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Not only are Casimir interaction entropies not guaranteed to be positive, but also, more strikingly, Casimir

self-entropies of bodies can be negative. Here, we attempt to interpret the physical origin and meaning of

these negative self-entropies by investigating the Casimir self-entropy of a neutral spherical nanoparticle.

After extracting the polarizabilities of such a particle by examining the asymptotic behavior of the scattering

Green’s function, we compute the corresponding free energy and entropy. Two models for the nanoparticle,

namely a spherical plasma δ-function shell and a homogeneous dielectric/diamagnetic ball, are considered at

low temperature, because that is all that can be revealed from a nanoparticle perspective. The second model

includes a contribution to the entropy from the bulk free energy, referring to the situation where the medium

inside or outside the ball fills all space, which must be subtracted on physical grounds in order to maintain

consistency with van der Waals interactions, corresponding to the self-entropy of each bulk. (The van der

Waals calculation is described in Appendix A.) The entropies so calculated agree with known results in the

low-temperature limit, appropriate for a small particle, and are negative. But we suggest that the negative self-

entropy is simply an interaction entropy, the difference between the total entropy and the blackbody entropy

of the two bulks, outside or inside of the nanosphere. The vacuum entropy is always positive and overwhelms

the interaction entropy. Thus the interaction entropy can be negative, without contradicting the principles of

statistical thermodynamics. Given the intrinsic electrical properties of the nanoparticle, the self-entropy arises

from its interaction with the thermal vacuum permeating all space. Because the entropy of blackbody

radiation by itself plays an important role, it is also discussed, including dispersive effects, in detail.

DOI: 10.1103/PhysRevD.106.036002

I. INTRODUCTION

When an electromagnetic quantum field coexists in

thermal equilibrium with bodies or boundaries, the entropy

of the system will be altered by their presence, which may

lead to nontrivial phenomena implying novel physics and

applications. This additional entropy, known as Casimir

entropy, was recognized as a physical quantity in the debate

on how to model a metal within a finite-temperature

environment, when evaluating the Casimir force between

metal plates. Initially, there were claims that the Drude

model resulted in Casimir entropies inconsistent with

the third law of thermodynamics [1–4], but it has been

shown that this does not occur for real materials [5,6].

Experimentally, results favoring both the plasma model

[7–11], which does not include dissipation, and the Drude

model [12,13], which does, have been reported. This

inconsistency with the physically motivated Drude model

has not yet been resolved, but the subject of Casimir

entropy by itself has drawn much attention.

Casimir interaction entropy, caused by the interactions

between two or more bodies via the fluctuating quantum

electromagnetic field, has been intensively investigated for

*
leon@ncu.edu.cn

†
kmilton@ou.edu

‡
Prachi.Parashar@jalc.edu

§
g.kennedy@soton.ac.uk

∥
nima.pourtolami@gmail.com
¶
guoxinmike@ou.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 106, 036002 (2022)

2470-0010=2022=106(3)=036002(22) 036002-1 Published by the American Physical Society



many years due to its fascinating properties, such as its

negativity [14–21]. Less investigated, however, is the

Casimir self-entropy, resulting from the self-interaction

of a single body, which provides us with further intriguing

possibilities and puzzles to be understood. We will con-

centrate on a new approach to this problem in this paper.

In Ref. [22], we evaluated the Casimir self-entropy of a

plasma δ-function plate (PDP), with the aim of justifying

the widely accepted hypothesis that the negative Casimir

interaction entropy would always be compensated by

corresponding positive self-entropies. We obtained analytic

formulas for the transverse electric (TE) and transverse

magnetic (TM) contributions to the PDP self-entropy. They

both satisfy the third law of thermodynamics, in that the

entropy vanishes as the temperature goes to zero, and

indeed the total self-entropy is positive, although the TE

contribution is always negative. But, in the strong-coupling

limit, which is the perfectly conducting (PC) case, the total

self-entropy approaches zero, which eliminates the pos-

sibility that it can cancel the negative interaction entropy

between a PC sphere and a PC plate. In Refs. [21,22],

we showed, however, that the Casimir self-entropy of a PC

sphere precisely cancels the most negative part of the

interaction entropy between a sphere and a plate. Then we

generalized our study of Casimir self-entropy to the model

of a plasma δ-function spherical shell (PDS). Various

regularization schemes were employed to evaluate the

TE and TM self-entropies of a PDS in limiting cases in

Ref. [23]. It was especially surprising to find that, when the

coupling was weak enough, both the TE and TM self-

entropies are negative—see Eq. (1.1). Bordag and Kirsten

examined the same plasma-shell model [24,25], but

obtained somewhat different results; their results were

technically equivalent to those in Ref. [23], differing only

in certain subtractions. For more detailed comparisons,

please refer to Ref. [26]. Most recently, we utilized a

numerical method, based on the Abel-Plana formula, to

elucidate general behaviors of PDS self-entropies [27],

which confirms the results in Ref. [23] and clearly

demonstrates the existence of negative self-entropy. So,

in contrast to the naive hypothesis, Casimir self-entropy

can be quite nontrivial, and its negativity needs to be

better understood.

According to Ref. [23], the leading terms of TE and TM

PDS self-entropies are negative and of the first order in the

coupling λ0, specifically,

STEð1Þ ¼ −λ0

�

t

6
þ 1

2t
−
1

2
coth t

�

;

STMð1Þ ¼ −λ0

�

t

18
−

1

2t
þ 1

2
coth t

�

; ð1:1Þ

in which t ¼ 2πaT, a is the radius of the spherical shell,

and T is the temperature. The terms linear in λ0 might be

supposed to originate from the self-interaction of each point

in the material, in analogy with λϕ4 theory, although here

the coupling refers to the entire surface of the sphere. It is

conventional wisdom that this kind of self-interaction

should be subtracted off, as a “tadpole” term; doing so

here, however, would destroy the passage to the perfectly

conducting limit. The appearance of negative Casimir self-

entropy and its linear dependence on the coupling in PDS

imply the necessity of investigating the influence of the

self-interaction more delicately, so that the meaning of

negative Casimir self-entropy and the remaining divergen-

ces encountered in spherical systems, or even of their

consequences in reality, could be clarified.

For a homogeneous dielectric ball (DB), it is known that

the bulk contributions must be subtracted [28], but even

with this so-called bulk subtraction, the zero-temperature

calculations are plagued with ambiguous divergences [29],

except for special cases where the speed of light is the

same inside and outside the spherical boundary [30,31].

Recently, Avni and Leonhardt [32] claimed that their

subtracted physical Casimir stresses on a dielectric ball

yields an energy depending linearly on the susceptibility in

the weak-coupling limit, thus violating the interpretation in

terms of van der Waals forces. Some of us have argued that

their conclusions are erroneous [28]. This matter is still

being disputed [33]. Here, we will extend the calculations

of Ref. [28] to finite temperature.

We focus on a system composed of a nanoparticle

that interacts with a thermal electromagnetic back-

ground (blackbody radiation) and that is characterized

by macroscopic polarizability parameters, inferred from

the large-distance behavior of Green’s functions descri-

bing electromagnetic scattering. As it is viewed from far

away, the particle appears as a point. The entropy can be

calculated directly in terms of these polarizabilities in a

standard way. In this manner, we hope to shed light on the

self-interaction influences alone. In Sec. II, we extract the

polarizabilities, expressed in terms of the reflection coef-

ficients in the scattering Green’s function. We consider two

models for the nanoparticle, the PDS model mentioned

above and the homogeneous nondispersive dielectric/

diamagnetic ball. We compute the corresponding entropies

in Sec. III. The contributions depending linearly on the

polarizability are clearly identified. In Sec. IV, we show the

necessity, in the DB case, for subtracting the bulk contri-

butions to achieve consistency with known results, and with

the interpretation in terms of the van der Waals interactions

between the constituents of the nanoparticle. This bulk

subtraction corresponds to the removal of the entropy change

due to the replacement of a volume of vacuum by a corres-

ponding volume of dielectric material. In Appendix B we

show that negative self-entropies correspond to what we call

interaction entropies, which can be of any sign, and are

overwhelmed by the positive blackbody entropy. Because

the interaction with the blackbody radiation field plays an

important role, in Sec. V we examine the entropy of the
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background, with and without permittivity/permeability,

including dispersion described by the plasma model. The

blackbody entropy is well-known in vacuum, but less so in a

homogeneous medium. Especially interesting is the behavior

of the entropy in the presence of a dispersive background.

Conclusions are presented in Sec. VI. Appendix A provides

evidence that the bulk subtraction for the dielectric sphere is

required for all temperatures. Appendix A also supplies a

derivation of the low-temperature free energy of a dilute

dielectric sphere, based on the summation of van der Waals

interactions, applying a variation of a method used two

decades ago by Barton [34]. The results for the entropy agree

with those found in the main text. The results are also

confirmed by the analysis presented in Appendix B.

Appendix C shows that our results for the low-temperature

self-entropy for a dielectric/diamagnetic sphere follow

immediately by extending the zero-temperature self-energy

derived long ago [35–37] to finite temperature. Natural units

ℏ ¼ ε0 ¼ μ0 ¼ c ¼ kB ¼ 1 are used throughout. That is,

we use rationalized Heaviside-Lorentz units, where the

relation between Gaussian and Heaviside-Lorentz polar-

izabilities is given by αHL ¼ 4παG.

II. EXTRACTION OF CLASSICAL

POLARIZABILITIES

In this paper, we work with macroscopic electromagnetic

theory, written in terms of Euclidean frequencies. First, to

see that bulk materials and pointlike particles could be dealt

with on the same footing, here we show how a small

spherical particle of material behaves as a microscopically

large but macroscopically small object, which we will refer

to as a “nanoparticle” for short.

A. Classical polarizabilities

Green’s dyadic, Γ, for a given Euclidean frequency, ζ,

satisfies

�

−εðζ;rÞ−∇× μ−1ðζ;rÞ ·∇× 1

ζ2

�

·Γðζ;r; r0Þ ¼ 1δðr− r0Þ:

ð2:1Þ

Without losing much generality, suppose the permittivity

and permeability of the system are both isotropic and

inhomogeneous only in the radial direction. For points

outside the object, Green’s dyadic, Γðζ; r; r0Þ, is written

simply as [36]

Γðζ; r; r0Þ ¼
X

∞

l¼1

X

l

m¼−l

h

−∇ × gHζ;lðr; r0ÞXm
l ðΩÞXm�

l ðΩ0Þ × ∇⃖0

− ζ2gEζ;lðr; r0ÞXm
l ðΩÞXm�

l ðΩ0Þ
i

; ð2:2aÞ

in which the vector spherical harmonics are defined as

Xm
l ðΩÞ ¼

LYm
l ðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p ; L ¼ r ×

1

i
∇: ð2:2bÞ

The reduced Green functions gEζ;l and gHζ;l satisfy the

equations

�

−r
d

dr

1

ðμ; εÞ
d

dr
rþ lðlþ 1Þ

ðμ; εÞ þ ðε; μÞζ2r2
�

g
ðE;HÞ
ζ;l ðr; r0Þ

¼ δðr − r0Þ: ð2:2cÞ

The solutions for TE and TM Green’s functions in vacuum

outside a spherical particle of radius a are (κ ¼ jζj)

gE;Hζ;l ðr;r0Þ¼ 1

κrr0
½slðκr<Þelðκr>ÞþRE;H

l ðκaÞelðκrÞelðκr0Þ�;

r;r0>a; ð2:3Þ

in terms of the appropriate reflection coefficients (Mie

coefficients) for the particle, where sl and el are modified

Riccati-Bessel functions. Explicit examples will be given in

the following. We refer to the terms in Green’s function

proportional to the reflection coefficients as the scatter-

ing parts.

Imagine that source and field points are far from the

particle, r; r0 ≫ a. Then, the reflection coefficients are to be
evaluated for small values of κa. In general, this means that

only the l ¼ 1 term in the scattering Green’s dyadic needs

to be retained, since R1 ≫ Rl≠1 in this limit. This follows

from the behavior for small arguments of the modified

Riccati-Bessel functions,

elðxÞ ∼
1

xl
2lΓðlþ 1=2Þ

ffiffiffi

π
p ;

slðxÞ ∼ xlþ1

ffiffiffi

π
p

2lþ1
Γðlþ 3=2Þ ; x ≪ 1: ð2:4Þ

On the other hand, suppose the permittivity and per-

meability of the particle are written in terms of electric

and magnetic polarizabilities, α and β, as εðζ; rÞ ¼
1þ αðζÞδðrÞ and μ−1ðζ; rÞ ¼ 1 − βðζÞδðrÞ. Then, based

on a generalization of the method given in Ref. [38],

pp. 277–278, we can identify the polarizabilities of the

particle, by analyzing the above Green’s dyadic, (2.2). As

shown in Fig. 1, the free Green’s dyadic, Γ0ðζ; r; r0Þ, is
represented by the line going directly from r0 to r. The

scattering part has a propagator going from r0 to the

nanoparticle, Γ0ðζ; r00; r0Þ, and a second one going from

the nanoparticle to the observer at r, Γ0ðζ; r; r00Þ. The

interaction is effected via the polarizability of the nano-

particle, located at r00 ¼ 0. The sum of these two contri-

butions gives the total Green’s dyadic. Because the particle

is small, the single scattering approximation is sufficient.

