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Abstract

We connect generalized permutahedra with Schubert calculus. Thereby, we give suf-
ficient vanishing criteria for Schubert intersection numbers of the flag variety. Our
argument utilizes recent developments in the study of Schubitopes, which are Newton
polytopes of Schubert polynomials. The resulting tableau test executes in polynomial
time.

1 Introduction

1.1 Background

Let X = Flags(C") be the variety of complete flags of vector spaces
Fo:(0)cFicFKhCc---CF,C---CF,_; cC", dim(F;) =1i.

X has a left action of G L, and hence also by lower triangular invertible matrices B_.

The B_-orbits X7 are indexed by permutations w in the symmetric group S,. Let <
denote Bruhat order. The Schubert varieties are the closures

X, =[] X3
v=w

this is codimension £(w) = #{({, j) : 1 <i < j <n,w(@) > w(j)}. Thus, X = X;4
and X, is the Schubert point, where wo =nn —1n—-2 ...2 1.
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518 A. St. Dizier, A. Yong

The Poincaré duals o, := [X] form the Schubert basis of H*(X), the coho-
mology ring of X. A Schubert problem is a tuple (w®, w®, ... w®) e S,’; with
Zle Lw®) = (;) = dimc (X). The Schubert intersection number is

k

,,,,,

i=1

k
=number of points in ﬂ 88Xy, (D
i=1
where (g1, ..., gk) are elements of a dense open subset O of GLﬁ (whose existence

is guaranteed by Kleiman transversality). For more on this topic, see the book [8] or
the expository articles [10, 11].

Algorithms exist for computing these numbers; see, e.g., [5, 13, 15] and the
references therein. It is the famous open problem of Schubert calculus to find a combi-
natorial counting rule that computes C,1) ,,@ ., ® - Sucharule would generalize the
classical Littlewood—Richardson rule governing Schubert calculus of Grassmannians.

This paper explores a related, but not necessarily easier, open problem

Find an efficient algorithm to decide if C,,) ,,@ 00 = 0.

Known algorithms to compute C,m) @& do not provide a solution (being
inefficient). In the Grassmannian setting, neither does the Littlewood—Richardson rule,
per se. However, the saturation theorem [14] permits a polynomial-time algorithm in
that case [6, 17], by way of linear programming results. For flag varieties, criteria were
found by Knutson [12] and Purbhoo [18]; no efficiency guarantees were stated.

1.2 Vanishing Criterion

Our main goal is to connect the theory of generalized permutahedra to Schubert
calculus. We give a sufficient test for Cy,m @ ,m = 0 and prove it executes
in polynomial time. The starting point is a simple consideration about Schubert
polynomials. However, it becomes effective due to recent developments about New-
ton polytopes of Schubert polynomials [1, 7, 16], as instances of generalized
permutahedra.

The Rothe diagram of w € S,,, denoted D(w), is the subset of boxes of [n] x [n]
given by

D(w) = {(i,j) l<i,j<nj<w@),i< w—l(j)}.

Let code(w) = (c1(w), c2(w), ..., c,(w)), where ¢; counts boxes of D(w) in row i.
Define

D:=D (w(l), e, w(k)>
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Generalized Permutahedra and Schubert Calculus 519

by concatenating D(w(l)), R D(w(")), left to right. Set Tab,,q)
of fillings of D with nonnegative integers, such that:

w to be the set

,,,,,

(a) Each column is strictly increasing from top to bottom.
(b) Any label £ in row r satisfies £ < r.
(¢) The number of £’sisn — £, for 1 < £ < n.

The first version of our test is:

Theorem A Let (w(l), e, w<k)) be a Schubert problem. If Tab = 1, then
Cy) @, i = 0. There is an algorithm to determine emptiness in O (poly(k, n)).

Example 1.1 Let w® = 3256147, w® = 2143657, w® = 4632175. Below, we
depict D. The numerically labelled boxes are forced by conditions (a) and (b) for any
(putative) T € Tab.

