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Proper permutations, Schubert geometry, and
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We define and study proper permutations. Properness is a geo-
metrically natural necessary criterion for a Schubert variety to be
Levi-spherical. We prove the probability that a random permuta-
tion is proper goes to zero in the limit.
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1. Introduction

Let X denote the variety of complete flags

〈0〉 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ C
n,

where Fi is a subspace of dimension i. The general linear group GLn of
invertible n× n complex matrices acts naturally on X by basis change. Let
B ⊂ GLn be the Borel subgroup of upper triangular invertible matrices.
B acts on X with finitely many orbits; these are the Schubert cells X◦

w in-
dexed by permutations w in the symmetric group Sn on [n] := {1, 2, . . . , n}.
Their closures

Xw := X◦
w

are the Schubert varieties ; these objects are of significant interest in com-
binatorial algebraic geometry. A standard reference is [3] and we also point
the reader to the expository papers [6, 8].
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Now, dimXw = �(w) where

�(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)}

counts inversions of w. Also, let

J(w) = {1 ≤ i ≤ n− 1 : w−1(i+ 1) < w−1(i)}

be the set of left descents of w. Assume I ⊆ J(w) and let

D := [n− 1]− I = {d1 < d2 < . . . < dk};

also, d0 := 0, dk+1 := n. Let LI ⊆ GLn be the Levi subgroup of invertible
block diagonal matrices

LI
∼= GLd1−d0

×GLd2−d1
× · · · ×GLdk−dk−1

×GLdk+1−dk
.

As explained in, e.g., [7, Section 1.2], LI acts on Xw. Moreover, Xw is said
to be LI-spherical if Xw has a dense orbit of a Borel subgroup of LI . If in
addition, I = J(w), we say Xw is maximally spherical. We refer the reader
to ibid., and the references therein, for background and motivation about
this geometric condition on a Schubert variety.

Definition 1. Let d(w) = #J(w). w ∈ Sn is proper if �(w)−
(
d(w)+1

2

)
≤ n.

For 1 ≤ n ≤ 10, proper permutations are not rare; the enumeration is:

1, 2, 6, 24, 120, 684, 4348, 30549, 236394, 2006492, . . .

Proposition 2.1 shows that if Xw is LI -spherical for some I ⊆ J(w), then
w is proper. The proof explains the Lie-theoretic origins of the condition.
We study proper permutations using standard probabilistic considerations,
but towards our geometric application.

Theorem 1.1. If w ∈ Sn is chosen uniformly at random,

lim
n→∞

Pr[w is proper] = 0.

Proposition 2.1 and Theorem 1.1 combined imply our main result:

Theorem 1.2.

lim
n→∞

Pr[w ∈ Sn, Xw is LI-spherical for some I ⊆ J(w)] = 0.
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In particular,

lim
n→∞

Pr[w ∈ Sn, Xw is maximally spherical] = 0.

While it is a “common-sense expectation” that specific geometric condi-
tions on Schubert varieties are rarely met, Theorem 1.2 gives the first proof
of this fact for the sphericality condition.

We also resolve a conjecture from [7]. In ibid., the second and third au-
thors introduced the notion of permutation w ∈ Sn being I-spherical ; in the
case I = J(w) we call w ∈ Sn maximally spherical. This combinatorial defi-
nition is recapitulated in Section 2. Proposition 2.2 shows that if w ∈ Sn is
I-spherical, then w is proper. That proposition, together with Theorem 1.1,
gives the first proof of [7, Conjecture 3.7]:

Theorem 1.3.

lim
n→∞

Pr[w ∈ Sn, w is I-spherical for some I ⊆ J(w)] = 0.

Therefore,

lim
n→∞

Pr[w ∈ Sn, w is maximally spherical] = 0.

