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varieties in Grassmannians. This provides a correction to a
conjecture of Kummini-Lakshmibai-Sastry-Seshadri (2015).
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Castelnuovo-Mumford reqularity is a fundamental measure of the complexity of a
graded module. In this paper, we use Schubert calculus techniques to provide ex-
plicit, easy-to-compute, combinatorial formulas for the Castelnuovo-Mumford regularity
of classes of generalized determinantal ideals. The classes we treat include one-sided
mixed ladder determinantal ideals and ideals defining patches of Schubert varieties in
Grassmannians. These two classes of ideals are connected by work of N. Gonciulea and
C. Miller [13].

Let k be a field. Let S = k[z1,...,z,] be a polynomial ring with the standard grading,
deg(x;) =1, and let I C S be a homogeneous ideal. When S/I is Cohen-Macaulay, as is
the case throughout this paper, the regularity of S/I is known to satisfy

reg(S/I) = deg K(S/I;t) — htg(I), (1.1)

where K (S/I;t) is the K-polynomial of S/I and htg(I) is the height of I in S. Using this
fact, the authors, in joint work with Y. Ren and A. St. Dizier [32], gave a combinato-
rial formula which computes the regularity of coordinate rings of Grassmannian matriz
Schubert varieties. The key technical ingredient was a formula of C. Lenart [26] regard-
ing symmetric Grothendieck polynomials. In the present paper, we extend our work from

[32].
1.1. Summary of results

We give a combinatorial formula for degrees of Grothendieck polynomials indexed by
1482-avoiding permutations (see Theorem 1.3) and wvezillary (2143-avoiding) permuta-
tions (see Theorem 1.7). These formulas in turn, allow us to compute the regularity of
the corresponding matrix Schubert varieties. In particular, our formula in the vexillary
setting provides a formula for Castelnuovo-Mumford regularity of one-sided mixed ladder
determinantal varieties (see Section 7 for details). Our formulas naturally generalize the
Grassmannian formula of [32] (see Section 2.5 for details).

Theorem 1.1. Given w € S, so that w is 1432-avoiding,

n

reg(S/I,) = Zpd(ak(w))~

k=1
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Defined in Section 2, these oy (w) are certain subsets of the Rothe diagram D(w) of w,
and pg(ox(w)) denotes the size of the largest diagonal in o (w).

Example 1.2. Let w = 1462375. In the images below, the elements of o (w) are shaded,

with a maximal diagonal path in o (w) marked with x for k € [5]. For k = 6,7, we have
or(w) = 0, and so we omit the figures.

e |HEZD (|Heg ||HeEg ||HES

X5 I I X5 X7
I T T 171 | S - I T 1 I T T
k=1 k=2 k=3 k=4 k=5

Theorem 1.1 computes reg(S/I,) =3+1+04+1+1=6. <&
Theorem 1.1 is a direct consequence of the following:

Theorem 1.3. If w € S,, is 1432-avoiding, then

deg(®,) = #D(w) + Y _ pa(ox(w)).

k=1

For w € Sy, #D(w) is the Coxeter length of w. See Section 2 for the definitions of
Grothendieck polynomials &,, and Rothe diagrams D(w). The proof of Theorem 1.3
appears in Section 4.

Example 1.4. Returning to w as in Example 1.2, Theorem 1.3 with Theorem 1.1 gives
that

deg(&,) = #D(w) +reg(S/I,) =6+ B3+14+0+1+1)=12. &
We have similar diagrammatic regularity and degree formulas in the vexillary setting.

Theorem 1.5. Given v € S, so that v is vexillary,

reg(S/1,) = ) palm(v)).
k=1

Here, the 74(v) are certain subsets of the Young diagram A(v) associated to v and
Pa(Tr(v)) denotes the size of the largest antidiagonal in 73 (v). See Section 2 for details.
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Example 1.6. Let v = 169247358. In the diagrams below, the elements of ;(v) are shaded
for i =1,2,3 in A(v). In particular, a maximal size antidiagonal path contained in 7;(v)
has been marked with x’s.

x| 1] [x] [

<] <] L]

Applying Theorem 1.5, we have reg(S/I,) =4+3+1=8. <
Theorem 1.5 is a direct consequence of the following:

Theorem 1.7. Suppose v € S, is vexillary. Then

deg(®,) = #D(v) + Y _ pa(7i(v)).
1=1

The proof of Theorem 1.7 appears in Section 4.

