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varieties in Grassmannians. This provides a correction to a 
conjecture of Kummini-Lakshmibai-Sastry-Seshadri (2015).

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Castelnuovo-Mumford regularity is a fundamental measure of the complexity of a 

graded module. In this paper, we use Schubert calculus techniques to provide ex-

plicit, easy-to-compute, combinatorial formulas for the Castelnuovo-Mumford regularity 

of classes of generalized determinantal ideals. The classes we treat include one-sided 

mixed ladder determinantal ideals and ideals defining patches of Schubert varieties in 

Grassmannians. These two classes of ideals are connected by work of N. Gonciulea and

C. Miller [13].

Let k be a field. Let S = k[x1, . . . , xn] be a polynomial ring with the standard grading, 

deg(xi) = 1, and let I ⊆ S be a homogeneous ideal. When S/I is Cohen-Macaulay, as is 

the case throughout this paper, the regularity of S/I is known to satisfy

reg(S/I) = deg K(S/I; t) − htS(I), (1.1)

where K(S/I; t) is the K-polynomial of S/I and htS(I) is the height of I in S. Using this 

fact, the authors, in joint work with Y. Ren and A. St. Dizier [32], gave a combinato-

rial formula which computes the regularity of coordinate rings of Grassmannian matrix 

Schubert varieties. The key technical ingredient was a formula of C. Lenart [26] regard-

ing symmetric Grothendieck polynomials. In the present paper, we extend our work from 

[32].

1.1. Summary of results

We give a combinatorial formula for degrees of Grothendieck polynomials indexed by 

1432-avoiding permutations (see Theorem 1.3) and vexillary (2143-avoiding) permuta-

tions (see Theorem 1.7). These formulas in turn, allow us to compute the regularity of 

the corresponding matrix Schubert varieties. In particular, our formula in the vexillary 

setting provides a formula for Castelnuovo-Mumford regularity of one-sided mixed ladder 

determinantal varieties (see Section 7 for details). Our formulas naturally generalize the 

Grassmannian formula of [32] (see Section 2.5 for details).

Theorem 1.1. Given w ∈ Sn so that w is 1432-avoiding,

reg(S/Iw) =
n

∑

k=1

ρd(σk(w)).
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Defined in Section 2, these σk(w) are certain subsets of the Rothe diagram D(w) of w, 

and ρd(σk(w)) denotes the size of the largest diagonal in σk(w).

Example 1.2. Let w = 1462375. In the images below, the elements of σk(w) are shaded, 

with a maximal diagonal path in σk(w) marked with × for k ∈ [5]. For k = 6, 7, we have 

σk(w) = ∅, and so we omit the figures.

k = 1

×
×

×

k = 2

×

k = 3 k = 4

×

k = 5

×

Theorem 1.1 computes reg(S/Iw) = 3 + 1 + 0 + 1 + 1 = 6. ♦

Theorem 1.1 is a direct consequence of the following:

Theorem 1.3. If w ∈ Sn is 1432-avoiding, then

deg(Gw) = #D(w) +
n

∑

k=1

ρd(σk(w)).

For w ∈ Sn, #D(w) is the Coxeter length of w. See Section 2 for the definitions of 

Grothendieck polynomials Gw and Rothe diagrams D(w). The proof of Theorem 1.3

appears in Section 4.

Example 1.4. Returning to w as in Example 1.2, Theorem 1.3 with Theorem 1.1 gives 

that

deg(Gw) = #D(w) + reg(S/Iw) = 6 + (3 + 1 + 0 + 1 + 1) = 12. ♦

We have similar diagrammatic regularity and degree formulas in the vexillary setting.

Theorem 1.5. Given v ∈ Sn so that v is vexillary,

reg(S/Iv) =
n

∑

k=1

ρa(τk(v)).

Here, the τk(v) are certain subsets of the Young diagram λ(v) associated to v and 

ρa(τk(v)) denotes the size of the largest antidiagonal in τk(v). See Section 2 for details.
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Example 1.6. Let v = 169247358. In the diagrams below, the elements of τi(v) are shaded 

for i = 1, 2, 3 in λ(v). In particular, a maximal size antidiagonal path contained in τi(v)

has been marked with ×’s.

×
×

×
×

×

×
×

×

Applying Theorem 1.5, we have reg(S/Iv) = 4 + 3 + 1 = 8. ♦

Theorem 1.5 is a direct consequence of the following:

Theorem 1.7. Suppose v ∈ Sn is vexillary. Then

deg(Gv) = #D(v) +

n
∑

i=1

ρa(τk(v)).

The proof of Theorem 1.7 appears in Section 4.

Example 1.8. Returning to v as in Example 1.6, Theorem 1.7 with Theorem 1.5 gives 

that

deg(Gv) = #D(v) + reg(S/Iv) = 13 + (4 + 3 + 1) = 21. ♦

We also provide formulas for the regularity of certain homogeneous Kazhdan-Lusztig 

ideals Jv,w. When v is a 321-avoiding permutation, we provide a formula in terms of 

pipe dreams (see Proposition 6.4). When v and w are both Grassmannian, we provide an 

easily computable formula by computing the degree of the corresponding K-polynomial 

in terms of a vexillary Grothendieck polynomial.

1.2. Connections to the literature

Concurrently with this work the third author, with O. Pechenik and D. Speyer [31], 

derived a combinatorial formula for the regularity of matrix Schubert varieties indexed by 

arbitrary permutations. In contrast with our diagrammatic combinatorics, the formula 

in [31] is phrased in terms of a new statistic on permutations. In work released around 

the same time as the present paper, E. Hafner [17] obtained a new proof of the vexillary 

case of [31] in terms of bumpless pipe dreams. Her results illustrate the connection from 

the formula in [31] to our vexillary formula through bumpless pipe dreams. A. Yong also 

has recent work related to the present paper, where he studies regularities of tangent 

cones of Schubert varieties [37].

For certain mixed ladder determinantal ideals, regularity formulas can be deduced 

through a-invariant formulas of S. Ghorpade and C. Krattenthaler [11]. The ladder 
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determinantal ideals they consider have certain restrictions on their rank conditions. 

Consequently, their one-sided ideals are special cases of the ideals that we consider. See 

Section 7 for further discussion.

Our formula for regularity of patches of Grassmannian Schubert varieties (Theo-

rem 6.5) provides a correction to a conjecture of M. Kummini, V. Lakshmibai, P. Sastry, 

and C. S. Seshadri (see [23, Conjecture 7.5]). This correction was conjectured in our 

previous paper (see [32, Conjecture 5.6]).

1.3. Outline of the paper

In Section 2, we introduce the necessary combinatorial background. In Section 3, we 

give tableau interpretations of our Grothendieck degree formulas. We provide proofs of 

our degree formulas for vexillary and 1432-avoiding permutations in Section 4. Section 5

describes the connection between Grothendieck polynomials and regularity and proves 

our main theorems. Section 6 applies these regularity formulas to correct the conjecture 

of [23]. Section 7 further applies our main theorems to give combinatorial formulas for 

the regularity of one-sided ladder determinantal ideals.
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2. Combinatorial degree formulas

2.1. Grothendieck polynomials

We start by defining Grothendieck polynomials, introduced by A. Lascoux and M. P. 

Schützenberger [25] in their study of the K-theory of the complete flag variety. Let Sn de-

note the symmetric group on n letters, i.e., the set of bijections from [n] := {1, 2, . . . , n}

to itself. We write permutations in one-line notation unless otherwise specified and 

define wi := w(i) for i ∈ [n]. The symmetric group Sn acts on Z[x1, . . . , xn] by 

w ·f(x1, . . . , xn) = f(xw1
, xw2

, . . . , xwn
). Let si ∈ Sn be the simple transposition (i i +1), 

written here in cycle notation. For f ∈ Z[x1, x2, . . . , xn], define

∂if =
f − sif

xi − xi+1
, and πif = ∂i(1 − xi+1)f.