Since this work was announced in December 2020, the second and third
author, together with Y. Gao [5] proved that if I ⊆ J(w) then w ∈ Sn is
I-spherical if and only if Xw are LI -spherical; this was [7, Conjecture 1.9].
Therefore, post facto, Theorems 1.2 and 1.3 are equivalent (earlier, we had
regarded Theorem 1.3 as evidence of [7, Conjecture 1.9]). Additionally, using
this characterization proved in [5], C. Gaetz [4] solved [7, Conjecture 3.8]
which, combined with the Marcus–Tardos theorem (Stanley–Wilf conjec-
ture), implies a strengthened form of [7, Conjecture 3.7] and thus Theo-
rem 1.2. In contrast, we do not use [5] nor the Marcus–Tardos theorem.
Rather our proof is essentially self-contained, relying instead on the notion
of properness.

In Section 2 we prove Theorems 1.2 and 1.3, assuming Theorem 1.1. We
then prove Theorem 1.1 in Section 3.

2. Properness is necessary for sphericality; proof of
Theorems 1.2 and 1.3

Let T be the maximal torus of diagonal matrices in GLn. For I ⊆ J(w),
define

BI = LI ∩B.
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Hence BI is the Borel subgroup of upper triangular matrices in LI . For a
positive integer j, let Uj be the maximal unipotent subgroup of GLj con-
sisting of upper triangular matrices with 1’s on the diagonal. Then

(1) dimUj =

(
j

2

)
.

Let UI be the maximal unipotent subgroup of BI . It is basic (see, e.g., [1,
Chapter IV]) that

(2) UI
∼= Ud1−d0

× Ud2−d1
× · · · × Udk−dk−1

× Udk+1−dk
.

Proposition 2.1. If Xw is LI-spherical then w is proper.

Proof. Since LI acts spherically on Xw, by definition, there is a Borel sub-
group K ⊂ LI such that K has a dense orbit O in Xw. Thus

dimXw = dimO.

Let x ∈ O. By [2, Proposition 1.11],

O = K · x

is a smooth, closed subvariety of Xw of dimension dimK − dimKx, where
Kx is the isotropy group of x. Hence

(3) dimXw = dimO = dimK − dimKx ≤ dimK.

All Borel subgroups of a connected algebraic group are conjugate [1,
§11.1], and so

dimK = dimBI .

The fact that LI acts on Xw implies I ⊆ J(w), and hence LI ⊆ LJ(w) [7,
Section 1.2]. This implies BI ⊆ BJ(w). By [1, Theorem 10.6.(4)],

BI = T � UI .

Combining all this we have

(4) dimK = dimBI ≤ dimBJ(w) = dimT + dimUJ(w).

Let

D = [n− 1]− J(w) = {d1 < d2 < . . . < dk}.
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It follows from (1) and (2) that

dimUJ(w) =

(
d1 − d0

2

)
+

(
d2 − d1

2

)
+ · · ·+

(
dk+1 − dk

2

)
.

The right hand side is maximized when there exists a t such that dt−dt−1 =

n− k and dj − dj−1 = 1 for all j �= t. Thus

dimUJ(w) ≤
(
n− k

2

)
=

(
n− ((n− 1)− d(w))

2

)
=

(
d(w) + 1

2

)
.

Combining this with (3), (4), and the fact that �(w) = dimXw, we see

�(w) ≤ n+

(
d(w) + 1

2

)
,

that is, w is proper.

Next, we recall the definition of I-spherical permutations in Sn [7]. Let

si = (i i+ 1) denote the simple transposition interchanging i and i+ 1. An

expression

w = si1si2 · · · si�
for w ∈ Sn is reduced if � = �(w). Let Red(w) be the set of all reduced

expressions for w.

Definition 2 (Definition 3.1 of [7]). w ∈ Sn is I-spherical if

R = si1si2 · · · si�(w)
∈ Red(w)

exists such that

(I) sdi
appears at most once in R

(II) #{m : dt−1 < im < dt} ≤
(
dt−dt−1+1

2

)
− 1 for 1 ≤ t ≤ k + 1.