1]1 1] [ =1
2] 2[2]2 <2
Ellma 33 <3
4] | 2] 4] =4

=5
=6

i I 1

Condition (b) forces e < 2, a,c <3, b <4, d <5, f < 6. Thus, to satisfy
(c), e = 2 is also forced, which implies a, ¢ = 3. Therefore, T has at least five 3’s,
violating (c) for £ = 3.

Our idea (see Sect. 4) uses that C,1) ,@ ,3 =0 if Gy = x?xgxg‘xixszx(, does
not appear in the product of Schubert polynomials &,,1) &, &,,3), combined with
an argument that the rule of Theorem A permits an efficient check of this vanishing
condition. O

1.3 Organization

Section 2 discusses generalized permutahedra; we derive facts we will use. Section 3
reviews the subfamily of Schubitopes. In Sect. 4, we state Theorem B, an “asymmetric”
version of Theorem A itis a stronger test (see Proposition 4.6). Theorem C gives linear
inequalities necessary for C\,a) & > 0. Theorems A, B, C, and Proposition 4.6
are proved together, as they follow from the same reasoning. In Sect. 5, we compare
with the vanishing criteria of [12, 18]. We show examples that our test captures but
are not captured by those criteria, and conversely.

2 Newton Polytopes of Products
If f is an element of a polynomial ring whose variables are indexed by some set /,

the support of f is the lattice point set in R’ consisting of the exponent vectors of the
monomials that have nonzero coefficient in f. The Newton polytope Newton(f) € R!
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520 A. St. Dizier, A. Yong

is the convex hull of the support of f. A polynomial f has saturated Newton polytope
(SNP) if every lattice point in Newton( f) is a vector in the support of f [16].

The standard permutahedron is the polytope in R” whose vertices consist of all per-
mutations of the entries of the vector (0, 1, ..., n — 1). A generalized permutahedron
is a deformation of the standard permutahedron obtained by translating the vertices in
such a way that all edge directions and orientations are preserved (edges are allowed to
degenerate to points). Generalized permutahedra are uniquely parameterized by sub-
modular functions (see [2, Theorem 12.3] for several equivalent definitions). These
are maps

z: 2 S R,
such that zg = 0 and
21 +2z5 = z7u5 +zing forall I, J C [n].

Given z, the associated generalized permutahedron is given by

n
P(z) = {t cR": Zt,- <z for I # [n], and Zti ZZ[,,]}.

iel i=1
The vertices of generalized permutahedra have been determined.

Proposition 2.1 [21, Corollary 44.3a] Let P(z) be a generalized permutahedron in
R". The vertices of P(z) are {v(w) : w € S,} where v(w) = (v(,...,v,) € R is
defined by

ka = Z{wl,...,wk} - Z{wl ..... Wr—1}* (2)

It is well known that the class of generalized permutahedra is closed under
Minkowski sums (see for instance [3, Lemma 2.2]). We provide a proof for complete-
ness. One can also easily see closure under Minkowski sums using that generalized
permutahedra are exactly the polytopes whose normal fans are refined by the braid
arrangement [2, Theorem 12.3].

Lemma 2.2 If P(z) and P(Z') are generalized permutahedra, then
P(2)+ P(Z)=Pz+7).

Proof Clearly, P(z) + P(z') € P(z + 7’). For the opposite containment, let g be a
vertex of P(z+z'). By Proposition 2.1, write g in the form g = v(w) for some w € S,,.
Let p and p’ be the vertices of P(z) and P(z’), respectively, corresponding to w. By
(2),g = p+ p' € P(z) + P(z). Convexity implies P(z +7) € P(z) + P(Z). O

It follows easily from [21, Theorem 46.2] that whenever z and 7’ are integer-valued,
P (z)NP(Z') is either empty or an integral polytope (all vertices are lattice points). This
is used to prove that integer polymatroids [21, Chapter 44] satisfy a generalization of
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Generalized Permutahedra and Schubert Calculus 521

the integer decomposition property. We state and prove (for convenience) the special
case that applies to generalized permutahedra:

Theorem 2.3 [21, Corollary 46.2¢] If P(z) and P(Z') are integral generalized per-
mutahedra in R", then

(P(x)NZ" + (P(Z)YNZ") = (P(z)+ P))NnZ".