We recursively define Grothendieck polynomials as follows. Let w0 = n n − 1 . . . 1 be 

the longest permutation in Sn. Define
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Gw0
(x) = Gw0

(x1, x2, . . . , xn) = xn−1
1 xn−2

2 · · · xn−1.

For w �= w0 there exists some i ∈ [n −1] such that wi > wi+1. Then we define Gwsi
(x) =

πi(Gw(x)). Since the πi satisfy the same braid and commutation relations as the simple 

transpositions, Gw(x) is well defined.

Write x ⊕ y := x + y − xy. We define the double Grothendieck polynomials using the 

same recurrence, starting from the initial condition

Gw0
(x; y) =

∏

1<i+j�n

(xi ⊕ yj).

Here, the ∂i’s only act on the xi’s, leaving the yj ’s fixed.

2.2. Permutations

First we recall some background on the symmetric group with [27] as a reference. 

The permutation matrix of w, which we also denote by w, is the 0, 1-matrix with 1’s at 

(i, wi) for all i ∈ [n] and 0’s elsewhere. To each permutation we associate a rank function

defined by

rw(i, j) = #{(k, wk) : k � i, wk � j}.

The Rothe diagram of w ∈ Sn is the subset

D(w) = {(i, j) ∈ [n] × [n] : wi > j and w−1
j > i}.

Visually, D(w) is the set of cells remaining in the n × n grid after plotting the points 

(i, wi) for each i ∈ [n] and striking out any cells which appear weakly below or weakly 

to the right of these points, as shown in Example 2.1.

Let ℓ(w) := #D(w) denote the Coxeter length of w. The code of w is the tuple 

code(w) = (c1, . . . , cn) where ci records the number of cells in the ith row of D(w). 

Let

L(code(w)) := max{i ∈ [n] : ci > 0}.

The essential set of w is the subset of D(w)

Ess(w) = {(i, j) ∈ D(w) : (i + 1, j), (i, j + 1) /∈ D(w)}.

The dominant component Dom(w) is the connected component of D(w) containing 

(1, 1).
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Example 2.1. For w = 72416835 ∈ S8, D(w) is the following:

.

Here, we have Ess(w) = {(1, 6), (3, 1), (3, 3), (6, 3), (6, 5)}, code(w) = (6, 1, 2, 0, 2, 2, 0, 0), 

and Dom(w) = {(1, i) : i ∈ [6]} ∪ {(2, 1), (3, 1)}. ♦

A subset D ⊆ [n] × [n] is a diagonal path if

D = {(i1, j1), . . . , (ik, jk) : i1 < i2 < · · · < ik and j1 < j2 < · · · < jk}.

Given S ⊆ [n] × [n] write ρd(S) for the size of the largest diagonal path in contained S.

A permutation w ∈ Sn is 1432-avoiding if there does not exist a 1432 pattern, i.e., 

indices h < i < j < k such that w has the pattern wh < wk < wj < wi. For example, 

w = 23715846 is not 1432-avoiding; we underlined the positions of a 1432 pattern. For 

w 1432-avoiding, let

σk(w) = {(i, j) ∈ D(w) : i > k and j > wk},

i.e., σk(w) is the set of cells in D(w) which are strictly southeast of (k, wk). Example 1.2

gives an example of diagonal paths in σk(w).

A partition λ = (λ1, . . . , λk) is a weakly decreasing sequence of non negative integers. 

We write |λ| = λ1 + · · · + λk. The Young diagram of a partition λ is the set {(i, j) ∈

Z>0 × Z>0 : 1 � j � λi}. We often conflate Young diagrams with their partitions. Given 

partitions λ and μ, we write λ ⊆ μ to mean that the Young diagram of λ is contained in 

the Young diagram of μ.

Given w ∈ Sn, let μ(w) be the partition whose Young diagram is

⋃

(i,j)∈D(w)

[1, i] × [1, j],

i.e., μ(w) is the smallest partition whose Young diagram contains D(w).

A permutation v ∈ Sn is vexillary if it does not contain a 2143 pattern, i.e., indices 

i < j < k < l such that vj < vi < vl < vk. For example, v = 72581364 is not 

vexillary since the underlined indices form a 2143 pattern. A vexillary permutation v

has shape λ(v), where λ(v) is code(v) = (c1, . . . , cn) sorted into decreasing order. A 

vexillary permutation v has flag
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Fig. 1. Let v = 169247358. Pictured on the left is the filling of the cells (i, j) ∈ D(v) with rv(i, j). On the 
right is λ(v) filled with Fv .

φ(v) = (φ1 � φ2 � · · · � φm), where

φi = max{j : (j, k) ∈ μ(v) lies in the same diagonal as (i, λi(v))}.

Note that we can think of λ(v) as the partition with the property that each of the diag-

onals of its Young diagram has the same number of cells as the corresponding diagonal 

of D(v). Observe that φ(v) tells us how the positions of these boxes changed between 

D(v) to λ(v).

Fill the diagonals of λ(v) with rv(i, j) for the corresponding cells (i, j) ∈ D(v), so that 

the entries are (weakly) increasing along diagonals. Write Fv for this filling (see Fig. 1

for an example). Let

τk(v) = {(i, j) ∈ λ(v) : Fv(i, j) � k}.

A subset A ⊆ [n] × [n] is an antidiagonal path if

A = {(i1, j1), . . . , (ik, jk) : i1 < i2 < · · · < ik and j1 > j2 > · · · > jk}.

Given S ⊆ [n] × [n] write ρa(S) for the largest antidiagonal path in S. See Example 1.6

for an example of antidiagonal paths in τk(v).

A permutation g ∈ Sn is Grassmannian if it has a unique descent, i.e. a unique 

k ∈ [n − 1] such that gk > gk+1.

2.3. Pipe complexes

Let a = (a1, . . . , ak) be a word on the alphabet [n − 1]. We say a is a reduced word

for w if w = sa1
· · · sak

and ℓ(w) = k.

Define an algebra over Z with generators {ew : w ∈ Sn} and multiplication given by

ewesi
=

{

ewsi
if ℓ(wsi) > ℓ(w)

ew if ℓ(wsi) < ℓ(w).

The Demazure product δ(a) of a word a = (a1, . . . , ak) is defined by computing
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esa1
· · · esak

= eδ(a).

Label cells in D(v) along rows so that the first cell in row i is labeled i, the next 

i + 1, and so on. Given P ⊆ D(v) let aP be the word obtained by reading the labels of 

the elements in P within rows from right to left, starting at the top row and working 

downwards. Let

Pipes(v, w) = {P ⊆ D(v) : aP is a reduced word for w}.

Likewise, let

Pipes(v, w) = {P ⊆ D(v) : δ(aP ) = w}.

For any P ⊆ [n] × [n], we assign it the t-weight

wtt(P ) =
∏

(i,j)∈P

tij .

Pictorially, we represent P ⊆ D(v) by marking (i, j) ∈ D(v) with a + whenever (i, j) ∈ P .

We define the unspecialized Grothendieck polynomial to be

Gv,w(t) =
∑

P ∈Pipes(v,w)

(−1)#P −ℓ(w)
wtt(P ). (2.1)

Note that by setting v = w0, we can recover double Grothendieck polynomials by 

specializing the variables in Gw0,w(t):

Gw(x; y) = Gw0,w(x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn).

2.4. Excited Young diagrams

Fix partitions λ ⊆ μ. Let

Dtop(μ, λ) = {(i, j) : i ∈ [k] and j ∈ [λi]}.

We call D ⊆ μ a diagram, represented graphically by marking these cells in D with +’s. 

An excited move is a mutation of a local 2 × 2 subsquare of the form

+ 	→
+

. (2.2)

Here, the mutated subsquare must be entirely contained within μ.

We write ExcitedYD(μ, λ) for the set of D ⊆ μ which can be obtained by a sequence 

of excited moves starting from Dtop(μ, λ). Such diagrams are called excited Young dia-

grams. There is a unique element of ExcitedYD(μ, λ) to which no excited moves may be 

applied, see e.g., [34, Lemma 7.4]. Call this Dbot(μ, λ).
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We also consider K-theoretic excited moves of the form

+ 	→ +
+

, (2.3)

again, where all cells pictured are contained in μ. Write KExcitedYD(μ, λ) for the set of 

diagrams which can be obtained from Dtop(μ, λ) by a sequence of excited and K-theoretic 

excited moves. We weight D ∈ KExcitedYD(μ, λ) by

wt(D) =
∏

(i,j)∈D

(xi ⊕ yj).

