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Quantum vacuum friction experienced by an atom, where the only dissipative mechanism is through its

interaction with the radiation field, has been studied in our recent paper [Phys. Rev. D 104, 116006 (2021)].
Quantum vacuum friction on an intrinsically dissipative particle is different in that the friction arises not

only from the field fluctuations but also from the dipole fluctuations intrinsic to the particle. As a result, the

dissipative particle can be out of the nonequilibrium steady state (NESS), and therefore loses or gains

internal energy (rest mass). Only if the temperature of the particle equals a special NESS temperature will

the particle be in NESS. In this paper, general NESS conditions are derived which give the NESS

temperature of the particle as a function of the temperature of the radiation and the velocity of the particle.

Imposing the NESS conditions, we also obtain an expression for the quantum vacuum friction in NESS.

The NESS quantum vacuum friction is shown to be negative definite (opposing the motion of the particle)

and equivalent to that found in our previous paper if the dissipation mechanism is restricted to radiation

reaction. The NESS temperature and quantum vacuum friction are calculated numerically for various

models. In particular, we show that, for a gold nanosphere, the deviation of its NESS temperature from the

temperature of the radiation can be substantial and it is also possible to detect the NESS quantum vacuum

friction directly at sufficiently high temperatures. Out of NESS, even though the quantum vacuum friction

no longer has a definite sign in the rest frame of the radiation, the friction in the rest frame of the particle is

still negative definite. Also, the external force needed to keep the particle moving must be in the same

direction as the motion of the particle, therefore excluding the possibility of a perpetual motion machine,

which could convert the vacuum energy into useful mechanical work. In addition, we find that the deviation

of the temperature of the particle from its NESS temperature causes the particle to lose or gain internal

energy in such a way that the particle would return to NESS after deviating from it. This enables

experimental measurements of the NESS temperature of the particle to serve as a feasible signature for

these quantum vacuum frictional effects.

DOI: 10.1103/PhysRevD.106.016008

I. INTRODUCTION

Quantum friction (also known as Casimir friction) [1] is

usually associated with two typical configurations: two

sliding plates [2,3] or a particle moving parallel to a plate

[4–6], even though the notion can be applied more broadly

to contexts like the expanding universe, rotating black

holes, moving mirrors and even activities of subcellular

biosystems [7]. Although much effort has been invested

over several decades to calculate quantum friction in both

configurations, discrepancies in the theoretical results and

even doubts concerning the existence of such friction

remain [8]. However, relative motion between two macro-

scopic bodies is not a necessity for quantum vacuum
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friction to occur. A neutral polarizable particle moving

through free space will experience a force in the opposite/

same direction as the particle’s motion due to its interaction

with surrounding blackbody radiation. This is what we

refer to as quantum vacuum friction in Ref. [9] and in the

present paper.

The key ingredient of quantum vacuum friction is the

presence of fluctuations. Due to the dissipative nature of the

fluctuations, the electromagnetic vacuum behaves like a

complex fluid, which modifies the motion of objects in it

[10]. Fluctuations are related to the imaginary part of the

corresponding susceptibilities according to the fluctuation-

dissipation theorem (FDT) [11]. Typical examples are the

Green’s dyadic for electromagnetic field fluctuations and

the polarizability of the particle for dipole fluctuations.

Both fluctuations can be responsible for quantum vacuum

friction. In Ref. [9], where the intrinsic polarizability, α,

of the particle is considered to be purely real, it is the

imaginary part of the electromagnetic Green’s dyadic, Γ,

that allows for the existence of fluctuations of the electro-

magnetic field and the corresponding induced dipole

fluctuations. In this paper, we continue to study quantum

vacuum friction, but for a neutral particle whose intrinsic

electric polarizability is complex, ImαðωÞ ≠ 0.
1
This set-

ting exhibits some new features beyond those already

considered in Ref. [9]. First, the temperature of the particle,

T 0, comes into play, through the intrinsic dipole fluctua-

tions. Second, the particle now has the freedom to leave the

nonequilibrium steady state (NESS) because it can absorb

or emit net energy.

We still focus on the NESS situation from Sec. II to

Sec. IV. In Sec. II, we find the NESS conditions by

requiring the particle to absorb and emit net energy at

the same rate. The NESS conditions provide a relation

between the temperature of the particle, T 0, and the

temperature of the radiation, T, which defines the NESS

temperature of the particle, T̃. Interestingly, we are able to
prove that the NESS temperature of the particle is, quite

generally, greater than the Planck-Einstein transformed

temperature of the blackbody radiation, that is, T̃ > T=γ.
Using the NESS conditions, the NESS temperature ratio,

T̃=T, can be calculated as a function of the particle’s

velocity v and the radiation temperature T once ImαðωÞ
has been specified. For simplicity, we first work out

the NESS conditions explicitly for the resonance

model, ImαðωÞ ∝ δðω − ω0Þ, and the monomial model,

ImαðωÞ ∝ ωn. Even though these models are simple, they

provide insights into more realistic situations because more

realistic models often reduce to these simple models in

different temperature and velocity regimes. In Sec. III, we

impose the NESS conditions on the general formula for

quantum vacuum frictional force previously derived in

Ref. [12] and find that the resultant expression for the

NESS quantum vacuum frictional force on the particle is

negative definite and equivalent to that in Ref. [9] if the

dissipation mechanism is restricted to radiation reaction.

The nonrelativistic limit of the NESS friction reproduces

the famous Einstein-Hopf drag [13]. The classical high-

temperature limit of the NESS friction is found to be linear

in T. The NESS quantum vacuum friction for the resonance

and monomial models are also explicitly calculated. In

Sec. IV, we estimate the NESS temperature ratio and NESS

quantum vacuum friction for a gold nanosphere moving in

vacuum. The Lorenz-Lorentz relation is used for the

polarizability of the particle and the Drude model for the

permittivity of gold. We assume a constant damping

parameter for the gold nanosphere in IVA. The model

for the gold nanosphere turns out to reduce to the n ¼ 1

monomial model in the low-temperature limit and the

n ¼ −3 monomial model in the high-temperature limit.

In the transition region between these two extreme limits,

there also exists a temperature regime where the model

reduces to the resonance model. In reality, the damping

parameter is temperature dependent. Therefore, in IV B, we

employ the Bloch-Grüneisen model to describe the temper-

ature dependence of the damping parameter. The effect on

the NESS temperature ratio and the NESS quantum

vacuum friction of including this temperature dependence

in the damping parameter is also discussed.

We then extend our analysis to the out-of-NESS situation

in Sec. V, and draw several interesting conclusions. Even

though the frictional force, F, in the rest frame of radiation

(R), no longer has a definite sign, the frictional force, F0, in
the rest frame of particle (P), is equal to the NESS quantum

vacuum friction, F̃, and is therefore negative definite. Also,
the external force, Fext, required to maintain the configu-

ration is the negative of F0, and always pushes the particle

forward. In addition, depending on whether the temperature

of the particle is higher or lower than the NESS temper-

ature, the sign of the total force, Ftot ¼ F þ Fext, on the

particle is negative or positive, respectively. And the sign of

the total force reflects the loss or gain of the internal energy

(rest mass) of the particle. Finally, we numerically obtain

the condition for the quantum vacuum friction, F, on a gold
nanosphere (with constant damping) to be zero in frameR.

The zeroes for F occur only in the high-temperature regime

unless the velocities are ultrarelativistic.

In Appendix A, we provide a proof of the equivalence

between the Lorentz force law and the principle of virtual

work for friction on a moving dipole. In Appendix B, we

supply high-temperature asymptotic expressions for the

frictional power and force in the case of the Bloch-

Grüneisen model. In Appendix C, we extend the discussion

about the zeroes of F to the low-temperature, high-velocity

regime.

1
For simplicity of the discussion, we assume the particle to

possess no intrinsic magnetic polarizability, β ¼ 0, and therefore
we do not consider magnetic dipole fluctuations or those of
higher multipoles.
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In this paper we use Heaviside-Lorentz (rationalized)

electromagnetic units and set kB ¼ c ¼ ℏ ¼ 1 in the

formulas. SI units are used in the numerical evaluations.

II. THE NESS CONDITIONS

In this paper, we explore again the energetics of the so-

called quantum vacuum friction, the electromagnetic force

that a neutral but polarizable particle experiences while it is

moving through vacuum (free space) with constant velocity

and interacting with the surrounding blackbody radiation.

Unlike our previous investigation in Ref. [9], we study a

particle that has intrinsic dissipation. This imparts to the

particle the freedom of absorbing/releasing net energy and

allows for the existence of independent dipole fluctuations.

There are three main players in the scene: the particle, the

radiation, and an external agent which compensates for the

energy lost into the particle and the radiation fields and

maintains the uniform motion of the particle [14]. The

external agent and the radiation both directly interact with

the particle. Even though the particle itself is an open

quantum system, the overall energy of all three players

should be conserved, which can be summarized into a

power balance relation,

Ppar ¼ Pext þ P: ð2:1Þ

Here, Pext ¼ Fextv is the time rate of the external agent

doing work on the particle. P is the time rate of the

radiation field doing work on the particle. Ppar is the net

power absorbed by the particle.
2

If the particle does not absorb net energy, Ppar ¼ 0, we

say that it is in the nonequilibrium steady state (NESS). A

neutral particle (e.g., a gold atom) that has no intrinsic

dissipation is ensured to be in NESS. But for an intrinsi-

cally dissipative particle (e.g., a gold nanosphere that is

made of millions of atoms), Ppar ¼ 0 defines a NESS

condition that turns out to be a relation between the

temperature of the particle, T 0, and the temperature of

the radiation, T.
In frame R, NESS requires the external force to balance

the electromagnetic force, Fext þ F ¼ 0.
3
As a result, the

NESS condition also translates to a power-force relation for

the radiation

P ¼ −Pext ¼ −Fextv ¼ Fv: ð2:2Þ

In frame P, the external agent cannot do any work on the

particle, P0
ext ¼ 0. And the NESS condition simplifies to

P0
par ¼ P0 ¼ 0: ð2:3Þ

Therefore the NESS conditions are defined by either

P − Fv ¼ 0 or P0 ¼ 0.

A. The frictional power

We now calculate the electromagnetic power on the

polarizable particle. Since the electromagnetic force that

corresponds to this power is precisely the quantum vacuum

friction, we may also call it the frictional power.

Before proceeding to the calculation, let us define the

problem more concretely. We will use αðωÞ for the electric
polarizability of the neutral particle. To incorporate intrin-

sic dissipation, αðωÞ must be complex. Without loss of

generality, we assume that the particle is moving relative to

the blackbody radiation in the x direction with constant

velocity v ¼ vbx and therefore lies on the trajectory

rðtÞ ¼ vt. In the rest frame of the particle P, the particle

sits at a fixed position, which we will assume to be the

origin, r0 ¼ 0. Throughout the paper, we will use primes on

quantities and coordinates in frame P, except for the

polarizability α, which is always defined in frame P. We

will now calculate the rate at which the electromagnetic

force does work (frictional power) on the particle.

In Ref. [9], the frictional power P in frame R is derived

using the Joule heating law

PðtÞ ¼
Z

drjðt; rÞ ·Eðt; rÞ; ð2:4Þ

while the frictional power P0 in frame P is computed by

differentiating the free energy F 0 in P

P0ðt0Þ ¼ ∂

∂t0
F 0 ¼ −

∂

∂t01
½dðt00Þ ·Eðt01; 0Þ�jt0

0
¼t0

1
→t0 : ð2:5Þ

Here, we use the same notation as in Ref. [9]: t00 for the time

coordinate of the dipole operator and t01 for that of the field
operator and they are set equal after the differentiation.

Effectively, this apparent separation of coordinates serves

as a prescription that only the field coordinates are to be

differentiated.

One might be questioning the consistency between

Eq. (2.4) and Eq. (2.5) and, in particular, the validity of

the differentiation prescription of Eq. (2.5). Here we

eliminate any such doubt by showing that the electromag-

netic power on a moving dipole according to Eq. (2.4) can

always be written as a derivative of a free energy. And in

frame P where the velocity of the particle is zero, it reduces

to the special form Eq. (2.5).

For a uniformly moving dipole dðtÞ with velocity v, the

corresponding classical current density is

jðt; rÞ ¼ ½ _dðtÞ − v∇ · dðtÞ�δðr − vtÞ: ð2:6Þ

2
Of course, this results in a change in the internal dynamics of

the particle, which we will not discuss in detail in the current
paper.

3
It will be clear in Sec. V that this is not the case out of NESS

due to the change in the particle’s mass.
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When this current is inserted into Eq. (2.4), we obtain the

power

PðtÞ ¼ _dðtÞ · Eðt; vtÞ þ ½dðtÞ · ∇�½v ·Eðt; vtÞ�; ð2:7Þ

where the first term can be rewritten as

_dðtÞ ·Eðt; vtÞ ¼ d

dt
½dðtÞ · Eðt; vtÞ� − dðtÞ · ∂

∂t
Eðt; vtÞ

− ½v · ∇�½dðtÞ · Eðt; vtÞ�: ð2:8Þ

Note the second term of Eq. (2.7) and the last term of

Eq. (2.8) combine and give

½dðtÞ · ∇�½v · Eðt; vtÞ� − ½v · ∇�½dðtÞ · Eðt; vtÞ�

¼ ½dðtÞ × v� · ½∇ ×Eðt; vtÞ� ¼ −½dðtÞ × v� · ∂
∂t
Bðt; vtÞ;

ð2:9Þ

where we have used the Faraday’s law in the last equality.