The scattering part of the TE part of Green’s dyadic can be
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written in terms of Γ0 and the polarizabilities of the

particle as

Γ
E
Scðζ; r; r0Þ ¼ −Γ0ðζ; r; r00Þ × ∇⃖00

·
βðζÞ
ζ2

· ∇00 × Γðζ; r00; r0Þ

þ Γ0ðζ; r; r00Þ · αðζÞ · Γðζ; r00; r0Þ; r00 → 0;

ð2:5Þ

where the magnetic polarizability, β, couples to the mag-

netic field, given by Faraday’s law, ∇ ×E ¼ −ζB, while

the electric polarizability, α, couples to the electric field.

(Γ represents a vacuum expectation value of the product of

electric fields.) In Eq. (2.5) we have assumed that the

particle has no extent. Schematically, the effective polar-

izabilities α and β satisfy the following relation:

Γ
E
Sc ¼ −Γ0

�

×∇⃖
β

ζ2
∇ × −α

�

Γ0; ð2:6Þ

where we have noted that, because the polarizabilities are

small, we may replace Γ by Γ0 on the right.

Now we use the orthonormality properties of the vector

spherical harmonics,

Z

dΩX�
lmðΩÞ ·Xl0m0ðΩÞ ¼ δll0δmm0 ; ð2:7aÞ

Z

dΩ ½fðr0ÞXlmðΩÞ�� · ½∇ × gðrÞXlmðΩÞ� ¼ 0; ð2:7bÞ

Z

dΩ ½∇0 × fðr0ÞXlmðΩÞ�� · ½∇ × gðrÞXl0m0ðΩÞ�

¼ 1

rr0

�

d

dr0
ðr0fðr0Þ�Þ d

dr
ðrgðrÞÞ þ lðlþ 1Þfðr0Þ�gðrÞ

�

× δll0δmm0 : ð2:7cÞ

Then, because l ¼ 1 dominates for a small particle, we see

that only the magnetic polarizability term contributes to the

TE scattering Green’s dyadic, which we take to be

isotropic
1
:

βE ¼ 3

2

4π

κ3
RE
1 ; αE ¼ 0: ð2:8Þ

Similar arguments apply to the TM contribution. The TM

part of ΓSc is

Γ
H
Scðζ; r; r0Þjl¼1

¼ −RH
1 ∇ ×

e1ðκrÞe1ðκr0Þ
κrr0

X

m

X1mðΩÞX�
1mðΩ0Þ × ∇⃖0:

ð2:9Þ

The decomposition in terms of scattering with the electric

and magnetic polarizabilities of the particle is

Γ
H
Scðζ;r;r0Þ∼

X

m;m0

�

∇×
e1ðκrÞs1ðκr00Þ

κrr00
X1mðΩÞX�

1mðΩ00Þ× ∇⃖00
·αH ·∇00×

s1ðκr00Þe1ðκr0Þ
κr00r0

X1m0ðΩ00ÞX�
1m0ðΩ0Þ× ∇⃖0

−
1

κ2
∇×

e1ðκrÞs1ðκr00Þ
κrr00

X1mðΩÞX�
1mðΩ00Þ× ∇⃖00

× ∇⃖
00
·βH ·∇00×∇00×

s1ðκr00Þe1ðκr0Þ
κr00r0

X1m0ðΩ00ÞX�
1m0ðΩ0Þ× ∇⃖0

�

:

ð2:10Þ

Each double curl can be replaced by −κ2, and then it is

evident that the second term above vanishes in the r00 → 0

limit. Employing the averaging over solid angles as above

for the first term, and using the identity (2.7c), we see

immediately that the electric polarizability arises from the

TM scattering Green’s dyadic:

αH ¼ 3

2

4π

κ3
RH
1 ; βH ¼ 0: ð2:11Þ

FIG. 1. The scattering process used to extract the polarizability

of the nanoparticle.

1
We might anticipate that the polarizabilities are not isotropic,

but that β ¼ βð1 − r̂ r̂Þ. But it is easily checked that any radial
component of β does not contribute to Eq. (2.5).
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B. Examples

To be more specific, we now turn to particular models.

1. δ-Function spherical shell

To get a first indication of how the microscopic structure

of a nanoparticle influences its macroscopic behavior, let us

consider an example previously investigated in Ref. [23],

namely the δ-function spherical shell of radius a. Suppose
the permittivity and permeability of the system are

ε ¼ 1þ λeað1 − r̂ r̂Þδðr − aÞ and μ ¼ 1þ λmað1 − r̂ r̂Þ×
δðr − aÞ, respectively. According to the arguments in

Ref. [39], we have required that the polarizabilities normal

to the shell surface are zero. The TE reflection coefficient is

given by [39,40]

RE
l ¼ λmaκs

02
l ðκaÞ− λeaκs

2
l ðκaÞ

1− λmaκe
0
lðκaÞs0lðκaÞ þ λeaκelðκaÞslðκaÞ þ λeλma

2κ2

4

;

ð2:12aÞ

and the corresponding TM coefficient, RH
l , can be obtained

with the substitution λe ↔ λm as

RH
l ¼ λeaκs

02
l ðκaÞ− λmaκs

2
l ðκaÞ

1− λeaκe
0
lðκaÞs0lðκaÞ þ λmaκelðκaÞslðκaÞ þ λeλma

2κ2

4

:

ð2:12bÞ

For simplicity, consider the case in which λe ≠ 0,

λm ¼ 0, so that RE and RH reduce to

RE
l ¼ −

λeaκs
2
l ðκaÞ

1þ λeaκelðκaÞslðκaÞ
;

RH
l ¼ λeaκs

02
l ðκaÞ

1 − λeaκe
0
lðκaÞs0lðκaÞ

: ð2:13Þ

This means that in the point approximation, a → 0, where

the small argument approximations (2.4) are applicable, the

effective polarizabilities of the nanoparticle, dominated by

l ¼ 1, are expressed as

β ¼ βE ¼ −
λeðκaÞ2=6

1þ λeðκaÞ2=3
4πa3;

α ¼ αH ¼ 2λe=3

1þ 2λe=3
4πa3: ð2:14Þ

Particularly, as in the model used in Refs. [22,25], consider

dispersion as given by a plasma model, i.e., λe ¼ λ0=ðκaÞ2.
Then, from Eq. (2.14), the nonzero polarizabilities for the

δ-function sphere are

βE ¼ −
λ0=6

1þ λ0=3
4πa3; αH ¼

2
3

λ0
ðκaÞ2

1þ 2
3

λ0
ðκaÞ2

4πa3: ð2:15Þ

As expected, αH → 4πa3 in the strong-coupling limit,

while in that limit βE → − 1
2
4πa3. The electric polariz-

ability possesses dispersion in general.

If we keep both λe and λm nonzero, then, in the point

approximation, κa → 0, RE
1 and RH

1 are approximated as

RE
1 ≈

4
9
λmðκaÞ3 − 1

9
λeðκaÞ5

1þ 2
3
λm þ

	

1
3
λe þ λeλm

4




ðκaÞ2
;

RH
1 ≈

4
9
λeðκaÞ3 − 1

9
λmðκaÞ5

1þ 2
3
λe þ

	

1
3
λm þ λeλm

4




ðκaÞ2
; ð2:16Þ

which lead us to the magnetic and electric polarizabilities

βE ¼
2
3
λm − 1

6
λeðκaÞ2

1þ 2
3
λm þ

	

1
3
λe þ λeλm

4




ðκaÞ2
4πa3;

αH ¼
2
3
λe −

1
6
λmðκaÞ2

1þ 2
3
λe þ

	

1
3
λm þ λeλm

4




ðκaÞ2
4πa3: ð2:17Þ

We will not pursue the effects of λm further here.

2. Dielectric ball

As a second and more realistic example, we study a

homogeneous dielectric ball of radius a with nondispersive

permittivity ε and permeability μ, immersed in vacuum. The

reflection coefficients are [36]

RE
l ¼ −

slðκ̃aÞs0lðκaÞ −
ffiffi

ε
μ

q

slðκaÞs0lðκ̃aÞ

slðκ̃aÞe0lðκaÞ −
ffiffi

ε
μ

q

elðκaÞs0lðκ̃aÞ
;

RH
l ¼ −

ffiffi

ε
μ

q

slðκ̃aÞs0lðκaÞ − slðκaÞs0lðκ̃aÞ
ffiffi

ε
μ

q

slðκ̃aÞe0lðκaÞ − elðκaÞs0lðκ̃aÞ
: ð2:18Þ

Here κ ¼ jζj, while κ̃ ¼ ffiffiffiffiffi

εμ
p

κ. We proceed as above, and

require the small a limit, where

RE
1 ¼ 2

3

μ − 1

μþ 2
ðκaÞ3 þO½ðκaÞ5�;

RH
1 ∼

2

3

ε − 1

εþ 2
ðκaÞ3 þO½ðκaÞ5�; κa ≪ 1. ð2:19Þ

Only the terms of order ðκaÞ3 will survive, so it follows that
the TE contribution to the magnetic polarizabilities is

nonzero, if the ball is permeable,

αE ¼ 0; βE ¼ μ − 1

μþ 2
4πa3; ð2:20Þ
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while the TM part yields an electric polarizability depend-

ing on the permittivity,

αH ¼ ε − 1

εþ 2
4πa3; βH ¼ 0: ð2:21Þ

This electric polarizability is just that found in electrostatics

[38]. Again, in the perfectly conducting limit, the polar-

izabilities tend to their expected values,

αH→4πa3; βE→−
1

2
4πa3; ε→∞; μ→0: ð2:22Þ

For both the δ-function spherical shell and dielectric ball

examples, the point-approximated polarizabilities are pro-

portional to the volume of the nanoparticle, which is con-

sistent with the small-polarizability assumption adopted

in Eq. (2.5). Furthermore, although the constituents of

the dielectric ball interact, as explicitly demonstrated in

Appendix A, the Clausius-Mossotti equation, which in our

approximation incorporates those interactions, means that

the polarizabilities are linearly related to their corresponding

microscopic counterparts; that is, the polarizability of the

nanoparticle is simply the sum of the polarizabilities of its

microscopic constituents. This is discussed in detail in

Appendix B.

III. PARTICLE DESCRIPTION OF CASIMIR

SELF-ENTROPY

Now we arrive at the main topic of this paper, namely the

Casimir self-entropy, which is just the additional entropy of

the thermal field induced by a single object in it, when the

effects of the thermal blackbody field have been properly

removed. As has been stated in Sec. I, we saw interesting

contributions from self-interaction, which we would like to

investigate with the illustrative particle models here.

Because of the different frequency dependencies, the

contributions to the free energy can have quite different

behavior for small polarizabilities. We compute the free

energy from the sum over Matsubara frequencies

(ζm ¼ 2πTm)

F¼T

2

X

∞

m¼−∞

eiζmτTr lnð1−Γ0VÞ

≈−
T

2

Z

ðdr0Þ
X

∞

m¼−∞

eiζmτtrΓ0ðζm;r;r0ÞVðζm;r0Þ
�

�

�

�

r¼r0þρ

;

ð3:1Þ

which has been regulated by point splitting in time, τ, and

in space, ρ. (See Ref. [41] for a derivation of this formula.)

Here, we treat the potential of the isotropic polarizable

point particle as

Veðζm; r0Þ ¼ 1αðζmÞδðr0Þ; Vmðζm; r0Þ ¼ 1βðζmÞδðr0Þ:
ð3:2Þ

The reason for retaining only the first order in the potential

is that the particle is small, not that the coupling, λ, ε − 1, or

μ − 1, is weak. The trace of Green’s dyadic is

tr Γ0ðζ; ρ; 0Þjρ→0 ¼ tr ð∇∇ − 1∇2Þ e
−jζjr

4πr

�

�

�

�

r¼ρ→0

¼ −2ζ2
e−jζjρ

4πρ
; ρ ¼ jρj → 0; ð3:3Þ

which uses scalar Green’s function equation

ð−∇2 þ ζ2Þ e
−jζjr

4πr
¼ δðrÞ: ð3:4Þ

It is important that the spherical symmetry be respected

by the regulator, in this case the distance between the two

points, ρ.