Proof Letr € (P(z)+P(z"))NZ".Set Q = r+(—1)P(z'). Clearly, Q is a generalized
permutahedron (by the deformation description). Also, note that r = p + p’ for some
p € P(z)and p’ € P(Z)),sop € PN Qand PN Q # @. Since both r and 7’
are integral, Q is an integral polytope. Thus, P N Q contains an integer point g. By
definition of Q, the lattice point r — ¢ is in P(z’). Finally, we have

r=q+@—q) eP@QNZLY+(PEHNZ".

O
Therefore, in the realm of generalized permutahedra, SNP carries through products.

Proposition 2.4 If f, g € R>o[xy, ..., x,] have SNP and Newton( f), Newton(g) are
generalized permutahedra, then

(i) Newton(fg) is a generalized permutahedron;
(ii) fg has SNP.

Proof For any polynomials f and g, Newton(fg) = Newton( f) + Newton(g). State-
ment (i) follows from Lemma 2.2. Statement (ii) follows from Lemma 2.2 and Theorem
2.3. O

3 Schubitopes and an Integer Linear Program

We are interested in a particular family of generalized permutahedra. For an arbitrary
subset D C [n] x [m], the Schubitope Sp was defined by C. Monical, N. Tokcan, and
the second author [16] (for squares [1] x [n] instead of rectangles [n] x [m], but the
difference is negligible).

Fix § € [n] and a column ¢ € [m]. Let w. s(D) be formed by reading ¢ from top
to bottom and recording

o (if(r,c)¢ Dandr € S,
e )if(r,c) e Dandr ¢ S, and
e xif (r,c) e Dandr € S.

Let
05, (S) = #paired ()'s inw,, s(D) + #'s inw,, s (D).
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Y

8.
o <
T1T3T4 0 1<
2 (6%} S
X153 <

2.2 °

xriT3¢ a3 S
2 <
T1x2T3 s 122 Qg >
¢ 15254 aq + (0%)] + (6% S
2,2 ar+ay+as <
*T1T5
zias e ° o1+ az+ag <
g+ ag+ oy <

x?le ° xi’xQ art+ o+ as3+ag =

Fig. 1 Sp(21543) = Newton(S7543) and a minimal set of defining inequalities

Set Op(S) = Zce[m] GB(S). Define the Schubitope as

n
Sp = {(otl,...,ot,,) € R;O : Zai =#D and Zai < 0p(S)forall S C [n]}.

i=l ieS
Example 3.1 (c¢f. [16, Section 1]) Let w = 21543. The Schubert polynomial of w is

Gu = xix2 + X3 + x7xg + x7x3 4+ x7x3 4 2xixox3 + xPx0x4 + x7x3%4
+ x]xzx32 + xlx%x3 + X]X%X4 + x1x§x4 + X1X2X3X4.
As stated in Theorem 4.3, Sp(y) = Newton(&,,). This generalized permutahedron
and a minimal set of defining inequalities are shown in Fig. 1. O

Given a diagram D and any point o, we wish to efficiently determine whether
a € Sp. However, Sp is described by exponentially many inequalities. A way around
this is to work instead with the polytope P (D, «) introduced by A. Adve, C. Robichaux,
and the second author in [1], which is able to detect membership in Sp.