As a result, the power is written as

PðtÞ ¼ d

dt
½dðtÞ · Eðt; vtÞ� − dðtÞ · ∂

∂t
Eðt; vtÞ

− ½dðtÞ × v� · ∂
∂t
Bðt; vtÞ: ð2:10Þ

The total derivative term in Eq. (2.10) is generally

present but it will not contribute to the quantum vacuum

frictional power considered in this paper. The quantum

vacuum frictional power is induced entirely by the quantum

fluctuations of the dipole operator d or the field operator E.

These fluctuations are determined by the imaginary part of

the corresponding susceptibilities via the FDT. It follows

from the linear response assumption (embedded in the

FDT) and the time-translational invariance of the suscep-

tibilities that the dipole interaction energy d ·E is time

independent. The next two terms in Eq. (2.10) each

contains a partial time derivative of the field operator.

Indeed, in the above derivation, the prescription that only

the time coordinates in the field operators should be

differentiated follows straightforwardly from the Joule

heating law. Similar to Eq. (2.5), we can now also write

P as a time derivative of a free energy F,

PðtÞ ¼ ∂

∂t
F ¼ −

∂

∂t1
½dðt0Þ ·Eðt1; vtÞ

þ μvðt0Þ ·Bðt1; vtÞ�jt0¼t1→t; ð2:11Þ

where we have identified dðtÞ × v ¼ μvðtÞ as the magnetic

dipole moment induced by the movement of the electric

dipole. The induced magnetic dipole term in F vanishes if

we set v ¼ 0 in Eq. (2.11) and the expression for P0 in
Eq. (2.5) is reproduced.

If we apply the same reasoning for the frictional force,

we obtain a proof for the equivalence of the Lorentz force

law and the principle of virtual work. This is detailed in

Appendix A.

The NESS condition can be expressed as either

P − Fv ¼ 0 in frame R or P0 ¼ 0 in frame P. Let us

work in frame P, where the calculation is simpler.

Recall the FDT [15] for dipole fluctuations and field

fluctuations in frame P:

hd0ðω0Þd0ðν0Þi ¼ 2πδðω0 þ ν0ÞImαðω0Þ coth
�
β0ω0

2

�
;

ð2:12aÞ

hE0ðω0;k0
⊥; z

0ÞE0ðν0;k0
⊥; z̄

0Þi
¼ ð2πÞ3δðω0 þ ν0Þδð2Þðk0

⊥ þ k0
⊥ÞImg0ðω0;k0

⊥; z
0; z̄0Þ

× coth

�
βγðω0 þ k0xvÞ

2

�
; ð2:12bÞ

where β0 ¼ 1=T 0 is the inverse temperature of the particle

while β ¼ 1=T is the inverse temperature of the radiation,

each in their respective frame and γ is the relativistic

dilation factor. The coth factors appearing here in both

equations reflect the Planckian thermal occupation num-

bers of the respective harmonic modes [11] and include

both zero-point energy contributions and their finite-tem-

perature corrections, as is seen, for example, by writing

coth β0ω
2
¼ 1þ 2

eβ
0ω−1

, which tends to sgnðωÞ in the zero-

temperature limit.

In Eq. (2.12b), g0 is the reduced Green’s dyadic, which is
the Fourier transform of the retarded Green’s dyadic,

Γðω; r; r0Þ ¼
Z

d2k⊥

ð2πÞ2 e
ik⊥·ðr⊥−r0⊥Þgðω;k⊥; z; z

0Þ; ð2:13Þ

where Γ is only transformed in the transverse spatial

directions so that our analysis can be readily extended to

a geometry with a planar symmetry. The specific form of the

Green’s dyadic is detailed in our previous paper, Ref. [9]. In

general, the symbol Im in Eq. (2.12) denotes the generalized

imaginary part of the corresponding matrices [15], i.e.,

Im χ ¼ χ − χ †

2i
; ð2:14Þ

so that Imχ is Hermitian, which is required because the

product of operators in Eq. (2.12) are symmetrized. In the

calculation for the quantum vacuum friction, however, Img0

reduces to the ordinary imaginary part, since the vacuum

Green’s dyadic is symmetric. And as we will see, only the

diagonal components of the polarization tensor α contrib-

utes to the quantum vacuum friction due to the additional

symmetry of the vacuum problem.
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The interaction free energy in P is

F 0ðt0Þ ¼ −d0ðt0Þ ·E0ðt0; 0Þ

¼ −

Z
dω

2π
e−iωt

0
d0ðωÞ ·

Z
dν

2π
e−iνt

0
E0ðν; 0Þ: ð2:15Þ

To leading order in the intrinsic polarizability αðωÞ, the free
energy is split into a dipole-fluctuation-induced part

F 0
ddðt0Þ ¼ −

Z
dω

2π
e−iωt

0
�
d0ðωÞ

Z
dν

2π
e−iνt

0

·

Z
d2k⊥

ð2πÞ2 g
0ðν;k⊥Þ · d0ðνÞ

�
; ð2:16aÞ

and a field-fluctuation-induced part

F 0
EEðt0Þ ¼ −

Z
dω

2π
e−iωt

0
��

αðωÞ ·
Z

d2k⊥

ð2πÞ2E
0ðω;k⊥Þ

�

·

Z
dν

2π
e−iνt

0
Z

d2k0
⊥

ð2πÞ2E
0ðν;k0

⊥Þ
�
: ð2:16bÞ

Now we proceed to differentiate F 0 for the power P0

using Eq. (2.5). With the understanding that the derivative

is only taken with respect to the time dependence of the

original field operator E0ðt0; 0Þ in Eq. (2.15), we find

P0
dd ¼

∂

∂t0
F 0

dd

¼ −

Z
dω

2π

d2k⊥

ð2πÞ2 ω tr ImαðωÞ · Img0ðω;k⊥Þ coth
β0ω

2
;

ð2:17aÞ

P0
EE ¼ ∂

∂t0
F 0

EE

¼
Z

dω

2π

d2k⊥

ð2πÞ2 ω tr ImαðωÞ · Img0ðω;k⊥Þ

× coth

�
β

2
γðωþ kxvÞ

�
: ð2:17bÞ

The dd and EE contributions are summed to yield P0

P0 ¼
Z

dω

2π

d2k⊥

ð2πÞ2 ω tr ImαðωÞ · Img0ðω;k⊥Þ

×

�
coth

�
β

2
γðωþ kxvÞ

�
− coth

�
β0ω

2

�	
: ð2:18Þ

For the vacuum background, the Green’s dyadic is invariant

in different frames,

g0ðz; z0;ω;k⊥Þ ¼ gðz; z0;ω;k⊥Þ ¼
1

2κ
e−κjz−z

0j

0

BB@

ω2 − k2x −kxky −ikxκ sgnðz − z0Þ
−kxky ω2 − k2y −ikyκ sgnðz − z0Þ

ikxκ sgnðz0 − zÞ ikyκ sgnðz0 − zÞ k2

1

CCA: ð2:19Þ

When the Green’s functions in Eq. (2.19) are inserted into Eq. (2.18), it is immediately seen that the off-diagonal

polarizations (i ≠ j) do not contribute to P0 because of the oddness of the integrand in ky or the vanishing of the signum

function in the coincident spatial coordinate limit. The diagonal contributions are found to be, respectively,

P0X ¼ 1

4π2γv

Z
∞

0

dω Im αxxðωÞω4

Z
yþ

y−

dy

�
1 −

1

γ2v2
ðy − γÞ2

��
1

eβωy − 1
−

1

eβ
0ω − 1

�
; ð2:20aÞ

P0Y ¼ 1

8π2γv

Z
∞

0

dω Im αyyðωÞω4

Z
yþ

y−

dy

�
1þ 1

γ2v2
ðy − γÞ2

��
1

eβωy − 1
−

1

eβ
0ω − 1

�
; ð2:20bÞ

where the integral limits on y are y− ¼ γð1 − vÞ and

yþ ¼ γð1þ vÞ. Note we have taken advantage of the

integrand’s evenness inω and the cancellation of the divergent

piece inEq. (2.20). If theparticle is isotropic, the contributions

to P0 from all diagonal polarization states sum to

P0ISO¼ 1

2π2γv

Z
∞

0

dω ImαðωÞω4

Z
yþ

y−

dy

�
1

eβωy−1
−

1

eβ
0ω−1

�
:

ð2:21Þ

Using the momentum distribution functions introduced in

Ref. [9],

fPðyÞ ¼

8
>><

>>:

3
2γv

; P ¼ ISO

3
4γv

½1 − 1

γ2v2
ðy − γÞ2�; P ¼ X

3
8γv

½1þ 1

γ2v2
ðy − γÞ2�; P ¼ Y;Z

ð2:22Þ
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these formulas can be summarized as

P0P ¼ 1

3π2

Z
∞

0

dω ImαPðωÞω4

×

Z
yþ

y−

dyfPðyÞ
�

1

eβωy − 1
−

1

eβ
0ω − 1

�
: ð2:23Þ

B. The NESS temperature of the neutral particle
and its lower bound

Given a particular model for the particle’s polarizability,

the NESS condition, P0P ¼ 0, defines a special NESS

temperature of the particle T̃ (the corresponding inverse

temperature is denoted as β̃) for a fixed radiation temper-

ature T and polarization state P.

Interestingly, we find that, independent of the model for

ImαðωÞ and the polarization state of the particle, the NESS
temperature of the particle T̃ must be greater than the

Planck-Einstein transformed temperature of the blackbody

radiation T=γ [16]. We need the following assumptions to

prove this theorem:

Im αðωÞ ≥ 0 and lim
ω→0

ω4 Im αðωÞ ¼ 0: ð2:24Þ

The first assumption is usually satisfied by a realistic

particle made of ordinary lossy materials [17]. The second

assumption is to avoid an infrared divergence in the power

formula Eq. (2.23).

Let us define a function

IðξÞ ¼
Z

∞

0

dω Im αðωÞω4
1

eξω − 1
: ð2:25Þ

The general NESS condition P0P ¼ 0 for different polari-

zation states can then be written as

Z
yþ

y−

dyfPðyÞIðβ̃Þ ¼
Z

yþ

y−

dyfPðyÞIðβyÞ: ð2:26Þ

Noting γ is the midpoint of the interval ½y−; yþ� and IðξÞ is a
decreasing and convex function, that is, I0ðξÞ < 0 and

I00ðξÞ > 0, we can deduce the following inequality,

Z
yþ

y−

dyIðβyÞ >
Z

yþ

y−

dyIðβγÞ: ð2:27Þ

Because the momentum distribution functions fPðyÞ are all
even with respect to y ¼ γ, we also have

Z
yþ

y−

dyfPðyÞIðβyÞ >
Z

yþ

y−

dyfPðyÞIðβγÞ: ð2:28Þ

Combining Eq. (2.28) and Eq. (2.26), we find

Z
yþ

y−

dyfPðyÞIðβ̃Þ >
Z

yþ

y−

dyfPðyÞIðβγÞ: ð2:29Þ

Since both Iðβ̃Þ and IðβγÞ are independent of y, they can be
taken out of the integral. In addition, the remaining integralR
yþ
y−

dyfPðyÞ is positive definite. It then follows that

Iðβ̃Þ > IðβγÞ. Recalling IðξÞ is a decreasing function, we

conclude

T̃ >
T

γ
: ð2:30Þ

The theorem therefore predicts a lower bound for the NESS

temperature of the particle.

The nonrelativistic limit of the NESS temperature is also

independent of the model for ImαðωÞ and the polarization

state. Doing the y integral in the NESS conditions for

different polarization states Eq. (2.26) and expanding the

results in series of v, we find the nonrelativistic limit of the

NESS temperature is precisely the temperature of the

surrounding blackbody radiation,

T̃ ∼ T; v → 0: ð2:31Þ

In fact, this directly follows from the v-reflection invariance
of the frictional power, P0. As is seen in Eq. (2.18),

changing the sign of v does not alter P0 because the

integrand is even under the combined reflection of ω and

k⊥. So, the NESS inverse temperature, β̃, obtained by

requiring P0 ¼ 0, must also be even in v. Consequently, in

the nonrelativistic limit, β̃ must equal its value for v ¼ 0,

which is β, since the particle is then at rest and in thermal

equilibrium with the blackbody radiation. Therefore, the

deviation of the NESS temperature of the particle from the

temperature of the radiation is a relativistic effect.

C. The NESS temperature ratio for resonance
and monomial models

Let us define the NESS temperature ratio to be

r̃ ¼ T̃

T
: ð2:32Þ

In order to study the behavior of r̃ concretely, we will

discuss two ideal models here, namely the resonance model

and the monomial model. The more realistic situation that

we consider later reduces to these ideal models in various

limits. We will also work with isotropic particles, the

momentum distribution functions for which are much

simpler.

