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High-Rate Storage Codes on Triangle-Free Graphs
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Abstract— Consider an assignment of bits to the vertices of a
connected graph G(V, E) with the property that the value of
each vertex is a function of the values of its neighbors. A collection
of such assignments is called a storage code of length |V | on
G. The storage code problem can be equivalently formulated
as maximizing the probability of success in a guessing game on
graphs, or constructing index codes of small rate. If G contains
many cliques, it is easy to construct codes of rate close to 1, so a
natural problem is to construct high-rate codes on triangle-free
graphs, where constructing codes of rate >1/2 is a nontrivial
task, with few known results. In this work we construct infinite
families of linear storage codes with high rate relying on coset
graphs of binary linear codes. We also derive necessary conditions
for such codes to have high rate, and even rate potentially
close to one. We also address correction of multiple erasures in
the codeword, deriving recovery guarantees based on expansion
properties of the graph. Finally, we point out connections
between linear storage codes and quantum CSS codes, a link
to bootstrap percolation and contagion spread in graphs, and
formulate a number of open problems.

Index Terms— Storage codes, index codes, guessing number,
Cayley graphs, CSS codes, bootstrap percolation.

I. INTRODUCTION

IN THIS paper we consider a class of codes on graphs
known as storage codes. Given an undirected graph

G(V, E) with N vertices, denote by N(v) = {u : (v, u) ∈ E}
the set of neighbors of the vertex v in G. Consider a set of
vectors C = {x : x ∈ QN} over a finite alphabet Q, where
the coordinates are indexed by the vertices in V . We assume
some fixed order of the vertices of G throughout the paper.
The set C is said to form a storage code if for every v ∈ V
and x, y ∈ C, if xu = yu for all u ∈ N(v) then also xv = yv.
In other words, the codewords are written on the vertices of
G, and for any codeword the value of the vertex v can be
uniquely determined by the values of its neighbors. Thinking
of storing the coordinates of the codeword at different nodes
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of a distributed storage system, this definition implies that
an erased coordinate (vertex) can be recovered in a local
way from its immediate neighborhood. This definition can be
also phrased in terms of recovery functions fv that map the
subcodewords (xu), u ∈ N(v), on the value xv of v. Note
that fv generally depends on v, and the functions for different
vertices may be different.

The concept of storage codes on graphs was introduced
around 2014 by Mazumdar [22], [23] and Shanmugam and
Dimakis [27], motivated by earlier works on index coding by
Alon et al. [1] and codes with locality for distributed storage
introduced by Gopalan et al. [16]. The defining property of
codes with locality is the ability to recover a missing coordi-
nate of the codeword based on the values of the symbols in
a small subset of other coordinates (the repair group), with
the goal of minimizing the size of these subsets and reducing
internodal communication for completing the recovery task.
Storage codes on graphs additionally assume that the links
between the nodes are established based on physical proximity
and the associated energy constraints, limitations of the system
architecture, or other features with the same effect. This
constraint, modeled by the graph G, defines the neighborhood
of each vertex and guides the construction of the code used
to store information on the vertices. Similarly, the problem of
index coding addresses constructions of broadcast functions
that distribute information to the vertices of the graph whereby
each vertex has access to the “side information” stored on the
vertices in its neighborhood in the graph.

Essentially the same problem, in a different guise, appears in
a line of works devoted to guessing games on graphs, e.g., [8],
[10], which has developed independently of both the storage
codes and index coding problems. That these groups of prob-
lems are largely equivalent was realized in a number of papers,
and the historical development is detailed in [2] from the
index codes’ perspective. We present a brief summary of the
relations between these three problems in Section II-A below.

Example 1.1: To give an example, consider the graph in
Figure 1. We can construct a storage code by assigning to
its vertices 1, 2, . . . , 5, binary vectors (x1, x2, . . . , x5) that
satisfy x1 = x2 and x3 + x4 + x5 = 0. Clearly, every vertex
can recover its value from its neighborhood, for instance, the
recovery functions of the vertices 1 and 3 are f1({x2, x3}) =
x2 and f3({x1, x4, x5}) = x4 + x5, respectively. All the
possible assignments give rise to a linear binary storage code
of length N = 5 and dimension 3, so the rate of the code is
R(G) = 3/5.

The main question concerning storage codes is determining
the largest possible cardinality of the code C for a given
graph G. Below we denote by Rq(G) the maximum possible
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Fig. 1. The graph and storage code in Example 1.1.

rate 1
N logq |C| of a q-ary storage code for a given graph G.

Determining Rq(G) (or even R(G) := supq Rq(G) if we wish
to optimize on the choice of the code alphabet) is a difficult
problem related to the so-called minrank of the graph, and we
refer to [24] for the best known bounds as well as an overview
of the earlier results. Below we limit ourselves to finite field
alphabets Q = Fq and assume that the code C forms a linear
subspace of F

N
q . While nonlinear functions can sometimes

attain higher rates [1], adding linearity enables one to rely
on various known structures to construct families of storage
codes. Generally, improved rates associated with nonlinear
storage/index codes require specially designed dependence
graphs, while linear maps support constructions for large graph
families based on universal methods.

In the next section we overview the known constructions of
storage codes. It turns out that in dense graphs, for instance,
graphs with many cliques, attaining high rate is easy: in
particular, if the graph G on vertices 1, 2, . . . , n is itself a
clique, then it affords a storage code of rate close to one
defined by the single parity check equation

∑n
i=1 xi = 0, that

is common to all the vertices. More generally, if we partition
the vertex set of the graph into cliques, we can define a storage
code with one single equation for every clique. In the example
of Figure 1, there are two equations, one for clique {1, 2}
and one for clique {3, 4, 5}. Therefore graphs with many
large cliques tend to admit storage codes of high rate. But in
graphs with no cliques of size larger than 2, i.e., triangle-free
graphs, the simple clique partition strategy achieves at best rate
1/2. Other more refined constructions also fail to exceed rate
1/2 when graphs are triangle-free (more on this below), and it
was also proved that bipartite graphs, a large class of triangle-
free graphs, do not admit storage codes of rates that exceed
1/2. This motivated us to look for triangle-free graphs that
do admit storage codes of rate larger than 1/2, and this forms
the main subject of this paper. Constructing codes of high rate
on such graphs represents a challenge, and early studies [10]
have conjectured that with no triangles, R = 1/2 is the
largest attainable rate value. While this conjecture was refuted
in [8], only isolated examples of such codes (and their direct
extensions to infinite families; see Remark 2.1 below) have
been presented in the literature.

The codes that we consider are constructed on Cayley
graphs on F

r
2 (coset graphs of binary linear codes). While

coset graphs form a classic topic in coding theory, one
motivation of this work is drawn from a recent construction
of quantum CSS codes obtained from linear spaces defined by
adjacency matrices of coset graphs [12]. Our main results are
constructions of two infinite families of binary linear storage
codes of rate above 1/2, one of which in fact has rate R2(G)

approaching 3/4 for growing length N , exceeding the rate 5/8
of the unique previously known binary storage code with rate
above 1/2 for triangle-free graphs. The exact dimension of
these storage codes is computed. We also formulate necessary
conditions for the code dimension to be high compared to the
number of vertices N .