This is a combinatorial analogue of Proposition 2.1:

Proposition 2.2. Let w ∈ Sn and I ⊆ J(w). If w is I-spherical then w is

proper.

Proof. First suppose I = J(w). Consider a reduced word R ∈ Red(w). By

Definition 2(I), at most n− 1− d(w) of the factors of R are of the form sx
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where x �∈ J(w). Thus, at least �(w)− (n− 1− d(w)) factors are of the form
sx where x ∈ J(w). Clearly, if j1, . . . , jk are positive integers then

k+1∑
i=1

(
ji + 1

2

)
≤

(
j1 + · · ·+ jk+1 + 1

2

)
.

Equivalently,

k+1∑
i=1

(
ji + 2

2

)
−1=

k+1∑
i=1

(
ji + 1

2

)
+ji ≤

(
j1 + · · ·+ jk+1 + 1

2

)
+(j1+· · ·+jk+1).

Set ji = di − di−1 − 1 (for 1 ≤ i ≤ k + 1). Then

j1 + . . .+ jk+1 = dk+1 − d0 − (k + 1) = n− 1− k = d(w).

Thus, by Definition 2(II), at most
(
d(w)+1

2

)
+ d(w) factors are of the from sx

where x ∈ J(w). Therefore,(
d(w) + 1

2

)
+ d(w) ≥ �(w)− (n− 1− d(w)).

Rearranging,

�(w) ≤ n− 1− d(w) +

(
d(w) + 1

2

)
+ d(w)⇐⇒ �(w) < n+

(
d(w) + 1

2

)
.

So, w is proper.
For I �= J(w), we use that if w is I-spherical then w is J(w)-spherical

[7, Proposition 2.12].

Conclusion of proof of Theorems 1.2 and 1.3. These claims follow immedi-
ately from Theorem 1.1 combined with Proposition 2.1 and Proposition 2.2,
respectively.

Although we chose not to pursue it, using similar techniques, it should
be possible to prove analogues of our results for the other classical Lie types.

3. Proof of Theorem 1.1

We apply standard methods in probabilistic combinatorics (see, e.g., D. Zeil-
berger’s [10]). However, we are not aware of the result itself in the literature.
In any case, our argument is derived from first principles.
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For w ∈ Sn, define

Eij = the event {w−1(i) > w−1(j)}.

Let Xij be the indicator for Eij ; that is, Xij = 1 if event Eij happens and
Xij = 0 otherwise. Then if w is chosen from Sn uniformly at random, then:

E [Xij ] = Pr [Xij = 1] =
1

2!
(1− δi,j) = 1− Pr [Xij = 0] .

Since �(w) = �(w−1) and #J(w) = #{i : w−1(i+ 1) < w−1(i)}, the random

variable (r.v.) �(w)−
(
d(w)+1

2

)
can be modeled as the r.v.

X := L−
(
D + 1

2

)
,

where:

L =

n∑
i=1

n∑
j=i+1

Xij ,

and D =

n−1∑
i=1

Xi,i+1.

Notice that if i1, i2, i3, i4 ∈ [n] are distinct, then Xi1,i2 and Xi3,i4 are inde-
pendent.

Lemma 3.1. For n ≥ 2,

E [X] =
3n2 − 7n+ 2

24
.

Proof. It is true that:

(a) (Xi,j)i<j are identically distributed,

(b) E [Xi,i+1Xi,i+1] = E

[
X2

i,i+1

]
= E [Xi,i+1] = 1/2 since Xi,i+1 is an

indicator r.v.,
(c) E [Xi,i+1Xi+1,i+2] = Pr

[
w−1(i) > w−1(i+ 1) > w−1(i+ 2)

]
= 1

3! ,
(d) Xi,i+1 and Xj,j+1 are independent if i+ 1 < j.

With this, the expression E [L] can be expanded as:

E [L] = E

⎡
⎣ n∑

i=1

n∑
j=i+1

Xij

⎤
⎦
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=

n∑
i=1

n∑
j=i+1

E [Xij ] lin. of expectation

=
1

2

(
n

2

)
identically distributed.