The resonance model is characterized by a sharp reso-

nance at ω0,

Im αðωÞ ∝ δðω − ω0Þ; ð2:33Þ
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where the numerical coefficient of the delta function is

irrelevant for studying the NESS temperature ratio r̃.
Inserting Eq. (2.33) into Eq. (2.26) for the isotropic

polarization, r̃ can be determined in terms of the dimen-

sionless frequency x0 ¼ βω0=2,

r̃ ¼ x0

�
coth−1

�
1

2γvx0
ln
sinhðx0yþÞ
sinhðx0y−Þ

�	
−1

: ð2:34Þ

The NESS temperature ratio r̃ determined by Eq. (2.34)

is plotted as a function of velocity v for different x0 in

Fig. 1(a). As seen in Fig. 1(a), the temperature ratio

increases with x0 for a given velocity v. Therefore, the
ratio is bounded below by its zero frequency/high-

temperature limit (ω0 → 0 or β → 0),

r̃ ∼
1

γv
ln yþ; x0 → 0; ð2:35Þ

which is illustrated by the dashed magenta curve in

Fig. 1(a). Note that this is still well above the dashed gray

curve, which is the lower bound of the NESS temperature

ratio given by Eq. (2.30), 1=γ. In addition, independent of

the resonance frequency or radiation temperature, the

NESS temperature ratio r̃ drops to zero as the velocity

of the particle approaches the speed of light. In fact, the

ultrarelativistic limit of r̃ can be shown to be

r̃ ∼
2x0

lnð4γx0Þ − ln lnðγ=x0Þ
; γ → ∞; ð2:36Þ

so the decay of NESS temperature of the particle is

logarithmic in γ.

In Fig. 1(b), the NESS temperature ratio r̃ is plotted as a

function of x0 for various velocities v. It is confirmed that

r̃ generally grows with x0. The figure also shows that

the separatrix between T̃=T > 1 and T̃=T < 1 is close to

x0 ¼ 1.3 for most velocities unless the particle becomes

quite relativistic. To the order of v2, the position of the

separatrix is found to be x0 ¼ 1.288 by setting r̃ ¼ 1

in Eq. (2.34).

We now turn to the monomial model,

Im αðωÞ ∝ ωn: ð2:37Þ

Of course, physically, n must be an odd integer to make

sure αðt − t0Þ is real. Also, the expression for the frictional

power contains an infrared divergence for n ≤ −4. (We will

see, in the next section, that the frictional force is divergent

for those cases as well.) However, we will ease this

restriction in the following discussion by analytic continu-

ation of the NESS temperature ratio r̃ for monomial models

with any real power n. The divergence in P0 cancels when
we solve the NESS condition Eq. (2.3) for r̃.
Inserting Eq. (2.37) into the NESS condition Eq. (2.26)

for the isotropic polarization, we obtain

Z
yþ

y−

dy

Z
∞

0

dω
ω4þn

eβ
0ω−1

¼
Z

yþ

y−

dy

Z
∞

0

dω
ω4þn

eβωy−1
: ð2:38Þ

Note in doing the integral on ω, a factor of Γð5þ nÞζð5þ
nÞ appears in both sides of the equation. And it is precisely

the cancellation of such a factor that allows us to analyti-

cally continue the result for NESS temperature ratio to

include all real powers n, especially the integers n ≤ −4.

After the cancellation, we are left with the result

Z
yþ

y−

dy

�
1

β0

�
5þn

¼
Z

yþ

y−

dy

�
1

βy

�
5þn

; ð2:39Þ

which can be easily integrated so that the NESS temper-

ature ratio is found to be

r̃ ¼
�

1

2γvð4þ nÞ ðy
4þn
þ − y4þn

− Þ
� 1

5þn

: ð2:40Þ

(a) (b)

FIG. 1. For the resonance model, the NESS temperature ratio r̃ in Eq. (2.34) is illustrated. (a) r̃ is plotted as a function of the velocity v
for various values of x0. All of the curves with different x0 drop to 0 in the limit of v → 1. (b) r̃ is plotted as a function of x0 for different
values of v.
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In particular, n ¼ 3 corresponds to the low-frequency

radiation-reaction model [9], for which the NESS temper-

ature ratio is

r̃ ¼
�
γ6
�
1þ 5v2 þ 3v4 þ 1

7
v6
��1

8

; ð2:41Þ

which agrees with the NESS temperature ratio obtained

from P0 ¼ 0 given in Eq. (8.150) of Ref. [18].

The low velocity approximation of the NESS temper-

ature ratio for a general power n is readily obtained by

expanding Eq. (2.40) in v,

v ≪ 1∶ r̃ → 1þ 1

6
ðnþ 3Þv2 þ � � � : ð2:42Þ

Just as expected, the NESS temperature of the particle and

the radiation temperature coincide in the nonrelativistic

limit. The high velocity behavior of the NESS temperature

ratio, however, is rather different for different values of n,

γ ≫ 1∶ r̃ →

8
>>><

>>>:

½ð2γÞ3þn

4þn
�

1
5þn; n > −4

½ 1
−ð4þnÞ�

1
5þn 1

2γ
; n < −4

ln 2γ
γ
; n ¼ −4.

ð2:43Þ

We note n ¼ −5 is included in the second situation, where

the ratio evaluates to e=2γ. In the limit of γ → ∞, the NESS

temperature ratio diverges for n > −3 but vanishes for

n < −3. Only for n ¼ −3, as we can see from the exact

expression Eq. (2.40), the temperature ratio for the n ¼ −3

model equals 1 at all velocities.

These limits are more clearly seen and confirmed in

Fig. 2 where we plot the NESS temperature ratio r̃ in

Eq. (2.40) as a function of the velocity v for various powers
n. At the same velocity, the temperature ratio is generally

greater for a bigger power n. Apart from n ¼ −3, another

special power is n ¼ −6, for which the NESS temperature

ratio precisely equals 1=γ. As a result, the inequality

Eq. (2.30) actually holds beyond the assumption of the

theorem Eq. (2.24) (n > −4 for these monomial models).

III. QUANTUM VACUUM FRICTION IN NESS

A. General features of quantum vacuum friction

A formula for quantum friction in a general background,

including both the dd and EE contributions has been

worked out in Ref. [12],

F ¼
Z

∞

−∞

dω

2π

d2k⊥

ð2πÞ2 ðkx þ ωvÞtr ImαðωÞ · Img0ðω;k⊥Þ

×

�
coth

�
βγðωþ kxvÞ

2

�
− coth

�
β0ω

2

��
: ð3:1Þ

Of course, one can derive the above formula by calculating

the Lorentz force directly. Or, one can find F by applying

the principle of virtual work in frame R, F ¼ −∂xF .

Finally, one can also first apply the principle of virtual

work in frame P, F0 ¼ −∂x0F
0 and then find F using the

relation F ¼ F0 þ P0v [9]. The equivalence of the Lorentz

force law and the principle of virtual work is established in

Appendix A for a moving electric dipole.

For the vacuum background, we insert the Green’s

dyadic in Eq. (2.19) into Eq. (3.1). Again, due to the

symmetry of the Green’s dyadic, only the diagonal polar-

izations contribute to the quantum vacuum friction. The

vacuum frictional force on a particle only polarizable in

direction P is found to be

FP ¼ 1

6π2γv

Z
∞

0

dωω4 Im αPðωÞ
Z

yþ

y−

dy

�
y −

1

γ

�
fPðyÞ

×

�
coth

�
βωy

2

�
− coth

�
β0ω

2

��
; ð3:2Þ

where the momentum distribution functions fPðyÞ are

illustrated in Eq. (2.22). In Eq. (3.2), the first term in

the bracket originates from the field fluctuations (EE) and

the second term from the dipole fluctuations (dd). Both the

EE and dd contributions have ultraviolet divergent pieces

unless ImαðωÞ falls off faster than 1=ω5 for high frequen-

cies. This, however, is not an issue for the total frictional

force because of the exact cancellation of the divergent

pieces between the two contributions. After the cancella-

tion, the frictional force becomes

FP ¼ 1

3π2γv

Z
∞

0

dωω4 Im αPðωÞ
Z

yþ

y−

dy

�
y −

1

γ

�
fPðyÞ

×

�
1

eβωy − 1
−

1

eβ
0ω − 1

�
: ð3:3Þ

FIG. 2. For the monomial model, the NESS temperature ratio r̃
in Eq. (2.40) is plotted as a function of the velocity v for various

powers n. The separatrix n ¼ −3 is shown by the solid magenta

curve. The curve for n ¼ −4 is ln yþ=γv and the curve for n ¼ −5

is ey1=v− , obtained by taking the corresponding limits of

Eq. (2.40). The red dotted curve for n ¼ −6 exactly coincides

with 1=γ.
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Therefore, it is crucial to keep both dd and EE contribu-

tions. Otherwise, one would encounter an unphysical

divergence in the quantum vacuum friction. The quantum

vacuum friction for the case of an isotropic particle has

been worked out by various authors. Volokitin and Persson

omitted the dd contribution for the blackbody friction

in one of their early papers on quantum friction [19].
4

This error was pointed out by Dedkov and Kyasov in

Ref. [20] and it was corrected in later works of Volokitin

and Persson, such as Ref. [18]. In addition, Pieplow and

Henkel [21] also consider both contributions. The quantum

vacuum frictional force we obtain in our Eq. (3.3) is in

agreement with those found in Refs. [18,20,21] where both

dd and EE contributions to the force are correctly

included.

In Ref. [12], we have also pointed out that the

quantum vacuum frictional force is not of a definite

sign when both dipole and field fluctuations coexist.

Only when some particular model for polarizability is

selected, for example, the monomial model with power

n ≥ −2, is the frictional force on an isotropic particle

shown to be negative definite.
5

In order to find out the quantum vacuum friction that the

particle feels in NESS, we impose the NESS condition

Eq. (2.26) on Eq. (3.3) so that the independent temperature

of the particle could be eliminated in the expression for the

force in favor of the radiation temperature,

F̃P¼ 1

3π2γv

Z
∞

0

dωω4 ImαðωÞ
Z

yþ

y−

dyðy−γÞfPðyÞ 1

eβωy−1
;

ð3:4Þ

where the tilde on F is to emphasize that it is the NESS

quantum vacuum friction. We note that the NESS frictional

force in Eq. (3.4) is negative definite as long as the neutral

particle is made of ordinary lossy material, ImαðωÞ ≥ 0,

independent of the particular model for the polarizability.

Therefore, we conclude that the possible sign change of the

quantum vacuum frictional force shown in Eq. (3.3) is a

reflection of the deviation from NESS.

The polarizability in Eq. (3.4) should be understood as

the effective polarizability, including all possible sources of

dissipation in its imaginary part. Let us temporarily resume

our notation in Ref. [9] for the effective polarizability, α̂, for

clarity. Suppose the particle is dissipative only due to its

interaction with the surrounding blackbody radiation, then

the imaginary part of the effective polarizability is related to

a real, intrinsic polarizability to the second order as

Im α̂ðωÞ ¼ ω3

6π
α2ðωÞ: ð3:5Þ

If we substitute ω3α2PðωÞ=6π for ImαP in Eq. (3.4), the

second order friction formulas Eqs. (3.17), (3.20), (3.21),

(3.22) in Ref. [9] are recovered precisely.

B. The limits of quantum vacuum friction in NESS

From Eq. (3.4), it is not hard to see that the NESS

quantum vacuum friction vanishes both in the zero temper-

ature limit β → ∞ and in the zero velocity limit v → 0.

At finite temperature, the NESS quantum vacuum

friction is negative because the Planckian occupation

number of the electromagnetic field modes with negative

Doppler shift is greater than that of the corresponding field

modes with positive Doppler shift. This can be seen by

rewriting the integral on y in Eq. (3.4) using the original

field momentum variables. For example, the NESS quan-

tum vacuum friction for the isotropic polarization can be

rewritten as

F̃ISO ¼ 1

2π2

Z
∞

0

dωω2 Im αðωÞ
Z

ω

−ω

dkxkx
1

eβγðωþkxvÞ − 1
:

ð3:6Þ

In the zero-temperature limit (β → ∞), there is no differ-

ence between occupation numbers of different modes, and

therefore no zero-point contribution to the NESS quantum

vacuum friction. In the zero-velocity limit (v → 0), the

quantum vacuum friction also vanishes since the field

modes are no longer Doppler shifted and the occupation

numbers of modes with opposite momentum becomes

the same.

However, the vanishing of the quantum vacuum friction

in the zero-temperature limit is not a special property of

NESS. Out of NESS, the quantum vacuum frictional force

described by Eq. (3.2) still vanishes when both the radiation

temperature, T, and the particle temperature, T 0, tend to

zero. There, it is clear that the vanishing of the zero-point

quantum vacuum friction is attributed to a cancellation

between the contributions from the absorbed radiation

(EE) and the emitted radiation (dd).

