (a) the standard QCLE (D-QCLE) and (b) adiabatic-then-Wigner
QCLE (A-QCLE). (c) Population as a function of simulation time. The transmitted/reflected populations are calculated
by summing overthe X > 0and X < O regions. Note that both the exact quantum simulation and the A-QCLE predict
a high reflection, while D-QCLE predicts almost no reflection. This data confirms that the A-QCLE approach in fact
outperforms the D-QCLE in the extreme adiabatic limit (despite the fact that most theory predicts that the D-QCLE
should be more accurate?®). There would appear to be no universally best QCLE approach and that the search for an

optimal semiclassical theory is not yet complete. More details about the simulation can be found in Appendix D.

Interestingly, for a real-valued 2 x 2 electronic Hamiltonian, Appendix C demonstrates that
Shenvi’s A-PSSH is not only similar to, but equivalent to our PD-PSSH with a certain choice of
diabats. Though this equivalence is not general for all Hamiltonians, it suggests that a PD-PSSH

are potentially able to capture some DBOC effects (along with geometric magnetic effects) with
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the proper construction of diabats. In other words, if one chooses an optimal (but as yet unknown) set
of diabatic states with which to precondition the Hamiltonian before Wignerization, one can

clearly improve the accuracy of a semiclassical simulation.

C. Connection with Mean-Field Ehrenfest Simulations

Lastly, though the majority of this paper has concentrated on surface hopping, we conclude
by emphasizing that the current approach for preconditioning the Hamiltonian also allows one to
construct a phase-space Ehrenfest formalism (analogous to surface hopping) with the following

equations of motion:

P = —tree[oBrHw (R, P)] (69)
R = trau[os Hw (R, P)] = ~— _ﬁtm;'e[oDW] (70)
6 = - AHw (R, P), o] (71)

Here, Hw (R, P) = hw(R) + (P%N?W)Z is the phase-space Hamiltonian defined in Eq. (8). The
local electronic density matrix o here is defined in the pseudo-diabatic basis. Eqs. (69)-(71) rep-
resent a “phase-space Ehrenfest” approach. These equations do not reduce to the usual position-
space Ehrenfest theory and highlight the fact that, when one takes the classical limit of a quantum-
mechanical system, there is no unique approach. One can obtain different semiclassical algorithms

depending upon the stage at which one Wignerizes, which terms one throws away, etc.

To demonstrate that the equations above really are different from the usual Ehrenfest equations
of motion, we performed Ehrenfest simulations in a complex-valued model system and plot the

transmitted and reflected population on different diabats in Fig. 2; for details see Appendix E.
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FIG. 2: Transmitted and reflected population on different diabats, simulated by the standard Ehrenfest and phase-space
Ehrenfest simulations (Egs. (69)-(71)), along with the exact quantum data in the model described in Appendix E. We
have tested four conditions: W = 5 and initial diabat xinit = 0 (subfig (a),(e),(i),(m)), W = =5, Xinit = 0 (subfig
(b),(f),(1),(n)), W = 5, xinit = 1 (subfig (c),(g),(k),(0)) and W = =5, xinit = 1 (subfig (d),(h),(l),(p)). For most cases,
the conventional Ehrenfest simulation outperforms the phase-space simulation; however, the phase-space Ehrenfest

yields a better estimate of the population in subfigs (b) and (i).

From the results in Fig. 2, we find that the conventional Ehrenfest simulation has a better perfor-
mance on the population in general. However, for certain cases, for example, Fig. 2b and Fig. 2i, the
phase-space Ehrenfest has a better agreement with the population. It is clear that mean-field theory
can perform differently (sometimes better, sometimes worse) depending on when/how we
Wignerize the quantum mechanical equations of motion. Interestingly, Cotton and Miller previ-
ously proposed an “adiabatic Ehrenfest” algorithm where the classical variables are Wignerized in

the adiabatic (rather than diabatic) basis.*” For nondegenerate real-valued Hamiltonians without
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Berry curvature (e.g., the two-level spin-boson model, on which they performed the benchmarks),
they found the adiabatic Ehrenfest formalism to be equivalent to the standard Ehrenfest.*” Clearly,
exploring different Ehrenfest approaches for problems of this nature will be very interesting in the

future.