In addition to dispersion, anisotropy of the particle could

also play a significant role. Here, however, we cannot

contradict the spherical symmetry requirement, but it might

be expected that the particle could have a polarizability

of the form α ¼ αð1 − r̂00r̂00Þ. However, it is easily seen that
the radial-radial component of Green’s dyadic is zero, so

this is without effect.

A. δ-Function spherical shell

We first consider the δ-function spherical shell model

above. Using the polarizability βE in Eq. (2.15), if we only

employ spatial point splitting, that is, set τ ¼ 0, we find, as

ρ → 0,

FE ¼ −
1

6

λ0

1þ λ0=3
a3
�

2

πρ4
−
2π3T4

15

�

; aT ≪ 1; ð3:5Þ

where the restriction on T emerges from the point-particle

limit. In contrast, αH has nontrivial frequency dependence.

For the weak-coupling TM contribution, there is an addi-

tional 1=ζ2 factor, so the behavior is given by

FH¼2

3

λ0

a2
a3
�

1

πρ2
þπ

3
T2

�

; λ0≪1; aT≪1: ð3:6Þ

For strong coupling, the TM contribution is the same form

as the TE, except for the replacement of βE ¼ − 1
2
4πa3 by

αH ¼ −2βE ¼ 4πa3. The divergent terms for both the TE

and TM contributions are independent of temperature, so

the weak-coupling, low-temperature entropies are, with

t ¼ 2πaT,
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SE ¼ −λ0
t3

90
; SH ¼ −

2

9
λ0t; ð3:7Þ

which are exactly the results found in Ref. [23]. The strong

coupling limits are given by

SH∞ ¼ −2SE∞ ¼ t3

15
; ð3:8Þ

which are consistent with the well-known perfectly con-

ducting sphere results for low temperature [42]. Note that in

weak coupling, the total self-entropy is negative, while it is

positive in strong coupling.

B. Dielectric/Diamagnetic ball

We now turn to the homogeneous dielectric/diamagnetic

ball. Following the same procedure, we find for the free

energies, assuming the absence of dispersion [see

Eqs. (2.21) and (2.20)],

FH;E ¼ 1

4π

�

αH

βE

��

2

πρ4
−
2π3T4

15

�

: ð3:9Þ

If we use the point-splitting in time rather than in space, that

is, keep τ ≠ 0 but set ρ ¼ 0, we encounter

X

∞

m¼−∞

eiζmτtr Γ0ðζmÞ ¼ −
1

2π

X

∞

m¼−∞

eiζmτζ2m

�

1

ρ
− jζmj

�

;

ð3:10Þ

where we have expanded Eq. (3.3) for small ρ. The first

term here is proportional to a second derivative of a

δ-function in τ [see Eq. (5.24)], so is to be omitted, while

the second is

i

2π

�

∂

∂τ

�

3
�

1

1 − ei2πTτ
−

1

1 − e−i2πTτ

�

: ð3:11Þ

Carrying out the differentiation and expanding now in τ,

we obtain

FH;E ¼ 1

4π

�

αH

βE

��

−
6

πτ4
−
2π3T4

15

�

; ð3:12Þ

where the −3 ratio in the coefficients of the divergence is

expected on general grounds [43]. [See, for example,

Eq. (5.4).] Both Eqs. (3.9) and (3.12) have the same finite

part, which yields the total self-entropy (t ¼ 2πaT)

S ¼ SH þ SE ¼
�

ε − 1

εþ 2
þ μ − 1

μþ 2

�

t3

15
: ð3:13Þ

This has the correct strong-coupling (perfectly conducting)

ε → ∞, μ → 0 limit in Eq. (3.8). Comparing Eqs. (3.7)

and (3.13), we see how different models of the nanoparticle

can lead to entirely disparate behaviors of the self-entropy.

In particular, this entropy is positive for ε > 1, μ > 1,

although it could be of either sign if one of these inequal-

ities is violated.

For dilute constituents of the dielectric/diamagnetic ball,

we evidently see terms depending linearly on the suscep-

tibilities ε − 1 and μ − 1 in Eq. (3.13). This is extraordinary

and seems, at first sight, inexplicable, considering well-

established understandings. We showed in Ref. [28], at zero

temperature, that the free energy should begin, in the dilute

limit for a pure dielectric ball, as ðε − 1Þ2, which is

understood as originating from the pairwise summation

of van der Waals interactions. The free energy was also

calculated many years ago by Nesterenko et al. [44], and by

Barton [34,45],
2

F ¼ 23

1536

ðε − 1Þ2
πa

þ 7

270
ðε − 1Þ2π3a3T4: ð3:14Þ

The first term, corresponding to zero temperature, was first

calculated by Milton and Ng (by summing van der Waals

interactions) [46] and by Brevik, Marachevsky, and Milton

(by expanding the Casimir energy) [47]. The authors of

Ref. [44] seem not to remark that the corresponding

entropy is negative,

S ¼ −
7

540
ðε − 1Þ2t3; jε − 1j ≪ 1: ð3:15Þ

So, the initial linear behavior in ε − 1 seen in Eq. (3.13) is

not present. Although there might be some differences

between Casimir entropies of a nanoparticle and a bulk

dielectric ball, it is still puzzling to see this discrepancy,

which will be dealt with in the following section.

IV. BULK FREE ENERGY

Hitherto, we have been considering a point particle. The

conundrum mentioned at the end of the preceding section

arises when we recognize that an extended object appears

as a point far away from the object. The formula obtained

for the additional free energy resulting from the insertion of

the particle into the thermal bath therefore includes every-

thing. However, when one looks at the ball in the near field

and considers it as an extended object, one must recognize

that an additional part of the free energy comes from the

replacement of a point particle (of zero volume) by a

medium of finite volume—in effect, this finite volume of

the medium “displaces” what was previously considered

2
Barton gets an extra term, besides the two displayed in

Eq. (3.14), proportional to the area of the sphere: ΔFB ¼
− 1

4
ðε − 1Þ2ζð3Þa2T3. This discrepancy seems not to have been

resolved. We rederive this result, without this discrepant term, by
a variation of Barton’s method in Appendix A. That appendix
further discusses the origin of this discrepancy.

CASIMIR SELF-ENTROPY OF NANOPARTICLES WITH … PHYS. REV. D 106, 036002 (2022)

036002-7



the same volume of vacuum in the far field, point particle,

perspective. This part of the additional free energy must

therefore be subtracted in order to be left with the true

additional free energy due to the interaction, and this

subtraction is the finite-temperature bulk subtraction.

The need for this subtraction here is simply because the

initial setup regarded the particle as a point, and the finite

extension of the particle itself contributes a change to the

free energy of that volume, which is in a sense extraneous

to what is being sought here, and so must be subtracted.

This way of extracting a meaningful self-free energy for

the dielectric ball is what is conventionally done, in order to

obtain consistency with van der Waals interactions. That is,

we subtract the contribution that would be obtained if either

the interior or the exterior medium filled all of space. This

was discussed recently in detail in Ref. [28], but only at

zero temperature. We can follow the method articulated in

Appendix A of that reference. The most unambiguous way

to proceed is to start with the pressure on the sphere, which

is the discontinuity, across the surface, of the radial-radial

stress tensor component,

pð0Þðε; μ; ε0; μ0; aÞ ¼ T
ð0Þ
rr ðε; μ; a−Þ − T

ð0Þ
rr ðε0; μ0; aþÞ; ð4:1Þ

where the two stress tensors refer to a homogeneous

medium, either ε, μ or ε0, μ0 filling all space, and a�

means the corresponding stress tensor is evaluated just

outside or just inside the spherical boundary of the

dielectric/diamagnetic sphere. (In our case, ε0 and μ0 are
both set equal to unity.) Here, in each region, using the

Matsubara frequency decomposition at finite temperature

T, the use of which is equivalent to that of the fluctuation-

dissipation theorem, we obtain
3

T
ð0Þ
rr ðε;μ;a−Þ¼

1

2a4
aT

X

∞

m¼−∞

eiζmτ
X

∞

l¼1

2lþ1

4π
flðxmÞ; ð4:2Þ

with xm ¼ 2πjmjaT ffiffiffiffiffi

εμ
p

, the summand being

flðxÞ ¼ 2x½s0lðxÞe0lðxÞ − s00l ðxÞelðxÞ�

¼ 2
∂

∂r

�

∂

∂s
−

∂

∂r

�

slðrxÞelðsxÞ
x

�

�

�

�

s>r>1;s→1

: ð4:3Þ

Now using the addition theorem, with s > r,

X

∞

l¼0

ð2lþ 1ÞslðrxÞelðsxÞ ¼
xrs

s − r
e−xðs−rÞ; ð4:4Þ

we see that the bulk stress tensor is

T
ð0Þ
rr ðε; μ; a−Þ ¼

T

4πa3

X

∞

m¼−∞

eiζmτ
∂

∂r

�

∂

∂s
−

∂

∂r

��

rs

s − r
−

1

2xm

�

e−xmðs−rÞ
�

�

�

�

s>r>1;s→1

¼ T

4πa3
∂

∂r

�

∂

∂s
−

∂

∂r

��

rs

s − r

�

1

1 − e−xðs−rÞþiτ̂
þ 1

1 − e−xðs−rÞ−iτ̂
− 1

�

þ 1

2x
ln½ð1 − e−xðs−rÞþiτ̂Þð1 − e−xðs−rÞ−iτ̂Þ�

��

�

�

�

s>r>1;s→1

: ð4:5Þ

Here, we have abbreviated x ¼ x1 ¼ 2πaT
ffiffiffiffiffi

εμ
p

and

τ̂ ¼ 2πTτ. When the differentiations and the s → 1 limit

are carried out, and the result is expanded for small

temporal cutoff τ, we find

T
ð0Þ
rr ðε; μ; a−Þ ¼

1

π2
ðεμÞ3=2 1

τ4
þ π2

45
ðεμÞ3=2T4: ð4:6Þ

The corresponding free energy is determined from the

principle of virtual work:

pð0Þðε; μ; 1; 1; aÞ ¼ −
1

4πa2
∂

∂a
Fð0ÞðT; aÞ; ð4:7Þ

where the bulk free energy is

Fð0ÞðT; aÞ ¼ −
4a3

3

�

1

πτ4
þ π3T4

45

�

½ðεμÞ3=2 − 1�: ð4:8Þ

The first term here is the expected quartic divergence seen

in Ref. [28] (apart from the erroneous sign there), while the

second gives an entropy
4

Sð0Þ ¼ 2

135
t3½ðεμÞ3=2 − 1�: ð4:9Þ

As stated at the beginning of this section, this is just the

entropy change due to the replacement of the vacuum by

the dielectric/diamagnetic medium in the volume enclosed

3
Note that the formula for the stress tensor in Ref. [28] is

incorrect by a minus sign.

4
It might be noted that the entropy of the thermal vacuum

(blackbody radiation) confined to the volume of the nanosphere is
Savac ¼ 2t3=135. See Eq. (5.6); the corresponding entropy for the
dielectric medium is given in Eq. (5.12).
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by the spherical boundary of the nanoparticle. When this

(for μ ¼ 1) is subtracted from the entropy computed in

Eq. (3.13), and the result is expanded in powers of ε − 1, it

is seen that the linear terms cancel [this also occurs for the

divergent contributions to the free energy (3.12)], and the

quadratic terms combine to

SH − Sð0Þ ¼ −
7

540
ðε − 1Þ2t3; jε − 1j ≪ 1; ð4:10Þ

exactly the result (3.15) found in Refs. [34,44,45].

We thus recognize that the deviations from the scattering

contribution (3.13) stem from the subtraction of the bulk

contribution. Intuitively, it makes sense that the linear ε − 1

terms in Eq. (3.13) and Eq. (4.9) are the same, as they arise

from the self-interaction of the medium, which always has

to be subtracted to obtain a physically measurable quantity,

such as the Casimir-Lifshitz force, as was recognized for

arbitrary temperatures by Lifshitz and co-workers in the

mid-1950s [48].