Nonetheless, the quantum friction persists in the zero-

temperature limit for backgrounds other than vacuum. See,

for example, Ref. [22]. This is reflected also in our general

friction expression Eq. (3.1), where the two coth factors

become sgn ðωþ kxvÞ and sgn ðωÞ, respectively, as

β; β0 → ∞, and therefore do not cancel each other for all

frequencies and wave numbers.

4
Even though the frictional force they got in Eq. (49) of

Ref. [19] agrees with our NESS quantum vacuum friction
formula Eq. (3.4) for the isotropic case, it is clear that they
had not imposed the NESS condition and failed to consider an
independent temperature of the particle because of their omission
of the dd contribution.

5
For these monomial models with power n, a simple calcu-

lation shows that the field fluctuation (EE) contribution to the
quantum vacuum frictional force changes sign when n ¼ −2. To
be more specific, theEE contribution is positive for n < −2, zero
for n ¼ −2 and negative for n > −2. The dipole fluctuation (dd)
contribution is always negative, independent of the power n.
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Let us now examine more closely, for the isotropic

polarization, the velocity dependence of the NESS quantum

vacuum friction Eq. (3.4), which is only contained in the

following function:

Jðx; vÞ ¼ 1

γ2v2

Z
yþ

y−

dy
y − γ

e2xy − 1
; x ¼ βω

2
: ð3:7Þ

The function Jðx; vÞ can be explicitly expressed as

Jðx; vÞ ¼ 1

2γvx
½lnð1 − e−2xy−Þ þ lnð1 − e−2xyþÞ�

þ 1

4γ2v2x2
½Li2ðe−2xy−Þ − Li2ðe−2xyþÞ�: ð3:8Þ

Though this form for Jðx; vÞ is exact, it is not particularly
illuminating. See Eq. (3.12) for a useful series representa-

tion of it.

In the low velocity limit, Jðx; vÞ can be expanded in

series of v,

Jðx; vÞ ∼ −
v

3

x

sinh2ðxÞ −
v3

60

x

sinh4ðxÞ ½−5þ 8x2

þ ð5þ 4x2Þ coshð2xÞ − 10x sinhð2xÞ�; ð3:9Þ

where we have kept the first two terms in the series. If we

insert only the linear term in Eq. (3.9) into Eq. (3.4), we

obtain

F̃ISO ∼ −
v

6π2

Z
∞

0

dωω4 Im αðωÞ βω=2

sinh2ðβω=2Þ ; ð3:10Þ

which is a generalization of the Einstein-Hopf drag

[13,23,24]. In Ref. [12], we obtained this formula by

taking the nonrelativistic limit of Eq. (3.2) and mandating

the particle to have the same temperature as the blackbody

radiation. But now we understand the physics better: the

radiation temperature T is indeed the nonrelativistic limit of

the NESS temperature T̃ and the Einstein-Hopf drag is

therefore simply the nonrelativistic NESS quantum vacuum

friction.

Let us now turn to the high velocity limit of Jðx; vÞ. In
Eq. (3.7), Jðx; vÞ can be recast into a sum,

Jðx; vÞ ¼ 1

γ2v2

X∞

k¼1

Z
yþ

y−

dyðy − γÞe−2xyk: ð3:11Þ

The integral on y for each term in the sum is easily done,

yielding

Jðx; vÞ ¼ −
1

γ2v2

X∞

k¼1

�
γv

2xk
½e−2xyþk þ e−2xy−k�

þ 1

ð2xkÞ2 ½e
−2xyþk − e−2xy−k�g: ð3:12Þ

This expression is so far exact and equivalent to Eq. (3.8). It

can be used to get an approximation for Jðx; vÞ to arbitrary

precision by truncating the series. In the high velocity limit

with γ ≫ 1 and yþ → 2γ, we can drop the exponentials

involving yþ in Eq. (3.12). If we further assume γx ≫ 1 (no

assumption on the relative magnitude γ=x needs to be

made), the expression in the braces can be approximated by

only keeping the second term of the first bracket, after

which the sum is easily written in closed form,

Jðx; vÞ ∼ 1

2xγv
ln ð1 − e−2xy−Þ: ð3:13Þ

In Fig. 3, we illustrate the velocity dependence of the

exact function J together with its low velocity approxima-

tion [the linear term in Eq. (3.9)] and high velocity

approximation [Eq. (3.13)]. The exact function J clearly

exhibits a minimum. That is to say, the magnitude of the

contribution from a particular frequency x ¼ βω=2 to the

NESS quantum vacuum friction is maximized at an

intermediate velocity. The minimum of J reflects the

(a) (b)

FIG. 3. The velocity dependence of J in Eq. (3.7) is illustrated. The exact expression in Eq. (3.8) is shown by the solid blue curves. The
dashed orange curves show the linear term in Eq. (3.9). The dashed purple curves show the high velocity approximation of J in

Eq. (3.13). (a) J is plotted as a function of v for x ¼ 1. (b) J is plotted as a function of γ for x ¼ 10.
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competition between the positively Doppler-shifted electro-

magnetic modes and the negatively shifted ones. This

becomes obvious when we rewrite the exact function J
in Eq. (3.7) using the original frequency and momentum

variables as

Jðβ;ω; vÞ ¼ 1

ω2

Z
ω

0

dkxkx

�
1

eβγðωþkxvÞ − 1
−

1

eβγðω−kxvÞ − 1

�
;

ω > 0: ð3:14Þ

Inside the bracket, the occupation number for the neg-

atively Doppler-shifted modes is greater than that for the

positively shifted modes for 0 < v < 1. The difference

vanishes, though, for v ¼ 0 and v → 1. As a result, the

function J possesses a minimum at an intermediate

velocity. For smaller x (e.g., x ¼ 1), the minimum of J
lies in the transition region between the low velocity regime

and the high velocity regime. For larger x (e.g., x ¼ 10), the

minimum is well captured by the high velocity approxi-

mation in Eq. (3.13). In the approximation of v → 1 and

y− → 1=2γ, the location of the minimum is found analyti-

cally from Eq. (3.13) to be γ ¼ x= ln 2.
Finally, we also want to examine the classical limit of

vacuum quantum friction Eq. (3.4). In order to render the

thermal contributions more manifest, we temporarily

reinsert ℏ in Eq. (3.4) with change of variable y ¼ γz
and obtain

F̃ISO¼ ℏ

2π2v2

Z
∞

0

dωω4 ImαðωÞ
Z

1þv

1−v

dz
z−1

eℏβωγz−1
: ð3:15Þ

In the limit of βγ → 0, that is the high-temperature and

modest-velocity regime, the exponential factor can be

expanded in βγ. Keeping only the first term in the

expansion, we find ℏ disappears explicitly and the inte-

gration on z can be readily carried out, leading to

F̃ISO
CL ¼ v − ln yþ

π2βγv2

Z
∞

0

dω Im αðωÞω3; ð3:16Þ

which can also be derived by using the classical FDT from

the outset. In its nonrelativistic limit, the friction in

Eq. (3.16) further reduces to

F̃ISO
CL;NR ¼ −

v

3π2β

Z
∞

0

dω Im αðωÞω3; ð3:17Þ

linear in temperature and in velocity.
6

C. The NESS quantum vacuum friction for resonance
model and monomial model

As simple examples, let us work out the NESS quantum

vacuum friction for the resonance and monomial models.

In order to evaluate the NESS quantum vacuum friction

for the resonance model in Eq. (2.33), the coefficient of the

delta function is needed. So, let us be specific and consider

a simple model of an harmonically bound electron with

vanishing damping for the polarizability. See, for example,

Refs. [25,26] for details. The imaginary part of the polar-

izability is therefore

ImαðωÞ ¼ πe2

2mω0

δðω − ω0Þ; ð3:18Þ

where e and m are the charge and mass of the electron and

ω0 > 0 is the resonance frequency. We will assume the

polarizability to be isotropic for simplicity here. Inserting

Eq. (3.18) into Eq. (3.4) with the dimensionless variables

x0 ¼ βω0=2, we obtain

F̃ISO ¼ 2e2

πmβ3
x30Jðx0; vÞ; ð3:19Þ

where J is defined in Eq. (3.7).

At the room temperature T ¼ 300 K, the dimensional

coefficient in Eq. (3.19) is evaluated as 1.60 × 10−24 N,
7

after converting to SI units. The velocity dependence of the

friction is completely controlled by the function J illus-

trated in Fig. 3. Here, we illustrate the x0 dependence of the
magnitude of the friction in Eq. (3.19) for different

velocities in Fig. 4. As is seen in the figure, the magnitude

of the friction exhibits a peak at a certain frequency (x0) for
each fixed velocity. And for greater velocities, the peak is

higher with the position of the peak blueshifted. The

resultant quantum friction for the typical velocities shown

FIG. 4. For the resonance model in Eq. (3.18), the magnitude of

the NESS quantum vacuum friction −F̃ISO in Eq. (3.19) at room

temperature T ¼ 300 K is plotted as a function of x0 for different
velocities.

6
Obviously, the above arguments for the high-temperature

limit of quantum vacuum friction do not apply to the situation
when the imaginary part of the polarizability is temperature
dependent, e.g., in the Bloch-Grüneisen model discussed in
Sec. IV B. In addition, ℑαðωÞ must be properly behaved in both
infrared and ultraviolet regimes so that the ω integral in Eq. (3.17)
is convergent.

7
The conversion factors used in this estimate and the following

numerical estimates in the paper are kB ¼ 8.62 × 10−5 eV=K and

ℏc ¼ 1.97 × 10−5 eV · cm.
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in the figure is on the order of 10−25 N, which is still far

from the reach of current experiments.

Next, we turn to the monomial model in Eq. (2.37). To be

specific, let us consider the low-frequency radiation reac-

tion model with n ¼ 3,

Im αðωÞ ¼ ω3

6π
α20: ð3:20Þ

After inserting this model into Eq. (3.4), again it is easier to

first work out the integral on ω followed by the integral on

y. The quantum vacuum friction for various polarization

states is found to be

F̃P¼−
32α20π

5

4725β8
γ6v

8
>><

>>:

15v4þ70v2þ35; P¼ ISO;

−3v4−4v2þ7; P¼X;

9v4þ37v2þ14; P¼Y;Z:

ð3:21Þ

The expected identity F̃ISO ¼ F̃X þ F̃Y þ F̃Z can be

immediately confirmed.

For a neutral gold atom, the recommended value

of its static scalar polarizability found in Ref. [27] is

36 a:u: ¼ 5.33 × 10−24 cm3. Using this value for α0, the

dimensional factor in Eq. (3.21) is estimated to be −1.63 ×

10−43 N at T ¼ 300 K. We plot the magnitude of the

resultant NESS quantum vacuum friction on a gold atom as

a function of v for different polarizations in Fig. 5. From the

figure, it is seen that the friction increases with velocity and

the friction for the parallel (x) polarization is always smaller

than that for the transverse (y and z) polarizations.
If the gold atom is replaced by a perfectly conducting

sphere, the polarizability becomes directly proportional to

the volume of the sphere, α0 ¼ 4πa3. The magnitude of the

friction can be enhanced for a sphere bigger than an atom.

For example, the dimensional prefactor in Eq. (3.21)

becomes 9.09 × 10−25 N for a perfectly conducting sphere

of radius a ¼ 100 nm, much greater than that for the

gold atom.

Of course, the radiation reaction model in Eq. (3.20) is

only a low-frequency approximation of the more complete

model already discussed in Sec. Vof Ref. [9]. Considering

the exponential factor in Eq. (3.4), the low-frequency

contributions dominate so long as the temperature is

low.
8
Indeed, the friction for isotropic polarization in

Eq. (3.21) agrees with the low-temperature friction

obtained in Eq. (5.4a) of Ref. [9].

Contrary to the resonance model, quantum friction for

the model in Eq. (3.20) (n ¼ 3 monomial model) diverges

as the velocity approaches the speed of light. This turns out

to be true for all monomial models with a power n > −3.

For a monomial model with an arbitrary power n,
ImαðωÞ ¼ αnω

n (αn is a constant in the model which

has the proper dimension according to the power n), the
NESS quantum friction for the isotropic polarization can be

calculated explicitly from Eq. (3.4),

F̃ISO ¼ αnΓð5þ nÞζð5þ nÞ
2π2β5þn

MnðvÞ;

MnðvÞ≡
1

γ2v2

�
1

3þ n
ðy3þn

þ − y3þn
− Þ− γ

4þ n
ðy4þn

þ − y4þn
− Þ

�
:

ð3:22Þ

The velocity dependence of the friction in Eq. (3.22) is all

contained in the function MnðvÞ. The high velocity

behavior (γ → ∞) of Mn depends on n,

lim
γ→∞

Mn ¼

8
>>><

>>>:

− 24þn

4þn
γð3þnÞ; n > −4

ð2−ð4þnÞ

4þn
− 2−ð3þnÞ

3þn
Þγ−ð5þnÞ; n < −4

− 2
γ
ln γ; n ¼ −4.