V. SUMMARY

In this paper, we have shown several results. First, we have demonstrated that a pseudo-
diabatic phase-space surface hopping (PD-PSSH) algorithm can be approximately consistent with
the quantum-classical Liouville equation (QCLE) picture if one represents the Hamiltonian in a
pseudo-diabatic basis and if the derivative couplings between the resulting phase-space adiabats
are real-valued. This result justifies our selection of a pseudo-diabatic basis in Ref.*®. Second
and in a similar vein, we have shown that Shenvi’s adiabatic PSSH approach?! can be mapped to a
QCLE that is derived from a Hamiltonian preconditioned by a transformation to the adiabatic
basis. Third, we have demonstrated that, for a complex-valued Hamiltonian, Berry curvature terms
(and Berry forces) emerge immediately on the phase-space adiabats according to any QCLE —
however these effect arise from virtual hops between on-diagonal and off-diagonal states and will
not be picked up by any FSSH approach. Fourth, if one preconditions the Hamiltonian through a
pseudo-diabatic transformation (such that the final Hamiltonian is real-valued), one can apply a
PD-PSSH whereby one propagates the canonical (rather than kinetic) momentum and recover some
proper Berry magnetic field effects. Lastly, although not discussed at length, the formal work here
does not show any significant new physics with respect to wavepacket separation and decoherence;
we predict that standard decoherence approaches (including AFSSH) should do a reasonable job
when applied to complex-valued and/or degenerate Hamiltonians.

Looking forward, one take-home point of this article is clearly that there is no one correct QCLE
thatis optimalin all dynamical regimes (and therefore there can also be no optimal FSSH approach).
In fact, sometimes the A-QCLE does outperform the D-QCLE. Vice versa, we have recently shown
that for a set of model Hamiltonians where the optimal preconditioning is obvious,'®'° PD-PSSH
can vastly outperform any other surface hopping scheme. Another take-home point is that through-
out this paper, we have identified a host of effects that standard FSSH cannot account for. Clearly,
the search for an optimal surface hopping scheme continues, and one must wonder whether the next

iteration of surface hopping will include elements of other non-FSSH algorithms that have fewer
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approximations, be it Marten’s consensus surface hopping® (an independent trajectory version has
also been proposed®?) algorithms or Kapral’s momentum jump®? approach. From our perspec-
tive, we have hope that if we can find an optimal basis for preconditioning the QCLE, the resulting
PD-PSSH algorithm should offer a clear (very simple) path towards semiclassical nonadiabatic dy-
namics for systems with spin degrees of freedom and in the presence of magnetic fields. Lastly, the
elephant in the room is that, for maximal impact, the most important next step will be to run
dynamics on ab initio potentials where we can directly observe the size and effects of Berry forces
for realistic molecular environments. The goal of nonadiabatic dynamics with spins and magnetic

fields remains an exciting avenue for future research.
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Appendix A: Derivation of Eq. (36)

Here we show the derivation of the integral-differential equation Eq. (36) through second order

time-dependent perturbation of Eq. (34). We start by defining

- _dyn_. o
Pon(t) = e U 1@ )tpnn’(t) (A.1)
Then Eq. (34) reads
. ( :
SNnn nn
oY) TV iann,)e-(JW”—iann')tpnn,(t)+ e—(JW“—iwnnf)t@-P—(-t-)-
ot ot
_ dyn_i~ ,
= e v nn’ “an )tJnE(’),pmm'pmm'(t) (Az)
Therefore,
Z t
~ NG )t hop "o ~
pnn'(t) = e nn nn Jnn',mm’pr‘nm'(t )dt + pnn,(_oo) (A3)
which is equivalent to
Z d d
YN _on e , , _ yn_. o~
Pan(t) = el T R P () At + T T ) (—00) (A.4)

’
— oo
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By plugging Eq. (A.4) into the expression for pmm'(t) in Eq. (34), and setting n = n’ so that

®Wnn = 0, we find

0pnn(t) —dYr g,
il = JOIynpnn(t) + Jnhr:),pss'e Ve 710 )tpss'(_°°)
at nn
ho Z GG ) (E-t) | ho \dt' (3]
+ Jnn,pss' e o s JSS'InE,m'pmm'(t )dt

— oo

Because of the form of J"°P, ss’ must be an off-diagonal term (see Eq. (33)), and therefore according
to our assumptions in Sec. 11 C, pss'(—==) = 0 and the second term on the RHS of Eq. (A.5) can be
dropped.