In addition, we present computer-assisted results that
give sporadic examples of storage codes with high rate on
triangle-free coset graphs: in particular we uncover an example
of a storage code on a triangle-free graph whose rate exceeds
3/4 and surpasses that of all previously known storage codes
over any alphabet.

Finally, we address a problem left open in [23], namely
that of correcting multiple erasures in the codeword: we
derive local recovery guarantees based on expansion prop-
erties of the graph, and make a connection with bootstrap
percolation.

The paper is organized as follows. Section II is dedicated
to background material on storage codes, with connections
to index coding and guessing games. Section III introduces
storage codes on coset graphs of linear codes and makes
a connection with quantum coding, transforming a known
family of quantum codes into storage codes. Section IV
derives necessary conditions for storage codes on triangle-free
coset graphs to have large rates. Section V is devoted to
constructing a family of binary linear codes and proving that
their coset graphs are triangle-free and admit storage codes
of rate approaching 3/4. Section VI addresses the problem
of correcting multiple erasures for storage codes on expander
graphs. Finally, Section VII concludes with results on some
storage code rates for triangle-free coset graphs found with
computer help, and with miscellaneous comments and open
problems.

II. BACKGROUND

A. Storage Codes, Index Codes, and Guessing Games

The problem of finding the largest storage code for the
graph G is closely related to two other recently introduced
problems in computer science, index coding and guessing
games on graphs. In the symmetric index coding problem,
an information vector x = (x1, . . . , xN ) is to be distributed to
N users via a single broadcast with the goal of furnishing user
i with the symbol xi. The users possess “side information”
about their intended messages in the form of a subset of
coordinates of the vector x. Specifically, let Ni ⊂ {1, . . . , N}
be a subset of indices, and suppose that user i has access to
symbols x(Ni) := (xj , j ∈ Ni). The index coding problem
seeks to construct an encoding (broadcast) function f : F

N
q →

W , where K := logq |W | < N , and N decoding functions φi

such that φi(f(x), x(Ni)) = xi for all i = 1, . . . , N .
The index coding problem is conveniently described in

terms of a side information graph G(V, E) with N vertices
and (i, j) ∈ E if and only if j ∈ Ni. We assume that the
relation j ∈ Ni is symmetric in i, j, and thus the edges are
undirected. The value Iq(G, f) := K/N is called the rate of
the q-ary symmetric index code (f, {φi}), and the objective
of the construction is to devise broadcast functions (index
codes) of minimum rate for a given side information graph.
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The minimum possible rate of the index code for the side
information graph G is called the capacity Iq(G) of index
coding for G. It is often possible to reduce the rate value Iq(G)
by increasing q, resulting in a universal characterization I(G)
of index coding for a given graph.

The problems of storage coding and index coding are to a
large extent equivalent, namely, the following is true:
(A) Any graph G defines an index coding problem (f, {φi})

wherein the sets Ni = N(i) are the neighborhoods of
vertices i ∈ V . Furthermore, for any value s of the
broadcast function, the preimage f−1(s) is a storage
code for the graph G.

(B) If there is a partition (Cj)j∈W of F
N
q into a set of storage

codes Cs for G, then the map F
N
q → W that associates

a vector x to the index s such that x ∈ Cs, is a valid
broadcast function for the index coding problem with
side information graph G.

(C) Moreover, if the broadcast function f for an index
coding problem defined by a graph G is linear, then
its kernel is a storage code. Conversely, if C is an Fq-
linear [N, K] storage code, then any syndrome function
f : C → F

N−K is a broadcast function for the corre-
sponding index coding problem. This link is a starting
point of the equivalence proof of the two problems
in [22].

As shown in [1], [23]

1 − Iq(G) ≤ Rq(G) ≤ 1 − Iq(G) + N−1 logq(N ln q),

and thus supq(Rq(G)) + infq(Iq(G)) = 1.
Another equivalent formulation of the storage coding prob-

lem arises from the study of guessing games on graphs
initiated in [25]. In one version of the game, the vertices in
V are assigned elements of a finite set Q (colors), and each
vertex v attempts to guess its color based on the colors of its
neighbors in N(v). The game is won if all the vertices correctly
guess their colors. They may agree on the guessing strategy in
advance, but once they are assigned colors, all communication
is forbidden. The assignment x ∈ QN is assumed uniformly
random, and the participants (vertices) attempt to maximize
their probability of success Ps. Any storage code C(G) for the
graph G defines a guessing strategy, namely every participant
will assume that x ∈ C and reconstruct their xv from the
values of their neighbors: we thus have Ps(C, G) = |C(G)|

qN =
exp(log |C| −N). Conversely, any guessing strategy defines a
storage code, namely the set of values x for which the strategy
succeeds, and thus maximizing Ps is equivalent to constructing
large-size storage codes. The authors of [8] define the guessing
number of G as gnq(G) = N + logq maxPs(C, G); thus in
our notation gnq(G) = NRq(G). In the context of guessing
games it has been shown that the storage capacity Rq(G) is
almost monotone on q. Namely, the following is true.

Theorem 1 ([8], [10], [14]): For any graph G, alphabet
size q, and � > 0 there exists q0(G, q, �) such that for all
q′ > q0

Rq′(G) ≥ Rq(G) − �.

Consequently, the limit limq→∞ Rq(G) exists.

The equivalence between index coding, storage coding, and
guessing games is further discussed in [2].

B. Constructions of Storage Codes

To motivate the problem that we will study in the next
section, we briefly overview the known constructions; see [8],
[10], [24] and also [3, Ch.6] for the details.

1) Matching Construction: A matching M ⊂ E in a graph
G(V, E) is a subset of edges such that every vertex v ∈ V
is incident to at most on edge from M , and a matching is
perfect if every v ∈ V is incident to exactly one edge from it.
A matching M defines a linear storage code C : F

|M|
q → F

N
q

by associating to (xe)e∈M the vector c ∈ F
N
q such that for

every vertex v incident to an edge e ∈ M we assign cv = xe

and for every remaining vertex v we put cv = 0. In particular,
if G is d-regular and bipartite, it contains a perfect matching,
giving rise to a storage code C(G) of rate 1/2 independently
of q. If G is not bipartite, we can take a double cover1 Ḡ of
G. Now, Ḡ is a bipartite regular graph, and we can apply the
matching encoding and obtain a code C̄ ⊂ F

2N
q . This code can

be mapped on a code C over F
N
q2 obtained by grouping together

pairs of symbols indexed by vertices v′, v′′ ∈ V (Ḡ) that
correspond to the same vertex v ∈ V (G). This construction
gives a way of obtaining a code of rate 1/2 on any regular
graph. Clearly, the value of any vertex in the codeword is
recoverable from its neighbors, implying that C is a storage
code for G.