Similarly,

E [D] =
n− 1

2
.

Next, the expression E
[
D2

]
can be expanded as:

E
[
D2

]
= E

⎡
⎣(n−1∑

i=1

Xi,i+1

)2
⎤
⎦

= E

⎡
⎣n−1∑

i=1

X2
i,i+1 +

n−1∑
i=1

∑
j �=i

Xi,i+1Xj,j+1

⎤
⎦

=

n−1∑
i=1

E
[
X2

i,i+1

]
+

n−1∑
i=1

∑
j �=i

E [Xi,i+1Xj,j+1] lin. of expectation

=
n− 1

2
+

n−1∑
i=1

∑
j �=i

E [Xi,i+1Xj,j+1] by (b)

=
n− 1

2
+ 2

n−1∑
i=1

n−1∑
j=i+1

E [Xi,i+1Xj,j+1]

=
n− 1

2
+ 2

⎛
⎝n−2∑

i=1

E [Xi,i+1Xi+1,i+2] +

n−1∑
i=1

n−1∑
j=i+2

E [Xi,i+1Xj,j+1]

⎞
⎠

=
n− 1

2
+ 2

(
n− 2

3!
+

1

22

((
n− 1

2

)
− (n− 2)

))
by (c) and (d))

=
n− 1

2
+

n− 2

3
+

1

2

((
n− 1

2

)
− (n− 2)

)
.

Thus by linearity of expectation,

E

[(
D + 1

2

)]
=

1

2
E
[
D2 +D

]
=

n− 1

2
+

n− 2

6
− n− 2

4
+

1

4

(
n− 1

2

)
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and

E [X] = E

[
L−

(
D + 1

2

)]

= E [L]− E

[(
D + 1

2

)]

=
3n2 − 7n+ 2

24
.

Lemma 3.2.

E
[
X2

]
=

n4

64
+ o(n4).

Proof. Notice that:

E
[
X2

]
= E

[
L2

]
+ E

[(
D + 1

2

)2
]
− 2E

[
L

(
D + 1

2

)]

= E
[
L2

]
+

1

4

(
E
[
D4

]
+ 2E

[
D3

]
+ E

[
D2

])
− E

[
LD2

]
− E [LD] .

Now, 0 ≤ D3, D2, LD ≤ n3, so

E
[
D3

]
,E

[
D2

]
,E [LD] = o(n4).

Thus it suffices to study the asymptotics of E
[
L2

]
,E

[
D4/4

]
,E

[
LD2

]
.

We will repeatedly use the following observation. For a set S with |S| =
o(f(n)):

(5)
∑

(i1,j1,...,ic,jc)∈S
E

[
c∏

k=1

Xik,jk

]
≤ |S| = o(f(n)).

Expanding E
[
L2

]
gives:

E
[
L2

]
=

n∑
i=1

n∑
j=i+1

n∑
i′=1

n∑
j′=i′+1

E [Xi,jXi′,j′ ] .

There are
(
n
2

)2
= n4/4 + o(n4) many terms in this summation. Further,

there are
(
n
2

)(
n−2
2

)
= n4/4+ o(n4) many terms in this summation such that

i, j, i′, j′ are distinct. Therefore, there must be o(n4) terms where i, j, i′, j′
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are not distinct. Now,∑
distinct i<j,i′<j′∈[n]

E [Xi,jXi′,j′ ]

=
∑

distinct i<j,i′<j′∈[n]
E [Xi,j ]E [Xi′,j′ ] (independence when indices are distinct)

=

(
1

2

)2(n
2

)(
n− 2

2

)

=

(
1

2

)2

(n4/4 + o(n4)).

Combining this with (5) gives

(6) E
[
L2

]
=

1

16
n4 + o(n4).

To expand E
[
D4/4

]
, first we have

E
[
D4

]
=

n−1∑
i=1

n−1∑
j=1

n−1∑
i′=1

n−1∑
j′=1

E [Xi,i+1Xj,j+1Xi′,i′+1Xj′,j′+1] .