Given D C [n] x [m] and o = (a1, ..., &) € ZZ,. Let

P(D,a) CR"™™
be the polytope whose points
(@ij)1<i<n,i<j<m = (@11, ..., Opl, ooy Oliny « ooy Olpn)

satisfy the inequalities (I),(IT),(IIT) below.
(I) Column-injectivity: For all i, j € [n],

0505,']'<1.
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Generalized Permutahedra and Schubert Calculus 523

(IT) Content: Forall i € [n],

n
Zaij = ;.
j=1
(IIT) Row bounds: For all s, j € [n],

D i = #{(,j)eD:i<s).

i=1
Define Tab(D, «) to be the set of fillings of D with nonnegative integers, such that

(a) Each column is strictly increasing from top to bottom.
(b) Any label £ in row r satisfies £ < r.
(¢) The number of £’s is ay.

Theorem 3.2 [1, Theorem 1.3] Suppose D C [n] x [m]. Then
ae€SpNZ" < Tab(D,a) # .

The map [ : Tab(D,a) — P(D, ), that sets a;j = 1 if the label i appears in
column j of D, and set a;j = 0 otherwise, is a bijection. Therefore, Tab(D, o) #
ifand only if oy + - - -+ oy = #D and P(D, o) N "™ £ (.

Theorem 3.3 [1, Theorem2.2.7] Let D C [n] x [m]and o = (ay, ..., a,) € Z" with
ay+ -+ a, =#D. Then, P(D, ) NZ"™ #£ @ if and only if P(D, o) # .

The above two theorems, combined with the ellipsoid method and/or interior point
methods in linear programming, imply:

Corollary 3.4 [1] Deciding if « € Sp, or equivalently, if Tab(D,a) = @, can be
determined in O(poly(n, m))-time.

As explained in [1], using the codes of w® as the encoding of the decision problem,
or “compressing” D, one can reduce the upper bound on the complexity. We will not
pursue these technical improvements here.

4 Schubert Polynomials and Schubitopes
4.1 Schubert Polynomials

Our reference for Schubert polynomials is [15]. They are recursively defined; the initial
condition is that for wy € S,

. n—1_n-2
Guy :=X] Xy - Xp—1.
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524 A. St. Dizier, A. Yong

The divided difference operator on polynomials in Pol := Z[xy, x2, ...] is

FCo X Xigts ) = [l X1, Xy )
Xi — Xi+1

d; : Pol — Pol, f+—

If w # wo, let i satisfy w(i) < w(i + 1), then &,, := 9;S,y,. Since the divided
difference operators satisfy the braid relations

0;0; = 0;0; for |i — j| >2; 0;0;410; = 0i4+10;0;41,
it follows that G,, only depends on w, and not the choices of i in the recursion.
Schubert polynomials are stable under the inclusion of S,, < S,,41 that sends w to
w withn+ 1 appended. Thus, one unambiguously defines G, forw € S = Unz] Sn-

The set of Schubert polynomials {S,, : w € S} forms a Z-linear basis of Pol.
Borel’s isomorphism [8, Chapter 9; Prop. 3] asserts

H*(X) Z Qlx1, ..., x,1/I5 where I = (eq(x1,...,xp) : 1 <d <n),
and

ea(X1, ..., xp) = > Xiy Xiy *++ Xig

1<ij<ip<--<ig<n
is the dth elementary symmetric polynomial. Under this isomorphism
ow > Gy + 157, A3)
One has the polynomial identity

6.6, = Y CV,6, € Pol.

WESso

.....

we also write with the coefficient operator as [o,w ] ]_[f:f Oyl -

w®

w .
k—1 .

[T;.=) Sy. In particular, Cf, = Cy v, wow-

w®

Lemma4.1 C wk=1 ow® - Also, Cw“)

,,,,,

k=D = Cp

.....

Proof Duality in Schubert calculus (see, e.g., [15, Proposition 3.6.11]) states that if
£(u) + £(v) = (5), then

o o oy, 1fv=wou
u ~~— Oy = .
0 otherwise.
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Generalized Permutahedra and Schubert Calculus 525

Now
k—1
J— Cw(k) + Cw
Ow® = Gyt k-1 %w® w | wk-DOw-
i=l weS,,w#w®

Multiply both sides by o, ,,« and apply duality. Then, use (1) to obtain the first
statement. The second assertion follows from (3). The final claim is merely the k = 3

case. O
Lemma 4.2 If(w(l), e, w(k)) is a Schubert problem, then
k
Coptr o = X712 1] nGwm-
i=1
Proof This follows from (1), (3), and &, = x7~'x572 -+ x,_1. O

4.2 Schubitopes are Newton Polytopes

This result from work of Fink, Mészaros, and the first author [7] proves conjectures
of [16]:

Theorem 4.3 [7, Theorems 7,10] &,, has SNP, and Newton(&,,) = Sp) is a
generalized permutahedron.