Proposition 2.2. If v ∈ Sn is vexillary, then

Gv(x; y) =
∑

D∈KExcitedYD(μ(v),λ(v))

(−1)#D−|λ(v)|
wt(D).

Proof. This follows by noting the flagged set-valued tableaux (and diagonal pipe dreams) 

of [22] can be identified with KExcitedYD(μ(v), λ(v)). See e.g., [16] and [34] for further 

details. �

Lemma 2.3. Fix partitions λ ⊆ μ. There exists a unique permutation v ∈ S∞ so that 

D(v) = Dbot(μ, λ). In particular, v is vexillary.

Proof. That Dbot(μ, λ) ∈ ExcitedYD(μ, λ) is the diagram of a vexillary permutation 

follows from [34, Proposition 7.6]. �

Example 2.4. Let λ = (5, 4, 2, 1, 0) and μ = (6, 6, 4, 4, 4). Then v = 5713624 is the unique 

vexillary permutation so that D(v) = Dbot(μ, λ).

+++++
++++
++
+

++++
++++ +

+
+ +

Above are Dtop(μ, λ), Dbot(μ, λ), and D(v), respectively. ♦

Theorem 2.5. Fix Grassmannian permutations g and u with descent at position k so that 

λ(g) ⊆ λ(u). Let v be the vexillary permutation such that D(v) = Dbot(λ(u), λ(g)). Then

deg(Gu,g(t)) = deg(Gv(x)).

Proof. Write code(u) = (c1, . . . , cn). Since u is Grassmannian with descent at position k, 

λ(u) = (ck, ck−1, . . . , c1) (see [27, Section 2.2]). In particular, this means we can identify 
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each cell in D(u) with cells in Dλ(u) = {(i, j) : 1 � j � ci} by left justifying cells in 

D(u) within rows.

Under this identification, we map each element of Pipes(u, g) to a subset of Dλ(u). 

Call this set of diagrams L. It is immediate that L ⊆ Pipes(w0, g). In particular, this 

implies elements of L are connected by (flipped) K-theoretic moves, i.e., replacements of 

the form:

+ 	→ +

and

+ 	→ +
+

.

By flipping the first k rows vertically, we see that elements of L are in bijection with ele-

ments of KExcitedYD(λ(u), λ(g)). Thus, we have a (degree preserving) bijection between 

elements of Pipes(u, g) and KExcitedYD(λ(u), λ(g)).

Then by Equation (2.1) and Proposition 2.2, we conclude deg(Gu,g(t)) =

deg(Gv(x)). �

Example 2.6. Let g = 1247356 and u = 1457236. An element of Pipes(u, g) and its 

corresponding K-theoretic excited Young diagram are pictured below.

+ + +
+

+
+ + +

+

+

♦

2.5. Connections to the Grassmannian degree formula

In previous work with Ren and St. Dizier [32], the authors presented a formula to 

compute the degree of symmetric Grothendieck polynomials. If u ∈ Sn is Grassmannian 

with descent k, then the symmetric Grothendieck polynomial is Gu(λ)(x1, . . . , xk) :=

Gu(x1, . . . , xn). Since Grassmannian permutations are both 1432-avoiding and vexillary, 

our new degree formulas are two different generalizations of this formula. We illustrate 

these connections here.

Write δ(k) = (k, k − 1, . . . , 1). Let sv(λ) = max{k : δ(k) ⊆ λ}. Given a partition 

λ = (λ1, . . . , λk), let trunc(i)(λ) be the partition obtained by removing the first i columns 

of the Young diagram of λ. Then:
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Theorem 2.7 ([32]). If λ = (λ1, . . . , λk), then

deg(Gλ(x1, . . . , xk)) = |λ| +

k
∑

i=1

sv(trunc(λi)(λ)).

Theorem 2.7 can be recovered using Theorem 1.3 or Theorem 1.7. We illustrate this 

in the example below.

Example 2.8. Let λ = (3, 2, 2, 0) and k = 4. The Grassmannian permutation associated to 

the pair (λ, k) is w = 1457236. The first line below computes the formula in Theorem 2.7

where the ith Young diagram has trunc(λi)(λ) shaded, with δ(k) marked with ×’s for 

k = sv(trunc(λi)(λ)).

→
× × × × ×

× ×
×

Below, we demonstrate the rule given in Theorem 1.3. Here, we have σk(w) shaded, with 

the longest diagonal marked with ×’s.

→

×
×

× × ×

Now, we use the formula from Theorem 1.7. In each Young diagram, we have shaded 

τk(w), with the longest antidiagonals marked with ×’s.

1 1 3
1 1
1 1

→
×

×
×

× ×

Thus we see all three formulas compute deg(Gλ(x1, . . . , xk)) = |λ| + 3 + 1 + 1 = 12. ♦

3. Tableau formulas for Grothendieck polynomials

Since their introduction, Grothendieck polynomials have been studied with a number 

of combinatorial formulas ([9,26,4]). For our degree formulas, we will focus on two tableau 

formulas in the special cases of 1432-avoiding permutations and vexillary permutations. 
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Furthermore, in each of these cases, we construct a tableau whose weight contributes to 

the top degree terms of the corresponding Grothendieck polynomial.

3.1. Set-valued Rothe tableaux

A set-valued Rothe tableau T of shape D(w) is a filling of D(w) with nonempty 

subsets of Z>0 such that for boxes a, b ∈ D(w):

• if a lies north of b in the same column, then max T (a) < min T (b), and

• if a lies west of b in the same row, then min T (a) � max T (b),

where T (a) denotes the set of entries of T in box a. Let SVT(D(w)) be the collection of 

such tableaux. We say a tableau T ∈ SVT(D(w)) is flagged by φ = (φ1, φ2, . . . , φn) if for 

each box b in row i of D(w), max T (b) � φi for all i. For a 1432-avoiding w ∈ Sn, let

FSVD(w) = {T ∈ SVT(D(w)) : T is flagged by (1, 2, . . . , n)}.

Example 3.1. Below is some T ∈ FSVD(w) for w = 1462375.

♦

Theorem 3.2. [8, Theorem 1.1] For w ∈ Sn 1432-avoiding, Gw has the following expan-

sion:

Gw(x, y) =
∑

T ∈FSVD(w)

(−1)#T −#D(w)
∏

e∈T

xval(e) ⊕ yλr(e)+φr(e)−c(e)−val(e)+1, (3.1)

where the product is over entries e in T whose value is val(e) and c(e), r(e) are the 

column and row indices of e.

For T ∈ FSVD(w), let #T denote the number of entries in T . We say T ∈ FSVD(w)

is maximal if T ′ ∈ FSVD(w) implies #T ′ � #T . Now we give a construction of 

Tw ∈ FSVD(w) for a given 1432-avoiding w. Theorem 1.3 proves Tw is maximal. Let 

md(D) denote the northmost then westmost maximal diagonal path of D ⊆ [n]2. For 

md(σk(w)) �= ∅, let

NE(md(σk(w))) = {(i, j) ∈ D(w) − md(σk(w)) : (i, j) lies northeast of md(σk(w))}.
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Take T0 ∈ SVT(D(w)) such that T0(i, j) = i for i ∈ [L(code(w))]. For k ∈ [L(code(w)) −

1], let Tk ∈ SVT(D(w)) such that for (i, j) ∈ D(w):

Tk(i, j) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Tk−1(i, j) ∪ {min Tk−1(i, j) − 1} if (i, j) ∈ md(σk(w)),

Tk−1(i, j) − 1 if (i, j) ∈ NE(md(σk(w))),

Tk−1(i, j) otherwise,

where T (i, j) − 1 is entrywise subtraction. Let Tw := TL(code(w)).