ð3:23Þ

Even thoughMn can be defined for an arbitrary value of n,

F̃ISO in Eq. (3.22) is not well defined for negative integers

n ≤ −4 due to the singularities of the prefactor. As a result,

for integer powers n, the friction is almost always divergent

in the high velocity limit, except for n ¼ −3,

F̃ISO ¼ α−3

12β2
1

γ2v2

�
ln

�
1þ v

1 − v

�
− 2γ2v

�
: ð3:24Þ

It is not surprising that n ¼ −3 is special, recalling that the

corresponding NESS temperature ratio r̃ ¼ 1 for all veloc-

ities. In addition, the full radiation reaction model in

Ref. [9] reduces to the n ¼ −3 monomial model in the

high-frequency limit. Indeed, the friction in Eq. (3.24)

FIG. 5. For the low-frequency radiation reaction model in

Eq. (3.20), the magnitude of the NESS quantum vacuum friction

−F̃P for different polarization states in Eq. (3.21) are plotted as

functions of v at room temperature T ¼ 300 K. The static

polarizability of a gold atom is used for α0 in the numerical

evaluation.

8
For a gold atom moving at a velocity v ¼ 0.5, the low

frequency approximation is accurate up to a temperature
T ¼ 106 K. See Fig. 2(b) of Ref. [9].
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precisely equals the high-temperature quantum vacuum

friction recorded in Eq. (5.4b) of Ref. [9] if we set α−3 ¼ 6π

in accordance with Eq. (5.1) of Ref. [9].

IV. NESS TEMPERATURE RATIO AND NESS
FRICTION FOR A GOLD NANOSPHERE

As a realistic example, wewill in this section evaluate the

NESS temperature ratio and friction for a nanosphere made

of gold. For simplicity, we assume the nanosphere is

isotropic and ignore any surface effect of the nanosphere.

The polarizability of the nanosphere αðωÞ can be expressed
in terms of its radius a and the permittivity of gold εðωÞ
through the Lorenz-Lorentz relation

αðωÞ ¼ 4πa3
εðωÞ − 1

εðωÞ þ 2
: ð4:1Þ

An introduction of the Lorenz-Lorentz relation can be

found in Ref. [25]. The permittivity of gold εðωÞ is often
described by the Drude model

εðωÞ ¼ 1 −
ω2
p

ω2 þ iων
; ð4:2Þ

where ωp is the plasma frequency and ν the damping

parameter of gold. In IVA, the damping parameter will be

treated as a temperature-independent constant. In Sec. IV

B, we will instead consider the damping parameter to be

temperature dependent and describe it using the Bloch-

Grüneisen model.

A. Constant damping model

Combining Eq. (4.1) and Eq. (4.2), we find

Im αðωÞ ¼ V
ω2
pων

ðω2
1 − ω2Þ2 þ ω2ν2

: ð4:3Þ

where V ¼ 4
3
πa3 denotes the volume of the nanosphere and

we have introduced the rescaled plasma frequency

ω1 ¼ ωp=
ffiffiffi
3

p
. The imaginary part of the polarizability is

temperature independent if all the parameters in Eq. (4.3)

are constant. In the following numerical evaluation, we use

the nominal room temperature value for the plasma

frequency and damping parameter given in Ref. [28]: ωp ¼
9.00 and ν ¼ 0.0350 eV.

When the gold nanosphere moves through vacuum in a

constant velocity v, the NESS temperature T̃ deviates

from the temperature of the blackbody radiation T
determined by the NESS condition Eq. (2.26). And in

NESS, the nanosphere experiences a frictional drag given

by Eq. (3.4).

In order to evaluate the NESS temperature ratio

r̃ ¼ T̃=T, we insert Eq. (4.3) into Eq. (2.26) and introduce

a new set of dimensionless variables

u ¼ ω

ω1

; ϵ ¼ ν

ω1

; x1 ¼
βω1

2
; r̃ ¼ β

β̃
: ð4:4Þ

We therefore obtain

Z
∞

0

du
u5

ð1−u2Þ2þu2ϵ2
1

e2x1u=r̃−1

¼
Z

∞

0

du
u5

ð1−u2Þ2þu2ϵ2
1

4γvx1u
ln

�
1−e−2x1yþu

1−e−2x1y−u

�
; ð4:5Þ

which can be solved to determine the NESS temperature

ratio r̃ numerically. Due to the cancellation of the volume

factor on both sides of the equation, the temperature ratio is

independent of the size of the nanosphere a. The dimen-

sionless damping for gold is ϵ ¼ 0.00673; the temperature

ratio r̃ then depends only on the velocity of the nanosphere
v and the temperature of the blackbody radiation T.
In Fig. 6(a), we plot the NESS temperature ratio r̃ as a

function of velocity at different temperatures of the black-

body radiation. For T ¼ 300 and T ¼ 3000 K, r̃ is greater
than 1 and increasing with velocity while it is less than 1

and decreasing with velocity for T ¼ 30000 K. Increasing

the background temperature from T ¼ 300 to T ¼ 3000 K

enhances the temperature ratio for modest velocities but

suppresses it for sufficiently high velocities.

Figure 6(b) shows the NESS temperature ratio r̃ as

a function of radiation temperature T for a fixed velocity

v ¼ 0.5 for various models. The NESS temperature ratio of

the gold nanosphere with constant damping parameter is

shown by the blue curve, which has a peak at T ¼ 2650 K.

And at the peak, the deviation of the NESS temperature of

the nanosphere from the temperature of the environment

reaches 36%, being quite noticeable.

It is also seen from Fig. 6(b) that the constant damping

model for the nanosphere in various temperature regimes

can be mimicked by the simple models discussed earlier. In

the low-temperature regime (lower than 103 K), r̃ for the

nanosphere (CD model) almost remains constant r̃ ¼ 1.18,

the same as the NESS temperature ratio for the n ¼ 1

monomial model with v ¼ 0.5. In the intermediate temper-

ature regime (roughly from the peak to the valley of the

blue curve), the behavior of r̃ for the nanosphere is well

captured by the resonance model. In the high-temperature

regime (higher than 108 K), r̃ for the nanosphere reaches

and stabilizes at r̃ ¼ 1, which coincides with the NESS

temperature ratio for the very special n ¼ −3 monomial

model.

Apart from the numerical result, the above behavior of r̃
as a solution to Eq. (4.5) can be understood qualitatively.

Due to the exponential factor on both sides of Eq. (4.5), at a

modest velocity (i.e., v ¼ 0.5), the small u (frequency)

contribution dominates the integral at low temperatures

while the large u (frequency) contribution dominates the

integral at high temperatures. In Eq. (4.3), ImαðωÞ reduces
to the n ¼ 1 monomial model and the n ¼ −3 monomial
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model in the low and high-frequency limits, respectively. In

addition, due to the smallness of the damping ϵ, there ought

to be a region where the integral is dominated by the

resonance contributions around u ¼ 1, corresponding to a

resonance model with the resonance frequency ω1.

Let us now calculate the NESS quantum vacuum friction

on the moving gold nanosphere with a constant damping

parameter. After inserting Eq. (4.3) into Eq. (3.4) and

introducing the dimensionless variables in Eq. (4.4), we

find the quantum vacuum friction to be

F̃ISO ¼ Vω2
pω

3
1

2π2γ2v2

Z
∞

0

du
u5ϵ

ð1 − u2Þ2 þ u2ϵ2

×

Z
yþ

y−

dyðy − γÞ 1

e2x1uy − 1
: ð4:6Þ

For a gold nanosphere of radius a ¼ 100 nm, the dimen-

sional coefficient independent of v and T is evaluated to

be 2.57 × 10−10 N.

In Fig. 7(a), the magnitude of the NESS quantum

vacuum friction −F̃ISO is plotted as a function of velocity

v for the three different radiation temperatures. Even

though −F̃ISO increases with velocity for T ¼ 300 and

T ¼ 3000 K in the velocity range shown (0.01 ≤

v ≤ 0.99), it does not monotonically increase with velocity

for T ¼ 30000 K.

Figure 7(b) plots −F̃ISO as a function of the radiation

temperature for fixed velocities. It is seen that the magni-

tude of the NESS quantum vacuum friction generally

increases with temperature and the temperature effects

are more prominent in the low-temperature regime than

the high-temperature regime. Again, this can be understood

as a result of the different limiting behavior of the model for

the nanosphere in Eq. (4.3). It reduces to the n ¼ 1

monomial model in the low-temperature regime and the

n ¼ −3 monomial model in the high-temperature regime.

In Eq. (3.22), the NESS quantum vacuum friction for a

monomial model with power n is found to be proportional

to T5þn. Therefore, the temperature dependence of NESS

friction on the nanosphere is T6 for low temperatures and

then weakens to T2 for high temperatures.

In order to illustrate the high velocity behavior of the

friction more clearly, we plot the magnitude of the NESS

quantum vacuum friction as a function of γ in Figs. 7(c) and

7(d). Figure 7(c) illustrates that, for T ¼ 30000 K, the peak

of the magnitude of the friction occurs at γ ¼ 2.25 and the

behavior of the friction around the peak can be captured by

the resonance contribution due to the smallness of the

damping parameter. This reminds us of the nonmonotonic

behavior of the classical friction on a charged particle

passing above a conducting plate [29], also due to the small

damping of the plate. For even higher γ, the resonance

approximation starts to show discrepancy and the actual

friction is better approximated using the high velocity

approximation Eq. (3.13). Figure 7(d) further reveals that

the nonmonotonic behavior of the friction also occurs for

lower temperatures, only with the peak shifted towards

more relativistic velocities. For low temperatures, contri-

butions to the friction from frequencies lower than the

resonance frequency tend to dominate. Therefore, the

resonance approximation becomes less accurate unless

the velocity gets really large.

B. Bloch-Grüneisen model

Even though the plasma frequency ωp has very weak

temperature dependence, it is more realistic to adopt a

temperature-dependent damping parameter ν in Eq. (4.3).

Damping of a simple metal is mainly due to the scattering

of electrons by phonons and can be well described by the

Bloch-Grüneisen (BG) model [30,31],

(a) (b)

FIG. 6. The velocity dependence and temperature dependence of the NESS temperature ratio r̃ for a gold nanosphere with constant

damping parameter (CD) is illustrated. (a) At three different temperatures of the blackbody radiation T ¼ 300 ðx1 ¼ 101Þ, T ¼ 3000

ðx1 ¼ 10.1Þ and T ¼ 30000 Kðx1 ¼ 1.01Þ, r̃ computed numerically from Eq. (4.5) is plotted as a function of velocity for

0.01 ≤ v ≤ 0.99. The dashed gray curve shows the lower bound of the temperature ratio 1=γ given by the theorem in Eq. (2.30).

(b) At fixed velocity v ¼ 0.5, r̃ is plotted as a function of the radiation temperature TðKÞ for the constant damping model (solid, blue),

the n ¼ 1 monomial model (dashed, black), the n ¼ −3 monomial model (dashed, magenta) and the resonance model (dotted, purple).
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νðTÞ ¼ ν0

�
T

θ

�
5
Z

θ
T

0

dx
x5ex

ðex − 1Þ2 : ð4:7Þ

For gold, the Bloch-Grüneisen temperature θ is 175 K. And

the constant ν0 in Eq. (4.7) is determined to be 0.0832 eV

by the room temperature (300 K) value of the damping

parameter ν ¼ 0.0350 eV [28,32,33].
9
The low and high

temperature limits of the Bloch-Grüneisen damping can be

easily worked out,

νðTÞ →

8
<

:
5Γð5Þζð5Þν0ðTθÞ5; T ≪ θ;

ν0
4
ðT
θ
Þ; T ≫ θ:

ð4:8Þ

In Fig. 8, we plot the Bloch-Grüneisen damping para-

meter for gold as a function of temperature. The transition

between the low and high temperature behavior of ν is

seen to occur at a rather low temperature around T ¼ 40 K.

Incorporating the temperature dependence of the damp-

ing parameter, ImαðωÞ in Eq. (4.3) becomes dependent on

the temperature of the gold nanosphere T 0,

Im αðω; T 0Þ ¼ V
ω2
pωνðT 0Þ

ðω2
1 − ω2Þ2 þ ω2ν2ðT 0Þ : ð4:9Þ

Equation (4.5) can still be used to find the NESS

temperature ratio with the only modification that the

(a) (b)

(c) (d)

FIG. 7. The magnitude of the NESS quantum vacuum friction in Eq. (4.6), −F̃ISO, for a gold nanosphere with constant damping

parameter is illustrated. (a) At three different temperatures of the blackbody radiation T ¼ 300 ðx1 ¼ 101Þ, T ¼ 3000 ðx1 ¼ 10.1Þ and
T ¼ 30000 K ðx1 ¼ 1.01Þ, −F̃ISO is plotted as a function of velocity for 0.01 ≤ v ≤ 0.99. (b) For three different velocities v ¼ 0.1,

v ¼ 0.5 and v ¼ 0.9, −F̃ISO is plotted as a function of the temperature of the blackbody radiation TðKÞ. (c) For T ¼ 30000 K, −F̃ISO in

Eq. (4.6) is shown again as a function of γ by the solid red curve. The dashed blue curve shows its high velocity approximation using

Eq. (3.13). The dotted purple curve plots only the contributions coming from the resonance at u ¼ 1. (d) For T ¼ 300 K, the exact

friction is shown again as a function of γ by the solid blue curve. The dashed red curve plots the high velocity approximation of the

friction using Eq. (3.13). The dotted purple curve plots the resonance contributions.