Example 1.8. Returning to v as in Example 1.6, Theorem 1.7 with Theorem 1.5 gives
that

deg(®,) = #D(v) +reg(S/I,) =134+ (4+3+1)=21. &

We also provide formulas for the regularity of certain homogeneous Kazhdan-Lusztig
ideals Jy ... When v is a 321-avoiding permutation, we provide a formula in terms of
pipe dreams (see Proposition 6.4). When v and w are both Grassmannian, we provide an
easily computable formula by computing the degree of the corresponding K-polynomial
in terms of a vexillary Grothendieck polynomial.

1.2. Connections to the literature

Concurrently with this work the third author, with O. Pechenik and D. Speyer [31],
derived a combinatorial formula for the regularity of matrix Schubert varieties indexed by
arbitrary permutations. In contrast with our diagrammatic combinatorics, the formula
in [31] is phrased in terms of a new statistic on permutations. In work released around
the same time as the present paper, E. Hafner [17] obtained a new proof of the vexillary
case of [31] in terms of bumpless pipe dreams. Her results illustrate the connection from
the formula in [31] to our vexillary formula through bumpless pipe dreams. A. Yong also
has recent work related to the present paper, where he studies regularities of tangent
cones of Schubert varieties [37].

For certain mixed ladder determinantal ideals, regularity formulas can be deduced
through a-invariant formulas of S. Ghorpade and C. Krattenthaler [11]. The ladder
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determinantal ideals they consider have certain restrictions on their rank conditions.
Consequently, their one-sided ideals are special cases of the ideals that we consider. See
Section 7 for further discussion.

Our formula for regularity of patches of Grassmannian Schubert varieties (Theo-
rem 6.5) provides a correction to a conjecture of M. Kummini, V. Lakshmibai, P. Sastry,
and C. S. Seshadri (see [23, Conjecture 7.5]). This correction was conjectured in our
previous paper (see [32, Conjecture 5.6]).

1.3. Outline of the paper

In Section 2, we introduce the necessary combinatorial background. In Section 3, we
give tableau interpretations of our Grothendieck degree formulas. We provide proofs of
our degree formulas for vexillary and 1432-avoiding permutations in Section 4. Section 5
describes the connection between Grothendieck polynomials and regularity and proves
our main theorems. Section 6 applies these regularity formulas to correct the conjecture
of [23]. Section 7 further applies our main theorems to give combinatorial formulas for
the regularity of one-sided ladder determinantal ideals.

Acknowledgments

We would like to thank Philippe Nadeau and Alexander Yong for helpful comments
and conversations. We would also like to thank Elisa Gorla for helpful communications
about the literature. Finally, we would like to thank the anonymous referee for their
helpful comments.
2. Combinatorial degree formulas

2.1. Grothendieck polynomials

We start by defining Grothendieck polynomials, introduced by A. Lascoux and M. P.
Schiitzenberger [25] in their study of the K-theory of the complete flag variety. Let S,, de-

note the symmetric group on n letters, i.e., the set of bijections from [n] := {1,2,...,n}
to itself. We write permutations in one-line notation unless otherwise specified and
define w; = w(i) for ¢ € [n]. The symmetric group S, acts on Z[zy,...,z,] by
w-f(z1, ..., Zn) = [(Twys Twgy - - - s Taw, ). Let s; € Sy, be the simple transposition (i i+1),
written here in cycle notation. For f € Z[zy,xa, ..., z,], define

onf = L5 and mf = 0,1 — 2 f.

T — Ti41

We recursively define Grothendieck polynomials as follows. Let wg =nn—1... 1 be
the longest permutation in S,,. Define
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n—1,_n—-2

Gy (X) = By (21,22, .., 2p) = 217 2] e Tp1-

For w # wy there exists some i € [n— 1] such that w; > w;1. Then we define &, (x) =
7 (B4 (x)). Since the 7; satisfy the same braid and commutation relations as the simple
transpositions, ®,,(x) is well defined.