Example 3.3. Below we construct Tw for w = 1462375.

♦

Lemma 3.4. Suppose w in Sn is 1432-avoiding. Then Tw ∈ FSVD(w).

Proof. We proceed by showing Tk ∈ FSVD(w) for k ∈ [L(code(w))] by induction on k. 

By construction, T0 ∈ FSVD(w). Suppose Tk−1 ∈ FSVD(w) for some k ∈ [L(code(w))]. 

If md(σk(w)) = ∅, the result follows the inductive assumption since Tk = Tk−1.

Otherwise, since Tk−1 ∈ FSVD(w) by construction of Tk,

max Tk(i, j) � max Tk−1(i, j) � i.

Similarly since Tk−1 is decreasing along rows, Tk is clearly decreasing along rows. By 

definition of Tk, any (i, j) can be decremented no more than i − 1 times, so no entry 

can be decremented to 0. Thus it remains to show Tk increases down columns. Consider 

some (i, j) ∈ md(σk(w)). Let

i′ = max{x < i : (x, j) ∈ D(w)}.

Since Tk−1 is increasing down columns, it suffices to show that max Tk(i′, j) <

min Tk(i, j). If (i′, j) ∈ NE(md(σk(w))) or does not exist, the result follows by the con-

struction of Tk.
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Fig. 2. Let v be as in Fig. 1. Then λ(v) = (6, 4, 2, 1) and μ(v) = (8, 8, 8, 5, 5, 5). Pictured on the left is 
λ(v) ⊂ μ(v) with the diagonals used to compute φ(v) = (3, 3, 6, 6) drawn in red. To the right is an element 
of FSVT(v). (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Otherwise, by the definition of md(σk(w)), it follows that i = i′ + h for some h > 1. 

Then for s ∈ [i′], by the definitions of Ts and md(σs(w)),

max Ts(i′, j) + h � min Ts(i, j). (3.2)

Thus if k � i′, we are done. If k > i′, it follows that max Tk(i′, j) = max Ti′(i′, j) and 

min Tk(i, j) � min Ti′(i, j) − h + 1, so by Equation (3.2),

max Tk(i′, j) � min Tk(i, j) − 1.

Thus Tk ∈ FSVD(w). �

3.2. Set-valued Young tableaux

A set-valued tableau T of shape λ = (λ1, λ2, . . . , λn) is a filling of λ with nonempty 

subsets of Z>0 such that for boxes (a, b) ∈ λ:

• if a lies north of b, then max T (a) < min T (b), and

• if a lies west of b, then max T (a) � min T (b),

where T (a) denotes the set of entries of T in box a. Let SVT(λ) be the collection of such 

tableaux. We say a tableau T ∈ SVT(λ) is flagged by φ = (φ1, φ2, . . . , φn) if for each box 

b in row i of λ, we have max T (b) � φi. For a vexillary permutation v, let

FSVT(v) = {T ∈ SVT(λ(v)) : T is flagged by φ(v)}.

An example of some T ∈ FSVT(169247358) is given in Fig. 2. We note that many 

different choices of flagging can result in the same underlying set of tableaux. See [28, 

Remark 3.10] for further commentary.

Theorem 3.5. [22, Theorem 5.8] If v ∈ Sn is vexillary, the double Grothendieck polyno-

mial Gv(x; y) has the following expansion:
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Gv(x; y) =
∑

T ∈FSVT(v)

(−1)#T −|λ|
∏

e∈T

xval(e) ⊕ yval(e)+c(e)−r(e), (3.3)

where the product is over entries in T whose value is val(e) and c(e), r(e) are the column 

and row indices of e.

For T ∈ FSVT(v) let #T denote the number of entries in T . We say T ∈ FSVT(v) is

maximal if #T = max{#U : U ∈ FSVT(v)}. Now we give a construction of Uv ∈ SVT(v)

for a given vexillary v. Theorem 1.7 proves Uv is maximal.

Let ma(λ) denote the northmost then westmost maximal antidiagonal path of 
⋃

i μi ⊆

λ. For ma(τk(v)) �= ∅, let

SE(ma(τk(v))) = {(i, j) ∈ λ − ma(τk(v)) : (i, j) lies southeast of ma(τk(v))}.

Take U0 ∈ SVT(λ) such that U0(i, j) = i for i ∈ [ℓ(λ)]. For k ∈ [ℓ(λ) − 1], let 

Uk ∈ SVT(λ) such that for (i, j) ∈ λ:

Uk(i, j) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Uk−1(i, j) ∪ {max Uk−1(i, j) + 1} if (i, j) ∈ ma(τk(v)),

Uk−1(i, j) + 1 if (i, j) ∈ SE(ma(τk(v))),

Uk−1(i, j) otherwise,

where U(i, j) + 1 is entrywise addition. Let Uv := Uℓ(λ).

Remark 3.6. By a similar argument to Lemma 3.4, it follows that Uv ∈ FSVT(v). By 

Theorem 1.7, it follows that Uv is maximal.

Example 3.7. Let v = 169247358. From Fig. 1, we saw λ(v) = (6, 4, 2, 1). Furthermore, 

φ(v) = (3, 3, 6, 6). Below is the construction of Uv from U0.

1 1 1 1 1 1
2 2 2 2
3 3
4

k=1
−−→

1 1 1 12 2 2
2 2 23 3
3 34
45

k=2
−−→

1 1 1 12 2 23
2 2 23 3
3 345

456

k=3
−−→

1 1 1 12 2 23
2 2 23 3
3

456

34
56

♦

4. Proofs of degree formulas

In this section, we prove our Grothendieck degree formulas for 1432-avoiding permu-

tations and vexillary permutations to deduce our main theorems.
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4.1. Proof of Theorem 1.3

Recall, md(D) is the northmost then westmost diagonal path of D ⊆ [n]2 and

σk(w) = {(i, j) ∈ D(w) : i > k, j > w(k)}.

For brevity, define fd(w) = #D(w) +
∑n

k=1 ρd(σk(w)).

We start by recalling a lemma from [8].

Lemma 4.1 ([8, Lemma 2.4]). Let w �= w0 be a 1432-avoiding permutation. If r is the 

first ascent of w, then wsr is also 1432-avoiding.

Proposition 4.2. If w is 1432-avoiding, there exists T ∈ FSVD(w) such that

#T = fd(w).

In particular, deg(Gw) � fd(w).

Proof. This follows by Lemma 3.4 since #Tw = fd(w) by construction. �

Lemma 4.3. Let w �= w0 be a 1432-avoiding permutation and suppose r is the first ascent 

of w. If there is a maximal diagonal path in σr(w) which has no cells in row r + 1, then 

there exists a maximal set-valued Rothe tableau for w such that the entries in row r + 1

restricted to σr(w) are all strictly less than r + 1.

Proof. Suppose w is such that there is a maximal diagonal path in σr(w) which has no 

cells in row r+1. Consider maximal T ∈ FSVD(w) such that T has boxes containing r+1

in row r + 1 restricted to σr(w). We will construct T ′ ∈ FSVD(w) such that #T ′ = #T

and such that the entries in row r + 1 restricted to σr(w) are all strictly less than r + 1.

Let b1 denote the box containing the eastmost occurrence of r + 1 in row r + 1 in T . 

For 1 < i � #md(σr(w)), we define bi ∈ σr(w) as the box containing the northmost, then 

eastmost occurrence of r + i in T , in the region strictly east of bi−1. Thus {bi}i∈[σr(w)]

forms a diagonal path.

Let ci denote the northmost box of σr(w) lying directly south of bi for each i ∈

[#md(σr(w))]. By the assumption that there is a maximal diagonal path in σr(w) which 

has no cells in row r + 1 and the definition of bi, {ci}i∈[k] exists for some 1 � k �

#md(σr(w)). Let P be constructed as follows:

P = {b1} ∪ {bi : bi−1 ∈ P and ci−1 lies in the same row as bi}.