There is no doubt that at zero temperature, the bulk

Casimir energy of the medium is divergent and should be

properly “renormalized,” or at least subtracted, to extract

physics. But perhaps a system with a particular geometry at

finite temperature provides us with a chance to unveil the

physics hiding in the nontriviality of the divergent bulk

Casimir energy. It is a necessary condition for a quantity

to be considered physical that this quantity should be

unchanged no matter which regularization scheme is

employed. As shown above, Eq. (4.6) is obtained by

carrying out the s → 1 limit first and then keeping the

leading orders of the temporal cutoff. Alternatively, we

could change the order of limits, i.e., take τ → 0 first,

then set r ¼ 1, and finally seek the asymptotic behavior

as s goes to 1, With this approach, the stress T
ð0Þ
rr takes the

form

T
ð0Þ
rr ðε;μ;a−Þ ¼−

1

π2a4
ffiffiffiffiffi

εμ
p

�

3

ðs− 1Þ4þ
4

ðs− 1Þ3þ
1

ðs− 1Þ2
�

þ π2

45
ðεμÞ3=2T4: ð4:11Þ

This spatial point splitting yields a different divergence

structure, but the temperature-dependent term is just the

same as in Eq. (4.6), which gives us some confidence in that

result. (A still different divergence structure emerges if,

for example, we take the limit r → sð1 − ϵÞ, ϵ → 0, and

then set s ¼ 1, but the temperature dependence remains

unchanged.)

For further discussion of the meaning of the bulk

subtraction, the interaction entropy, and the sign of the

latter, see Appendix B.

V. BLACKBODY ENTROPY

We now turn to the entropy of the background with

which the nanoparticle interacts.

A. Vacuum entropy

This initial discussion follows that in Ref. [22]. For a

more complete discussion, see Sec. V C. We start with the

free scalar Green’s function in empty space, at temperature

T, which follows from Eq. (3.4):

Gðτ; ρÞ ¼ T

4πρ

X

∞

m¼−∞

eiζmτe−jζmjρ; ð5:1Þ

in terms of the Euclidean time difference τ and the spatial

separation ρ, which we will regard as temporal and spatial

regulators, tending to zero. The Matsubara sum is immedi-

ately carried out:

Gðτ; ρÞ ¼ T

4πR

�

−1þ 1

1 − e−2πTðρ−iτÞ
þ 1

1 − e−2πTðρþiτÞ

�

:

ð5:2Þ

To find the energy density, we apply a differential operator:

u ¼ T00 ¼ 1

2
ð∂0∂00 þ ∇ · ∇0ÞGðτ; ρÞ

¼ 1

2

�

∂
2

∂τ2
−

∂
2

∂ρ2
−
2

ρ

∂

∂ρ

�

Gðτ; ρÞ; ð5:3Þ

where we have used translational invariance and noted that

t − t0 ¼ iτ. We can further replace the radial Laplacian by a

second τ derivative, because of the differential equation

satisfied by Green’s function. Thus we simply obtain

u ¼ 1

2π2
3τ2 − ρ2

ðτ2 þ ρ2Þ3 þ
π2T4

30
: ð5:4Þ

This is to be multiplied by two for electromagnetism, since

the divergenceless Green’s dyadic for electromagnetism is

Γ
0ðτ; ρÞ ¼ ð∇∇ − 1∇2ÞGðτ; ρÞ: ð5:5Þ

Thus the electromagnetic free energy density and entropy

density are (f ¼ u − Ts).

fem ¼ 1

π2
3τ2 − ρ2

ðτ2 þ ρ2Þ3 −
π2T4

45
; sem ¼ 4π2T3

45
: ð5:6Þ

The divergence structure is that found by Christensen [49].

B. Homogeneous nondispersive background

What happens if the vacuum is replaced by a uniform

medium made of a homogeneous dispersionless fluid
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characterized by permittivity ε and permeability μ? Then,

since the Euclidean-frequency Green’s dyadic satisfies

�

−ε −
1

μζ2
∇ × ∇×

�

Γðρ; ζÞ ¼ 1δðρÞ; ð5:7Þ

we see that εΓðρ; ζ ffiffiffiffiffi

εμ
p Þ satisfies the free Green’s dyadic

equation. And since the energy density is

u ¼ 1

2
ðεE2 þ μH2Þ; ð5:8Þ

and, from Maxwell’s equations, the contributions from the

two terms are identical, we see that the effective scalar

Green’s function in space and Euclidean time is obtainable

from Eq. (5.1) by the substitution jζmj → jζmj
ffiffiffiffiffi

εμ
p

:

εGðτ; ρÞ ¼ T

4πρ

X

∞

m¼−∞

eiζmτe−jζmj
ffiffiffiffi

εμ
p

ρ: ð5:9Þ

Apart from the leading factor of T, this looks like the

vacuum formula (5.1) with T → T
ffiffiffiffiffi

εμ
p

and τ → τ=
ffiffiffiffiffi

εμ
p

.

Thus, multiplying by 2, we obtain the vacuum energy

density

uem ¼ −
1

π2
1
ffiffiffiffiffi

εμ
p ρ2 − 3τ2=εμ

ðρ2 þ τ2=εμÞ3 þ
π2

30
ðεμÞ3=2T4: ð5:10Þ

For a purely spatial cutoff, τ ¼ 0, this yields for the

divergent part

udiv ¼ −
1

π2
ffiffiffiffiffi

εμ
p

ρ4
; ð5:11aÞ

while for a temporal cutoff (ρ ¼ 0)

udiv ¼
3ðεμÞ3=2
π2τ4

: ð5:11bÞ

In any case, the entropy density is

sem ¼ ðεμÞ3=2 4π
2T3

45
; ð5:12Þ

as we already saw in Eq. (4.9). [The apparent discrepancy

between the divergent terms in Eqs. (5.11b) and (4.8) is

explained at the end of this section.]

C. Dispersion

Now, suppose the background is described by a permit-

tivity given by the plasma model, without dissipation,

ε ¼ 1þ ω2
p=ζ

2, where ω2
p ¼ ne2=m is the square of the

plasma frequency, in terms of charge carriers of charge e,
mass m, and number density n. Realistically, in the

universe, n is very small, say 1–10−4 cm−3 [50], so for

electrons, ωp ∼ 10−10 − 10−13 eV, and the number would

be much smaller if we considered hadronic matter. The 3 K

cosmic microwave background (CMB) radiation corre-

sponds to an energy of order 10−4 eV, so ωp is much

smaller than the lowest Matsubara frequency.

The above treatment must be improved in order to

describe dispersion. We can follow Ref. [39], which says

that the internal energy of an object characterized by

dispersive isotropic permittivity and permeability is

U ¼ T
X

∞

m¼−∞

Tr

�

εþ 1

2
ζm

dε

dζm
−

1

2ζm
∇×

1

μ2
dμ

dζm
∇×

�

ΓðζmÞ:

ð5:13Þ

Here we consider a nonmagnetic material so the last term

is not present. Now consider a plasma model for the

dispersion, ε ¼ 1þ ω2
p=ζ

2
m; remarkably, then, the first

two terms collapse to

U ¼ T
X

∞

m¼−∞

TrΓðζmÞ: ð5:14Þ

So the only appearance of the plasma frequency is in

Green’s dyadic.

The differential equation satisfied by Green’s dyadic is

�

−
1

ζ2m
∇ × ∇ × −1 −

ω2
p

ζ2m

�

Γðρ; ζmÞ ¼ 1δðρÞ: ð5:15Þ

This is solved by the following symbolic construction:

Γ ¼ ð1þ ω2
p=ζ

2
mÞ−1Γ̃; ð5:16Þ

where, apart from a δ-function term (contact term),

Γ̃ ¼ Γ̃
0 − 1; ð5:17Þ

the divergenceless Green’s dyadic Γ̃0 is built from a scalar

Green’s function,

Γ̃
0 ¼ ð∇∇ −∇21ÞG; ð5:18Þ

which satisfies

ð−∇2 þ ζ2m þ ω2
pÞGðρ; ζmÞ ¼ δðρÞ: ð5:19Þ

All of this leads immediately to the following expression

for the internal energy density:

u ¼ −
T

2πρ

X

∞

m¼−∞

ζ2me
iζmτe−

ffiffiffiffiffiffiffiffiffiffiffi

ζ2mþω2
p

p
ρ; ð5:20Þ

as one might have anticipated. (Here, we are inserting a

time-splitting regulator in the same naive manner as before;
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however, see Eq. (5.65) below—cutoffs in the energy and

free energy have different structures.)

We now expand this to first order in ω2
p, in view of the

remarks at the beginning of this subsection, and then carry

out the Matsubara sum:

u ¼ −
T

2π

�

1

ρ

∂
2

∂ρ2
þ ω2

p

2

∂

∂ρ

�

×

�

−2þ 1

1 − e−2πTðρ−iτÞ
þ 1

1 − e−2πTðρþiτÞ

�

¼ 1

π2
3τ2 − ρ2

ðτ2 þ ρ2Þ3 þ
π2

15
T4 −

ω2
p

4

�

1

π2
τ2 − ρ2

ðτ2 þ ρ2Þ2 þ
1

3
T2

�

:

ð5:21Þ

For ωp ¼ 0, we recover twice the previous scalar vacuum

result (5.4). The resulting entropy density, including the

plasma correction, is (∂u
∂T

¼ T ∂s
∂T
)

s ¼ 4π2

45
T3 −

ω2
p

6
T: ð5:22Þ

The correction is indeed very small if T ≫ ωp.

1. Weak-coupling, high-temperature, expansion

It is easy to carry out this calculation to all orders in

x ¼ ωp=ζ1. For simplicity, let us suppose τ ≫ ρ, so we can

expand the exponential in Eq. (5.20):

u ¼ −
T

2πρ

X

∞

m¼−∞

ζ2me
iζmτ

	

1 − ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2m þ ω2
p

q



: ð5:23Þ

The first term is just the derivative of a δ function,

X

∞

m¼−∞

ζ2me
iζmτ ¼ −ð2πÞð2πTÞ2δ00ð2πTτÞ; ð5:24Þ

so it may be omitted since we take the limit as τ → 0. So

with only temporal regulation,

u ¼ T

π

X

∞

m¼1

ζ2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2m þ ω2
p

q

cos ζmτ: ð5:25Þ

For ωp ≪ ζ1, we expand the square root in a binomial

series,

u ¼ T

π

X

∞

m¼1

ζ3m

X

∞

k¼0

�

1
2

k

��

ωp

ζm

�

2k

cos ζmτ: ð5:26Þ

The first two terms in this series are displayed above in

Eq. (5.21). The third term is just the expansion of a

logarithm,

uð2Þ ¼ ω4
p

32π2
½ln ð1 − e−i2πTτÞ þ ln ð1 − ei2πTτÞ�

¼ ω4
p

16π2
ln 2πTτ: ð5:27Þ

The remaining terms in the series are finite, so in terms of

x ¼ ωp=ð2πTÞ,

X

∞

k¼3

uðkÞ ¼ 4π5=2T4
X

∞

k¼3

ζð2k − 3Þ
Γðkþ 1ÞΓð3=2 − kÞ x

2k: ð5:28Þ

In fact, the finite (temperature-dependent) parts of u are

given by this expression for k ¼ 0 and 1, while for k ¼ 2

with the replacement ζð1Þ → − ln 2πTτ gives the appro-

priate lnT dependence, seen in Eq. (5.27). Then using

∂u

∂T
¼ T

∂s

∂T
; ð5:29Þ

we deduce the following expression for the entropy density:

s ¼ 4π5=2T3
X

∞

k¼0

ð2 − kÞζð2k − 3Þ
Γðkþ 1ÞΓð5=2 − kÞ x

2k þ s0; ð5:30Þ

where s0 is a constant independent of T. Evidently, the
radius of convergence of this series is 1. We can combine

Eqs. (5.28) and (5.30) to give the free energy density,

f ¼ u− Ts¼ −2π5=2T4
X

∞

k¼0

ζð2k− 3Þ
Γðkþ 1ÞΓð5=2− kÞx

2k − Ts0;

ð5:31Þ

where again the divergent ζð1Þ term is to be interpreted as a

logarithmic divergence.

2. Nonperturbative resummation

Although the above series only converges for x < 1, it

can be analytically continued to all positive x by use of the

representation for the Riemann zeta function,

ζðsÞ ¼ 1

ΓðsÞ

Z

∞

0

dt
ts−1

et − 1
; ð5:32Þ

which then yields

s ¼ ω3
p

90πx3

�

1 −
15

2
x2 −

45

4
x4

þ 90x3
Z

∞

0

dt

t

1

et − 1
J3ðxtÞ

�

þ s0; ð5:33Þ
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where J3 is a Bessel function. The limit of s − s0 for large x
(temperature low compared to the plasma frequency) is

s − s0 ∼ −
ω3
p

6π
; x → ∞; ð5:34Þ

so the requirement of the third law of thermodynamics

(Nernst’s heat theorem) is that s0 ¼ ω3
p=ð6πÞ.