Write z @ y := x + y — zy. We define the double Grothendieck polynomials using the
same recurrence, starting from the initial condition

Su,(xiy)= ] (@ey).

1<i+j<n

Here, the 0;’s only act on the x;’s, leaving the y;’s fixed.
2.2. Permutations

First we recall some background on the symmetric group with [27] as a reference.
The permutation matrix of w, which we also denote by w, is the 0, 1-matrix with 1’s at
(i,w;) for all i € [n] and 0’s elsewhere. To each permutation we associate a rank function
defined by

Tw(iuj) = #{(k,Wk) t k< ivwk < ]}
The Rothe diagram of w € S,, is the subset
D(w) ={(i,j) € [n] X [n] : w; > j and wj_l > i}
Visually, D(w) is the set of cells remaining in the n x n grid after plotting the points
(i,w;) for each i € [n] and striking out any cells which appear weakly below or weakly
to the right of these points, as shown in Example 2.1.
Let ¢(w) := #D(w) denote the Coxeter length of w. The code of w is the tuple

code(w) = (e1,...,¢,) where ¢; records the number of cells in the ith row of D(w).
Let

L(code(w)) :=max{i € [n] : ¢; > 0}.
The essential set of w is the subset of D(w)

Ess(w) = {(4,j) € D(w) : (i+1,75),(,5+1) ¢ D(w)}.

The dominant component Dom(w) is the connected component of D(w) containing

(1,1).
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Example 2.1. For w = 72416835 € Ss, D(w) is the following:

[ 1 1]
N

sl Sl

Here, we have Ess(w) = {(1,6),(3,1),(3,3), (6,3),(6,5)}, code(w) = (6,1,2,0,2,2,0,0),
and Dom(w) = {(1,4) : i € [6]} U{(2,1),(3,1)}. ¢

A subset D C [n] x [n] is a diagonal path if
D = {(i1,51)s -, (i, jr) + 0 <dg <--- <igand j; < jo < - - < Ji}

Given S C [n] x [n] write pq(S) for the size of the largest diagonal path in contained S.

A permutation w € S, is 1432-avoiding if there does not exist a 1432 pattern, i.e.,
indices h < ¢ < j < k such that w has the pattern w;, < wp < w; < w;. For example,
w = 23715846 is not 1432-avoiding; we underlined the positions of a 1432 pattern. For
w 1432-avoiding, let

op(w) ={(i,j) € D(w) : i >k and j > wy},

i.e., o (w) is the set of cells in D(w) which are strictly southeast of (k, wy). Example 1.2
gives an example of diagonal paths in oy (w).

A partition A\ = (A1, ..., \;) is a weakly decreasing sequence of non negative integers.
We write [A| = A1 + -+ + Ax. The Young diagram of a partition A is the set {(4,j) €
ZsoxZso:1<j < \} Weoften conflate Young diagrams with their partitions. Given
partitions A and p, we write A C p to mean that the Young diagram of A is contained in
the Young diagram of pu.

Given w € S, let pu(w) be the partition whose Young diagram is

U i xa,

(i,5)€D(w)

i.e., p(w) is the smallest partition whose Young diagram contains D(w).

A permutation v € S,, is vexillary if it does not contain a 2143 pattern, i.e., indices
i < j < k <l such that v; < v; < vy < v;. For example, v = 72581364 is not
vexillary since the underlined indices form a 2143 pattern. A vexillary permutation v
has shape A(v), where A(v) is code(v) = (c1,...,c,) sorted into decreasing order. A
vexillary permutation v has flag
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TI[1[1
1111 |[2[2] 1 2]2|
- 1
2] | 3] 2
2]
RERE!

Fig. 1. Let v = 169247358. Pictured on the left is the filling of the cells (¢,j) € D(v) with 7,(%,j). On the
right is A(v) filled with F,,.

d(v) = (¢1 < P2 < -+ < P ), Where
U

¢; =max{j : (j, k) € u(v) lies in the same diagonal as (i, A;(v))}.