Let P ′ = {ci : bi ∈ P}. By maximality of T , it follows that {r + i, r + i − 1} ⊆ T (bi) for 

each i ∈ [#P ]. Take T ′ such that
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T ′(x, y) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T (bi) \ {r + i} if (x, y) = bi,

T (ci) ∪ {r + i} if (x, y) = ci,

T (x, y) − 1 if (x, y) lies directly between ci and bi+1,

T (x, y) − 1 if (x, y) = (r + 1, y) ∈ σr(w), lying west of b1,

T (x, y) otherwise.

It is straightforward to check T ′ ∈ FSVD(w). Since #T = #T ′, T ′ is of the desired 

form. �

Proposition 4.4. Suppose w ∈ Sn is 1432-avoiding. Let r denote the position of the first 

ascent of w and {cm < · · · < c0} = {wr � i � wr+1 : (r + 1, i) ∈ D(w)}. Then

D(w · sr) = (D(w) − {(r + 1, ci) : 0 � i � m}) ∪ {(r, ci) : 0 � i � m} ∪ {(r, wr)}.

Proof. This follows by the definition of D(w), since r is the first ascent of w. �

Lemma 4.5. Let w �= w0 be a 1432-avoiding permutation, and suppose r is the first ascent 

of w. If there is a maximal diagonal path in σr(w) which has no cells in row r + 1, then

fd(w) + 1 = fd(wsr).

Otherwise,

fd(w) = fd(wsr).

Proof. By Proposition 4.4, #D(wsr) = #D(w) + 1. Further, since r was the first ascent 

of w, (r, wr) ∈ Dom(wsr). Further we see

ρd(σk(w)) = ρd(σk(wsr)) for k �= r, r + 1

by Proposition 4.4. By definition of r,

ρd(σr+1(w)) = ρd(σr(wsr)).

Finally, by Proposition 4.4, σr+1(wsr) = σr(w) −
⋃ℓ

i=0(r, ci). Thus ρd(σr(w)) =

ρd(σr+1(wsr)) if there is a maximal diagonal path in σr(w) which has no cells in row 

r + 1. Otherwise, ρd(σr(w)) = ρd(σr+1(wsr)) + 1, so the result follows by the definition 

of fd. �

Proof of Theorem 1.3. We proceed by induction on ℓ(w0) − ℓ(w). In the base case, w =

w0 and the formula is immediate since deg(w0) = ℓ(w0) = #D(w0) = fd(w0).

Now pick w ∈ Sn so that w �= w0. Assume the formula holds for all w′ ∈ Sn so that 

ℓ(w′) > ℓ(w). Let r be the first ascent of w. Let R denote the set of boxes in σr(w) lying 
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in row r + 1. By Proposition 4.4, one obtains D(wsr) from D(w) by shifting all cells in 

R up one row and then placing a new cell in position (r, wr).

Consider T ∈ FSVD(w). We will construct T ′ ∈ FSVD(wsr) from T by the following:

T ′(x−1, y) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r if (x − 1, y) = (r, wr),

T (x, y) − {r + 1} ∪ {r} if (x, y) ∈ R, r + 1 ∈ T (x, y), and r /∈ T (x, y),

T (x, y) − {r + 1} if (x, y) ∈ R, r + 1 ∈ T (x, y), and r ∈ T (x, y),

T (x, y) if (x, y) ∈ R, r + 1 /∈ T (x, y),

T (x − 1, y) otherwise.

Thus T ′ ∈ FSVD(wsr) and #T ′ � #T , giving deg(Gw) � deg(Gwsr
). We have two 

cases to check.

Case 1: Suppose all maximal diagonal paths in σr(w) have a cell in row r + 1.

We have

fd(w) � deg(Gw) (by Proposition 4.2)

� deg(Gwsr
)

= fd(wsr) (by inductive hypothesis).

By Lemma 4.5, fd(w) = fd(wsr). Thus, fd(w) = deg(Gw).

Case 2: Suppose there exists a maximal diagonal path in σr(w) which has no cells in row 

r + 1. By Lemma 4.3, there exists a maximal tableau T for w so that boxes in R have 

entries less than r + 1. Using the above construction for T ′ ∈ FSVD(wsr), it follows that 

#T ′ = #T + 1. As a consequence, deg(Gw) < deg(Gwsr
).

Thus,

fd(w) � deg(Gw) (by Proposition 4.2)

< deg(Gwsr
)

= fd(wsr) (by inductive hypothesis)

= fd(w) + 1 (by Lemma 4.5).

Thus fd(w) = deg(Gw). �

4.2. Proof of Theorem 1.7

If v is vexillary, we associate to v the following statistic:

fa(v) = #D(v) +

n
∑

i=1

ρa(τi(v)). (4.1)
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Note that by definition, #D(v) = |λ(v)|. The goal of this section is to prove Theorem 1.7, 

i.e., to show if v is vexillary, then deg(Gv) = fa(v). We start with some lemmas.

We follow [22] for combinatorial background. The maximal corner (r, s) of w is the 

position of the right most cell in the last row of D(w). Let ti,j denote the transposition 

(i j). Define wP := wtr,w−1(s). Then wP is the unique permutation such that

D(wP ) = D(w) − {(r, s)}. (4.2)

Grothendieck polynomials satisfy a recurrence known as transition. Recall ti,j denotes 

the transposition (i, j). Let wP := wtr,w−1(s). Let i1 < i2 < · · · < ik be the list of those 

indices i < r for which ℓ(wP ) + 1 = ℓ(wP ti,r).

Theorem 4.6 ([24]). Given w ∈ Sn, with maximal corner (r, s) and tij ,r’s as above,

Gw = GwP
+ (xr − 1)(GwP

⋆ (1 − ti1,r)(1 − ti2,r) · · · (1 − tik,r)),

where Gv ⋆ u := Gvu.

When v is vexillary, there is at most one index i < r for which ℓ(vP ) + 1 = ℓ(vP ti,r). 

When such an index exists, we define vC = vP ti,r. In this case, Theorem 4.6 specializes 

to

Gv = GvP
+ (xr − 1)(GvP

⋆ (1 − ti,r))

= GvP
+ (xr − 1)(GvP

− GvC
)

= xrGvP
+ (1 − xr)GvC

.

(4.3)

If no such index exists, then necessarily (r, s) ∈ Dom(v) and we have

Gv = GvP
+ (xr − 1)(GvP

)

= xrGvP
.

(4.4)

Lemma 4.7. Fix any permutation w and suppose the maximal corner (r, s) ∈ Dom(w). 

Then deg(Gw) = deg(GwP
) + 1.

Proof. This is an immediate consequence of Equation (4.4) since multiplying any nonzero 

polynomial by xr increases the degree by 1. �

Given a permutation w, the cell (r, s) ∈ D(w) is called accessible if

(1) (r, s) /∈ Dom(w) and

(2) there are no other cells which occur weakly southeast of (r, s) in D(w).



180 J. Rajchgot et al. / Journal of Algebra 617 (2023) 160–191

The maximal corner is an accessible box if and only if there exists i < r such that 

ℓ(wP ) +1 = ℓ(wP ti,r). For vexillary permutations, there can be at most one such i, so we 

define vC = vP ti,r in this case. We may construct vC graphically as follows. Consider the 

cells in D(v) which sit weakly northwest of the accessible box in its connected component. 

Move each of these diagonally one step in the northwest direction. This new diagram is 

the D(vC).

Lemma 4.8. Fix v vexillary, where the maximal corner (r, s) is an accessible box. Then 

deg(Gv) = max{deg(GvP
), deg(GvC

)} + 1.

Proof. The monomials of Grothendieck polynomials alternate in sign based on degree. 

As such, Equation (4.3) is cancellation free. Therefore, the top degree monomials in Gv

must come from xrGvP
or xrGvC

. �

Lemma 4.9. For v vexillary, if the maximal corner (r, s) is in Dom(v), then fa(v) =

fa(vP ) + 1.