FIG. 8. The temperature-dependent damping parameter ν in

Eq. (4.7) is illustrated for gold with θ ¼ 175 K and

ν0 ¼ 0.0832 eV. The temperatures shown are given in units of K.

9
The value for ν0 we use is slightly different than that in

Appendix D of [28] where the room temperature is taken to be
295 K. There is, of course, no definite consensus on the meaning
of the room temperature. Nonetheless, taking it to be 300 K is
more consistent with the source of the raw data in [33].
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dimensionless damping ϵ now also depends on the

temperature of the nanosphere, ϵ → ϵðT̃Þ ¼ ϵðr̃TÞ. The

modified Eq. (4.5) is numerically solved for the NESS

temperature ratio of the gold nanosphere with the temper-

ature-dependent damping described by the BG model and

the results are compared with that for the CD model

in Fig. 9.

Figure 9(a) shows that, at T ¼ 300 K, r̃ is almost the

same for the two models even though the temperature-

dependent damping ϵ is evaluated at r̃T and will be

different from the constant value used for the CD model.

This indicates that, at room temperatures, the NESS

temperature ratio r̃ is rather insensitive to the actual value

of the damping. The NESS temperature ratio for the BG

model is seen to be generally smaller than that for the CD

model at T ¼ 3000 K but larger at T ¼ 30000 K.

The phenomenon is more obvious in Fig. 9(b) where

we see both the peak (∼3200 K) and the valley

(∼42000 K) of the NESS temperature ratio are softened

for the BG model in comparison to the CD model. In

addition, the behavior of the BG and CD models in the

two extreme temperature limits are also clearly shown in

the figure. In the low-temperature limit, the NESS

temperature ratio shows no difference between the two

models and both models can be well approximated by the

n ¼ 1 monomial model. In the high-temperature limit,

however, the NESS temperature ratio for the BG model is

raised to a constant above 1, while r̃ for the CD model

approaches 1, which is the NESS temperature ratio for

the n ¼ −3 monomial model.

We can understand all these phenomena qualitatively

as well. For temperatures higher than room temperature,

the damping ϵ in Eq. (4.5) must be bigger for the BG

model than the CD model, which will weaken the effect

of the resonance. As to why adding the temperature

dependence in damping would alter the high-temperature

limit of r̃ but keep its low-temperature limit unchanged,

let us reexamine what happens to ImαðωÞ in Eq. (4.9) in

both limits. Recall the damping νðT 0Þ grows as T 05 in the

low-temperature limit and grows linearly in the high-

temperature limit. Therefore, the low-frequency (temper-

ature) behavior for ImαðωÞ is still proportional to ω.

Yet, the high-frequency behavior is no longer just

proportional to ω−3, because in the denominator, ω2ν2

can be comparable to ω4 in the high-temperature limit.

Indeed, keeping both terms enables us to provide an

analytical prediction of the correct high-temperature limit

of r̃ for the BG model, as is shown by the dashed, gray

curves in both figures. The analysis is detailed in

Appendix B where r̃ is given as a solution of an

algebraic equation (B6).

Finally, let us also calculate the NESS quantum vacuum

friction for the BG model. In this regard, we can still use

Eq. (4.6), replacing the temperature-independent damping

ϵ with the temperature-dependent one evaluated at the

NESS temperature, ϵðT̃Þ. The NESS temperature can be

found through T̃ ¼ r̃T, where r̃ has already been found

numerically as a function of velocity v and radiation

temperature T.
In Fig. 10(a), the magnitude of the NESS quantum

friction is plotted as a function of velocity for both the

BG model and the CD model. The behavior of the

discrepancy between the two models seems intricate. At

T ¼ 300 K, the discrepancy is larger for higher veloc-

ities. At T ¼ 3000 K, the discrepancy is larger for

smaller velocities instead. At T ¼ 30000 K, the data

for the two models pretty much agrees until the velocity

becomes very close to the speed of light. All of this can

be understood as a result of different limiting behaviors

of the nanosphere model in different temperature and

velocity regimes. As the temperature increases, the

behavior of the model goes from the n ¼ 1 monomial

(a) (b)

FIG. 9. The NESS temperature ratio r̃ for the BG model is compared with that for the CD model. (a) At three different temperatures of

the blackbody radiation, r̃ is plotted as a function of v for the BG model and the CD model by the dotted curves and the solid curves,

respectively. The high-temperature prediction of the NESS temperature ratio for the BG model is plotted by the dashed, gray curve.

(b) At fixed velocity v ¼ 0.5, r̃ is plotted as a function of the radiation temperature TðKÞ for the CD model (solid, blue), the n ¼ 1

monomial model (dashed, black), the n ¼ −3 monomial model (dashed, magenta), the resonance model (dotted, purple) and the BG

model (dotted, red). The high-temperature prediction of r̃ for the BG model at v ¼ 0.5 is 1.03, plotted by a dashed gray curve.
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model through the resonance model and finally to the

n ¼ 3 monomial model. Since the friction as seen in

Eq. (4.6) is independent of damping for the resonance

model, the discrepancies between the BG model and the

CD model disappear when the resonant frequency domi-

nates. And whenever the model is better approximated by

the monomial models, the friction is proportional to the

damping parameter. The damping for the BG model is

certainly bigger than that for the CD model at temper-

atures higher than 300 K. This is even the case when the

radiation temperature is exactly 300 K because, for the

BG model, the damping is evaluated at the temperature of

the particle, which is still greater than 300 K.

In Fig. 10(b) where the magnitude of quantum

friction over a wide range of temperature is plotted,

it is seen that the temperature dependence in damping

lowers the friction for very low temperatures (< 100 K)

because of a smaller damping parameter for the BG

model. In the intermediate temperature regime, the

temperature dependence of the damping has a relatively

smaller effect on the magnitude of the friction. Whether

we use the CD model or the BG model for the gold

nanosphere, the magnitude of the quantum vacuum

friction on the nanosphere reaches the order of

picoNewtons
10

if it can be kept moving in a background

with a temperature as high as 104 K, which is unam-

biguously much greater than that for a gold atom

calculated in Ref. [9]. Adding the temperature depend-

ence in the damping, the high-temperature behavior of

the force is enhanced from T2 to T3, which is clearly

illustrated in the high-temperature prediction of the

NESS friction force given in Eq. (B8).

V. ENERGETICS OF QUANTUM VACUUM
FRICTION OUT OF NESS

The transformations of the frictional power and force

between frame R and frame P are [9]

P ¼ ∂

∂t
F ¼ γ

�
∂

∂t0
− v

∂

∂x0

�
1

γ
F 0

¼
�

∂

∂t0
− v

∂

∂x0

�
F 0 ¼ P0 þ vF0; ð5:1aÞ

F ¼ −
∂

∂x
F ¼ −γ

�
∂

∂x0
− v

∂

∂t0

�
1

γ
F 0

¼ −

�
∂

∂x0
− v

∂

∂t0

�
F 0 ¼ F0 þ vP0: ð5:1bÞ

These relations are general and hold whether the particle

is in or out of NESS. They can be easily inverted as

P0 ¼ γ2ðP − vFÞ; F0 ¼ γ2ðF − vPÞ: ð5:2Þ

From Eq. (5.2), together with Eq. (2.23) for P0P and

Eq. (3.3) for FP, we find the frictional power in frame

R for a particle in diagonal polarization state P is

PP ¼ 1

3π2γ

Z
∞

0

dω Im αPðωÞω4

×

Z
yþ

y−

dy y fPðyÞ
�

1

eβωy − 1
−

1

eβ
0ω − 1

�
: ð5:3Þ

In the case of an isotropic particle, we confirm that this

expression for frictional power agrees with the time

component of the four-force that Pieplow and Henkel

(a) (b)

FIG. 10. The magnitude of the NESS quantum vacuum friction, −F̃ISO, for the BG model is compared with that for the CD model. (a)

At the three different temperatures, −F̃ISO is plotted as a function of velocity v for the BG model and the CD model by the dotted curves

and the solid curves, respectively. (b) For a fixed velocity v ¼ 0.5, −F̃ISO is plotted as a function of the radiation temperature T ðKÞ for
the BG model and the CD model by the dotted curves and the solid curves, respectively. The high-temperature prediction of −F̃ISO for

the BG model is plotted by the dashed, gray curve.

10
It may be possible to detect a fluctuation-induced force of

such magnitude, since the precision measurement for the static
Casimir force can easily reach the order of picoNewtons nowa-
days. See, for example, Ref. [34]. The main challenge for
experiments might then be keeping the particle moving at
constant velocity in a rather hot background.
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derive for blackbody friction in Ref. [21] using a fully

covariant formulation, and with the thermal radiation power

(a different sign convention is used there, though) obtained

by Dedkov and Kyasov in Ref. [35].

When the particle is in NESS, the friction must be

balanced by an external force, in either frameR or frameP,

F̃tot ¼ F̃ þ F̃ext ¼ 0; ð5:4aÞ

F̃tot
0 ¼ F̃0 þ F̃0

ext ¼ 0: ð5:4bÞ

Recall that in NESS, the friction is the same in frame P

and frame R, F̃0 ¼ F̃ [9]. As a result, the external force

needed is the same in frame P and frame R, F̃0
ext ¼ F̃ext.

Since we have demonstrated that F̃ is negative definite,

the external force is positive definite in both frames,

F̃0
ext ¼ F̃ext > 0.

Now, let us discuss the different situation out of NESS.

On the one hand, the internal energy of the particle, or

equivalently, the rest mass of the particle, m, is allowed to

change.
11

Therefore, the relativistic momentum of the

particle γmv in R can change, while the velocity v is kept

constant by the external force. The varying mass results in a

net force on the particle in frame R, so that Eq. (5.4) must

be modified out of NESS,

Ftot¼FþFext¼ γv
dm

dt
¼v

dm

dt0
¼vP0⇒Fext¼−FþvP0;

ð5:5Þ

where we have used the time dilation relation dt ¼ γdt0 and
that the rate of rest mass change, dm=dt0 is the same as the

rate of change in the particle’s internal energy, P0. The rate
P0, being precisely the frictional power in the rest frame of

the particle, is already derived in Eq. (2.23) for the different

polarizations.

On the other hand, Eq. (5.4b) must still hold out of NESS

because the particle’s momentum in frame P remains zero,

F0
tot ¼ F0 þ F0

ext ¼ 0 ⇒ F0
ext ¼ −F0 ¼ −F þ vP0; ð5:6Þ

where we have used Eq. (5.1b) in the last equality.

Comparing Eq. (5.5) with Eq. (5.6), we find the external

force needed in frame R and frame P is still the

same, Fext ¼ F0
ext ¼ −F0.

The quantum vacuum friction in frame P, F0, for a

particle in diagonal polarization state P, can again be

obtained from Eq. (3.3) and Eq. (2.23),

F0P¼FP−vP0P¼ 1

3π2γv

Z
∞

0

dωω4 ImαPðωÞ

×

Z
yþ

y−

dyðy−γÞfPðyÞ
�

1

eβωy−1
−

1

eβ
0ω−1

�
: ð5:7Þ

In Eq. (5.7), the term involving β0 clearly does not

contribute to the integral on account of the oddness of

the y integrand around y ¼ γ. Physically, this reflects the

fact that the emitted dipole radiation does not have a

momentum bias, and therefore does not contribute to the

frictional force in frame P. See Ref. [9] for a detailed

explaination. As a result, F0P is independent of the temper-

ature of the particle so long as Imα does not depend on

temperature. In fact, F0P in Eq. (5.7) for an out-of-NESS

particle precisely equals the NESS quantum vacuum

friction F̃P shown in Eq. (3.4), F0P ¼ F̃P. Therefore, like

F̃P, F0P is also negative definite. This, then, allows us to

conclude that a positive external force is always needed to

keep the particle’s constant motion. Once the external force

is withdrawn, the particle will either slow down or speed up

depending on the sign of the quantum vacuum frictional

force. The approach outlined in this paper is not sufficient

to analyze that situation fully because it is then noninertial.

The quantum vacuum frictional force in frame R, F,
consists of two terms, i.e., F ¼ F0 þ vP0. The first term, F0,
is the steady state contribution F0 ¼ F̃. The second term,

vP0, is therefore the nonsteady part, which is due to the

rest mass change of the particle.
12

This term does not

have a definite sign because the particle could either gain or

lose rest mass.

As a result, F is no longer negative definite out of NESS.

That is to say, the quantum vacuum “friction” in R could

become a pushing force on the particle by adjusting the

temperature of the particle. Let us now attempt to give

another physical interpretation why such a positive friction

should occur. If we consider the combined system of

particle and radiation, the only net force on the system

is Fext provided by some external agent. This external force

will cause the total momentum of the combined system to

change. The rate of change of the momentum of the

radiation equals −F, which is the reaction force to the

electromagnetic force (quantum frictional force) exerted on

the radiation fields by the particle. The rate of change of the

momentum of the particle due to its varying mass is given

by vP0. Applying Newton’s second law to the combined

system of particle and radiation leads to Fext ¼ −F þ vP0,
just as given in Eq. (5.5). Here, Fext is positive definite

while vP0 could be positive or negative depending on the

radiation temperature, T, and the actual temperature of the

11
The varying mass for moving dipoles has also been discussed

pedagogically in Ref. [36]. A quantum mechanical illustration
can be found in Ref. [37].