Proposition 4.4 f = [["=| &, has SNP. In addition

k—1
Newton(f) = Z Sptry (Minkowski sum). @)
i=1
Proof This follows from combining Theorem 4.3 with Proposition 2.4. O

By the same argument as Proposition 4, any product of key polynomials (see, e.g.,
[20]) with Schubert polynomials is SNP, and has a similarly described Newton poly-
tope.

Corollary 4.5 Ifa € 7" ,, then

>0
k—1 k—1
[ [ S0 #0 & a € Spum.
i=1 i=1
Proof Let f = ]_[f;ll G- If [x*]1f # 0, then « € Newton(f). Now, apply

(4). Conversely, by (4), « € Newton(f). By Proposition 4.4, f has SNP. Hence,
[x“1f # 0. o
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4.3 The Asymmetric Version of Theorem A

Let D' := D(w®, ..., w* D) andlet Tab' := Tab) , bethesetof fillings of

D’ with nonnegative integers, such that:

(a) Each column is strictly increasing from top to bottom.
(b) Any label £ in row r satisfies £ < r.
(c) The number of £’s is ¢g (w®).

TheoremB Let (w®, ..., wow®) be a Schubert problem. If Tab' = 1, then

® ) . . . .
C$<1),w(2>,...,w<k—1> = 0. Thereis an algorithm to determine emptinessin O (poly(k, n)).

Proposition 4.6 If Theorem A’s test shows C,) 1) ) = O, then Theorem B’s

,,,,,

Example 4.7 The converse of Proposition 4.6 is false. That is, Theorem B provides a
strictly stronger test than Theorem A. For example

4 4 3
6412361342 = X7 X3 + x7x2 + X7 X2X3

avoids code(4312) = 3200 as an exponent vector, proving C;’fv = C2132132’]342 = 0.
However

GuG Gy = xix3 + x7x3 + 3xTxox3 + x3x0x7 + xix3x3 + x7x3 + 1712
implies Tab # ¥, and hence, Theorem A does not show C, , wow = C4123,1342,1243

=0. ]

4.4 The Schubitope Inequalities and Schubert Calculus
The Schubitope inequalities provide necessary conditions for nonvanishing of a Schu-
bert intersection number.

Theorem C If Cpy @ o > 0, then (n — 1,n —2,...,2,1) must satisfy the
Schubitope inequalities defining Sp where D = DWW, ... w®). Similarly, if
C;‘jg; -l > 0, then code(w®) must satisfy the Schubitope inequalities defin-

.....

ing Spy where D' = D(w®, ..., w*=D),
Let

T
SA(xl,--ka)ZZX
T

be the Schur polynomial of &, where the sum is over semistandard Young tableaux of
shape A filled using {1,2, ..., k} and x” = [T_, x*€7. Then

S L XS (X LX) = el s, k),
v
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Generalized Permutahedra and Schubert Calculus 527

where ¢ is the Littlewood—Richardson coefficient. By the proof of [16, Proposition
2.9]

x" € 55, if and only if v € Newton(sy4,) = Pat, ( the permutahedron for A + u).

&)

By Rado’s theorem [19, Theorem 1], this means v <pem A + @ (dominance order).
That is

t t t

%

Cop > 0 —= Zvi < ZM—i—va fort > 1.
i=1 j=1 k=1

These are instances of the famous Horn’s inequalities; see the survey [9]. Those are
generalized in the “Levi-movable” case of X in work of P. Belkale-S. Kumar [4]. Our
methods are in the same vein. Hence, we speculate that Theorem C is a first glimpse of
putative linear inequalities that control C,,a) & > 0. We hope to study this further
in a sequel.