Proof. By Equation (4.2), λ(vP ) is obtained by removing the corresponding (boundary) 

cell from λ(v). The label of this cell in Fv is zero since (r, s) ∈ Dom(v). At all other 

positions, Fv matches FvP
. As such, τi(v) = τi(vP ) for all i > 0. Therefore,

d(v) = |λ(v)| +

n
∑

i=1

ρa(τi(v))

= |λ(vP )| + 1 +
n

∑

i=1

ρa(τi(vP ))

= fa(vP ) + 1. �

Lemma 4.10. Fix v vexillary and suppose the maximal corner (r, s) is an accessible box.

(1) fa(v) � fa(vC) + 1.

(2) If (r, s) is the only cell in its row within its connected component in D(v), then 

fa(v) = fa(vC) + 1.

(3) fa(v) � fa(vP ) + 1.

(4) If (r, s) is not the only cell in its row within its connected component in D(v), then 

fa(v) = fa(vP ) + 1.

Proof. Throughout, let (a, b) denote the position of the box in λ(v) which corresponds 

to (r, s). Write k = Fv(a, b). By assumption since (r, s) /∈ Dom(v), k � 1.

(1) To get FvC
from Fv, take all labels weakly northwest of (a, b) with label k and decrease 

the value of these labels by 1. As such, τi(v) ⊇ τi(vC) for all i. Furthermore, since (r, s)

has label k, τk(v) � τk(vC). In particular, τk(vC) is obtained from τk(v) by removing 
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a rectangular strip. Since this strip contains (r, s), removing this rectangle removes the 

last row of τk(v) entirely (and anything north of this row) by the definition of (r, s). 

Therefore, any antidiagonal path in τk(vC) can be completed to a larger antidiagonal 

path in τk(v) by adding a box row r. As such, ρa(τk(v)) > ρa(τk(vC)) and so

fa(v) = |λ(v)| +
n

∑

i=1

ρa(τi(v))

> |λ(vC)| +

n
∑

i=1

ρa(τi(vC))

= fa(vC).

Since these are all integers, fa(v) � fa(vC) + 1.

(2) Since there is a single box in the same row as (a, b) in τk(v) and this box is not in 

τk(vC) (nor any boxes in its same column) we claim ρa(τk(v)) = ρa(τk(vC)) + 1. For 

all other i, we have τi(v) = τi(vC) and so ρa(τi(v)) = ρa(τi(vC)). Therefore, fa(v) =

fa(vC) + 1.

(3) Using Equation (4.2), FvP
(i, j) = Fv(i, j) for all (i, j) ∈ λ(vP ). As such,

τi(vP ) =

{

τi(v) if i < k

τi(v) − {(a, b)} otherwise.
(4.5)

In particular, τi(v) ⊇ τi(vP ) for all i. Therefore,

n
∑

i=1

ρa(τi(v)) �

n
∑

i=1

ρa(τi(vP )).

Then

fa(v) = |λ(v)| +

n
∑

i=1

ρa(τi(v))

� |λ(vP )| + 1 +
n

∑

i=1

ρa(τi(vP ))

= fa(vP ) + 1.

(4) By assumption, (r, s − 1) ∈ D(v). As such, if (a, b) ∈ τi(v) then (a, b − 1) ∈ τi(v) as 

well. Fix an antidiagonal path of cells in τi(v). If it does not use (a, b), then it is also 

an antidiagonal path of cells in τi(vP ). If it does use (a, b), then we can construct a new 

antidiagonal path of cells of the same size by replacing (a, b) with (a, b − 1). By (4.5), 

we see that this new antidiagonal path is also in τi(vP ). As such, ρa(τi(v)) = ρa(τi(v)). 

Then we conclude fa(v) = fa(vP ) + 1. �
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Proof. Fix v vexillary. The statement is trivial for the identity, so assume ℓ(v) � 1. We 

will proceed by induction on the position of the maximal corner (r, s) (ordering cells of 

the grid lexicographically). In the base case, v = 21, we confirm deg(Gv) = 1 = fa(v).

Assume the formula holds for any vexillary v′ whose maximal corner occurs before 

(r, s), i.e., deg(Gv′) = fa(v′).

Case 1: (r, s) ∈ Dom(v). By Equation (4.2), the maximal corner of vP occurs before 

(r, s). Furthermore, vP is vexillary. As such,

deg(Gv) = deg(GvP
) + 1 (by Lemma 4.7)

= fa(vP ) + 1 (by induction hypothesis)

= fa(v) (by Lemma 4.9).

Case 2: (r, s) /∈ Dom(v) (i.e., it is an accessible box).

Both vP and vC are vexillary and their maximal corners (when defined) occur before 

(r, s). We know by Lemma 4.8 and the induction hypothesis that

deg(Gv) = max{deg(GvP
), deg(GvC

)} + 1 = max{fa(vP ), fa(vC)} + 1. (4.6)

In particular, 1 + fa(vP ) � deg(Gv) and 1 + fa(vC) � deg(Gv). Applying Lemma 4.10

to (4.6), we see that deg(Gv) � fa(v). By parts (2) and (4) of Lemma 4.10, since (r, s) is 

an accessible box, 1 + fa(vP ) = fa(v) or 1 + fa(vC) = fa(v). Then fa(v) = deg(Gv). �

5. Castelnuovo-Mumford regularity of Schubert determinantal ideals

We begin this section by recalling the connection between the Castelnuovo-Mumford 

regularity in the Cohen-Macaulay setting and the degree of a K-polynomial (Subsec-

tion 5.1). We then provide some background on Schubert determinantal ideals, explain 

how to express Castelnuovo-Mumford regularity of Schubert determinantal ideals in 

terms of degrees of Grothendieck polynomials, and prove Theorems 1.1 and 1.5 (Subsec-

tion 5.2).

5.1. Castelnuovo-Mumford regularity and connections to K-polynomials

Let S = k[x1, . . . , xn] be a polynomial ring over the field k, and assume that S is 

positively Zd-graded so that deg0S = k. Let M be a finitely generated graded S-module. 

The multigraded Hilbert series of M is a formal power series in indeterminates t1, . . . , td:

H(M ; t) =
∑

a∈Zd

dimk(Ma)ta =
K(M ; t)

∏n
i=1(1 − tai)

, deg(xi) = ai.

The numerator K(M ; t) ∈ k[t±1] is called the K-polynomial of M . When S has the 

standard grading, that is deg(xi) = 1, the K-polynomial is a Laurent polynomial in a 

single indeterminate t.
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For the rest of this subsection, assume that S has the standard grading, and let I ⊆ S

be a homogeneous ideal. There is a minimal free resolution

0 →
⊕

j

S(−j)βl,j(S/I) →
⊕

j

S(−j)βl−1,j(S/I) → · · · →
⊕

j

S(−j)β0,j(S/I) → S/I → 0

where l � n and S(−j) is the free S-module obtained by shifting the degrees of S by j. 

The Castelnuovo-Mumford regularity of S/I, denoted reg(S/I), is defined as

reg(S/I) := max{j − i : βi,j(S/I) �= 0}.

When S/I is Cohen-Macaulay, we have that

reg(S/I) = deg K(S/I; t) − htSI, (5.1)

where htSI denotes the height of the ideal I. See, for example, [2, Lemma 2.5] for 

justification of this formula. In this paper, we use Equation (5.1) to compute Castelnuovo-

Mumford regularity of coordinate rings of certain matrix Schubert varieties and certain 

standard-graded Kazhdan-Lusztig varieties.

5.2. Regularity of Schubert determinantal ideals and proofs of Theorems 1.1 and 1.5

We begin by recalling basic facts about Schubert determinantal ideals. Fix an n × n

permutation matrix w. Let X = (xij) be an n × n matrix of distinct indeterminates, 

and let X[p],[q] denote the matrix formed by intersecting the first p rows of X and the 

first q columns of X. Let k[x] := k[xij : 1 � i, j � n]. The Schubert determinantal ideal

Iw ⊆ k[x] is the ideal

Iw = 〈minors of size rw(i, j) + 1 in X[i],[j] : (i, j) ∈ Ess(w)〉.