Note that we can think of A\(v) as the partition with the property that each of the diag-
onals of its Young diagram has the same number of cells as the corresponding diagonal
of D(v). Observe that ¢(v) tells us how the positions of these boxes changed between
D(v) to A(v).

Fill the diagonals of A(v) with r, (7, j) for the corresponding cells (4, j) € D(v), so that
the entries are (weakly) increasing along diagonals. Write F, for this filling (see Fig. 1
for an example). Let

Te(v) = {(i,4) € A(v) : (i, ) = k}.
A subset A C [n] x [n] is an antidiagonal path if
A={(i1,J1)s -, (i, Ji) 1 <idz < -+ <idpand j1 > j2 > -+ > g}

Given S C [n] x [n] write p,(S) for the largest antidiagonal path in S. See Example 1.6
for an example of antidiagonal paths in 74(v).

A permutation g € S, is Grassmannian if it has a unique descent, i.e. a unique
k € [n — 1] such that g5 > gr+1-

2.8. Pipe complexes
Let a = (aq,...,ar) be a word on the alphabet [n — 1]. We say a is a reduced word

for w if w = sq, - -+ Sq,, and L(w) = k.
Define an algebra over Z with generators {e,, : w € S,,} and multiplication given by

ews; if L(ws;) > L(w)
Cwes;, =
ew if l(ws;) < L(w).

The Demazure product 6(a) of a word a = (ay,...,ax) is defined by computing
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€8a1 P esak = eé(a)~

Label cells in D(v) along rows so that the first cell in row i is labeled ¢, the next
i+ 1, and so on. Given P C D(v) let ap be the word obtained by reading the labels of
the elements in P within rows from right to left, starting at the top row and working
downwards. Let

Pipes(v,w) = {P C D(v) : ap is a reduced word for w}.
Likewise, let
Pipes(v,w) = {P C D(v) : 6(ap) = w}.
For any P C [n] x [n], we assign it the t-weight

th(P) = H t”

(i,5)eP

Pictorially, we represent P C D(v) by marking (¢, j) € D(v) with a + whenever (i, j) € P.
We define the unspecialized Grothendieck polynomial to be

Guut)= > (—D)FF g (P). (2.1)
P€Pipes(v,w)

Note that by setting v = wg, we can recover double Grothendieck polynomials by
specializing the variables in &, ., (t):

B (%Y) = Guwgw(T1 © Y1, 22 D Y2, - -, T B Yn)-
2.4. Ezxcited Young diagrams
Fix partitions A C u. Let
Diop(p; A) = {(i,5) : i € [k] and j € [Ai]}-

We call D C u a diagram, represented graphically by marking these cells in D with +’s.
An excited move is a mutation of a local 2 x 2 subsquare of the form

+ s — (2.2)

Here, the mutated subsquare must be entirely contained within .

We write ExcitedYD(u, \) for the set of D C p which can be obtained by a sequence
of excited moves starting from Deop(p, A). Such diagrams are called excited Young dia-
grams. There is a unique element of ExcitedYD(u, \) to which no excited moves may be
applied, see e.g., [34, Lemma 7.4]. Call this Dyot (2, A).
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We also consider K-theoretic excited moves of the form

+ + 2.3
Sl (2.3)

again, where all cells pictured are contained in p. Write KExcitedYD(u, A) for the set of
diagrams which can be obtained from Dyqp(u, A) by a sequence of excited and K-theoretic
excited moves. We weight D € KExcitedYD(u, A) by

wt(D) = H (z: ®y;).
(i,9)€D
Proposition 2.2. If v € S,, is vezillary, then

B.(xy) = )3 (—1)#P-PC) (D).
D eKExcitedYD(p(v),A(v))

Proof. This follows by noting the flagged set-valued tableaux (and diagonal pipe dreams)
of [22] can be identified with KExcitedYD(p(v), A(v)). See e.g., [16] and [34] for further
details. O

Lemma 2.3. Fiz partitions A\ C p. There exists a unique permutation v € S so that
D(v) = Dyot(t, A). In particular, v is vezillary.