In fact, if we now make appropriate additions and

subtractions to the integrand in Eq. (5.33), we can write

the entropy density as

s ¼ ω3
p

π

Z

∞

0

dy

y

�

1

ey=x − 1
−
x

y
þ 1

2
−

y

12x
þ y3

720x3

�

J3ðyÞ;

ð5:35Þ

where the last term in the integral is defined by analytic

continuation. [For numerical purposes, only the first three

subtractions should be employed, leaving the first term in

Eq. (5.33).] Numerically, it appears that the entropy is

exponentially small in the x → ∞ limit; that is, there are no

power corrections. Consistent with this, this limit is

actually achieved very early, in the perturbative region,

as Fig. 2 shows. This exponential damping is precisely

what is expected in a massive theory—note, here, that the

plasma frequency plays the role of a mass.

Formal verification of this can be obtained by construct-

ing a strong-coupling (low-temperature) expansion for the

quantity in parentheses in Eq. (5.35) by the rest of the

Bernoulli expansion,

s ¼ ω3
p

π

Z

∞

0

dy

y

X

∞

k¼3

B2k

2k!

�

y

x

�

2k−1

J3ðyÞ: ð5:36Þ

We use analytic continuation to define the y integrals:

Z

∞

0

y2k−2J3ðyÞ ¼ 22k−2
Γð1þ kÞ
Γð3 − kÞ ; ð5:37Þ

which vanishes for k ≥ 3. Thus, the low-temperature

expansion of Eq. (5.35) is zero.

3. Strong-coupling, low-temperature, expansion

To verify this limiting behavior, let us try to extract

directly the low-temperature (large x) limit. The Euler-

Maclaurin formula should be effective in this regard,

X0
∞

m¼0

fðmÞ ¼
Z

∞

0

dmfðmÞ −
X

∞

k¼1

B2k

ð2kÞ! f
ð2k−1Þð0Þ; ð5:38Þ

where the prime means that the m ¼ 0 term is counted

with half weight. For variety’s sake, let us now set τ ¼ 0

and keep only the spatial cutoff. Then the energy

density (5.20) is

u ¼ −
T

πρ

X

∞

m¼0

ζ2me
−ρ

ffiffiffiffiffiffiffiffiffiffiffi

ζ2mþω2
p

p

¼ −
T

πρ

�

∂
2

∂ρ2
− ω2

p

�

X

∞

m¼0

0
e−ρ

ffiffiffiffiffiffiffiffiffiffiffi

ζ2mþω2
p

p
: ð5:39Þ

The integral term in the Euler-Maclaurin formula gives

Z

∞

0

dme−ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πmTÞ2þω2
p

p
¼ 1

2πTρ

Z

∞

ωpρ

du
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − ω2
pρ

2

q e−u

¼ ωp

2πT
K1ðωpρÞ: ð5:40Þ

Applying the differential operator in Eq. (5.39),

�

∂
2

∂ρ2
− ω2

p

�

ωp

2πT
K1ðωpρÞ ¼

ω2
p

2πTρ
K2ðωpρÞ; ð5:41Þ

and then using the small argument expansion of the

modified Bessel function, we obtain for the integral

contribution to the internal energy density

uint ¼ −
1

π2
1

ρ4
þ 1

4π2
ω2
p

ρ2
þ ω4

p

64π2

�

−3þ 4γþ 4 lnðωpρ=2Þ
�

:

ð5:42Þ

This agrees with the τ ¼ 0 divergences displayed in

Eq. (5.21), while the logarithmic divergence in ρ is the

same as that in τ seen in Eq. (5.27).

FIG. 2. Comparison of the vacuum entropy density (5.6) (red

curve) with the entropy density including plasma-model

dispersion (5.35) (blue curve). These are plotted as functions

of x−1 ¼ 2πT=ωp. Both entropy densities tend to zero at zero

temperature and are everywhere positive. The inset shows the

behavior for low temperature and reveals that the plasma-model

entropy drops exponentially to zero for relatively large values of

the temperature.
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But now it is apparent that fðmÞ is an even function ofm,

which means that all the odd derivatives vanish. Thus, there

is no temperature dependence of the internal energy in the

low-temperature limit. (That is, the dependence is expo-

nentially small and nonperturbative in the temperature.)

This is consistent with the zero value of the entropy,

without power corrections, found in this limit above.
5

4. Low-temperature asymptotics

In fact, we can readily obtain the asymptotic behavior for

low temperature. We rewrite Eq. (5.39) as

u ¼ T

2π3=2ρ

�

∂
2

∂ρ2
− ω2

p

�

∂

∂ρ
ρ

Z

∞

0

dt t−3=2e−te−ρ
2ω2

p=ð4tÞ

×
X

∞

m¼0

0
e−ρ

2ζ2m=ð4tÞ: ð5:44Þ

Now, using the Poisson summation formula, we can recast

the m sum into [51]

1

2

X

∞

m¼−∞

e−ρ
2π2T2m2=t ¼ 1

ρT

ffiffiffi

t

π

r

X

∞

m¼0

0
e−m

2t=ðρ2T2Þ: ð5:45Þ

Then the t integration gives a Macdonald function:

u ¼ ω4
p

2π2
1

δ

�

∂
2

∂δ2
− 1

�

∂

∂δ

X

∞

m¼−∞

K0

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ ð2πmxÞ2
q




;

ð5:46Þ

where δ ¼ ωpρ. Form ¼ 0 this yields exactly the divergent

structure (5.42) as δ → 0. However, for m ≠ 0, the small δ

limit is finite:

um≠0 ¼
ω4
p

π2

X

∞

m¼1

�

K1ðzÞ
z

þ 3K2ðzÞ
z2

�

; z ¼ 2πmx: ð5:47Þ

For large z, low temperature, this is dominated by the

m ¼ 1 term,

uð1Þ ∼
ω4
p

4π3
x−3=2e−2πx; x → ∞: ð5:48Þ

The entropy is obtained by integrating

∂s

∂x
¼ 2πx

ωp

∂u

∂x
; ð5:49Þ

which yields the leading asymptotic approximation

sð1Þ ∼
ω3
p

2π2
e−2πx

ffiffiffi

x
p ; T ≪ ωp: ð5:50Þ

Comparisons with the exact results obtained from

Eq. (5.33) are shown in Fig. 3. The exponential suppression

of the entropy for temperatures low compared to the

“mass,” the plasma frequency, is thus unambiguously

established.

5. Free energy

The above argument is defective in one sense: Because it

was based on the internal energy, it did not determine the

constant s0 in the entropy, which had to be fixed by hand,

by requiring that the entropy vanishes at zero temperature,

the third law of thermodynamics. Therefore, it would

appear more satisfactory to start with the free energy.

However, this is more complex, as we now see.

The free energy is defined by (again, for example,

see Ref. [41])

F ¼ −
T

2
Tr lnΓ; ð5:51Þ

where the trace now includes the sum over Matsubara

frequencies. Now from Eq. (5.15), we see that

0 ¼ ∂

∂ω2
p

ðΓ−1
ΓÞ ¼ −

1

ζ2m
Γþ ∂

∂ω2
p

lnΓ; ð5:52Þ

1 2 3 4 5

10
–7

10
–5

0.001

0.100

x
–1

s
p

–
3

FIG. 3. The exact entropy of the blackbody radiation in the

plasma model (upper blue curve) compared with the leading low-

temperature asymptotic expression (5.50) (lower red curve) and

the numerical integration of the m ¼ 1 term in Eq. (5.47) (dotted

magenta curve). Even for x ¼ 0.2, a rather large value of T, the
latter is less than 5% low. The cruder approximation (5.50) is only

good for rather small values of x−1 ¼ 2πT=ωp.

5
In fact, the Euler-Maclaurin formula is exact if only n terms

are kept in the Bernoulli sum, and the remainder term is added:

1

ð2nÞ!
X

∞

k¼0

Z

1

0

dt fð2nÞðtþ kÞB2nðtÞ; ð5:43Þ

where B2n is the Bernoulli polynomial. Even for n ¼ 1 it is easily
seen numerically that the contribution to the energy (5.39) is
extremely small if T is moderately large and ρ is small.
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which says that

lnΓðω2
pÞ ¼ −

1

ζ2m

Z

∞

ω2
p

dω0 2
p Γðω0 2

p Þ: ð5:53Þ

Now the internal energy is proportional to the trace of Γ, so

the free energy can be immediately given after integration

on ω02
p as

f ¼ −
T

πρ2

X0
∞

m¼0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2m þ ω2
p

q

þ 1

ρ

�

e−ρ
ffiffiffiffiffiffiffiffiffiffiffi

ζ2mþω2
p

p
: ð5:54Þ

When ω2
p ¼ 0, this directly implies Eq. (5.6).

In general, we have to consider m ¼ 0 separately from

the higher Matsubara terms. (Recall, m ¼ 0 does not

contribute to the internal energy.) That is,

fm¼0 ¼
T

2πρ2

�

∂

∂ρ
−
1

ρ

�

e−ρωp

∼ −
T

2πρ3
þ Tω2

p

4πρ
−
Tω3

p

6π
; ρ → 0: ð5:55Þ

The T-dependent divergent terms must be canceled by the

remainder of the Matsubara series. As before, we can

proceed perturbatively in powers of ωp. The zeroth order

term is

f
ð0Þ
m≠0 ¼

T

πρ2

�

∂

∂ρ
−
1

ρ

�

X

∞

m¼1

e−2πmTρ

∼ −
1

π2ρ2
þ T

2πρ3
−
π2T4

45
; ρ → 0; ð5:56Þ

where the first and last terms reproduce Eq. (5.6) and the

middle term cancels the ωp-independent term in Eq. (5.55).

The term of order ω2
p is

f
ð1Þ
m≠0 ¼

ω2
pT

2πρ

X

∞

m¼1

e−ρζm ∼
ω2
p

4πρ2
−
ω2
pT

4πρ
þ ω2

pT
2

12
; ρ → 0:

ð5:57Þ

The second term here cancels the second term in Eq. (5.55),

and we are left with the structure seen in Eqs. (5.21)

and (5.22). As for the term of order ω4
p, we have

f
ð2Þ
m≠0 ¼ −

ω4
p

16π2

X

∞

m¼1

1

m
e−δm=x ∼

ω4
p

16π2
ln 2πTρ; ð5:58Þ

again as anticipated.

Since this approach seems a bit complicated, we will

reinsert a temporal regulator, which simplifies the calcu-

lation. But we have already achieved our goal: It is clear

that the perturbative expansion for m ≠ 0 contributions

involves only even powers of ωp, so the only term of order

ω3
p is that remaining in Eq. (5.55). This term, linear in the

temperature, corresponds to the constant term in the

entropy, undetermined by the previous analysis:

s0 ¼
ω3
p

6π
: ð5:59Þ

Naively inserting the temporal regulator into Eq. (5.54),

we write

f ¼ T

2πρ2

�

∂

∂ρ
−
1

ρ

�

X

∞

m¼−∞

e−ρ
ffiffiffiffiffiffiffiffiffiffiffi

ζ2mþω2
p

p
eiζmτ: ð5:60Þ

Now with τ ≠ 0, we can expand in ρ, and after omitting

terms involving δ functions in τ, find

f ¼ −
T

6π

X

∞

m¼−∞

ðζ2m þ ω2
pÞ3=2eiζmτ: ð5:61Þ

Now, this is readily expanded in powers of x ¼ ωp=ζ1.

Following the by-now familiar procedure, we find the first

three divergent terms:

fð0Þ ¼ −
1

π2τ4
−
π2T4

45
; ð5:62aÞ

fð1Þ ¼ ω2
p

4π2τ2
þ ω2

p

12
T2; ð5:62bÞ

fð2Þ ¼ ω4
p

16π2
ln 2πTτ: ð5:62cÞ

The remaining terms are finite. The only odd term in ωp

comes from the m ¼ 0 term

fm¼0 ¼ −
ω3
pT

6π
; ð5:63Þ

which corresponds precisely to the constant term in the

entropy. Then, the higher terms in ωp are

fðk≥3Þ ¼ 8π2T4

3

Γð5=2Þζð2k − 3Þ
Γðkþ 1ÞΓð5=2 − kÞ x

2k; ð5:64aÞ

corresponding to the entropy term

sðk≥3Þ ¼ 4π5=2T3
ð2 − kÞζð2k − 3Þ

Γðkþ 1ÞΓð5=2 − kÞ x
2k: ð5:64bÞ

The temperature dependence of f and the entropy are

precisely those found previously in Sec. V C 1. The cutoff

terms, however, are off by− 1
3
and−1 for the quartically and

quadratically divergent terms, respectively. This is due, as

explained in Ref. [39], to the fact that an exponential
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temporal cutoff in the free energy corresponds to a more

elaborate form for the internal energy:

eiζτ →
eiζτ − 1

iζτ
: ð5:65Þ

This precisely accounts for the discrepant factors in the

zero-temperature divergences.