4.5 Proof of Theorems A, B, C and Proposition 4.6
We combine the proofs of these four results, since they all stem from the same
reasoning.
We prove Theorem B first. It is known (e.g., follows from [15, Theorem 2.5.1])
that
[x &, # 0. ©)

Hence

,,,,,

k—1
(k) (k)
[xcade(w )] 1‘[ Sy =0=C%) o e =0
i=1
By one direction of Corollary 4.5

k—1 k—1
[xwde(w(k))] 1_[ S, =0 code(w®) ¢ Newton (l_[ 6w(i)>

i=1 i=1

k—1
= Spwi)- )
i=1

By Theorem 4.3, each Sy, is a generalized permutahedron. Hence, by Lemma 2.2

k—1
Newton (1_[ Gw(;)) =Sp.

i=1
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Now, we may apply Theorem 3.2 in the special case that D = D’ and « = code(w®)
to obtain the second sentence of the theorem. The final sentence follows from Corol-
lary 3.4. This completes the proof of Theorem B.

The proof of Theorem A is the same, except that we use Lemma 4.2.

Theorem C follows from the above arguments, combined with Theorems 3.2
and 4.3.

Finally, we turn to Proposition 4.6. We prove the contrapositive. Suppose Theo-
rem B’s test is inconclusive, that is

I:xcodE(w<k)):| Gw(l) e Gw(k,l) ;é 0. (8)

Claim 4.8 If w € S, then code(w) + code(wow) = (n —1,n —2,...,3,2,1,0).

Proof of Claim 4.8 By definition of D(w)
c(w)=(wr)—1) —#{i <r:w@) <w()}.
On the other hand

cr(wow) = (wow((r) — 1) —#{i <r : wow(@) < wow(r)}
=((n+1—-—w@) -1 —#i <r:wkr) <w@))}.

Hence, ¢, (w) 4 ¢, (wow) = n — r, as desired. ]
By (6) and (8) combined

n—1_n-2
I:)c1 xy - ~x,,_1:| (qu) .. Gw(k—l)) Gwow(k)

[t ] (0 ) (s 2
where inequality is by Claim 4.8. Thus, Theorem A’s test is inconclusive. O

4.6 A Flexible Version of the Asymmetric Test

The condition (c) in defining Tab’ can be replaced by the exponent vector of any
monomial in &, . Unfortunately, the number of such exponent vectors is potentially
large. Instead, one can sample points from Sp(y) as follows. Construct the Rothe
diagram D(w). Fix a column ¢ of D(w). Suppose the boxes of D(w) in that column
are in rows r1, 72, ..., 7. Find integers 1 < x; < x2 < ... < xz, such that x; < r;.
Repeat for every column c. The result is an element of Tab(D(w), @) for some «.
(Thus, one can create a randomized version of Theorem B.)
It is possible that, even with choice, no exponent vector exhibits nonvanishing:

451623 -
Example 4.9 C331645.231645 = 0. Now

3.3.2 3.3 3,3.2
G451623 = X7 X3x4 + X7X5X3X4 + X]X3X3.
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Generalized Permutahedra and Schubert Calculus 529

Here, code(451623) = 3302. One can check that

0de(451623) 12 3.3 292 3.3 2

[reodet 1631645 > 0. 6703531633 1645 > 0, and [x{ 1303041633645 > 0.
Thus, Theorem B’s test is inconclusive using any choice of monomial from

Sus1623- m

Individual monomials have no geometric meaning in Schubert calculus. Thus, our
tests seem inherently combinatorial, as opposed to being avatars of the geometry.

Remark 4.10 Textbook linear programming results implying efficiency of Theorems A
and B offer an additional benefit. There is a short certificate when T'ab or T ab’ is empty.
This follows from standard reasoning using Farkas’ lemma.