Proof. That Dyos(p, A) € ExcitedYD(u, A) is the diagram of a vexillary permutation
follows from [34, Proposition 7.6]. O

Example 2.4. Let A = (5,4,2,1,0) and pu = (6,6,4,4,4). Then v = 5713624 is the unique
vexillary permutation so that D(v) = Dyet (1, N).

T R ] HHo,
i fan QDW

Above are Deop(pt; A), Dot (1, A), and D(v), respectively. <

Theorem 2.5. Fiz Grassmannian permutations g and u with descent at position k so that
A(g) € A(u). Let v be the vexillary permutation such that D(v) = Dyet(A(w), A(g)). Then

deg(®By 4(t)) = deg(B,(x)).

Proof. Write code(u) = (c1,...,¢n). Since u is Grassmannian with descent at position k,
AMu) = (g, k-1, -.,¢1) (see [27, Section 2.2]). In particular, this means we can identify
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each cell in D(u) with cells in Dy, = {(¢,5) : 1 < j < ¢;} by left justifying cells in
D(u) within rows.

Under this identification, we map each element of Pipes(u,g) to a subset of Dy (w)-
Call this set of diagrams L. It is immediate that L C Pipes(wpg,g). In particular, this
implies elements of L are connected by (flipped) K-theoretic moves, i.e., replacements of
the form:

o -
£ L[]

and

- 6
Ee il ]

By flipping the first k rows vertically, we see that elements of L are in bijection with ele-
ments of KExcitedYD(A\(u), A(g)). Thus, we have a (degree preserving) bijection between
elements of Pipes(u, g) and KExcitedYD(A(u), A(g)).

Then by Equation (2.1) and Proposition 2.2, we conclude deg(®,4(t)) =
deg(6,(x)). O

Example 2.6. Let ¢ = 1247356 and u = 1457236. An element of Pipes(u,g) and its
corresponding K-theoretic excited Young diagram are pictured below.

+ +]+][+ ]

2.5. Connections to the Grassmannian degree formula

In previous work with Ren and St. Dizier [32], the authors presented a formula to
compute the degree of symmetric Grothendieck polynomials. If w € S, is Grassmannian
with descent k, then the symmetric Grothendieck polynomial is &,y (z1,...,T%) =
&, (x1,...,x,). Since Grassmannian permutations are both 1432-avoiding and vexillary,
our new degree formulas are two different generalizations of this formula. We illustrate
these connections here.

Write §F) = (k,k —1,...,1). Let sv(\) = max{k : §*) C A}. Given a partition
A= (A1,..., M), let trunc® (X) be the partition obtained by removing the first 4 columns
of the Young diagram of A. Then:
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Theorem 2.7 ([52]). If A = (A\1,..., A\g), then

k
deg(&y(z1,...,x1)) = [N + st(trunc(’\i)(/\)).

i=1

Theorem 2.7 can be recovered using Theorem 1.3 or Theorem 1.7. We illustrate this
in the example below.

Example 2.8. Let A = (3,2,2,0) and k = 4. The Grassmannian permutation associated to
the pair (A, k) is w = 1457236. The first line below computes the formula in Theorem 2.7
where the ith Young diagram has trunc()‘i)()\) shaded, with 6®) marked with x’s for
k = sv(trunc9) (X)).

Below, we demonstrate the rule given in Theorem 1.3. Here, we have oy (w) shaded, with
the longest diagonal marked with x’s.

He - 8@ |HE HE H
Tl Ee! Tl I I

Now, we use the formula from Theorem 1.7. In each Young diagram, we have shaded
T (w), with the longest antidiagonals marked with x’s.

1]1]3] X] X X
— X

—
=

Thus we see all three formulas compute deg(&y(z1,...,zr)) = [\ +3+1+1=12.
3. Tableau formulas for Grothendieck polynomials
Since their introduction, Grothendieck polynomials have been studied with a number

of combinatorial formulas ([9,26,4]). For our degree formulas, we will focus on two tableau
formulas in the special cases of 1432-avoiding permutations and vexillary permutations.
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Furthermore, in each of these cases, we construct a tableau whose weight contributes to
the top degree terms of the corresponding Grothendieck polynomial.