2) Edge-Vertex Construction: An alternative way of obtain-
ing a code of rate 1/2 on a d-regular graph G(V, E) is the
following. Consider the space (Fq)|E| of vectors indexed by
the edges of G. Next, map this space on (Fd

q)N ∼= F
N
qd by

assigning to each vertex v a d-vector formed of the symbols
written on the edges incident to it. In other words, C(G) =
{(cv, v ∈ V )} is obtained as the image of the mapping

F
|E|
q → F

N
qd

(xe)e∈E �→ (cv)v∈V , where cv = (xe)e∈∂(v), (1)

where ∂(v) is the edge neighborhood of v in G. Since
|(Fq)|E|| = q

dN
2 , the rate of C is indeed 1/2. In Figure 2

we show this construction for the cycle C5, where we first
place symbols of the q-ary alphabet on the edges, and then
assign to each vertex the symbols on the edges that are incident
to it. Now each vertex can recover its pair of symbols from
its neighbors: for instance, v1 takes the second symbol from
v2 and the first one from v5 (note again that we fix the order
of the vertices). This gives a code of size |C| = q|E| with
|E| = 5, and thus the rate is R(C) = 1

N logq2 |C| = 1/2.
3) Clique-Vertex Construction: The edge-vertex construc-

tion affords a straightforward generalization if every vertex
v ∈ V is incident to the same number (say m) of k-cliques,
where k > 2. Let K be the set of k-cliques in G and let us
map (Fk−1

q )|K | to (Fm
q )n by placing a q-ary code of length

k and dimension k − 1 on every clique and distributing the
symbols of the k-codeword to the vertices that form the clique.

1A bipartite double cover of G is a graph with adjacency matrix

�
0 A
A 0

�
,

where A is the adjacency matrix of G.
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Fig. 2. Edge-vertex construction of a storage code.

The rate of the code C(G) obtained as a result equals (k−1)/k;
for instance, a triangular lattice gives rise to a code of rate 2/3,
etc.

4) Fractional Clique Cover: A fractional clique cover of a
graph G is a collection K of cliques κ together with a weight
wκ ∈ [0, 1], such that for every vertex v, we have∑

κ∈K :v∈κ

wκ ≥ 1 (2)

To construct a storage code for G, we apply the clique-vertex
construction to the subset of cliques that make up the fractional
clique cover. The vertices may not all be incident to the same
number of cliques, in which case the alphabet size may depend
on the vertex (a mixed-alphabet code), or we have to use the
alphabet F

m
q where m is the largest vertex-degree in the vertex

to clique incidence graph.

C. Bounds for Storage Codes

It is known that Rq(G) satisfies the constraints

M(G) ≤ NRq(G) ≤ N − α(G) (3)

where M(G) is the size of the largest matching in G and α(G)
is the size of the largest independent set in G, i.e., vertices
with no edge among them. This result was proved in [23]
for storage codes and in an earlier independent work [10] in
the language of guessing games. Since the complement of a
maximum independent set forms a vertex cover in G (a set of
vertices that touches every edge in E(G)), the upper bound
in (3) is often stated in terms of the vertex cover number.
A consequence of (3) is that if the graph G is not only
triangle-free but bipartite, we must have R ≤ 1/2 since a
bipartite graph has an independent set of size at least N/2.

To state another bound, recall that a fractional clique cover
is called regular if its weighting w : K(G) → [0, 1] satisfies
(2) with equality. As shown in [10] (for the guessing number)
and in [5] (for the broadcast rate),

R(G) ≥ 1 − 1
N

κf (G),

where κf (G) := min
∑

κ wκ is the minimum weight of a
regular fractional cover. The authors of [10] observed that this
bound holds with equality for perfect graphs and cycles or
their complements.

A linear program for bounding Rq(G) was introduced by
the authors of [24], adapting a similar bound for Iq(G) [5] to
the case of storage codes. As a result, [24] showed an upper
bound Rq(G) ≤ 1/2 for several classes of graphs.

Below we focus on the question of identifying graphs
that support storage codes of the largest rate. Without any
constraints, the complete graph KN affords a linear storage
code of rate N−1

N (defined by the single equation
∑

v∈V xv =
0). The problem becomes less trivial if we limit ourselves to
sparse graphs G, for instance, d-regular graphs on N vertices
with varying N .

Proposition 2: Let G be a connected d-regular graph on
N vertices, then Rq(G) ≤ N+1

N − 1
d+1 . There exist d-regular

graphs with Rq(G) ≥ 1 − 1
d−2 .

Proof: Recall that the Cartesian product of graphs G and
H is a graph with the set of vertices V (G)×V (H) in which
vertices (u, u′) and (v, v′) are adjacent if and only if either u =
v and (u′, v′) ∈ E(H) or (u, v) ∈ E(G) and v = v′. Take s ≥
3 and let G be the Cartesian product of Kd−2 and a cycle of
length s. According to the above definition, the graph obtained
as a result is formed of s copies of the graph G in which copies
of the same vertex are connected by the edges of the cycle.
Now put a code of length d−2 on each clique independently,
obtaining the claimed lower bound. On the other hand, any
d-regular graph on N vertices contains an independent set of
size 	 N

d+1
 [26], and together with (3) this implies the upper
bound. �

Remark 2.1: This last proposition highlights the following
fact. If we have a graph G that admits a storage code C of
rate Rq(G), we can construct many more graphs with the
same storage rate, simply by taking k ≥ 1 disjoint copies of
the original graph G. The associated storage code will consist
of the Cartesian product of k copies of the original code C,
whose codewords consist therefore of k successive codewords
of C. We can also add arbitrary edges to and between the
copies of G that the storage code will simply ignore. In what
follows, we will be looking for the highest possible rate
of a storage code for graphs with specific properties, and
will conflate a code with its successive Cartesian powers,
considering that we are dealing with the same code ‘up to
repetitions’.

III. STORAGE CODES ON TRIANGLE-FREE GRAPHS AND

THE CSS CODE CONNECTION

The graphs used to obtain storage code rates close to one
are dense and contain a large number of cliques. It is therefore
natural to consider the question of the largest attainable rate
for graphs that contain no cliques, i.e., triangle-free graphs.
For such graphs none of the methods mentioned above yield a
storage code rate in excess of 1/2; in particular, as noted in [5]
(in the language of index codes), κf (G) ≥ N/2. The same
observation was also made in [8] in terms of the guessing
number of triangle-free graphs. Both [5] and [8] reported
only one example of a storage code on triangle-free graphs
for which R2(G) > 1

2 (up to repetitions, in the sense of
Remark 2.1). This code is associated to the graph Γ shown
below in Fig. 3 (the authors of [8] also gave several examples
of triangle-free graphs with Rq(G) > 1

2 for q > 2). This
graph can be defined in several ways and is known as the
Clebsch graph or a folded cube, see Figure 3. The storage
code constructed on Γ is a linear binary code C of length
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Fig. 3. The Clebsch graph Γ (a folded cube): A 5-regular triangle-free graph
on n = 16 vertices obtained by identifying each pair of opposite vertices
in the 5-dimensional hypercube. It is also a coset graph of the binary code
{00000, 11111}.