VI. CONCLUSIONS

Previously [23,26,27], we analyzed the self-entropy of a

macroscopic sphere. But viewed from far away, a compact

object appears to be a particle. So, in this paper, we

examine the question of self-entropy from the nanoparticle

perspective. By nanoparticle, we mean that the size of the

particle is small compared to any other length scale, such as

the inverse temperature. This self-entropy exhibits surpris-

ing features, especially its negativity for weak coupling to

the electromagnetic field. We approach this question by

first extracting the polarizabilities of a nanoparticle through

consideration of its effect on the scattering of the electro-

magnetic field. From these polarizabilities, expressed in

terms of the reflection coefficients, we can compute the free

energy and entropy by summing over Matsubara frequen-

cies. The results apply to low temperatures, compared to the

inverse size of the nanoparticle. (For a nanoparticle of

radius a ¼ 100 nm, the temperature corresponding to

aT ¼ 1 is T ¼ 24; 000K.)
Specifically, we illustrate these ideas by investigating

two models. First, for a δ-function spherical shell in which

the permittivity on the surface is transverse and represented

by the plasma model, we obtain results for the self-entropy

which give the leading low-temperature response, linear in

the coupling, for the TE and TM modes; these self-

entropies are precisely those found earlier [23]. The second

model, a dielectric/diamagnetic ball without dispersion,

involves more subtleties. The scattering-derived polariz-

abilities give a contribution to the free energy which is

linear in the susceptibility, in the dilute limit, which

therefore violates the expected connection between

Casimir and van der Waals forces [28].

This discrepancy is resolved by the subtraction of the

“bulk contribution,” which is the contribution to the

Casimir free energy corresponding to nonscattering

Green’s functions due to the medium either inside or

outside the spherical boundary filling the whole space.

(For a hollow spherical shell, this subtraction only removes

the vacuum contribution.) Performing this subtraction, we

remove the linear term and recover the negative self-

entropy found two decades ago [34,44,45]. That self-

entropy is reproduced again in Appendices A–C.

However, the reader might well object to the fact that the

known energies at zero temperature are not reproduced by

the procedure proposed here. After all, in second order in

the susceptibility, the finite part of the energy of the

dielectric ball is as given by the first term in Eq. (3.14).

But here the only finite terms in the free energy are those

going like a power of the temperature, yielding a finite self-

entropy. Furthermore, the divergent term found here for the

dielectric ball is the difference between the τ-dependent

terms in Eqs. (3.12) and (4.8),

Fdiv ¼
7a3

6πτ4
ðε − 1Þ2; ð6:1Þ

while the energy found some 40 years ago [35] is less

singular,

Ediv ¼
a2

8τ3
ðε − 1Þ2: ð6:2Þ

One might think that the reason for not seeing the temper-

ature-independent finite terms is that extraction of these

requires more sophisticated analytic continuation tech-

niques, such as zeta-function regularization, which sweep

divergences under the rug.
6
Apparently, the point-particle

viewpoint is only effective in extracting the temperature-

dependent part of the free energy, and therefore the entropy,

but not the finite or divergent parts. As argued in

Appendix B, it would be anticipated that the point-particle

viewpoint being explored here is only effective in

extracting extensive quantities, proportional to the volume

of the particle, and not contributions to the free energy

going like lower powers of the radius of the particle.

On the other hand, we now understand the appearance of

negative self-entropies found for objects, be they macro-

scropic dielectric balls or small nanoparticles. The

approach presented here reveals the negative entropy as

arising from an interaction between the nanoparticle and

the blackbody radiation. As discussed in Appendix B, the

free energy of the blackbody radiation in vacuum and in the

material of the dielectric ball, both without interaction (that

is, the “nonscattering” part), must be subtracted from the

total free energy to obtain the self-free energy, or the

interaction free energy. This precisely corresponds to our

bulk subtraction. The resulting interaction entropy can be,

in fact, negative. (It bears a resemblance to, but in general,

is not the same as, the negative of the relative entropy

discussed in Ref. [52].) The total entropy, of course, has the

bulk, blackbody entropies included, so is always positive.
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APPENDIX A: BULK SUBTRACTION

AT FINITE TEMPERATURE

It might be thought that the bulk subtraction, which we

used to derive the entropy of the dielectric/diamagnetic

ball, need only be employed at zero temperature. After all,

the bulk divergences occur only at zero temperature. But

this is not correct, because the reason for the subtraction is

not primarily to remove divergences, but to remove the

effects of a homogeneous medium, the contribution of the

nonscattering Green’s function to the internal energy. We

see this in the general formula (5.13), from which the zero-

temperature form for the energy is obtained, for example,

by the Euler-Maclaurin summation formula. This involves

allm, so the replacement of Green’s dyadic by its scattering

part must be applied universally. The subtraction is not

required in order to make the energy finite (which it is not,

even after this truncation of Green’s function), but because

it is necessary physically: the Casimir-Lifshitz energy must

arise, at least in the dilute approximation, from the

summation of van der Waals or Casimir-Polder inter-

actions, which are quadratic in the polarizability, so the

Casimir-Lifshitz free energy at arbitrary temperature

must start from order ðε − 1Þ2 for a dilute dielectric

sphere. All of this was recognized by Dzyaloshinskii,

Lifshitz, and Pitaevskii [48] and constitutes the “Lifshitz

subtraction.”

1. Casimir-Polder free energy

of two dilute dielectric slabs

We can demonstrate this explicitly by considering the

classic Lifshitz configuration [53] of two parallel dielectric

slabs separated by a vacuum region of width a. In the limit

where the two dielectric media are dilute, we can compute

this in two ways: either by summing the van der Waals

interactions between the various atoms constituting the

slabs or by taking the dilute limit of the Lifshitz free energy.

Let us consider the high-temperature (classical) limit and

suppose that the Casimir-Polder interaction energy [54]

between atoms with polarizability α1 and α2 separated by a

distance r is

VCP ¼ −CT
α1α2

r6
; ðA1Þ

a structure required dimensionally, where C is a dimension-

less constant to be determined. The free energy of the two

slabs is obtained by summing the interactions between the

two slabs, which are supposed to be homogeneous, with

number densities N1 and N2. The free energy is

FCP ¼ −CTN1α1N2α2

Z

0

−∞

dz

Z

∞

a

dz0

×

Z

ðdr⊥Þðdr0⊥Þ½ðr⊥ − r0⊥Þ2 þ ðz − z0Þ2�−3: ðA2Þ

The integrations are elementary, leading to the free energy

per unit area

FCP

A
¼ −CT

π

12

N1N1α1α2

a2
: ðA3Þ

The bulk-subtracted Lifshitz pressure between the two

slabs is [53,55]

p ¼ −
T

8π

X

∞

m¼−∞

Z

∞

0

dk22κ3

�

1

Δ
E
þ 1

Δ
H

�

; ðA4Þ

for the configuration where the top and bottom slabs are

denoted 1 and 2, and the intermediate vacuum region is

denoted 3. The denominators are, in terms of the inverses of

the reflection coefficients at the interfaces,

Δ
E ¼ κ3 þ κ1

κ3 − κ1

κ3 þ κ2

κ3 − κ2
e2κ3a − 1; ðA5aÞ

Δ
H ¼ κ3=ε3 þ κ1=ε1

κ3=ε3 − κ1=ε1

κ3=ε3 þ κ2=ε2

κ3=ε3 − κ2=ε2
e2κ3a − 1; ðA5bÞ

where

κ3 ¼ κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ζ2m

q

; κ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ε1;2ðζmÞζ2m
q

: ðA6Þ

When ε1;2 − 1 are both small, this is readily expanded to the

leading order: introducing the variable u ¼ κ=ζm, we have

p ¼ −
T

16π

X

∞

m¼0

0
ζ3mðε1ðζmÞ − 1Þðε2ðζmÞ − 1Þ

×

Z

∞

1

du

u2
½1þ ð1 − 2u2Þ2�e−2ζmua: ðA7Þ

Now we are interested in high temperature, which corre-

sponds to m ¼ 0, so we take the limit of small ζm. In that

limit, the u integral is asymptotically ðζmaÞ−3, and then the
m ¼ 0 term in the free energy, obtained by integrating

p ¼ −
∂

∂a

F

A
; ðA8Þ

is in terms of the static dielectric constants

F

A
¼ −

T

64π
ðε1 − 1Þðε2 − 1Þ 1

a2
; aT ≫ 1: ðA9Þ
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These two expressions, Eqs. (A9) and (A3), should be

identical. They are, when we recall the connection between

the dielectric constant and the polarizability,

ε ¼ 1þ Nα; ðA10Þ

and this determines the constant in the van der Waals

potential to be C ¼ 3=ð4πÞ2.

2. Casimir-Polder free energy of dilute dielectric ball

We can straightforwardly extend this argument to sum

the Casimir-Polder energies of the atomic constituents of a

dilute dielectric sphere. This should correspond to the free

energy of such an object. Such a calculation, in fact, is the

same idea as that exploited by Barton [34], although the

calculational details are different, as are the results.

The free energy of interaction between the constituents

of isotropic polarizability α is given by [19]

FCP ¼ −
1

2

N2α2

ð4πÞ2
Z

ðdrÞðdr0Þ 1

4πρ7
fðyÞ; ðA11Þ

where y ¼ 4πρT, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r02 − 2r · r0
p

, and

fðyÞ ¼ yDT coth
y

2
; ðA12aÞ

with

DT ¼ 3 − 3T∂T þ 5

4
T2

∂
2
T −

1

4
T3

∂
3
T þ 1

16
T4

∂
4
T : ðA12bÞ

[Note, at high T, where coth y=2 tends to 1, this yields

Eq. (A1) with C ¼ 3=ð4πÞ2.] Here N is the number density

of polarizable constituents. The integrals extend over the

volume of the sphere wherein the constituents reside.

Since ρ never gets large, to extract the low-temperature

behavior, we can expand the hyperbolic cotangent for small

argument:

coth z ¼ 1

z
þ z

3
−
z3

45
þ 2z5

945
þ � � � : ðA13Þ

Consider the first term in the expansion. Since the differ-

ential operatorDT applied to 1=T yields 23
2T
, we are left with

evaluating the radial integral

Z

ðdrÞðdr0Þ 1

ρ7
: ðA14Þ

This integral is divergent, because the coordinates can be

coincident, but a method of extracting the finite part was

described in Refs. [37,46]. Let us consider the generic

integral

IðγÞ ¼
Z

ðdrÞðdr0Þ 1
ργ

; ðA15Þ

where the volume integrals are over a sphere of radius a.
The result is, for γ < 3,

IðγÞ ¼ 128π22−γ

ð6 − γÞð4 − γÞð3 − γÞ a
6−γ: ðA16Þ

This integral is well defined if γ is 7, so by analytic

continuation we immediately obtain the zero-temperature

free energy

E0 ¼
23

1536

ðε − 1Þ2
πa

; ðA17Þ

where we identify ε − 1 ¼ Nα. This is the well known

result [46], seen in Eq. (3.14).

As for the low-temperature corrections, it is apparent that

the differential operator DT annihilates a term linear in T,
so the OðzÞ term in the expansion of the cotangent is

without effect because Ið5Þ is finite.DT has the same effect

on the T3 term. But that corresponds to γ ¼ 3, where the

volume integral (A16) has a pole, so we must take a limit.

Write y3 → y3−s where s → 0. Then

DTT
3−s

→ −
7

8
sT3; s → 0; ðA18Þ

while

Ið3þ sÞ → −
16π2

3s
a3; ðA19Þ

so the product is finite as s → 0, and supplying the other

factors, we obtain for the temperature correction to the

free energy

ΔFT ¼ 7

270
ðε − 1Þ2ðπaÞ3T4; ðA20Þ

precisely the result (3.14) given by Nesterenko et al. [44]

but without the additional T3 term found by Barton [34]. In

fact, it is very hard to see how such a term could arise. The

method described here has the same starting point as

Barton’s, and the structure (A12) is exactly the same as

his. That structure is manifestly even in T, so unless the

method of regularization or renormalization involves the

temperature, the discrepant term could not arise. For more

on the difference between different regularization tech-

niques in this context, although at zero temperature, see

Ref. [56]. In particular, the interatomic-spacing cutoff λ

used by Barton could correspond to significant physics.