12
This is purely an inertial effect. It even comes into play in the

electrodynamics of moving classical dipoles already discussed in
Ref. [12] where the friction F simply equals vP0. There, the
friction on the moving classical dipole in its rest frame, F0, is
zero.
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particle, T 0. As a result, F could be of either sign. In

particular, if the particle gains mass at a rate greater than

that provided by the external force, vP0 > Fext, the electro-

magnetic force exerted on the particle by the radiation

fields will be positive. Otherwise, if the particle’s mass

decays, or remains the same, or even increases at a rate

smaller than that provided by the external force, the

electromagnetic force will be negative and therefore a true

drag.

It is also interesting to study the temperature of the

particle, T0, at which the quantum vacuum friction in frame

R becomes zero. This may be found by solving the

equation, F ¼ 0, where F is the quantum vacuum friction

in Eq. (3.3). For the temperature-independent model of the

gold nanosphere described in Sec. IVA, the equation to be

solved is

Z
∞

0

du
u5

ð1 − u2Þ2 þ u2ϵ2

Z
yþ

y−

dy

�
y −

1

γ

�
1

e2x1uy − 1

¼
Z

∞

0

du
u5

ð1 − u2Þ2 þ u2ϵ2

Z
yþ

y−

dy

�
y −

1

γ

�
1

e2x1u=r0 − 1
:

ð5:8Þ

Here, the definitions for dimensionless variables in

Eq. (4.4) still apply, except that we use r0 ¼ T0=T to

denote the temperature ratio for F ¼ 0, to be distinguished

from the temperature ratio in NESS, r̃ ¼ T̃=T. In the low-

temperature regime (x1 ≫ 1 or T ≪ 30000 K), ImαðωÞ
reduces to the n ¼ 1 monomial model, for which we

already know that F is negative definite (see footnote 5

for a detailed explanation) and therefore no solution could

be found for Eq. (5.8). In the high-temperature regime

(x1 ≪ 1 or T ≫ 30000 K), ImαðωÞ reduces to the n ¼ −3

monomial model and we therefore obtain the high-temper-

ature limit of the ratio,

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

γ2v2

�
1

2v
ln
1þ v

1 − v
− 1

�s

: ð5:9Þ

For intermediate temperatures around the resonance (x1 ∼ 1

or T ∼ 30000 K), we may set u ¼ 1 and find the approxi-

mate ratio,

r0¼2x1

�
ln

�
1þ2γ2v3

�Z
yþ

y−

dy

�
y−

1

γ

�
1

e2x1y−1

�
−1
	�

−1

;

ð5:10Þ

where the y integral in Eq. (5.10) can be expressed in terms

of dilogarithms.

It is seen in Fig. 11(a) that, at T ¼ 30000 K, the

prediction given by the resonance formula Eq. (5.10) agrees

very well with the exact numerical data for r0. In Fig. 11(b),
we see that the ratio r0, for fixed velocity v ¼ 0.5, is

described well by the resonance approximation only up to

about 105 K. Then the ratio goes through a transition region

(105–109 K) and eventually decays to its high-temperature

limit given by Eq. (5.9) at around 109 K. For the Bloch-

Grüneisen model, we also give a high-temperature pre-

diction of r0 in Eq. (B10) of Appendix B.

From Eq. (5.5), we see that the sign of the frictional

power, P0, decides both the sign of the total force on the

particle and the sign of its mass change. Using the

definition for IðξÞ in Eq. (2.25), P0P in Eq. (2.23) can be

rewritten as

(a) (b)

FIG. 11. For the constant damping model of the gold nanosphere, the ratio r0 ¼ T0=T is solved numerically from Eq. (5.8) and

illustrated. Here, T0 is the temperature of the particle at which the quantum vacuum frictional force on it is zero in the rest frame of

radiation. (a) The velocity dependence of r0 at T ¼ 30000 K ðx1 ¼ 1.01Þ is illustrated. The blue dots display the numerical solution

obtained by solving Eq. (5.8) directly. The dashed red curve shows r0 calculated from the resonance approximation Eq. (5.10). (b) The

temperature dependence of r0 for fixed velocity v ¼ 0.5 is illustrated. The temperatures are given in units of K. The exact numerical data

are shown by the blue dots. The dashed red curve plots the resonance approximation. The dashed magenta curve shows the value of the

high-temperature limit of the ratio according to Eq. (5.9), r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðln 3 − 1Þ

p
¼ 0.544.
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P0P ¼ 1

3π2

Z
yþ

y−

fPðyÞ½IðβyÞ − Iðβ0Þ�; ð5:11Þ

where the first term corresponds to the absorbed power due

to the field fluctuations and the second term corresponds to

the emitted power due to the dipole fluctuations. We can

replace the first term using the NESS condition Eq. (2.26)

Z
yþ

y−

dyfPðyÞIðβ̃Þ ¼
Z

yþ

y−

dyfPðyÞIðβyÞ: ð5:12Þ

As a result, the frictional power now reads simply

P0 ¼ 1

3π2
½Iðβ̃Þ − Iðβ0Þ�

Z
yþ

y−

dyfPðyÞ; ð5:13Þ

where the integral on y becomes 3 for the isotropic

polarization and 1 for other diagonal polarizations.

Because IðξÞ is a decreasing function, the sign of P0P is

determined by the deviation of the temperature of the

particle from its NESS temperature as below,

8
>><

>>:

T 0 < T̃ ⇒ P0P > 0;

T 0 ¼ T̃ ⇒ P0P ¼ 0;

T 0 > T̃ ⇒ P0P < 0.

ð5:14Þ

By now, we have come to an understanding of the issue

of the stability of NESS. Imagine the particle slightly

deviates from NESS with a temperature lower than the

NESS temperature, T 0 < T̃. According to Eq. (5.14), the

particle will absorb net energy thereafter, which will in turn

raise the temperature of the particle T 013 so that it becomes

closer to the NESS temperature T̃. Likewise, the particle

will be cooled down to the NESS temperature if it is

initially hotter, T 0 > T̃. Therefore, the particle would tend

to return to NESS after deviating from it, that is, NESS is a

stable state. If truly so, experimentally measuring NESS

temperature of the particle could serve as a viable way of

detecting these quantum vacuum frictional effects.

One might imagine that a positive quantum vacuum

frictional force qualifies the particle to function as a perpetual

motionmachine,which could extract vacuumenergy from the

radiation fields and turn it into useful mechanical work

endlessly.We argue that this is not possible. First, the external

agent keeps providing energy to the particle-radiation system

and the law of conservation of energy is never violated.

Therefore, the particle is not a perpetual motion machine of

the first kind. Second, the positive friction only occurs if the

temperature of the particle is lower than the NESS temper-

ature and the particle gains internal energy. Heat transfers to a

relatively colder reservoir.
14

In this process, the entropy

should increase and the second law of thermodynamics is

respected. Therefore, the particle is not a perpetual motion

machine of the second kind either.

VI. CONCLUSIONS

In this paper, we studied the quantum vacuum frictional

phenomenon associated with an intrinsically dissipative

particle. We not only derived conditions for the particle to

be in the nonequilibrium steady state (NESS) and found

expressions for quantum vacuum friction in NESS, but also

extended the analysis to the out-of-NESS scenario.

Independent of the particle’s polarizability, the NESS

temperature, T̃, has a general lower bound, T=γ, the Planck-
Einstein transformed temperature of the blackbody radia-

tion. Furthermore, the nonrelativistic limit of the particle’s

NESS temperature always equals the radiation temperature.

Under the NESS conditions, the quantum vacuum friction

on the dissipative particle is shown to be negative definite

and to be related to the friction for a nondissipative particle,

investigated in our previous paper [9]. We also show that

the NESS quantum vacuum friction reduces to the well-

known Einstein-Hopf drag in the nonrelativistic limit.

The NESS temperature ratio and the NESS quantum

vacuum friction are first calculated explicitly for the

resonance model and the monomial models and then for

a gold nanosphere modeled either with a constant damping

(constant damping model) or a temperature-dependent

damping (Bloch-Grüneisen model). The NESS temperature

ratio and friction for the resonance model and the mono-

mial models can be worked out analytically, providing

insight to the numerical results of the more realistic models

used for the gold nanosphere. The monomial models are

good approximations for the gold nanosphere with constant

damping in the two extreme temperature limits. The

resonance model approximates the behavior in the inter-

mediate temperature region. In addition, the nonmonotonic

behavior (in velocity) of the NESS friction on the gold

nanosphere in the ultrarelativistic region is mainly asso-

ciated with the resonance contributions. For both models

(constant damping model and the Bloch-Grüneisen model)

of the gold nanosphere, the NESS temperature ratio is

found to be maximized around T ¼ 3000 K and the

deviation of the NESS temperature from the radiation

temperature is quite noticeable around this maximum.

The magnitude of the NESS quantum vacuum friction

increases with temperature and reaches the order of

picoNewtons if the background temperature could be raised

to 104 K. Comparing the Bloch-Grüneisen model with the

constant damping model of the gold nanosphere, the NESS

friction is enhanced for higher temperatures but suppressed

13
Here, we assume the change of the particle’s temperature is

adiabatic so that it still has a well-defined temperature while it is
away from NESS, even though the particle is in neither an
equilibrium state nor a steady state.

14
The particle is colder in the sense that its actual temperature

is lower than the temperature needed to reach the steady state
where there is no net heat transfer.
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for lower temperatures, and the high-temperature limit of

the NESS temperature ratio is raised to above 1.

The energetics out of NESS is different from that in NESS

because the particle can absorb or emit net energy, thereby

changing its rest mass. The change of the particle’s rest mass

produces a change in its momentum in the rest frame of

radiation (R). As a result, the quantum vacuum friction, F,
in frame R, no longer balances the external force, Fext,

needed to keep the particle moving at constant velocity, and

it is allowed to take either sign or even zero. Nonetheless, the

quantum vacuum friction, F0, in frame P, is still negative

definite. And we find that Fext must be opposite to F0 and
positive definite, which excludes the possibility of con-

verting the vacuum energy into useful mechanical work

using the moving particle as a perpetual motion machine. It

is precisely the difference between the particle’s actual

temperature, T 0, and its NESS temperature, T̃, that deter-
mines whether the particle absorbs or emits energy. Only if

T 0 ¼ T̃ is the particle’s internal energy conserved. The

particle will absorb energy if T 0 < T̃ and emit energy if

T 0 > T̃. To sum up, the particle tends to return to NESS after

deviating from it. If the temperature of a nanospheremoving

at constant velocity could bemeasured, it is then expected to

be the NESS temperature, which would show some

deviation from the temperature of the lab environment.

Such an experiment could in principle be used to identify the

quantum vacuum frictional effects discussed in this paper.

ACKNOWLEDGMENTS

We thank the U.S. National Science Foundation, Grants

No. 1707511, No. 2008417, for partial support of this work.

We thank S. Fulling, P. Parashar, and J. J. Marchetta for

insightful comments.We thankG. V.Dedkov for pointing us

to their papers so that we are able to confirm the agreement

with their results. This paper reflects solely the authors’

personal opinions and does not represent the opinions of the

authors’ employers, present and past, in any way.

APPENDIX A: THE EQUIVALENCE OF THE
LORENTZ FORCE LAW AND THE PRINCIPLE

OF VIRTUAL WORK

In this appendix, we apply the Lorentz force law to a

moving electric dipole and illustrate that the Lorentz force

can be equivalently calculated through differentiating a free

energy including both a electric dipole contribution and a

motion-induced magnetic dipole contribution.

The Lorentz force density reads

fðt; rÞ ¼ ρðt; rÞEðt; rÞ þ jðt; rÞ ×Bðt; rÞ: ðA1Þ

The charge and current densities corresponding to a moving

electric dipole with constant velocity v is
15

ρðt; rÞ ¼ −∇·dðtÞδðr − vtÞ; ðA2aÞ

jðt; rÞ ¼ −v∇·dðtÞδðr − vtÞ þ _dðtÞδðr − vtÞ: ðA2bÞ

After integrating the Lorentz force density f over all

space, we find the Lorentz force on the dipole to be

FðtÞ ¼ dðtÞ · ∇Eðt; vtÞ þ dðtÞ · ∇½v ×Bðt; vtÞ�
þ _dðtÞ × Bðt; vtÞ: ðA3Þ

To prove the principle of virtual work, we are to write the

right side of Eq. (A3) in the form of a total derivative on the

spatial arguments.