N = 16 whose parity-check matrix has the form

Ã = IN + A(Γ), (4)

where A(Γ) is the adjacency matrix of Γ. The identity matrix
IN is added since A includes only the neighborhood N(v) but
not the vertex v itself. Upon checking that the F2-rank of Ã
equals 6, we conclude that the dimension of the code equals
N − rk Ã = 10, so R2(G) ≥ 5

8 . This example refuted a con-
jecture in [10] which suggested that the fractional clique cover
bound holds with equality for triangle-free graphs. It is also
easy to check that Γ contains independent sets of size 5, and
thus from (3) we conclude that 5

8 ≤ R2(Γ) ≤ 11
16 , where the

upper bound is sharper than the result of Prop. 2. Using the ter-
minology of guessing games, the guessing number of the graph
Γ satisfies 10 ≤ gn2(Γ) ≤ 11, or rephrasing again, the side
information graph Γ affords a binary index code of rate 3/8.

Note that the recovery functions of the vertices use full
neighborhoods (the parity-check equations have weight 6),
even though the general definition of the storage code does
not include this constraint. We call binary codes from this
subclass full-parity storage codes, and it is only such codes
that we consider in this and the next sections.

The Clebsch graph forms a rather special example: it is a
unique strongly regular graph with the parameters (16, 5, 0, 2);
see [15], Theorem 10.6.4. Six other triangle-free strongly
regular graphs are known [6, p. 119], and all the other
examples of (nonbinary) storage codes of rate greater than
1
2 in [8] are drawn from this list.

A. Storage Codes on Cayley Graphs

Recall that the Cayley graph Cay(G , S) of the group G
for a given set of generators S has G as its set of vertices,
and the vertices g1 and g2 are connected by an edge if there
is an element s ∈ S such that g1s = g2. For the group
G = F

r
2, which is the only group we will consider, any subset

S coincides with its inverse S−1, so the graphs that we study
are undirected. Since the generators are r-dimensional binary
vectors, we also write the group action additively. Write the
elements of S as columns of an r×n matrix H and consider
the binary code C defined by H as the parity-check matrix.
The graph Cay(G , S) can be also viewed as a coset graph
of the code C constructed on the set of cosets in F

n
2/C,

wherein two cosets are connected with an edge if and only
if the Hamming distance between them (as subsets) is one.

Observe that the Clebsch graph Γ can be viewed as a Cayley
graph over the group F

4
2. Namely, consider the set S whose

elements form the matrix

H =

⎡
⎢⎢⎣

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎦ . (5)

Indeed, as easily checked, the canonical generators
e1, e2, e3, e4 connect a vertex x ∈ F

4
2 to its neighbors at

Hamming distance one, while their sum e1 + · · ·+e4 connects
it to its opposite vertex. See Fig. 3 for one possible vertex
labeling, where each color corresponds to the action of a
specific generator. Viewing the matrix H as a parity-check
matrix of a [5, 1] binary repetition code, we see that Γ is in
fact the coset graph of this code.

Motivated by this example, we now investigate other Cayley
graphs over binary groups F

r
2 and exhibit more exceptional

graph families that admit binary storage codes of rate greater
than 1/2. These graphs have connections to both classical and
quantum coding theory.

1) Notation: Our notation is as follows. We are given
a binary code C with parameters [n, k, d] with a fixed
parity-check matrix H which we are free to choose. Next we
construct the coset graph G = Cay(Fr

2, S) where r = n− k is
the number of rows and S is the set of columns of H . Note
that G is a regular graph of degree |S| = n. The adjacency
matrix A of this graph is symmetric, of order N = 2r, and its
rows and columns are labeled by the vectors x ∈ F

r
2: we would

like row x to specifiy the parity-check equation that recovers
the value of the vertex x from its neighbors. Note however
that Ax,x = 0, therefore, to involve the value supported by x
in the parity-check equation, we consider, as in (4), the matrix

Ã = IN + A(G). (6)

Our storage code is finally a linear space in F
N
2 defined as C =

ker(Ã).2 Note that the matrix Ã is the adjacency matrix of the
graph Cay(Fr

2, S) to which we have added self-loops at every
vertex, or equivalently the Cayley graph Cay(Fr

2, S
′), where

S′ is obtained from S by adding 0 to the set of generators. The
main problem addressed below is analyzing the dimension of
C both in general and for several specific constructions.

As our first observation, note that once the minimum
distance of the code C is at least 4, then so is the girth of
the graph Cay(Fr

2, S), i.e., the graph is triangle-free. We will
therefore assume that all the small codes below have distance
4 or more.

2Notice that we deal with two types of binary codes: the codes in F
n
2 and

codes in F
N
2 , called small codes and big codes in [12].
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The next lemma will help to further motivate our problem.
Lemma 3: Let A be the adjacency matrix of the graph

Cay(Fr
2, S) where S may or may not contain 0. If n = |S|

is odd then rkA = N = 2r and if n is even then AAᵀ = 0,
implying in particular rkA ≤ N/2.

Proof: The rows and columns of A are indexed by
vectors of F

r
2. Two distinct rows x and y intersect in the

set of positions I = (x + S) ∩ (y + S) which is of even
size because whenever x + s1 = y + s2 is in I, so is
x+s2 = y+s1, implying that I is partitioned into pairs of the
form {z, z+(x+y)}. Therefore the matrix AAᵀ has only zeros
outside the main diagonal. Now a diagonal element has value
�x, x
 = |S| mod 2 so when n is odd we have AAᵀ = IN

and when n is even we have AAᵀ = 0, hence the claims of
the lemma. �
As a consequence, we observe that for a set of non-zero
generators of odd size n, we have rk Ã ≤ N/2, whence
dim ker(Ã) ≥ N/2 so the rate of the storage code satisfies
R(C) ≥ 1/2. It may happen that for some Cayley graphs of
odd degree (not counting the loops) we have rk Ã < N/2 in
which case we will obtain an exceptional storage code of large
rate. While this observation shows that this construction has a
potential for uncovering large-size storage codes, it does not
necessarily make finding such codes a straightforward task: in
fact, as we have mentioned, for some years it was believed
that they did not exist at all.

B. Coset Graphs of Binary Codes: The Quantum Coding
Connection

The construction of quantum codes of Calderbank, Shor,
and Steane [7], [29] relies on a pair of classical codes
C0, C1 such that C⊥

0 ⊂ C1, and it gives rise to a quan-
tum code of dimension equal to dim(C1/C⊥

0 ) and distance
min(w(C1\C⊥

0 ), w(C0\C⊥
1 )), where w(·) is the minimum

Hamming weight of the argument set. Of interest to us is the
particular case of C0 = C1. In other words, we start with a
binary linear code C ⊂ F

N
2 generated by a matrix A such that

AAᵀ = 0, which ensures that C⊥ ⊂ C. The code C defines
a quantum code through the above construction, and the
associated quantum code has parameters [[N, N −2 rkA, D]],
i.e. length N , dimension N −2 rkA and minimum distance D
equal to the smallest Hamming weight of a vector in C⊥ \ C.