After detailed examination, we find there is nothing

technically wrong with Barton’s calculation. The discrep-

ancy arises from the subtraction of a term proportional to the
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area, which he calls renormalization of the surface tension.

That subtraction contains a term cubically divergent in 1=λ,

but also a term independent of λ and proportional to T3; it is

precisely because the latter is subtracted, that the corre-

sponding negative of that quantity appears in the renormal-

ized free energy. It is true, as Barton himself notes, that a

similar subtraction of the bulk free energy, proportional to

the volume of the ball, is responsible for the T4 in the free

energy (A20). But we insist on the validity of the bulk free

energy subtraction, as detailed in the main text, while we see

no necessity for a surface tension subtraction. Indeed, doing

so does not yield a finite free energy in Barton’s case

anyway, there still being a remaining 1=λ cutoff-dependent

term. In any case, this seems to isolate the source of the

discrepancy.

APPENDIX B: SIGN OF THE INTERACTION

ENTROPY FOR A DIELECTRIC BALL

In this appendix, we explore the sign of the interaction

entropy for a dielectric ball, using the Clausius-Mossotti

relation [38]. We begin with a critical appraisal of the

approximation of the finite-size nanoparticle by a point

particle with the same polarizability, and an appreciation of

the limitations of this approximation.

The use of Eq. (3.2) in Eq. (3.1) implies a resummation

of the usual perturbative expansion to all orders in ε − 1, to

extract all contributions to leading order in the particle size,

which, in total, give rise to its polarizability. By construc-

tion, therefore, this procedure can only produce the

extensive contribution to the free energy of the nano-

particle, that is, that part of the free energy that is propor-

tional to the volume of the nanoparticle. It cannot capture

any other contributions to the free energy that are not

extensive, such as the surface term obtained by Barton [45],

or the zero-temperature term displayed in Eq. (3.14), which

is proportional to the inverse radius of the nanoparticle

[34,44–47], or, indeed, any contributions that are of higher

order in the polarizability. Likewise, only the extensive

contribution to the corresponding derived entropy can

result. This is a fundamental limitation of the approxima-

tion employed.
7

In this approximation, the free energy, F, of the nano-

particle may be regarded as a linear function of the

extensive variable, V, the volume of the nanoparticle,

and a possibly nonlinear function of the intensive variable,

N, the number density of its polarizable constituents.

Below, we explore the assembly of the nanoparticle from

its initially widely dispersed constituents, and so we are

interested in how the free energy changes with the volume,

while keeping the number of constituents fixed. Since

dF

dV
¼ ∂F

∂V
−
N

V

∂F

∂N
¼ F

V
−
N

V

∂F

∂N
; ðB1Þ

it follows that dF
dV

¼ 0, because the free energy of the

nanoparticle is invariant under this change in volume, if

and only if it is also a linear function of N. In fact, this

is the case for the Clausius-Mossotti relation, which

expresses the polarizability of a dielectric ball as a linear

function of the number density, and polarizability, of

its constituents. It should be noted that linearity in the

number density of the constituents does not preclude

interaction between these constituents. Indeed, the

Clausius-Mossotti relation derives from the inclusion of

the effect on the induced dipole moment of each con-

stituent of the induced electric field due to the induced

dipole moments of the other constituents. This interaction

between the constituents is reflected in the nonlinear

dependence of the polarizability on ε − 1.

To be specific, let us therefore assume that the per-

meability μ ¼ 1 and that the system consists of a dielectric

ball, B, of radius a and permittivity ε, which is composed of

polarizable constituents of number density N and polar-

izability αc, and which is surrounded by vacuum. Let us

also consider the corresponding reference system which

consists of the dilated ball, Bλ, of radius λa and permittivity

ελ, wherein the polarizable constituents have number

density Nλ ≡
N
λ3
, where λ > 1, which is also surrounded

by vacuum. From the Clausius-Mossotti relation, we

immediately obtain the relation between the corresponding

permittivities:

ε − 1

εþ 2
¼ Nαc

3
¼ λ3Nλαc

3
¼ λ3

�

ελ − 1

ελ þ 2

�

: ðB2Þ

The total free energy of the original system may be

constructed from three components,

Ftot ¼ FR
3

vac þ ðFB
med − FB

vacÞ þ FB
int; ðB3Þ

using an obvious notation: FB
med − FB

vac is the change in the

bulk free energy of the ball resulting from the replacement

of vacuum by medium in its interior, which arises from the

corresponding change in the nonscattering part of Green’s

function, and FB
int is the interaction free energy between the

interior of the ball (medium) and its exterior (vacuum),

which arises from the scattering part of the corresponding

Green’s function. Likewise, the total free energy of the

reference system may be written as

Fλ
tot ¼ FR

3

vac þ ðFBλ

med − F
Bλ
vacÞ þ F

Bλ

int: ðB4Þ

7
In Sec. II, we considered only the single-scattering approxi-

mation. It may be possible to capture information about the shape
of the nanoparticle, rather than just its size, by extending the
approach to include successively higher orders of scattering. This
may reveal the dependence on its surface area, its mean extrinsic
curvature, etc.
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The change in the bulk free energy of the dilated ball is

F
Bλ

med − F
Bλ
vac ¼

Z

Bλ

ðdrÞ
�

ε
3
2

λ − 1

�

f0ðτ; TÞ

¼ 4

3
πa3λ3

��

1þ 2Nαc
3λ3

1 −
Nαc
3λ3

�
3
2

− 1

�

f0ðτ; TÞ; ðB5Þ

which becomes, in the limit λ → ∞,

lim
λ→∞

ðFBλ

med − F
Bλ
vacÞ ¼

4

3
πa3

9

2

�

ε − 1

εþ 2

�

f0ðτ; TÞ; ðB6Þ

where

f0ðτ; TÞ≡ −
1

π2τ4
−
π2T4

45
ðB7Þ

is the vacuum free energy density (5.62a) under the

temporal regulator τ. As expected, this is simply the sum

over the finite number, 4
3
πa3N, of the then infinitely

separated and therefore noninteracting polarizable constitu-

ents, each of which contributes 3
2
αcf0ðτ; TÞ to the free

energy. Correspondingly, in this limit, the interaction free

energy of the dilated ball must vanish, as it then fills all

space and has no exterior, so limλ→∞ F
Bλ

int ¼ 0. (See below.)

Thus,

ðFB
med − FB

vacÞ − lim
λ→∞

ðFBλ

med − F
Bλ
vacÞ

¼ 4

3
πa3

�

ε
3
2 − 1 −

9

2

�

ε − 1

εþ 2

��

f0ðτ; TÞ: ðB8Þ

This expression represents the change in the total bulk

free energy when the ball is assembled from its initially

maximally dispersed constituents, and its sign is deter-

mined from that of

gðεÞ≡ ε
3
2 − 1 −

9

2

�

ε − 1

εþ 2

�

: ðB9Þ

It is easily verified that gð1Þ ¼ 0 and gðεÞ > 0 for ε > 0,

ε ≠ 1. Therefore, the change in the total bulk free energy is

negative, and, correspondingly, from Eq. (B7), the change

in the total bulk entropy is positive.

However, Eq. (B8) may also be written as ðFtot − FB
intÞ−

ðF∞
tot − limλ→∞ F

Bλ

intÞ ¼ −FB
int, since limλ→∞ F

Bλ

int ¼ 0 and

Ftot ¼ F∞
tot, the latter because of the linear dependence

of the free energy of the dielectric ball on the number

density of its polarizable constituents, inherited from the

Clausius-Mossotti relation, as described in Eq. (B1). Thus,

FB
int ¼

4

3
πa3

�

9

2

�

ε − 1

εþ 2

�

− ðε32 − 1Þ
�

f0ðτ; TÞ

¼ −
4

3
πa3gðεÞf0ðτ; TÞ > 0 ðB10aÞ

and, correspondingly,

SBint ¼
�

9

2

�

ε − 1

εþ 2

�

− ðε32 − 1Þ
�

2t3

135

¼ −gðεÞ 2t
3

135
< 0; t ¼ 2πaT: ðB10bÞ

That is, the ball has a positive interaction free energy and a

corresponding negative interaction entropy.

From Eq. (B10a), we can demonstrate self-consistency

by noting that the interaction free energy of the dilated ball

vanishes as the dilation factor goes to infinity:

F
Bλ

int ¼ −
4πðλaÞ3

3

�

ε
3=2
λ − 1 −

9

2

ελ − 1

ελ þ 2

�

f0ðτ; TÞ

→ −
πa3

2

N2α2c

λ3
f0ðτ; TÞ → 0; λ → ∞: ðB11Þ

The important point to note here is that, because, under

the Clausius-Mossotti relation, the total free energy of the

system is unchanged when the ball is assembled from its

initially maximally dispersed and therefore noninteracting

constituents, the decrease in the total bulk free energy

resulting from the assembly is exactly offset by a corre-

sponding increase in the initially vanishing interaction free

energy, resulting here in a positive interaction free energy

and a corresponding negative interaction entropy for the

ball. The assembly of the ball from its constituents would

otherwise be a spontaneous process, decreasing the total

bulk free energy and increasing the total bulk entropy.

However, the assembly itself creates the differentiation

between the interior (medium) and the exterior (vacuum) of

the ball, and the resulting macroscopic inhomogeneity in

the permittivity gives rise to the scattering part of Green’s

function and the corresponding inhibiting positive inter-

action free energy and negative interaction entropy. In this

point of view, the appearance of a negative interaction

entropy is seen as a natural and inevitable consequence

of the creation of the scattering contribution to Green’s

function through the assembly process. (Of course, this

conclusion only holds for μ ¼ 1.)

In spite of the negative interaction entropy, insertion of the

particle into the vacuum always decreases (if ε > 1) the total

free energy and increases the total entropy of the system:

Ftot − FR
3

vac ¼ ðFB
med − FB

vacÞ þ FB
int

¼ 6πa3
�

ε − 1

εþ 2

�

f0ðτ; TÞ < 0 ðB12aÞ
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and

Stot−SR
3

vac¼ðSBmed−SBvacÞþSBint¼
�

ε−1

εþ2

�

t3

15
>0: ðB12bÞ

More generally, the interaction entropy could be of either

sign. If the ball has permeability as well as permittivity, the

interaction entropy becomes

Sint ¼ −gðε; μÞ 2t
3

135
;

gðε; μÞ ¼ ðεμÞ3=2 − 1 −
9

2

�

ε − 1

εþ 2
þ μ − 1

μþ 2

�

: ðB13Þ

A perfectly conducting spherical shell corresponds to

ε → ∞, μ → 0 so that εμ → 1. (The latter corresponds to

the interior of the shell being vacuum as in the exterior.)

In this way the familiar result (3.8) emerges,

SPCS ¼
t3

30
; ðB14Þ

which is positive. But it is not necessary to go to the limit

to see the change in sign. Although the interaction

entropy (B13) is nonpositive whenever ε and μ are both

≥ 1, if one of these is less than unity, there is a region of

positive entropy, as illustrated in Fig. 4.

APPENDIX C: DIRECT CALCULATION OF

LOW-TEMPERATURE CORRECTION TO

INTERACTION FREE ENERGY

It is easy to obtain the general results for the low-

temperature correction to the free energy, and the low-

temperature entropy, directly from the zero-temperature

expressions derived many years ago [35–37]. The pressure

on a dielectric/diamagnetic ball is given there by

p ¼ 1

2a3

Z

∞

−∞

dζ

2π
eiζτ

X

∞

l¼1

2lþ 1

4π
½flðxÞ − f

ð0Þ
l ðxÞ�; ðC1Þ

where the contribution from the bulk subtraction is

f
ð0Þ
l ðxÞ ¼ 2x½s0lðxÞe0lðxÞ − elðxÞs00l ðxÞ�

− 2x0½s0lðx0Þe0lðx0Þ − elðx0Þs00l ðx0Þ�; ðC2aÞ

where x ¼ jζja, x0 ¼ ffiffiffiffiffi

εμ
p

x, and the scattering

contribution is

flðxÞ ¼ x
d

dx
DlðxÞ;

DlðxÞ ¼ ½slðx0Þe0lðxÞ − s0lðx0ÞelðxÞ�2

− ξ2½slðx0Þe0lðxÞ þ s0lðx0ÞelðxÞ�2; ðC2bÞ

with

ξ ¼

ffiffi

ε
μ

q

− 1

ffiffi

ε
μ

q

þ 1
: ðC3Þ

To extend these old results to finite temperature, we

simply replace the integral over Euclidean frequencies by a

sum over Matsubara frequencies:

Z

∞

−∞

dζ

2π
→ T

X

∞

m¼−∞

; ζ → ζm ¼ 2πmT: ðC4Þ

For low temperatures, we can evaluate the sum by using the

Euler-Maclaurin sum formula (5.38). The integral there, of

course, corresponds to the original zero-temperature result,

which contains all the divergences. The sum over Bernoulli

numbers contains the finite-temperature corrections, which

must be understood as an asymptotic series. So we need the

odd derivatives of fl and f
ð0Þ
l at zero to find the temperature

corrections, which requires computing the odd terms in the

power series expansion of these functions about the origin.