3.1. Set-valued Rothe tableaux

A set-valued Rothe tableau T of shape D(w) is a filling of D(w) with nonempty
subsets of Z~¢ such that for boxes a,b € D(w):

o if a lies north of b in the same column, then max T'(a) < minT'(b), and
o if a lies west of b in the same row, then minT'(a) > max T'(b),

where T'(a) denotes the set of entries of T' in box a. Let SVT(D(w)) be the collection of
such tableaux. We say a tableau T' € SVT(D(w)) is flagged by ¢ = (¢1, ¢, . . ., ¢y, ) if for
each box b in row i of D(w), maxT'(b) < ¢; for all i. For a 1432-avoiding w € S,,, let

FSVD(w) = {T € SVT(D(w)) : T is flagged by (1,2,...,n)}.

Example 3.1. Below is some T € FSVD(w) for w = 1462375.

2111

w
w
[N}
2]
=

=
1

&

Theorem 3.2. [8, Theorem 1.1] For w € S, 1432-avoiding, ®,, has the following expan-
son:

st(X7 y) = Z (_1)#T—#D(w) H xval(e) ® y)\T(e)+¢T(e)76(8)7va1(e)+1a (31)
TEFSVD (w) e€T

where the product is over entries e in T whose value is val(e) and c(e),r(e) are the
column and row indices of e.

For T € FSVD(w), let #T denote the number of entries in 7. We say T € FSVD(w)
is maximal if 77 € FSVD(w) implies #T" < #T. Now we give a construction of
T € FSVD(w) for a given 1432-avoiding w. Theorem 1.3 proves Ty, is maximal. Let
md(D) denote the northmost then westmost maximal diagonal path of D C [n]2. For

md(ox(w)) # 0, let

NE(md (o (w))) = {(4,4) € D(w) —md(ox(w)) : (i,5) lies northeast of md(ox(w))}.
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Take Tp € SVT(D(w)) such that Ty(4, j) = i for ¢ € [L(code(w))]. For k € [L(code(w)) —
1], let Ty, € SVT(D(w)) such that for (¢,5) € D(w):

Tp—1(4, 7)) U{minTy_1(¢,5) — 1} if (4,7) € md(ox(w)),
Ti(i,7) == The_1(i,5) — 1 if (4,5) € NE(md(ok(w))),
Ti—1(4,7) otherwise,

where T'(i,7) — 1 is entrywise subtraction. Let T,, := T (code(w)) -

Example 3.3. Below we construct T, for w = 1462375.

w
w
(<]

B

Il

—
w

32

[+2]

E

II

[\
w
w
[\~
2]
=

e
1

2]
1

NE
1

21 1 2111 21 1
s | | 13132 [21 e || 3132121 wes || 313221
8 T 8
I 1 <>

Lemma 3.4. Suppose w in S,, is 1432-avoiding. Then T,, € FSVD(w).

Proof. We proceed by showing T, € FSVD(w) for k € [L(code(w))] by induction on k.

By construction, Ty € FSVD(w). Suppose T—1 € FSVD(w) for some k € [L(code(w))].

If md(ok(w)) = 0, the result follows the inductive assumption since Ty = Tk_1.
Otherwise, since Ty—1 € FSVD(w) by construction of T},

max Ty (i,7) < max Ty_1(¢,7) < i.

Similarly since Tj_1 is decreasing along rows, T} is clearly decreasing along rows. By
definition of T}, any (4,j) can be decremented no more than ¢ — 1 times, so no entry
can be decremented to 0. Thus it remains to show T}, increases down columns. Consider
some (i,7) € md(or(w)). Let

i' = max{z <i : (z,5) € D(w)}.