Finally, we will argue that when m = m’, the last term on the RHS of Eq. (A.5) can be ignored.
To see why, notice that if we plug Eq. (A.4) into pmm(t') for the last term on the RHS of Eq. (A.5),

two terms arise:

apnn t dyn hop z ! (de,n—itﬂ O(t-t') hop ’ ’
T() = nn pnn(t) + Jnn,ss' n €7 ss 5 Jss;mmpmm(t )dt
ho z t dyn_. o v i oh , z t dyn .. v h " "
+ Jnn,pss' el T1ds (et )Jss'c,n:nm’dt elmm T1mm )t -t )err?'p,uu'puu'(t Jdt
Z_:° dyn . . . d;;o . ' '
+ Jnhr?,pss' E(J ss’ Tig gt )Jss'o,pmm'e_u mmI_IL‘L)"r‘r1r")t pmm'(_oo)dt

— oo

(A.6)

The third term in RHS of Eq. (A.6) is third order in J"°P and is truncated by our second order
perturbation. The last term of Eq. (A.6) is also dropped since we have assumed no initial off-

diagonal population. By dropping these two terms, we recover Eq. (36).

Appendix B: Derivation of Lorentz Force from the Continuity Equation (59)

Here we show that Eq. (59) (with propagation along a single surface n) gives a Lorentz-like
force along with an adiabatic force. For this subsection only, it will be convenient to define the
usual vector potential A = ihD,,. The key step is to define a density distribution as a function of the

kinetic momentum (rather than the canonical momentum):

pXI"(R,P) = pnn(R, P+ A) (B.1)
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If we propagate this density along the single surface n (as in Eqg. (59)), we find

dp" (R, P)

3p,,(R, P+ A)

ot single - ot single
P_mdpnn oh P_BOAB 0Pnn
=~ M ORq4 R,P+A+ ORa ..~ MOaR, OP, . (B.2)
Now, for the derivatives of p'r‘]‘g, we utilize the chain rule:
ki
op ", _ Opnn
0P g p OPag pin (83)
o pkiA _ 0pnn dpnn OAB
ORq R,P - ORa R,P+A ¥ 0Pg R,P+A ORq (B.4)
Plug this equalities into Eq. (B.2), we find
!
dpr:(r:n(R' P) Po - _ d_pkin dpkinnn _ OAB nndt single
M dRa P p aPB RGR R,P a
g0h 0 _ _GAB p,'j‘r’}
O0Ra ,, MORy 0Py ¢, (B.5)
__ Pa 0p
" M 0R
L kln ORQ nn
s oh _ P_BGAB P_BdAadp on
M ORy M ORg OPa ¢ p (B.6)

Finally, recall that whenever we express the equation of motion for the density matrix in terms of the
position and kinetic (not canonical) momentum, the coefficient of% term in a continuity equation
represents the force. Therefore, according to the last term in Eq. (B.6), the true force acting on the

system is indeed a Lorentz force plus the adiabatic force in Eq. (60).

Appendix C: Equivalence between (i) Shenvi’s Adiabatic PSSH and (ii) the Present
Pseudo-diabatic PSSH for Any Real-Valued 2 x 2 Hamiltonian

Here we show that Shenvi’s adiabatic PSSH (A-PSSH)?! is equivalent to our pseudo-diabatic
PSSH (PD-PSSH)!® for real-valued 2 x 2 Hamiltonians. As mentioned in Sec. IV B, the only
difference between A-PSSH and PD-PSSH are the choices of preconditioned basis: For A-PSSH,
we choose the adiabats and for PD-PSSH we choose the pseudo-diabats according to Eq. (56).
Here we show that these two different choices give equivalent pseudo-diabatic Hamiltonians (i.e.,

the form in Eq. (8)).
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Without loss of generality, we can write any quantum-mechanical nonadiabatic Hamiltonian

with a real-valued 2 x 2 electronic part as

—cosO sind
H(Q) = - %+ h(@)= - Q% AR %7 O

2M 2M sin® cosH

(C.1)

where both A(Q) and 6(Q) are functions of nuclear coordinates. Now by applying a basis transform

with
1 ?1 _1?
u=y & "8, (C.2)
2 g
Eqg. (C.1) becomes
, [ 2 @2 0 Ae®
H'(Q)= -+ UTh(QU = - M+ O (C.3)
2 2 Ae ® 0

Eq. (C.3) is exact. Now, according to Eq. (56), the pseudo-diabatic basis can be written as the

following matrix form:

1 0
Upp(R) =B @ (C.4)
0 e—le

Therefore, the pseudo-diabatic Hamiltonian (see Eq. (55)) reads

R P b RUL o BUsp) R)
, - ? t 2
Hw( , )= ZT\Z Py UPDu+hW( UUpp
N
o .
2M 0 p - e A O (C.5)