Theorem C provides an alternative certification method. Recording one Schubitope
inequality defining Sp for which (n,n — 1, ..., 2, 1) fails proves Cypy . wo =0.
(A similar statement holds about Sp.)

5 Comparisons to Other Vanishing Tests

We compare our tests to three non-ad hoc vanishing tests. There are examples where
our method is successful where the others are not, and vice versa.

5.1 Bruhat Order

Bruhat order on S, is (combinatorially) defined as the reflexive and transitive closure
of the covering relations u < ut;; if £(ut;;) = £(u) + 1, where t;; is the transposition
interchanging i and j. There exist efficient tests to determine u < v, such as the
Ehresmann tableau criterion [15, Proposition 2.2.11]. The following is well known;
we include a proof, since we do not know where it exactly appears in the literature:

Fact5.1 (Bruhat vanishing test) Cpr, b = 0 ifw<i) ﬁ wow(j)for somei, j.

Proof We prove the case k = 3; the general case is similar. Say u £ wow but
Cuv.w > 0.ByLemmad4.1,C,S" = Cyyw > 0. Monk’s formula 15, Theorem 2.7.1]
states that if z € S,

0z~ Utm,m+l = Zaﬂjk € H*(X)a (9)

the sum is over all j < m < k, such that £(zt;;) = £(w) + 1 and z¢j; € S,. Suppose
Sm i=tmt1 a0d UV = Sy Sy - “Smi) is areduced expression for v. By (9), for some
o € Zo

£(v)
l_[ Oy, = A0y + (positive sum of Schubert classes). (10)

i=1
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By induction using (9)

£(v)
[oy]0u [ [ o5, #0 = y = u. (11)

i=1
By the positivity of Schubert calculus, and the assumption C,/%" > 0

[owew] ou (e oy + (positive sum of Schubert classes)) # 0.

In view of (10), this contradicts (11). O
We give bad news first:

Example 5.2 (u,v,w) = (1243, 1342,3142) is a vanishing problem detected by

Fact 5.1 since 1342 = v £ wow = 2413. Our methods do not detect C,," =
2413 :

Ci243,1342- Since

S12436 1342 = x2x§ + x1x§ + 3x1x2x3 + x22x3 + xlxg + x%m + x12x2

contains both monomials of &,y = G2413 = xlx% + xlzxz, no monomial of &,y
can be used to detect vanishing. In particular, Theorem B is inconclusive (and hence,

by Proposition 4.6, the symmetric test is also inconclusive.) Since Cy, .,y = Cp% =
C./%;, one hope that the asymmetric method shows either Cy'% = C{313 5,4, = 0 or

CulY = nggm 4 = 0. Unfortunately, both attempts are similarly inconclusive. O

Example 5.3 The vanishing of the Schubert problem (u, v, w) = (1423, 1423, 1423)
is undetected by Fact 5.1. Now

6%423 = xg + 3x1x§ + 6x12xg + 7x13x§ + 6x?x§ + 3x15x2 + x16

does not contain &y, = Gs321 = xfx%xg, and hence, vanishing is seen by
Theorem A. |

5.2 A.Knutson’s Descent Cycling

In [12], A. Knutson introduced a vanishing criterion. Recall that u € S, has a descent
at position i if u(i) > u(i + 1) and has an ascent at position i otherwise. That is,
respectively, us; < u and us; > u.

Fact5.4 (dc triviality) If (u, v, w) is a Schubert problem, such that us; > u, vs; >
v, ws; > w, then Cy 4,y = 0.