Therefore, for Cayley graphs over F
r
2, the storage codes we

are interested in also define quantum codes. From the point
of view of storage, we do not have much use for the quantum
code’s minimum distance, but we are very much interested in
its dimension: in particular we will obtain a storage code of
rate greater than 1/2 if and only if the associated quantum
code has non-zero dimension. Quantum codes arising from
Cayley graphs over F

r
2 were studied in [12] and we will make

use of some of results obtained in that work.
We now focus on the case of coset graphs of repetition

codes of odd length n = r + 1, since they form a natural
generalization of the Clebsch graph which is the coset graph
of the [5, 1] repetition code. Alternatively, they can be seen
as Cayley graphs Cay(Fr

2, S), r even, with generating set
S = {e1, e2, . . . , er, e1 + e2 + · · · + er}, where e1, . . . , er

denote the canonical generators. Now it turns out that in

the quantum coding context, coset graphs Gm of repetition
codes of even length m were studied in [12], because their
adjacency matrices A(Gm) are self-orthogonal and therefore
directly yield quantum codes. These quantum codes were
proved in [12] to have parameters [[2m−1, 2m/2, 2m/2−1]].
We shall use this result to prove

Proposition 4: The storage codes associated to coset graphs
of repetition codes of odd length n ≥ 5 have length N = 2n−1

and dimension K = 2n−2 + 2(n−3)/2.
Proof: We start with the graphs Gm defined in the

previous paragraph for even m. They are Cayley graphs with
vertex set F

m−1
2 , generator set Sm = {e1, . . . , em−1, e1 +

. . . + em−1}, and we note that all these generators are of odd
weight since m is even. Therefore Gm is bipartite, and each
of its edges connects an even-weight vertex to an odd-weight
vertex. The adjacency matrix of Gm can therefore be written
as

A(Gm) =
[

0 Bᵀ
m

Bm 0

]

where the rows of Bm are indexed by even-weight vectors of
length m−1, its columns by odd-weight vectors, and Bm has a
1 in the coordinate indexed by row x and column y if and only
if the vector x+y ∈ Sm. From the result of [12] quoted before
the proposition we find that rkA(Gm) = 1

2 (2m−1 − 2m/2) =
2m−2 − 2

m
2 −1.

We will now make a transition to odd length n = m−1 by
transforming the odd-weight vector indices of the columns
of Bm into even-weight vectors through the correspondence
x �→ 1 + x, where 1 denotes the all-one vector of length
n = m−1. After permuting columns, the matrix Bm can now
be seen as the adjacency matrix of the Cayley graph defined
over the binary group of even-weight vectors of length m−1,
with generators 1 + e1,1 + e2, . . . ,1 + en, 0. Since n is odd
we have

n∑
i=1

(1 + ei) = 0

and this last Cayley graph is therefore isomorphic to the
Cayley graph over F

n−1
2 with generators

0, e1, . . . , en−1, e1 + · · · + en−1.

The matrix Bm is therefore the parity-check matrix of the
storage code C associated to the coset graph of the repetition
code of odd length n = m − 1 (note that this matrix has a
unit diagonal). The length of the code C is N = 2n−1, and
the dimension

K = dim ker(Bm) = N − 1
2

rkA(Gm)

= 2n−1 − 1
2
(2n−1 − 2

n+1
2 −1)

= 2n−2 + 2(n−3)/2

as was to be proved. �
This last proposition therefore yields an infinite family

of graphs for which the associated storage codes have rate
exceeding 1/2. In particular, for n = 5 we recover the value
of the rate 5

8 . As n increases, the rate

R(Gm) =
1
2

+
1

2(n+1)/2
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decreases to 1/2, so the highest rate within this family is
achieved for n = 5, i.e. for the Clebsch graph.

IV. NECESSARY CONDITIONS FOR HIGH RATE OF CODES

ON COSET GRAPHS

We maintain the notation and conventions of Sec. III-A.
Below we identify binary vectors z ∈ F

2r

2 with functions

f : F
r
2 → F2,

namely we put f(x) = zx, where x ∈ F
r
2 is the (vector) index

of the coordinates of z. Therefore the adjacency matrix A can
be viewed as an operator on the function space F(Fr

2) := F
F

r
2

2

acting by

A : F(Fr
2) → F(Fr

2)
f �→ Af

with
Af(x) =

∑
s∈S

f(x + s). (7)

Keeping the graph G = Cay(Fr
2, S) in mind, we also call A

the adjacency operator of G.
The starting observation in this part is given by the fol-

lowing proposition, due to Lowzow [21], as is point (a) of
Theorem 6 below, that was formulated in a quantum coding
context.

Proposition 5: Let V be a vector subspace of F
r
2. If |S∩V |

is odd, then rkA ≥ 2dim V .
Proof: Let us look at the effect of A on the restricted

set of functions FV := {f : supp(f) ⊂ V }. We note that for
every x ∈ V we have

Af(x) =
∑

s∈S∩V

f(x + s)

since for x ∈ V and s �∈ V we have x+s �∈ V and f(x+s) =
0 by our hypothesis on f . Therefore, when thus restricted to
functions V → F2, A acts on FV as the adjacency operator
AS∩V of the Cayley graph defined by the set of generators
S∩V . Therefore the image of A has dimension at least equal to
the dimension of the image of AS∩V . Now, Lemma 3 says that
when |S∩V | is odd the image of AS∩V has dimension 2dim V ,
since AS∩V is full-rank on the space of functions V → F2.

�
Definition 1: The Schur product of two codes A, B ⊂ F

n
2

is a binary linear code C = A ∗ B ⊂ F
n
2 generated by

all coordinatewise products a ∗ b = (a1b1, . . . , anbn), a =
(a1, . . . , an) ∈ A, b = (b1, . . . , bn) ∈ B.

Theorem 6: Let G = Cay(Fr
2, S) be a Cayley graph over

F
r
2 with set of generators S containing the 0 element. Let H

be the r × n matrix whose columns are made up of the non-
zero elements of S, so that n = |S| − 1, and let C be a code
of length n with parity-check matrix H . Finally, let C be the
storage code on G. Then

(a) If R(C) > 1/2, then n is odd and all the rows of H
have even weight;

(b) If R(C) > (2k−1)/2k, k = 2, 3, . . . , then (C⊥)∗(k−1) ⊂
C.

Proof: (a) Lemma 3 implies that |S| is even and therefore
n is odd. Let Vi be the subspace of F

r
2 generated by all vectors

of weight 1 except the vector with a 1 in coordinate i. We have
dim Vi = r − 1. Our assumption of R(C) > 1/2 implies that
rkA(G) < 2r−1, and then by Proposition 5, |S ∩ Vi| must be
even, and so must therefore be |S ∩ Vi|. But S ∩ Vi is exactly
the set of columns of H that have a 1 in row i.

(b) We argue by induction. For the base case of k = 2 we
need to show that C⊥ ⊂ C. Let i, j be distinct (row) indices,
1 ≤ i, j ≤ r. Let V be the subspace of F

r
2 generated by

the basis vectors es except for ei, ej . As above, Proposition 5
implies that |S∩V | is even. In other words, the set of columns
of H having a 1 in rows hi or hj is even, i.e., |hi∪hj | is even.
Since the weights of the rows hi and hj are also even by Part
(a), this implies that |hi ∩ hj | is even, i.e., �hi, hj
 = 0. The
row space of H is therefore included in its orthogonal space,
proving the claim.