To further connect with Shenvi’s A-PSSH, we perform a change of variable: we redefine our mo-

mentum P & P - R&6/2, therefore H,,, becomes

B, B @

iP + hE6/2 0 s 20 Ag (C.6)

H (R,P)=
w 2M
0 P - hEOH/2 A O
Now, in Shenvi’s A-PSSH, the total Hamiltonian is Wignerized in the adiabatic basis:

: cos(6/2) in(9/2)

U,(R) = (C.7)

—sin(8/2) 2os(8/2)
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which gives the adiabatic energies —A, A and adiabatic derivative couplings da = @6/2. Plugging

these quantities into Eq. (65), we have

2,
iy P -ih@8/2 “A 0
H, (R, P) = P ihda)z h, (R) = ! B8/ 2 (C.8)
(v M irme/2 P 0 A

Clearly, the HamiItoniand—lA ingq. (C.8) is equivalent to the Hamiltonian H,, in Eq. (C.6) up

to a constant rotation U = I. In other words, Shenvi’s PSSH superadiabatic Hamiltonian
1 i

can be captured by one choice of the pseudo-diabats in our phase space approach. More gener-

ally, one can think of the present pseudo-diabatic PSSH algorithm as arising from (i) first applying
some transformation to condition the Hamiltonian and (ii) second diagonalizing the Hamiltonian
and applying the surface hopping algorithm. Whereas for Shenvi, step (i) always involves diag-
onalization of the electronic Hamiltonian (so that step (ii) involves rediagonalization of the total
Hamiltonian), our understanding is that very often, the optimal preconditioning applied in step (i)
can be different for different Hamiltonians. Thus, the present algorithm seeks to find the best
preconditioning matrix possible. Even though we do not yet have a general approach to picking
such a basis and transformation, preliminary evidence suggest that some choices can dramatically

improve (or deplete) the accuracy of the final algorithm.

Appendix D: QCLE Simulations of Shenvi’s Model

To compare two flavors of QCLE (A-QCLE and D-QCLE), we use the second model in Shenvi’s

original paper?!. The electronic Hamiltonian is

h(Xx) = AE

—cos0 sind_
COoS SIN (D]_)

sinB cosH
where X is the nuclear degree of freedom, 6 = nC(tanh(DX) + 1), A = 0.005,C = 5.5 and
D = 0.8 (all in atomic units). The nuclear mass is 2000 a.u.. The simulation is performed on a
grid basis where X [-36,16] is divided into 512 grids and P B [-16, 24] is divided into 384

grids. The semiclassical wavepacket is initialized on the adiabatic one at Xg = =10 and Po = 5.5,

with the distribution
|

,(X = X0) 0P - Po)®

po(X,P) = exp - = 5

(D.2)
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so that it maps to a quantum Gaussian wavepacket with standard deviation a. The initial o is chosen to
be 20/Py. For integration we used a RK2 integrator with a timestep of 0.2 a.u. and a 5-stencil for
gradient calculations, so that both the energy and population fluctuation is within 0.1% throughout
our simulation.

Both A-QCLE and D-QCLE simulations are performed on the position-space adiabatic basis.
For the A-QCLE, Eq. (11) in the main text is used. For D-QCLE, Eq. (10) in the main text is used.
For quantum results, we performed a wavepacket simulation using split operator in a 1024 grid

with X B[-32,32].

Appendix E: Ehrenfest Simulations of Our Model

To compare two kinds (conventional and phase-space) of mean-field Ehrenfest simulations, we

performed the test on the following model (in a diabatic basis |0i and | 1i):

-cosB sinBe®
h(X,Y)= AL ! (E.1)

sinBe”™®  cos
where X, Y are the nuclear degrees of freedom, 8 = Z(erf(BX) + 1), ¢ = WY, A = 0.02,
B = 3 and W = 5 (all in atomic units). The nuclear mass is 1000 a.u.. The initial simu-
lation condition corresponds to the Wigner sampling of a quantum wavepacket with expression

_ (X=Xo0)2+(Y -Yo)® , = : _ _
Po(X,Y) = exp - + iPx(X = Xo) + iPy(Y = Yo) where Xo = Yo = -3,

o2

P« = Py and o = 1. The initial surface is either diabat O or diabat 1. The quantum data is reused
from the Supplementary Info of Ref.*®. For both Ehrenfest simulations, we run 10000 trajecto-
ries with an integration timestep of 0.05 a.u.. The state-wise transmitted and reflected populations
(shown in Fig. 2) are calculated by summing over o,,, for each trajectory with final position X > 0

and X < 0, respectively.
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