By [10], Iw is a prime ideal, and k[x]/Iw is Cohen-Macaulay. Recall that k[x]/Iw is 

the coordinate ring of the matrix Schubert variety B−wB+ ⊆ Matk(n, n) where B− �

GLn(k) is the Borel subgroup of invertible lower triangular matrices, B+ � GLn(k) is 

the Borel subgroup of invertible upper triangular matrices, and Matk(n, n) is the affine 

space of n ×n matrices with entries in k. Schubert determinantal ideals are homogeneous 

with respect to the standard grading of k[x].

Proof of Theorems 1.1 and 1.5. We first recall how to express the regularity of k[x]/Iw

in terms of the degree of a Grothendieck polynomial. This was originally discussed in 

[32]. By [10], we have htk[x]Iw = #D(w). It then follows by (5.1) that

reg(k[x]/Iw) = deg K(k[x]/Iw) − #D(w).
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By [3, Theorem 2.1] (see also [21, Theorem A]), K(S/Iw; t) = Gw(1 − t, . . . , 1 − t). 

Furthermore,

deg Gw(1 − t, . . . , 1 − t) = deg Gw(x1, . . . , xn)

since the coefficients in the homogeneous components Gw(x1, . . . , xn) all have the same 

sign (see, for example, [21]). Thus,

reg(k[x]/Iw) = deg Gw(x1, . . . , xn) − #D(w). (5.2)

Theorems 1.1 and 1.5 are now immediate from Theorems 1.3 and 1.7. �

6. Regularity of homogeneous Kazhdan-Lusztig ideals

In this section, we recall the basics of Kazhdan-Lusztig ideals Jv,w (Section 6.1) and 

provide preliminary combinatorial formulas for regularity of Kazhdan-Lusztig ideals 

Jv,w when v is a 321-avoiding permutation (Section 6.2). We then provide an easily-

computable combinatorial formula for the regularity of open patches of Schubert varieties 

in Grassmannians (Section 6.3). This proves a (generalization of a) conjecture from [32]

giving a correction to a conjecture of [23].

6.1. Kazhdan-Lusztig ideals

We next recall Kazhdan-Lusztig ideals, which were introduced by A. Woo and A. 

Yong in [35] to study singularities of Schubert varieties. Given a permutation matrix 

v ∈ Sn, consider the matrix M (v) which has 1’s at locations (i, vi), indeterminate zij

in location (i, j) ∈ D(v), and 0’s elsewhere. Let k[zv] := k[zij : (i, j) ∈ D(v)]. Given 

w ∈ Sn, define the Kazhdan-Lusztig ideal Jv,w ⊆ k[zv] to be

Jv,w = 〈minors of size rw(i, j) + 1 in M
(v)
[i],[j] : (i, j) ∈ Ess(w)〉,

which is not the unit ideal precisely when w � v in Bruhat order. The Kazhdan-

Lusztig ideal Jv,w is the prime defining ideal of the intersection of the Schubert variety 

B−\B−wB+ ⊆ B−\GLn(k) with the opposite Schubert cell B−\B−vB− (see [35, Corol-

lary 3.3] and the preceding discussion). Furthermore, k[zv]/Jv,w is Cohen-Macaulay. This 

follows by [19, Lemma A.4] together with the Cohen-Macaulayness of Schubert varieties 

[33]. See [35, Section 3.2] for further discussion.

Kazhdan-Lusztig ideals are not always homogeneous with respect to the standard 

grading on k[z(v)]. However, when v is 321-avoiding, and hence when v is a Grassmannian 

permutation, Jv,w is homogeneous with respect to the standard grading, see e.g., [20, 

Footnote on pg. 25]. Some further partial results on the problem of when Kazhdan-

Lusztig ideals are homogeneous with respect to the standard grading [35, Problem 5.5]

can be found in the recent preprint [30].
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6.2. Preliminaries on regularity of Kazhdan-Lusztig ideals Jv,w where v is 321-avoiding

We next describe a formula for the regularity of k[zv]/Jv,w where Jv,w is a standard-

graded Kazhdan-Lusztig ideal. This formula will be in terms of Gw(x; y), a double 

Grothendieck polynomial. Let Gw(x; y) denote the double Grothendieck polynomials 

in [21], so that Gw(x; y) = Gw(1 − x; 1 − 1
y

). We also let Gv,w(t) = Gv,w(1 − t).

The torus T n acts on the opposite Schubert cell B−\B−vB− by right multiplication. 

This induces a grading on k[zv] where variable zij in the matrix M (v) has degree ev(i)−ej , 

where ei ∈ Z
n denotes the ith standard basis vector. By [36, Theorem 4.5], the K-

polynomial of k[zv]/Jv,w for this Zn-grading is given by

K(k[zv]/Jv,w; t) = Gw(tv(1), . . . , tv(n); t1, . . . , tn) = Gv,w(tij 	→ tv(i)/tj). (6.1)

Note that the conventions in [36] differ from ours.

In the case where v is 321-avoiding, there is a coarsening of the grading f : Z
n → Z

which gives each zij ∈ k[zij ] degree 1. Specifically, take f(ei) = 1 if there exists k > i

such that v−1(k) < v−1(i) and f(ei) = 0 otherwise (see e.g., the footnote on page 25 of 

[20]). Then the K-polynomial of k[zv]/Jv,w, with respect to the standard grading, is

K(k[zv]/Jv,w; t) = Gw(tf(ev(1)), . . . , tf(ev(n)); t−f(e1), . . . , t−f(en))

= Gv,w(tij 	→ tf(ev(i))+f(ej)).
(6.2)

Example 6.1. Let v = 34512 and w = 21435. Using Equation (2.1), we may compute 

Gv,w(t) = t11t31 + t11t22 − t11t22t31. For the Zn-grading, the substitution provided in 

Equation (6.1) yields

K(k[zv]/Jv,w; t) = (1 −
t3

t1
)(1 −

t5

t1
) + (1 −

t3

t1
)(1 −

t4

t2
) − (1 −

t3

t1
)(1 −

t5

t1
)(1 −

t4

t2
).

Using Theorem 3.2, we may compute

Gw(x; y) =
x1

y1

x3

y1
+

x1

y1

x2

y2
+

x1

y1

x1

y3
−

x1

y1

x1

y3

x2

y2
−

x1

y1

x1

y3

x3

y1
−

x1

y1

x2

y2

x3

y1
+

x1

y1

x1

y3

x2

y2

x3

y1
.

Combining this with Equation (6.2) yields

K(k[zv]/Jv,w; t) = Gw(1, 1, 1, t, t; t−1, t−1, 1, 1, 1) = 2(1 − t)2 − (1 − t)3

under the Z-grading. ♦

Lemma 6.2. Let v ∈ Sn such that v is 321-avoiding. If (i, j) ∈ D(v), then f(ej) = 1 and 

f(evi
) = 0.
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Proof. Since (i, j) ∈ D(v), there is k = vi such that vi > j and i < v−1
j , thus f(ej) = 1. 

If f(evi
) = 1, then there is k > vi such that v−1

k < i. This would then imply that there 

is a 321-pattern in v. In particular, we would have v−1
k < i < v−1

j , with j < vi < k. As 

v is 321-avoiding, we conclude that f(evi
) = 0. �

Lemma 6.3. Let v, w ∈ Sn such that v is 321-avoiding and w � v. Then

K(k[zv]/Jv,w; t) = Gv,w(tij 	→ t) =
∑

P ∈Pipes(v,w)

(−1)#P −ℓ(w)(1 − t)#P . (6.3)

Proof. The coarsening of the grading f : Z
n → Z combined with Lemma 6.2 ensures 

that tf(ev(i))+f(ej) = t for (i, j) ∈ D(v). Thus, the result follows by Equations (2.1) and 

(6.2) together with the fact that Gv,w(t) = Gv,w(1 − t). �

We will use the following to prove the main result of this section (Theorem 6.5).