We will prove the induction step for k = 3 to ease notation.
Take three distinct row indices i1, i2, i3 and let V be generated
by all the basis vectors except eij , j = 1, 2, 3. As before,
|S ∩ V | is even, or in other words, | ∪3

j=1 hij | is even. Now
|hi1 ∩ hi2 | and |hi1 ∩ hi3 | are even by the base case, and
therefore |hi1 ∩hi2 ∩hi3 | is also even, i.e., (hi1 ∗hi2 , hi3) = 0.
This shows that C⊥ is orthogonal to C⊥ ∗ C⊥, meaning that
C⊥ ∗ C⊥ ⊂ (C⊥)⊥ = C. For general k we just use the
fact that the l-wise intersections of the rows are even for all
1 ≤ l ≤ k − 1, and thus so is the k-wise intersection. �

V. A FAMILY OF STORAGE CODES ON TRIANGLE-FREE

GRAPHS OF RATE 3/4

In this section we consider a family of storage codes on
coset graphs of a specially constructed family of binary codes
Cr of length n = 2r−1 + 1, dimension k = 2r−1 − r, and
distance 4. To define it, start with the parity-check matrix
of the extended Hamming code of length 2r−1, augment
it with an all-zero column, and then add a row of weight
2 that contains a ‘1’ in the last position. Denote the resulting
(r + 1) × n matrix by Hr. For instance, for r = 4 we obtain
the matrix

H4 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ (8)

where the choice of the last row is largely arbitrary as long
as it is of weight 2 and intersects the all-zero column.

Observe that the code Cr does not contain its dual C⊥
r , i.e.,

the code generated by Hr, because for instance the last row of
Hr is not orthogonal to the other rows. Thus, from Theorem 6,
the most we can hope for the storage code constructed on the
coset graph of Cr is rate 3/4. In this section we prove that
the rate R(Cr) is in fact close to this maximum value.

Theorem 7: Let Cr be the [N = 2r+1, K] storage code
constructed on the coset graph of the code Cr , r ≥ 4. Then

K

N
=

3
4
− 1

2r
.
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The idea behind the construction is that the kernel of
the adjacency operator associated to the coset graph of the
extended Hamming code is easily described, and that the
matrix (8) is essentially obtained by adding an extra row to
the parity-check matrix of the extended Hamming code: we
can therefore hope to compute the dimension of the kernel
of the adjacency operator associated to this new code from
the adjacency operator for the coset graph of the extended
Hamming code. Now the latter graph is simply a complete
bipartite graph whose adjacency matrix is

A =
[
0 J
J 0

]

where J is the all-one matrix of order 2r−1. This is evi-
dent once we realize that the elements of F

r
2 of the form

(∗, . . . , ∗, 0) are connected to all the elements (∗, . . . , ∗, 1),
while at the same time having no edges among themselves.
The kernel of A is formed of vectors of length 2r of even
weight in the first half as well as in the second half, and
therefore has dimension 2r−2. To switch from the coset graph
of the extended Hamming code to the coset graph of the code
Cr we need to understand the effect on the adjacency operators
of adding an extra coordinate to a set of generators.

Lemma 8 that we derive below will go some way towards
giving a formula for deriving the new dimension of the kernel
of the adjacency operator when an extra coordinate is added to
the set of generators. To introduce it we need some additional
notation.

Let S̃ be any subset of F
r+1
2 , and let Ã be the adjacency

operator (7) on the space of functions F
r+1
2 → F2, associated

to the Cayley graph Cay(Fr+1
2 , S̃). Let π : F

r+1
2 → F

r
2 be

the projection on the first r coordinates, i.e. π(x) is obtained
from the vector x by removing its last coordinate. Now let
S = π(S̃). Some caution is in order here, because it may
happen that two distinct elements of S̃ project onto the same
vector if they differ only in their last coordinate. We consider
S as a multiset, i.e. we do not collapse into one element the
images by π of two distinct elements if they happen to have
the same projection, therefore we have in particular |S| = |S̃|.
Now it may make little sense to consider the Cayley graph over
F

r
2 with a generator set S that contains duplicate elements,

but we can nevertheless define the operator A on the space of
functions F

r
2 → F2, associated to S through the formula (7).

We note in passing that A is equal to the adjacency operator
of the Cayley graph over F

r
2 with the generator set obtained

from S by removing duplicate elements.
Next, for i = 0, 1, let S̃i denote the subset consisting of the

elements of S̃ with a i in the last coordinate, and let S0 =
π(S̃0) and S1 = π(S̃1). Let A0 and A1 be the associated
adjacency operators, i.e. the adjacency operators of the Cayley
graphs Cay(Fr

2, S0) and Cay(Fr
2, S1). The operators A0 and

A1 act therefore on the space of functions F
r
2 → F2. Note

that we have the decomposition:

A = A0 + A1.

Let e denote the vector of weight 1 in F
r+1
2 supported by

the last coordinate, and let V denote the subspace of F
r+1
2

supported by the r old coordinates, isomorphic therefore to

F
r
2. Recall that F(Fr

2) denotes the space of functions F
F

r
2

2 .
Since F(Fr+1

2 ) is formed of two copies of F(Fr
2), we have

the isomorphism

F(V ) × F(V ) ∼−→ F(Fr+1
2 ) (9)

(1X ,1Y ) �→ 1X + 1Y +e

where X is the support of the first half of the function (vector)
and Y the support of its second half. Now we may identify
any function f̃ ∈ F(Fr+1

2 ) with a pair of functions (f0, f1)
through the above isomorphism. Spelling it out:

f0 : V → F2

x �→ f0(x) = f̃(x)
f1 : V → F2

x �→ f1(x) = f̃(x + e)

The matrix Ã has the form Ã =
[
A0|A1

A1|A0

]
, and so we have:

(Ãf̃)0 = A0f0 + A1f1 (10)

(Ãf̃)1 = A0f1 + A1f0 (11)

We can now derive:
Lemma 8: The adjacency operator Ã associated to the set

of generators S̃ satisfies

dim ker Ã = dim kerA + dim(kerA1 ∩ kerA)
+ dim(Im A ∩ Im A0| ker A), (12)

where A0| ker A is the restriction of A0 to the kernel of A.
Proof: Let FD (D for double) be the set of functions in

F(V )×F(V ) of the form (f, f), and let FL (L for left) be the
set of functions of the form (f, 0) and note that FD ∩ FL =
{0}. Any function f̃ ∈ F(Fr+1

2 ), identified with F(V )×F(V )
through the isomorphism (9), has a unique decomposition as
f̃ = f̃D + f̃L, with f̃D ∈ FD and f̃L ∈ FL. Therefore, f̃ ∈
ker Ã if and only if Ãf̃D = Ãf̃L. We therefore have

dim ker Ã = dim ker Ã|FD
+ dimker Ã|FL

+ dim(Im Ã|FD
∩ Im Ã|FL

).

On account of (10) and (11) any function f̃ ∈ FD is in ker Ã
iff (A0 + A1)f0 = Af0 = 0, i.e. f0 ∈ kerA. Therefore

dim ker ÃFD = dim kerA.