The leading power, as would have been anticipated [23],

occurs only for l ¼ 1:

–3

–3

–2

–2

–1

–1

0

0

0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

FIG. 4. The entropy given in terms of −gðε; μÞ in Eq. (B13) for

ε and μ between 0 and 2. The contour lines denote the boundaries

of regions where the function has values between the designated

integers. The positive entropy region is colored lightest (yellow),

roughly following the εμ ¼ 1 hyperbola shown in red.
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f1ðxÞ ∼ −2x3
�

ε − 1

εþ 2
þ μ − 1

μþ 2

�

;

f
ð0Þ
1 ðxÞ ∼ 4

9
x3ð1 − ðεμÞ3=2Þ; x ≪ 1: ðC5Þ

Supplying the remaining factors, we immediately obtain

the small temperature correction to the pressure,

ΔP ¼ −
π2T4

45
gðε; μÞ: ðC6Þ

Since 4πa2p ¼ − ∂

∂a
F, the temperature correction to the

free energy is just as found above,

ΔF ¼ 4πa3

3

π2T4

45
gðε; μÞ; ðC7Þ

and the entropy (B13) follows. This elementary calculation

should have been done 40 years ago.

[1] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko,

and C. Romero, Violation of the Nernst heat theorem in the

theory of the thermal Casimir force between Drude metals,

Phys. Rev. A 69, 022119 (2004).

[2] G. L. Klimchitskaya and C. C. Korikov, Casimir entropy for

magnetodielectrics, J. Phys. Condens. Matter 27, 214007

(2015).

[3] C. C. Korikov, Casimir entropy for ferromagnetic materials,

Int. J. Mod. Phys. A 31, 1641036 (2016).

[4] G. L. Klimchitskaya and V. M. Mostepanenko, Low-

temperature behavior of the Casimir free energy and entropy

of metallic films, Phys. Rev. A 95, 012130 (2017).

[5] I. Brevik, S. A. Ellingsen, and K. A. Milton, Thermal

corrections to the Casimir effect, New J. Phys. 8, 236 (2006).

[6] K. A. Milton, I. Brevik, and S. A. Ellingsen, Thermal issues

in Casimir forces between conductors and semiconductors,

Phys. Scr. 2012, 014070 (2012).

[7] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,

D. E. Krause, and V. M. Mostepanenko, Precise comparison

of theory and new experiment for the Casimir force leads to

stronger constraints on thermal quantum effects and long-

range interactions, Ann. Phys. (N.Y.) 318, 37 (2005).

[8] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko,

and U. Mohideen, Casimir interaction between two mag-

netic metals in comparison with nonmagnetic test bodies,

Phys. Rev. B 88, 155410 (2013).

[9] G. Bimonte, D. Lopez, and R. S. Decca, Isoelectronic

determination of the thermal Casimir force, Phys. Rev. B

93, 184434 (2016).

[10] M. Liu, J. Xu, G. L. Klimchitskaya, V. M. Mostepanenko,

and U. Mohideen, Examining the Casimir puzzle with

upgraded technique and advanced surface cleaning, Phys.

Rev. B 100, 081406(R) (2019).

[11] G. L. Klimchitskaya and V. M. Mostepanenko, Casimir

effect for magnetic media: Spatially nonlocal response to

the off-shell quantum fluctuations, Phys. Rev. D 104,

085001 (2021).

[12] A. O. Sushkov, W. J. Kim, D. A. R Dalvit, and S. K.

Lamoreaux, Observation of the thermal Casimir force,

Nat. Phys. 7, 230 (2011).

[13] D. Garcia-Sanchez, K. Y. Fong, H. Bhaskaran, S.

Lamoreaux, and H. X. Tang, Casimir Force and In Situ

Surface Potential Measurements on Nanomembranes Phys.

Rev. Lett. 109, 027202 (2012).

[14] V. B. Bezerra, G. L. Klimchitskaya, and V. M.

Mostepanenko, Thermodynamical aspects of the Casimir

force between real metals at nonzero temperature, Phys.

Rev. A 65, 052113 (2002).

[15] V. B. Bezerra, G. L. Klimchitskaya, and V. M.

Mostepanenko, Correlation of energy and free energy for

the thermal Casimir force between real metals, Phys. Rev. A

66, 062112 (2002).

[16] A. Canaguier-Durand, P. A. Maia Neto, A. Lambrecht, and

S. Reynaud, Thermal Casimir effect for Drude metals in the

plane-sphere geometry, Phys. Rev. A 82, 012511 (2010).

[17] P. Rodriguez-Lopez, Casimir energy and entropy in the

sphere-sphere geometry, Phys. Rev. B 84, 075431 (2011).

[18] G.-L. Ingold, S. Umrath, M. Hartmann, R. Guérout, A.

Lambrecht, S. Reynaud, and K. A. Milton, Geometric origin

of negative Casimir entropies: A scattering-channel analy-

sis, Phys. Rev. E 91, 033203 (2015).

[19] K. A. Milton, R. Guérout, G. Ingold, A. Lambrecht, and S.

Reynaud, Negative Casimir entropies in nanoparticle inter-

actions, J. Phys. Condens. Matter 27, 214003 (2015).

[20] S. Umrath, M. Hartmann, G. Ingold, and P. A. Maia Neto,

Disentangling geometric and dissipative origins of negative

Casimir entropies, Phys. Rev. E 92, 042125 (2015).

[21] K. A. Milton, Y. Li, P. Kalauni, P. Parashar, R. Guérout, G.

Ingold, A. Lambrecht, and S. Reynaud, Negative entropies

in Casimir and Casimir-Polder interactions, Fortschr. Phys.

65, 1600047 (2017).

[22] Y. Li, K. A. Milton, P. Kalauni, and P. Parashar, Casimir

self-entropy of an electromagnetic thin sheet, Phys. Rev. D

94, 085010 (2016).

[23] K. A. Milton, P. Kalauni, P. Parashar, and Y. Li, Casimir

self-entropy of a spherical electromagnetic δ-function shell,

Phys. Rev. D 96, 085007 (2017).

[24] M. Bordag, Free energy and entropy for thin sheets, Phys.

Rev. D 98, 085010 (2018).

[25] M. Bordag and K. Kirsten, On the entropy of a spherical

plasma shell, J. Phys. A 51, 455001 (2018).

[26] K. A. Milton, P. Kalauni, P. Parashar, and Y. Li, Remarks on

the Casimir self-entropy of a spherical electromagnetic

δ-function shell, Phys. Rev. D 99, 045013 (2019).

CASIMIR SELF-ENTROPY OF NANOPARTICLES WITH … PHYS. REV. D 106, 036002 (2022)

036002-21



[27] Y. Li, K. A. Milton, P. Parashar, and L. J. Hong, Negativity

of the Casimir self-entropy in spherical geometries, Entropy

23, 214 (2021).

[28] K. A. Milton, P. Parashar, I. Brevik, and G. Kennedy, Self-

stress on a dielectric ball and Casimir–Polder forces, Ann.

Phys. (N.Y.) 412, 168008 (2020).

[29] K. A. Milton and I. Brevik, Casimir energies for isorefrac-

tive or diaphanous balls, Symmetry 10, 68 (2018).

[30] K. A. Milton, L. L. DeRaad, Jr., and J. Schwinger, Casimir

self-stress on a perfectly conducting spherical shell, Ann.

Phys. (N.Y.) 115, 388 (1978).

[31] I. Brevik and H. Kolbenstvedt, The Casimir effect in a

solid ball when εμ ¼ 1, Ann. Phys. (N.Y.) 143, 179

(1982).

[32] Y. Avni and U. Leonhardt, Casimir self-stress in a dielectric

sphere, Ann. Phys. (N.Y.) 395, 326 (2018).

[33] I. Y. Efrat and U. Leonhardt, Van der Waals anomaly, Phys.

Rev. B 104, 235432 (2021).

[34] G. Barton, Perturbative Casimir shifts of nondispersive

spheres at finite temperature, Phys. Rev. A 64, 032103

(2001).

[35] K. A. Milton, Semiclassical electron models: Casimir self-

stress in dielectric and conducting balls, Ann. Phys. (N.Y.)

127, 49 (1980).

[36] K. A. Milton and Y. J. Ng, Casimir energy for a spherical

cavity in a dielectric: Applications to sonoluminescence,

Phys. Rev. E 55, 4207 (1997).

[37] K. A. Milton, The Casimir Effect, Physical Manifestations

of Zero-Point Energy (World Scientific, New Jersey,

2001).

[38] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y.

Tsai, Classical Electrodynamics (Perseus/Westview and

Taylor and Francis, Abingdon, 1998).

[39] P. Parashar, K. A. Milton, K. V. Shajesh, and I. Brevik,

Electromagnetic δ-function sphere, Phys. Rev. D 96,

085010 (2017).

[40] K. A. Milton, Local and global Casimir energies: Diver-

gences, renormalization, and the coupling to gravity, in

Casimir Physics (Springer, New York, 2011), pp. 39–95.

[41] K. A. Milton, P. Parashar, and J. Wagner, From multiple

scattering to van der Waals interactions: Exact results for

eccentric cylinders, in The Casimir Effect and Cosmology,

in Honor of Iver Brevik, edited by S. D. Odintsov, E.

Elizalde, and O. B. Gorbunova (Tomsk State Pedagogical

University, Tomsk, 2009), pp. 107–116, arXiv:0811.0128.

[42] R. Balian and B. Duplantier, Electromagnetic waves near

perfect conductors. II. Casimir effect, Ann. Phys. (N.Y.)

112, 165 (1978).

[43] K. A. Milton, F. Kheirandish, P. Parashar, E. K. Abalo, S. A.

Fulling, J. D. Bouas, H. Carter, and K. Kirsten, Investigation

of the torque anomaly in an annular sector. I. Global

calculations, scalar case, Phys. Rev. D 88, 025039 (2013).

[44] V. V. Nesterenko, G. Lambiase, and G. Scarpetta, Casimir

effect for a dilute dielectric ball at finite temperature,

Phys. Rev. D 64, 025013 (2001).

[45] G. Barton, Perturbative Casimir shifts of dispersive spheres

at finite temperature, J. Phys. A 34, 5781 (2001).

[46] K. A. Milton and Y. J. Ng, Observability of the bulk Casimir

effect: Can the dynamical Casimir effect be relevant to

sonoluminescence?, Phys. Rev. E 57, 5504 (1998).

[47] I. Brevik, V. N. Marachevsky, and K. A. Milton, Identity of

the Van Der Waals Force and the Casimir Effect and the

Irrelevance of These Phenomena to Sonoluminescence,

Phys. Rev. Lett. 82, 3948 (1999).

[48] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, The

general theory of van der Waals forces, Adv. Phys. 10, 165

(1961).

[49] S. M. Christensen, Vacuum expectation value of the stress

tensor in an arbitrary curved background: The covariant

point-separation method, Phys. Rev. D 14, 2490 (1976).

[50] A. Fraser-McKelvie, K. A. Pimbblet, and J. S. Lazendic, An

estimate of the electron density in filaments of galaxies at

z ∼ 0.1, Mon. Not. R. Astron. Soc. 415, 1961 (2011).

[51] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study

in Analytic Number Theory and Computational Complexity,

Canadian Mathematical Society Series of Monographs and

Advanced Texts Vol. 4 (John Wiley and Sons, New York,

1987).

[52] H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systens (Oxford University Press, New York, 2002).

[53] E. M. Lifshitz, The theory of molecular attractive forces

between solids, Sov. Phys. JETP 2, 73 (1956), http://www

.jetp.ras.ru/cgi-bin/e/index/r/29/1/p94?a=list.

[54] H. B. G. Casimir and D. Polder, The influence of retardation

on the London-van der Waals forces, Phys. Rev. 73, 360

(1948).

[55] J. Schwinger, L. L. DeRaad, Jr., and K. A. Milton, Casimir

effect in dielectrics, Ann. Phys. (N.Y.) 115, 1 (1978).

[56] V. N. Marachevsky, Casimir energy and dilute dielectric

ball, Phys. Scr. 64, 205 (2001).

YANG LI et al. PHYS. REV. D 106, 036002 (2022)

036002-22