Example 5.5 The triple (1423, 1423, 1342) is dc trivial, and hence, C1423,1423,1342 =

0. Here, the asymmetric test (Theorem B) is inconclusive (again, thus by Proposi-

tion 4.6, the symmetric test is also inconclusive). Indeed, C;/%" = C{213 |53 = O is

@ Springer



Generalized Permutahedra and Schubert Calculus 531

not detected, since
Gy = x5 +2x1x3 + 3xix5 + 2xix0 + x},
b _ .3 wov __ wou __ :
ut Sygw = G4213 = x7x2. Also, Cyyy = 0and Cy 3y = 0 are not detected, since
G 142381342 = X3X3 + 2X1X3x3 + 2X7X2%3 + X7 X3 + X1X3 + X1X5 + X7 X0
Since Gypu = Gyyv = G432 = x?xg + x?xz, no lattice point in Sp4132) proves

vanishing. O

Example 5.6 The Schubert problem (3256147, 2143657, 4632175) from Example 1.1
is not dc trivial, but C3256147,2143657,4632175 = 0, as determined by Theorem A. O
Define the descent cycling equivalence ~ on Schubert problems by

(dc.l) (u, v, w) ~ (us;, v, ws;), (u, vs;, ws;) if us; > u, vs; > v, ws;
(dc.2) (u, v, w) ~ (us;, v, ws;), (us;, vs;, w) if us; < u, vs; > v, ws;
(dc.3) (u, v, w) ~ (u, vs;, ws;), (us;, vs;, w) if vs; < v, us; > u, ws;

IV IV IA
S EE

Therefore, Cy, y,w = 0if (4, v, w) is ~ equivalent to a dc trivial problem.

Example 5.7 As reported in [12], for n = 6, there is one dc equivalence class of
problems (u#, v, w) which vanishes, but does not contain a dc trivial triple. This is
precisely the problem studied in Example 4.9, which our methods also cannot explain.

O

Example 5.8 Let (u, v, w) = (3216547, 3216547, 4261573) be a problem in §7. The-
orem A shows C,, ., = 0 (any element of Tab must contain at least seven 1’s). The
~ class contains 9 elements, namely

(3216574, 3261547, 4216537), (3216547, 3216574, 4261537), (3261547, 3216574, 4216537),
(3261547, 3216547, 4216573), (3216574, 3216547, 4261537), (3216547, 3216547, 4261573),
(3261574, 3216547, 4216537), (3216547, 3261574, 4216537), (3216547, 3261547, 4216573).

None are dc trivial. 0

5.3 K. Purbhoo’s Root Games

K. Purbhoo’s root games from [18] give a vanishing criteria. Fix the positive roots
®T associated with GL,, to be a;jj=¢ —¢gjforl <i < j<n, whereg; is the ith
standard basis vector. The poset P of positive roots takes the form shown in Fig. 2.
The maximal element of this poset is the highest root «1,,. For each i, place a token
e in square o, if w®dDm) > w®(n). This is called the initial position. An upper
order ideal A is an up-closed subset of P, a subset containing any roots lying above
any of its members (see Fig. 2). This initial position is doomed if there exists an upper
order ideal A, such that there are more tokens in A than #A. This is [18, Theorem 3.6]:
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Fig.2 The poset P of positive

roots associated with G L7 (g|(3|Q14|Qiy 5|16 |17

(23|24 |Ca5|Cp| a7

(34|(i35|(036|CX37

Qy5|Q46|C47

Q56057

Qg7

Fact 5.9 (Doomed root game) If (wV, ... w®)’s initial position is doomed,
Cw(l)w.’w(k) =0.

This test is quite handy. However, the number of upper order ideals for type A, 1

is the Catalan number C,, = ,,lﬁ (znn), which is exponential in 7.

Example 5.10 The vanishing of (1423, 1423, 1342) is seen by Fact5.9. This is doomed

o (000
[
As is explained in Example 5.5, our methods are inconclusive here. O

Example 5.11 Let u = v = 3216547 and w = 1652473. Below, we mark the inver-
sions of u, v, w with e, e, e respectively

This game is not doomed, so Fact 5.9 is inconclusive here. (Descent cycling does
not help either, as the equivalence class of size 9 contains no dc trivial elements.)

Also, Theorem A does not succeed. However, Theorem B’s test shows Cfff o =
7236415 -0 O
3216547,3216547 — V-
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