Next, we consider functions f̃ for which f1 = 0. Again by
(10) and (11) a function f̃ ∈ FL is in ker Ã iff f0 ∈ (kerA0∩
kerA1). From A = A0 + A1 we have that kerA0 ∩ kerA1 =
kerA1 ∩ kerA, and so

dim ker ÃFL = dim(kerA1 ∩ kerA).

It remains to compute the dimension of Im Ã|FD
∩ Im Ã|FL

.
Let f̃ = (f, f) ∈ FD , then from (10) and (11) we have Ãf̃ ∼=
(Af, Af).

Now let f̃ ′ = (f ′, 0) ∈ FL, then, again from (10)-(11),
Ãf̃ ′ ∼= (A0f

′, A1f
′). So Ãf̃ ′ ∈ Im FD if and only if A0f

′ ∈
Im A and A0f

′ = A1f
′. This last condition is equivalent, since

A0 + A1 = A, to f ′ ∈ kerA. Therefore, Im FD ∩ Im FL �
Im A ∩ Im A0| ker A. �
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Proof of Theorem 7: Let S̃ ⊂ F
r+1
2 consist of the columns of

the parity-check matrix Hr of Cr to which we add the zero
vector, so that the storage code associated to Cr is the kernel
of the operator Ã associated to S̃. We now apply Lemma 8 to
Ã and compute the dimensions of the spaces on the right-hand
side of (12).

Removing the last coordinate to the elements of S̃ yields a
set S equal to the set of columns of the parity-check matrix
of the extended Hamming code, plus two copies of the zero
vector. The associated operator A is therefore equal to the
adjacency operator of the Cayley graph over F

r
2, with generator

set equal to all vectors of F
r
2 that end with a 1 on their

last coordinate. As noted earlier, this graph is the complete
bipartite graph on F

r−1
2 , and the kernel of A is the space of

functions that are of even weight on each of the spaces V0 and
V1, corresponding to the set of vectors (x1, . . . , xr) satisfying
xr = 0 and xr = 1, and its dimension equals

dim kerA = 2r − 2.

The last row of the matrix Hr is of weight 2, so there are
exactly two elements of S̃ that end with a 1 in their last
coordinate, which means that |S1| = 2. Furthermore, one of
these two elements of S̃ projects onto the zero vector of F

r
2

by π, so that S1 = {0, s} for some non-zero vector s ∈ F
r
2,

e.g., in (8) s = 1r. Applying (7) we have

A1f(x) = f(x) + f(x + s).

We therefore have that kerA1 is equal to the space of functions
whose support in F

r
2 is stable by addition by s. Now, since s

by construction must be equal to a column of the parity-check
matrix of the extended Hamming code, it ends with a 1,
i.e. is of the form s = (s1, . . . , sr−1, sr = 1). Therefore,
a function is in kerA1 if and only if its support is equal to
X ∪ (X + s) for X ⊂ V0 and X + s ⊂ V1. Intersecting
kerA1 with kerA restricts the sets X to sets of even size,
and thus

dim(kerA1 ∩ kerA) = dim kerA1 − 1 = 2r−1 − 1.

For the third term in (12) observe that A11V0 = 1V0 +
1V1 = 1V ∈ Im A ∩ Im A1| kerA. Furthermore, we clearly
have that Im A1 must consist of functions whose support is
stable by addition by s, i.e. Im A1 = kerA1, implying that
1V0 is in Im A but not in Im A1. Since dim(ImA) = 2, we
have therefore that Im A∩Im A1| ker A is equal to the space of
constant functions and of dimension 1. Since A0 + A1 = A,
we have that A0 and A1 are equal on kerA, and

dim(Im A ∩ Im A0| kerA) = 1.

Collecting the terms in (12), we obtain

dim ker Ã = 2r + 2r−1 − 2,

which yields the rate expression in the theorem. �

VI. CORRECTING MULTIPLE ERASURES

A. The Edge-Vertex Construction and Graph Expansion

The most likely failure scenario in storage applications
is loss of a single node, which corresponds to correcting

a single erasure in the codeword of a storage code. This
question is central to the paper that defined codes with local
erasure correction [16], and it was also one of the original
motivations for studying such codes on graphs in the paper by
Mazumdar [23]. At the same time, correcting multiple erasures
represents a natural extension of this problem, which was
addressed in a large number of papers on codes with locality,
among them [20], [30]. Motivated by this research, [23]
posed the question of recovering the codeword when multiple
vertices are erased. This question can be posed in several
ways based on the vertex recovery procedure, and we proceed
to specify our assumptions. Throughout this section we limit
ourselves to d-regular graphs and to codes obtained from the
edge-vertex construction of Section II-B.

We begin with a code C(G) = {x, x ∈ F
d·|V |
q } defined

on a graph G(V, E), where as before, the coordinates of the
codeword are placed on the vertices of G. The coordinates xv

can be viewed either as d-vectors over Fq or as elements of
Fqd , and they are obtained by collecting all the values placed
on the edges incident to v. Extending the definition of storage
codes, suppose that every vertex v ∈ V can recover its value
xv from the values of its neighbors xu, u ∈ N(v) as long
as at most t of them are unavailable. Of course, taking t =
0 takes us back to the original definition of storage codes. The
easiest form of the multiple erasure correction problem arises
if we assume that every erased vertex is adjacent to at most t
other erased vertices. To address it, we simply place constraints
on the edges in the neighborhood of every vertex: namely,
assume that the symbols placed on the edges in E(v) form a
vector in a linear code D of length d over Fq that corrects t
erasures. This defines a linear storage code C = C(G, D) that
enables each vertex to recover its value from d − t or more
nonerased neighbors. The dimension of the code C is at least
|V |(2R(D) − 1), where R(D) := dim(D)

d is the rate of the
local code D.

This approach allows correction only of erasure patterns
that leave d − t or more neighbors of each vertex nonerased,
which is a somewhat artificial assumption (indeed, the erased
vertices may not follow the connections in the graph). Lift-
ing it, we will assume next that the set of erased vertices
S ⊂ V is of arbitrary shape, and engage standard ideas
from error-correcting codes on graphs, in particular, graph
expansion and its use in decoding [28]. Namely, instead of
specifying that the vertices can correct themselves indepen-
dently, we will be satisfied if there is one erased vertex with
t or fewer neighbors in the subgraph induced by S. Once it is
recovered, there are fewer erased vertices (edges), and (under
some conditions) there will be more erased vertices that can
correct themselves from their neighborhoods.

As remarked, this approach is close to the classic
error-correcting codes on graphs, also known as the Tan-
ner codes [31]. The only difference between them and our
construction of storage codes is related to the way erasures are
applied to the codeword coordinates. Namely, while in earlier
works the edges were erased independently of each other based
on the properties of the communication channel, in storage
codes erasures affect the vertices, which results in erasing all
the values of the edges incident to the vertex at once.
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The edge-vertex construction enables us to iteratively cor-
rect multiple erasures if we assume that the underlying graph
has expansion properties. We will use the following well-
known result.