Proposition 6.4. Let v, w ∈ Sn such that v is 321-avoiding and w � v. Then,

deg K(k[zv]/Jv,w; t) = degGv,w(t). (6.4)

Furthermore, the Castelnuovo-Mumford regularity of k[zv]/Jv,w is given by

reg(k[zv]/Jv,w) = degGv,w(t) − #D(w) = max{#P | P ∈ Pipes(v, w)} − #D(w). (6.5)

Proof. Equation (6.4) is immediate from Lemma 6.3. Equation (6.5) follows from Equa-

tions (6.4), (5.1) and the fact that htk[zv]Jv,w = #D(w). �

6.3. Castelnuovo-Mumford regularity of patches of Grassmannian Schubert varieties

In [32], we gave a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-

Seshadri from [23] on the Castelnuovo-Mumford regularity of coordinate rings of standard 

open patches of certain Schubert varieties in Grassmannians. We then gave a conjecture 

of a correct formula [32, Conjecture 5.6]. In this short subsection, we prove a generaliza-

tion of this conjecture.

Identify the Grassmannian Gr(k, n) with P\GLn(k) where P ⊆ GLn(k) is the 

parabolic subgroup of block lower triangular matrices with block sizes k and n − k

down the diagonal. Let u and g be a pair of Grassmannian permutations with descent 

at k. The Kazhdan-Lusztig ideal Ju,g is the prime defining ideal of the intersection of 

the Schubert variety P\PgB+ ⊆ P\GLn(k) with the open set P\PuB− ⊆ P\GLn(k). 

The following theorem gives the regularity of the coordinate rings of these open sets of 

Grassmannian Schubert varieties.

Theorem 6.5. Fix Grassmannian permutations g and u with descent at position k so that 

λ(g) ⊆ λ(u). Let v be the vexillary permutation such that D(v) = Dbot(λ(u), λ(g)). Then,
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reg(k[zu]/Ju,g) = deg(Gv(x)) − |λ(g)| =
n

∑

i=1

ρa(τi(v)).

Proof. The first equality follows due to Equation (6.5), Theorem 2.5, and the fact that 

htk[zu]Ju,g = |λ(g)|. The second equality is then immediate by Theorem 1.7 and the fact 

that |λ(g)| = #D(v) by construction of v. �

We note that [32, Conjecture 5.6] concerned the special case of the above theorem 

where u = (n − k + 1) (n − k + 2) . . . n 1 2 . . . (n − k), written in one line notation.

7. Regularity of ladder determinantal ideals

Our next goal is to provide a formula for the Castelnuovo-Mumford regularity of 

any one-sided ladder determinantal ideal. Ladder determinantal ideals are generalized 

determinantal ideals which were introduced by S. S. Abhyankar [1] to study singularities 

of Schubert varieties. There has since been substantial interest in their properties. For 

example, see [29,18,5–7,12,13,22,14,15,11] and references therein. The work of Ghorpade 

and Krattenthaler [11] on a-invariants of certain ladder determinantal ideals is most 

closely related to our results. This is discussed in more detail at the end of Section 7.1.

7.1. One-sided ladder determinantal ideals

A ladder L is a Young diagram (in English notation) filled with distinct indeter-

minates. Observe that a ladder is determined by a collection of southeast corners 

LSE = {(ai, bi)}i∈[s] ordered northeast to southwest. Label the northwest corner of 

L to be (0, 0). Take (as+1, bs+1) to be the southwestmost corner of the ladder and take 

(a1, b1) be the northeastmost corner of the ladder.

Let P denote the lattice path from (as+1, bs+1) to (a1, b1) which travels along the 

boundary of the ladder, so that cells weakly northwest of the P are in L and boxes weakly 

southeast of P are not in L. Let P = {(cj , dj)}j∈[s′] denote a collection of distinguished 

points along P. To each (cj , dj) ∈ P , assign a value rj ∈ Z>0. Let LI,J denote the subset 

of L with row indices in I and column indices in J for I, J ⊆ [n].

Let k[L] denote the polynomial ring generated by these indeterminate entries. Define 

the one-sided mixed ladder determinantal ideal IL,r:

IL,r = 〈minors of size rj in L[cj ],[dj ] : j ∈ [s′]〉 ⊆ k[L].

Letting Ij denote the ideal of rj × rj minors of L[cj ],[dj ], one observes that

IL,r =
∑

j∈[s′]

Ij .

Following [21], we assume
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0 < c1 − r1 < c2 − r2 < · · · < cs′ − rs′ and 0 < d1 − r1 < d2 − r2 < · · · < ds′ − rs′

(7.1)

so that Ij � Ik for any j �= k, j, k ∈ [s′]. As outlined in [10, Proposition 9.6], L can 

be identified with a vexillary matrix Schubert variety Xv where Ess(v) are the boxes 

indexed by P and the ranks satisfy rv(cj , dj) = rj − 1.

Example 7.1. To the left is a ladder L. Then LSE = {(5, 3), (3, 5)} with marked points 

and corresponding ranks given in red. To the right is the associated permutation v.

Then

IL,r = 〈3 − minors of L[5],[3], 2 − minors of L[3],[3], 3 − minors of L[3],[5]〉

= 〈det(L[3],{3,4,5}), 2 − minors of L[3],[3], det(L{3,4,5},[3])〉. ♦

For certain one-sided mixed ladder determinantal ideals, regularity formulas can be 

deduced through a-invariant formulas of Ghorpade-Krattenthaler [11]. Their formulas 

give results in the case in which (r1, r2, . . . , rs′) = (1, 2, . . . , t, t − 1, . . . , 1) for some 

t ∈ Z>0, where Equation (7.1) is not imposed. Thus, for example, L as in Example 7.1 is 

not in the class of ladders considered in [11]. We note that an algorithm for a-invariant 

formulas is given in [11] for two-sided mixed ladder determinantal ideals with the same 

restriction on ranks.

7.2. One-sided ladder determinantal ideals via Grassmannian Kazhdan-Lusztig ideals

We now recall that each one-sided ladder determinantal ideal is a Kazhdan-Lusztig 

ideal Nu,g where u and g are Grassmannian permutations. This was first shown by 

Gonciulea-Miller [13, Theorem 4.7.3]; we include it here for completeness.

Take a ladder L with LSE = {(ai, bi)}i∈[s], and marked points P = {(cj , dj)}j∈[s′]

assigning ranks rj . Define u ∈ Sx+y as the concatenation of partial permutations ui, 

where for i ∈ [s]

ui = idai−ai+1
+ bi + a0 − ai, and

us+1 = [x + y] \ ∪i∈[s]ui.
(7.2)
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Set (c0, d0) := (a0, b0) with r0 = 1 and (cs′+1, ds′+1) := (as+1, bs+1) with rs′+1 = 1. 

Define g ∈ Sx+y as the concatenation of partial permutations gi, where for i ∈ [s′ + 1],

gi = idki−ki−1
+ ki−1 + hi−1, and

gs′+2 = [x + y] \ ∪i∈[s′+1]gi,
(7.3)

where ki = c0 − ci + ri − 1 and hi = di − ri.

Note that Equation (7.1) and the assumption that each indeterminate appears in at 

least one minor ensure that L(code(u)) = L(code(g)) and uj � gj for each j ∈ [x + y]. 

Then by [13, Theorem 4.7.3] we have the following:

Proposition 7.2. Given a one-sided ladder determinantal ideal IL,r and u, g as above, 

Ju,g and IL,r share the same generators.

Example 7.3. For L as in Example 7.1, below are D(u) and D(g) for the u, g as defined 

in Equations (7.2) and (7.3).

♦

As a consequence to Proposition 7.2, the K-polynomial of each one-sided ladder de-

terminantal ideal can be expressed both as a single Grothendieck polynomial and as a 

specialized double Grothendieck polynomial. Combining this with [10], we have:

Corollary 7.4. Given a one-sided ladder L with marked points P = {(cj , dj)}j∈[s′] assign-

ing ranks rj,

reg(S/IL) = reg(S/Ju,g) =

n
∑

k=1

ρa(τk(v)),

where u, g are as defined in Equations (7.2) and (7.3). Here v is the vexillary permutation 

such that Ess(v) are the boxes indexed by P and rv(cj , dj) = rj − 1.

Data availability
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