There are (n − 1)4 = n4 + o(n4) many terms in this summation. Further,
there are 4!

(
n−4
4

)
= n4 + o(n4) many terms in this summation such that

i, i + 1, j, j + 1, i′, i′ + 1, j′, j′ + 1 are distinct. Here we have used the fact
that there are

(
n−k
k

)
ways to choose k non-consecutive numbers from [n−1].

Therefore, there must be o(n4) terms where i, i+1, j, j+1, i′, i′+1, j′, j′+1
are not distinct. We compute

1

4
·

∑
i,j,i′,j′∈[n]

i,i+1,j,j+1,i′,i′+1,j′,j′+1 are distinct

E [Xi,i+1Xj,j+1Xi′,i′+1Xj′,j′+1]

=
1

4
·

∑
i,j,i′,j′∈[n]

i,i+1,j,j+1,i′,i′+1,j′,j′+1 are distinct

E [Xi,i+1]E [Xj,j+1]E [Xi′,i′+1]E [Xj′,j′+1]

=
1

4
·
(
1

2

)4

· 4!
(
n− 4

4

)

=
1

4
·
(
1

2

)4

(n4 + o(n4)).
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Hence by (5),

(7) E
[
D4/4

]
=

1

64
n4 + o(n4).

Expanding E
[
LD2

]
gives:

E
[
LD2

]
=

n∑
i=1

n∑
j=i+1

n−1∑
i′=1

n−1∑
j′=1

E [Xi,jXi′,i′+1Xj′,j′+1] .

There are
(
n
2

)
(n−1)2 = n4/2+o(n4) many terms in this summation. Further,

there are 2!
(
n−2
2

)(
n−4
2

)
= n4/2 + o(n4) many terms such that i, j, i′, i′ + 1,

j′, j′ + 1 are distinct. This can be seen by first choosing i′ and j′, and then
choosing the pair (i, j) such that i < j. Therefore, there must be o(n4) terms
where i, j, i′, i′ + 1, j′, j′ + 1 are not distinct. We have:∑

i<j,i′,j′∈[n]
i,j,i′,i′+1,j′,j′+1 are distinct

E [Xi,jXi′,i′+1Xj′,j′+1]

=
∑

i<j,i′,j′∈[n]
i,j,i′,i′+1,j′,j′+1 are distinct

E [Xi,j ]E [Xi′,i′+1]E [Xj′,j′+1]

=

(
1

2

)3

· 2!
(
n− 2

2

)(
n− 4

2

)

=

(
1

2

)3

· (n4/2 + o(n4)).

Therefore by (5),

(8) E
[
LD2

]
=

1

16
n4 + o(n4).

Summarizing, we have shown that

E
[
X2

]
= E

[
L2

]
+ E

[
D4/4

]
− E

[
LD2

]
+ o(n4).

Now the result follows from (6), (7), (8).

Lemma 3.3. limn→∞ Pr [X ≤ n] = 0.

Proof. The event {X ≤ n} is contained in the event {|X−E [X] | ≥ t} when
t = E [X]− n because |X − E [X] | ≥ t implies that either
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(A) X − E [X] ≥ t, or
(B) E [X]−X ≥ t,

and the above choice of t causes inequality (B) to be X ≤ n. Now, we can
apply Chebyshev’s Inequality to X and t = E [X]− n to get:

Pr [X ≤ n] ≤ Pr [|X − E [X] | ≥ E [X]− n]

≤ Var [X]

(E [X]− n)2

=
E
[
X2

]
− (E [X])2

(E [X]− n)2
.

The result follows from the fact that, by Lemma 3.2,

E
[
X2

]
=

n4

64
+ o(n4)

and by Lemma 3.1, both

(E [X])2 =
n4

64
+ o(n4) and (E [X]− n)2 = Ω(n4).

This completes the proof of Theorem 1.1.
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