Lemma 9: (Expander Mixing Lemma [19, Lemma 2.5]) Let
G be a d-regular graph with N vertices and eigenvalues λ1 =
d ≥ λ2 ≥ · · · ≥ λN . Then for any U, T ⊂ V∣∣∣|E(U, T )| − d|U ||T |

N

∣∣∣ ≤ λ
√

|U ||T |,
where λ := max(|λ2|, |λN |).

Proposition 10: Consider a storage code C(G, D) defined
by the edge-vertex construction. Suppose that G is a d-regular
graph with N vertices and the local code D corrects t erasures.
Let U ⊂ V, |U | = σN be the set of erased vertices. As long
as

σ ≤ t

d
− λ

d
, (13)

the erased vertices can be recovered based on the local iterative
procedure.

Proof: Taking T = U in Lemma 9, we obtain for the
number of edges in the subgraph induced by U the inequality

2|E(U)| ≤ d

N
|U |2 + λ|U |.

Let ∂(U) = {(u, v) ∈ E(G) : u ∈ U, v ∈ V \U} be the edge
boundary of U . We have

d|U | = 2|E(U)| + |∂(U)|.
Taken together, this implies

|∂(U)|
σN

≥ d(1 − σ) − λ.

In other words, there exists a vertex v ∈ U with at least d(1−
σ) − λ nonerased neighbors. As long as

d(1 − σ) − λ ≥ d − t,

its value can be recovered using the local code D. Under
the assumption (13) this inequality is satisfied, so size
of the erased set of vertices has decreased. The remain-
ing set of erased vertices U ′ = U\{v} also satis-
fies (13), and the proof is concluded by straightforward
induction. �

To use this result, we need the spectral gap d − λ to be
large compared to d or λ much smaller than d. The limits for
the spectral gap are given by the Alon-Boppana bound [19,
Thm.2.7], namely for any d-regular graph on n vertices

λ ≥ 2
√

d − 1 − on(1).

The graphs with λ ≤ 2
√

d − 1 are known to exist by
the Lubotzky-Phillips-Sarnak and Margulis constructions [19,
Sec.5.11]. Assuming that the graph G is from this family,
we can state the following:

Corollary 11: There exist storage codes C(G, D) on
d-regular graphs with local codes correcting t erasures that
recover from any pattern of s erased vertices as long as their
proportion σ = s/n satisfies

σ ≤ t

d
− O(d−1/2).

Note that large spectral gap guarantees that a subset U has
many edges that connect it with its complement, or in other
words, its edge expansion ratio is large. Further connections
between the spectral gap and expansion are discussed in [19,
Sec. 4.5].

VII. DISCUSSION

A. Numerical Experiments

It is tempting to look for other coset graphs of linear codes
whose full-parity storage code has rate greater than 1/2. It is a
challenge to derive general formulae for dimensions however.
With computer help we find:

Proposition 12:
(a) The binary Golay code of length 23 and dimension

11 yields a graph G on N = 2048 vertices that supports a
linear storage code of rate 41/64.

(b) The 2-error-correcting binary BCH code of length n =
2s − 1 and dimension k = 2s − 1− 2s yields a graph Gs with
N = 22s vertices that supports a linear storage code with rate
given in the following table

s 4 5 6 7 8

R2(Gs) 39
64

347
512

1497
2048

6387
8192

26859
32768 .

The sequence of rate values obtained in Proposition 12 is
0.6094, 0.6777, 0.7309, 0.7796, 0.8196, and the value R2(G8) =
0.8196 of the storage code of length N = 65536 now repre-
sents the largest known rate of storage codes on triangle-free
graphs over any alphabet.

B. Open Problems

1. The rate question: Arguably, the central question is
whether rates of storage codes on triangle-free graphs can be
arbitrarily close to 1. If not, what is an upper limit for these
rates?

2. BCH codes: In view of the numerical experiments it
is of interest to find or estimate the dimension of storage
codes obtained from the 2-error-correcting BCH codes. More
specifically, what is lim sups→∞ R2(Gs)? At this point we
cannot even rule out that the sequence (R2(Gs))s in the limit
reaches 1, which would resolve the question of the maximum
possible rate of storage codes on triangle-free graphs.

3. Reed-Muller codes: Another good candidate arises from
the family of Reed-Muller codes. Fix m ≥ 4 and consider
Boolean polynomials f(v) : F

m
2 → F2. The second order

Reed-Muller code RM(m, 2) is spanned by the set of evalu-
ations of functions of degree ≤ 2 on all the elements of F

m
2 .

Consider a subcode Cm of the punctured code RM(m, 2)
spanned by the evaluations of the functions vi, 1 ≤ i ≤ m
and vivj , 1 ≤ i < j ≤ m on the nonzero points of F

m
2 .

The length of the code Cm is 2m − 1 and its dimension is
m(m+1)/2. Another way of constructing this code is to take
a linear space spanned by the Simplex code Sm and its Schur
square Sm ∗ Sm.

Now consider the code (Cm)⊥, i.e., a code whose parity
check matrix H has rows given by the evaluations of the linear
and quadratic functions. This is a code of odd length with
even-weight parities, and it also contains its dual as well as
Schur powers of the dual, fulfilling the necessary conditions
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for high-rate storage codes in Theorem 6. Finding the actual
rate of the storage code C is however not straightforward, and
we leave this as an open problem.

C. Erasure Correction and Bootstrap Percolation

We conclude with one more observation regarding correct-
ing multiple erasures with storage codes. Given a graph G,
we again assume the edge-vertex construction that relies on
a local code correcting t erasures. Assume that the vertices
are erased randomly and independently with some probability
p̄, forming a set U ⊂ V of erased vertices. We wish for
the iterative procedure employed in the previous section to
successively recover the erased vertices until all are corrected.
Rephrasing, suppose that functional vertices are selected ran-
domly with probability p = 1 − p̄, and an erased vertex with
not more than t erased neighbors recovers its value, becoming
functional. In graph-theoretic terms this procedure is known as
bootstrap percolation, and it represents an established branch
of percolation theory. Percolation occurs when all the erased
vertices have been recovered (for infinite graphs, recovered
with probability one). This problem was introduced in [9];
see the recent paper [17] for an overview of the main results.
The main problem studied in the literature is the determination
of the critical probability, defined as

pc := inf{p : Pp(U is corrected by

the iterative process) ≥ 1/2}.
The known results include the determination of pc for the
infinite grid [n]d as n → ∞ (see [18] for d = 2 and [4] for all
d) as well as for several other classes of graphs. These results
translate directly to the corresponding thresholds for erasure
correction with storage codes on graphs in which the vertices
are erased randomly and independently.

Bootstrap percolation has been also considered in the deter-
ministic setting [11], [13], where the main question is finding
the minimum size of a set of functional vertices that enables
the code to correct all erasures, or, using the language of
the cited papers, the minimum number of infected vertices
that infect the entire graph. Rephrasing, this means that we
attempt to pinpoint a particular combination of erasures of
the largest possible size that can be recovered through the
iterative t-neighbor process. This problem, however, is an
opposite of the natural question addressed by storage codes,
where one is interested in the largest s such that any combi-
nation of s erased vertices can be recovered, or the smallest
size of the set of nonerased vertices that enable recovery
of the entire graph irrespective of the shape of the erased
set U .
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