The second term in Eq. (A3) can be written as

dðtÞ · ∇½v × Bðt; vtÞ� ¼ −dðtÞ × ½∇ × ðv ×Bðt; vtÞÞ� þ ∇½dðtÞ · ðv × Bðt; vtÞÞ�
¼ dðtÞ × ½v · ∇Bðt; vtÞ� þ ∇½dðtÞ · ðv ×Bðt; vtÞÞ�; ðA4Þ

where we have used ∇·B ¼ 0 in the second equality. The third term in Eq. (A3) can be written as

_dðtÞ × Bðt; vtÞ ¼ d

dt
½dðtÞ ×Bðt; vtÞ� − dðtÞ × ∂

∂t
Bðt; vtÞ − dðtÞ × ½v · ∇Bðt; vtÞ�; ðA5Þ

where the middle term can be broken into two pieces with the use of Faraday’s law,

−dðtÞ × ∂

∂t
Bðt; vtÞ ¼ dðtÞ × ½∇ ×Eðt; vtÞ� ¼ ∇½dðtÞ ·Eðt; vtÞ� − dðtÞ · ∇Eðt; vtÞ: ðA6Þ

15
If one only considers the requirement of current continuity, ∂tρþ ∇j ¼ 0, there might be another choice of the current,

j2ðt; rÞ ¼ −dðtÞ∇ · vδðr − vtÞ þ _dðtÞδðr − vtÞ, which differs from jðt; rÞ in Eq. (A2b) by a total curl. In fact, the current we use is
associated with the convection current, which includes both the polarization current j2ðt; rÞ and a motion-induced magnetization current
jmðt; rÞ ¼ ∇ × ½dðtÞ × vδðr − vtÞ�. See Ref. [38] for a discussion. Therefore, if we use instead j2ðt; rÞ in the derivation, we will not see
the motion-induced magnetic dipole term in Eq. (A8). Such ambiguity of current for a moving dipole can be avoided by deriving it from
the electric and magnetic polarization fields P and M as done in Ref. [12].
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When we put Eqs. (A4)–(A6) back into Eq. (A3), several

terms cancel and only three terms remain in the expression

for the Lorentz force:

FðtÞ ¼ ∇½dðtÞ ·Eðt; vtÞ� þ ∇½ðdðtÞ × vÞ ·Bðt; vtÞ�

þ d

dt
½dðtÞ ×Bðt; vtÞ�: ðA7Þ

A more general derivation of the Lorentz force on neutral

particles including the contribution of an intrinsic magnetic

dipole moment can be found in Ref. [25]. Since the neutral

particle considered in the paper does not possess a magnetic

dipole polarizability or magnetic dipole fluctuations,

Eq. (A7) is already sufficient for our purpose. In addition,

the last term in Eq. (A7), being a total derivative with

respect to time, would not contribute to the quantum

frictional force, which is really the average time rate of

change in the frictional impulse over a large time period.

As a result, we are able to express the relevant Lorentz

force F as the gradient on the same free energy F used in

the power expression (2.11) and therefore proves the

principle of virtual work,

F¼−∇F ; F ¼−dðtÞ ·Eðt;vtÞ−μvðtÞ ·Bðt;vtÞ; ðA8Þ

where we have identified dðtÞ × v ¼ μvðtÞ as the magnetic

dipole moment induced by the movement of the electric

dipole. The analysis above is general and Eq. (A8) is

applicable in any frame of reference. In particular, in the

rest frame of the particle P, the magnetic term in the free

energy vanishes and the principle of virtual work reads

F0 ¼ −∇0F 0;F 0 ¼ −d0ðt0Þ · E0ðt0; 0Þ: ðA9Þ

APPENDIX B: THE BLOCH-GRÜNEISEN MODEL
IN THE HIGH-TEMPERATURE LIMIT

In this appendix, we obtain high-temperature asymptotic

expressions for the power and the frictional force in the case

that the damping parameter has the linear high-temperature

dependence of the Bloch-Grüneisen model [30,31,39] as

shown in Eq. (4.8),

ν ¼ 2πη

β0
¼ 2πηT 0; ðB1Þ

for some constant η > 0.
16

The power in the rest frame of an isotropic particle is

given by

P0 ¼ 1

2π2γv

Z
∞

0

dωω4 Im αðωÞ
Z

yþ

y−

dy

�
1

eβωy − 1
−

1

eβ
0ω − 1

�

¼ Vω2
pν

2π2γv

Z
∞

0

dω
ω5

ðω2 − ω2
1Þ2 þ ω2ν2

Z
yþ

y−

dy

�
1

eβωy − 1
−

1

eβ
0ω − 1

�

¼ Vω2
pη

πγvβ03

Z
yþ

y−

dy

Z
∞

0

dz

�
z5

r2y2½ðz2 − ω2
1β

02r2y2Þ2 þ 4π2η2r2y2z2� −
z5

ðz2 − ω2
1β

02Þ2 þ 4π2η2z2

�
1

ez − 1
; ðB2Þ

where r≡ β

β0 ¼ T 0

T
. In the high-temperature limit, β; β0 → 0, and r ¼ β=β0 tends to a finite value, the dependence on the

shifted resonance frequency is suppressed. Retaining only the leading term in this limit, we obtain

P0 ¼ Vω2
pη

πγvβ03

Z
yþ

y−

dy

Z
∞

0

dz

�
z3

r2y2ðz2 þ 4π2η2r2y2Þ −
z3

z2 þ 4π2η2

�
1

ez − 1

¼ Vω2
pπη

γvβ03

Z
yþ

y−

dy

�
1

r2y2

�
1

6
− 2η2r2y2

�
lnðηryÞ − ψðηryÞ − 1

2ηry

��
−

�
1

6
− 2η2

�
ln η − ψðηÞ − 1

2η

��	

¼ Vω2
pπηr

3

3β3

�
1

r2
þ 6η

γvr
ln

�
yþΓðηryþÞ
Γðηry−Þ

�
− 1 − 6η − 12η2

�
ln rþ ψðηÞ þ ln yþ

v
− 1

��
; ðB3Þ

where we have employed the integral representation of the digamma function,

ψðsÞ≡ d

ds
lnΓðsÞ ¼ ln s −

1

2s
− 2

Z
∞

0

dt
t

ðt2 þ s2Þðe2πt − 1Þ ; Res > 0; ðB4Þ

which follows immediately on differentiation of Binet’s second integral formula for the (log) gamma function [40–42], to

deduce that

16
In terms of the parameters in Eq. (4.7), η ¼ ν0=8πkBθ and it evaluates to be η ¼ 0.219 for gold.
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Z
∞

0

dz
z3

ðz2 þ u2Þðez − 1Þ ¼
π2

6
−
u2

2

�
ln

�
u

2π

�
− ψ

�
u

2π

�
−
π

u

�
; Reu > 0: ðB5Þ

When the NESS condition, P0 ¼ 0, holds, it is clear from Eq. (B3) that the NESS temperature ratio r̃ satisfies the implicit

equation

r̃2
�
1þ 6ηþ 12η2

�
ln r̃þ ψðηÞ þ ln yþ

v
− 1

��
−
6ηr̃

γv
ln

�
yþΓðηr̃yþÞ
Γðηr̃y−Þ

�
¼ 1 ðB6Þ

in the high-temperature limit.

Similarly, the NESS frictional force in Eq. (3.4), which is equivalent to the frictional force in frame P in Eq. (5.7), is

given by

F̃ ¼ F0 ¼ 1

2π2γ2v2

Z
∞

0

dωω4 Im αðωÞ
Z

yþ

y−

dyðy − γÞ 1

eβωy − 1

¼ Vω2
pν

2π2γ2v2

Z
∞

0

dω
ω5

ðω2 − ω2
1Þ2 þ ω2ν2

Z
yþ

y−

dyðy − γÞ 1

eβωy − 1

¼ Vω2
pη

πγ2v2β03

Z
yþ

y−

dy
ðy − γÞ
r̃2y2

Z
∞

0

dz
z5

ðz2 − ω2
1β

02r̃2y2Þ2 þ 4π2η2r̃2y2z2
1

ez − 1
; ðB7Þ

which becomes, in the high-temperature limit,

F̃ ¼ F0 ¼ Vω2
pη

πγ2v2β03

Z
yþ

y−

dy
ðy − γÞ
r̃2y2

Z
∞

0

dz
z3

z2 þ 4π2η2r̃2y2
1

ez − 1

¼ Vω2
pπη

γ2v2β03

Z
yþ

y−

dy
ðy − γÞ
r̃2y2

�
1

6
− 2η2r̃2y2

�
lnðηr̃yÞ − ψðηr̃yÞ − 1

2ηr̃y

��

¼ 2Vω2
pπηr̃

3

γ2v2β3

�
1

r̃2

�
ln yþ − γ2v

6
þ ln

�
Gð1þ ηr̃yþÞ
Gð1þ ηr̃y−Þ

��
−
γη

r̃

�
v lnð2πÞ þ ln

�
yþΓðηr̃yþÞ
Γðηr̃y−Þ

��
þ η2ðγ2vþ ln yþÞ

	
; ðB8Þ

where G is the Barnes (double gamma) G-function [43–47].

It follows from Eq. (B3) and Eq. (B8) that, in the high-temperature limit, the force in the rest frame of the blackbody

radiation, F ¼ F0 þ vP0, is given by

F ¼ 2Vω2
pπηr

3

γ2v2β3

�
1

r2

�
ln yþ − v

6
þ ln

�
Gð1þ ηryþÞ
Gð1þ ηry−Þ

��
−
γη

r

�
v lnð2πÞ þ ð1 − v2Þ ln

�
yþΓðηryþÞ
Γðηry−Þ

��

− γ2v3
�
1

6
þ ηþ 2η2ðln rþ ψðηÞÞ

�
þ η2ðð3γ2 − 2Þvþ ð3 − 2γ2Þ ln yþÞ

	
: ðB9Þ

In particular, when the frictional force becomes zero in frameR, F ¼ 0, the corresponding temperature ratio r0 satisfies the
implicit equation in the high temperature limit

r20

�
γ2v3

�
1

6
þ ηþ 2η2ðln r0 þ ψðηÞÞ

�
þ η2ðð2 − 3γ2Þvþ ð2γ2 − 3Þ ln yþÞ

�

þ γηr0

�
v lnð2πÞ þ ð1 − v2Þ ln

�
yþΓðηr0yþÞ
Γðηr0y−Þ

��
¼ ln yþ − v

6
þ ln

�
Gð1þ ηr0yþÞ
Gð1þ ηr0y−Þ

�
: ðB10Þ

The exact analytical expressions in Eq. (B6) and Eq. (B10) enable exploration of the variation of rwith v across the entire
v domain, in the high-temperature limit. They therefore provide a useful check of some of the numerical results obtained by

other means.
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APPENDIX C: SOLUTION FOR r0
IN THE LOW-TEMPERATURE,

HIGH-VELOCITY REGIME

In Sec. V, we commented that quantum vacuum friction

F in frameR can be made zero only for high temperatures,

for example, 30 000 K for the gold nanosphere. In fact, this

is only true in the moderate velocity regime. It is possible

to find solutions to Eq. (5.8) for lower temperatures in

the ultrarelativistic regime.
17

This appendix explores that

possibility.

Let us define the left-hand side of Eq. (5.8) as

fLðγ; x1; ϵÞ and the right-hand side as fRðγ; x1; ϵ; r0Þ. In
the low-temperature regime, x1 ≫ 1, for finite r0, it is clear
that fR is dominated by low frequency-contributions

u ≪ 1. The contribution around the resonance u ∼ 1 is

suppressed because of the exponential factor so that fR
reduces to

fRðγ; x1; ϵ; r0Þ ∼ 2Γð6Þζð6Þγ2
�

r0

2x1

�
6

; ðC1Þ

where we have also applied the high velocity limit, γ ≫ 1.

For fL, we note the exponential factor contains y. In the

ultrarelativistic region, the integration on y is essentially

taken over the interval ½1=2γ; 2γ�. The lower values of y
allow the resonance around u ∼ 1 to contribute significantly

to the u integration while the higher values of y are

suppressed because x1 is already large. As a result, the

u integration in fL collapses, leaving

fLðγ; x1; ϵÞ ∼
π

2ϵ

Z
2γ

1=2γ

dy

�
y −

1

γ

�
1

e2x1y − 1
: ðC2Þ

Equating fR in Eq. (C1) and fL in Eq. (C2) gives an

approximation for r0 in the low-temperature, high-velocity

regime,

r0 ¼ x1

�
126

π5γ2ϵ

Z
1

1=2γ

dy

�
y −

1

γ

�
1

e2x1y − 1

�
1=6

; ðC3Þ

where we deliberately cut off the y integration on the upper
limit because this will not hurt the accuracy in the large x1
limit but improve the efficiency of the numerical evaluation

of the integral.

Let us note the zero of the integral inside the bracket of

Eq. (C3) gives precisely the lower bound of the velocity for

which Eq. (5.8) still has a solution. At room temperature

T ¼ 300 K (x1 ¼ 101), this lower bound is found to be

γ ¼ 115. In Fig. 12, we show both the exact numerical

solution and the approximation of r0 for ultrarelativistic

velocities γ ∈ ½120; 1000� at room temperature. The appro-

ximate formula Eq. (C3) works reasonably well in the

velocity region covered. It is seen that r0 can become

substantially greater than 1 in such a high velocity regime.
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