Since Tk_1 is increasing down columns, it suffices to show that maxTy(i,j) <
min Ty (4, 7). If (¢/,7) € NE(md(o,(w))) or does not exist, the result follows by the con-
struction of T}.
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Fig. 2. Let v be as in Fig. 1. Then A(v) = (6,4,2,1) and u(v) = (8,8,8,5,5,5). Pictured on the left is
A(v) C p(v) with the diagonals used to compute ¢(v) = (3, 3, 6,6) drawn in red. To the right is an element
of FSVT(v). (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

Otherwise, by the definition of md(oy(w)), it follows that ¢ = i’ + h for some h > 1.
Then for s € [i'], by the definitions of Ts and md(os(w)),

max T (', j) + h < min Ts(4, j). (3.2)

Thus if k < i/, we are done. If k > ¢/, it follows that max Ty (i',j) = maxTy (i, j) and
min Ty (¢,7) = min Ty (i, 7) — h + 1, so by Equation (3.2),

max Ty (i, 7) < min Ty (4, j) — 1.
Thus T} € FSVD(w). O
3.2. Set-valued Young tableauz

A set-valued tableau T of shape A = (A1, Ag,..., ;) is a filling of A with nonempty
subsets of Z~¢ such that for boxes (a,b) € A:

e if a lies north of b, then max T'(a) < min7'(b), and
o if a lies west of b, then max T'(a) < minT'(b),

where T'(a) denotes the set of entries of T' in box a. Let SVT(A) be the collection of such
tableaux. We say a tableau T' € SVT()) is flagged by ¢ = (1, ¢2, . . ., ¢y,) if for each box
b in row i of A, we have max T'(b) < ¢;. For a vexillary permutation v, let

FSVT(v) = {T € SVT(A(v)) : T is flagged by ¢(v)}.

An example of some T € FSVT(169247358) is given in Fig. 2. We note that many
different choices of flagging can result in the same underlying set of tableaux. See [28,
Remark 3.10] for further commentary.

Theorem 3.5. [22, Theorem 5.8] If v € S,, is vexillary, the double Grothendieck polyno-
mial B,(x;y) has the following expansion:
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6,(xy) = Y, (“DFP] 2vare) @ tral(e)e(e)—r(e)s (3:3)
TEFSVT (v) e€T

where the product is over entries in T whose value is val(e) and c(e),r(e) are the column
and row indices of e.

For T € FSVT(v) let #T denote the number of entries in T. We say T' € FSVT(v) is
maximal if #7 = max{#U : U € FSVT(v)}. Now we give a construction of U, € SVT(v)
for a given vexillary v. Theorem 1.7 proves U, is maximal.

Let ma(A) denote the northmost then westmost maximal antidiagonal path of | J, 1; €
A. For ma(7(v)) # 0, let

SE(ma(r(v))) = {(4,7) € A —ma(7,(v)) : (i,7) lies southeast of ma(7y(v))}.

Take Uy € SVT(A) such that Uy(i,5) = i for i € [¢(N)]. For k € [((N) — 1], let
Ui € SVT(A) such that for (i,5) € A:

Up—1(4,7) U{max U,_1(4,5) + 1} if (i,7) € ma(rx(v)),
U(i,j) ==  Up-1(,5) + 1 if (4,7) € SE(ma(rx(v))),

Uk-1(%,J) otherwise,
where U(4,7) + 1 is entrywise addition. Let U, := Uyy)-

Remark 3.6. By a similar argument to Lemma 3.4, it follows that U, € FSVT(v). By
Theorem 1.7, it follows that U, is maximal.

Example 3.7. Let v = 169247358. From Fig. 1, we saw A\(v) = (6,4,2,1). Furthermore,
o(v) = (3,3,6,6). Below is the construction of U, from Up.

L[1]1]1]1]1] 1[1]1]12]2]2] 1[1]1]12]2]23] 1[1]1]12[2]23]
2[2]2 o [2]2]23[3 , [2]2]23[3 s [2]2]23[3

3|3 — 334 — | 3 45 — | 3|3

4 45 456 456

R o N o <

4. Proofs of degree formulas

In this section, we prove our Grothendieck degree formulas for 1432-avoiding permu-
tations and vexillary permutations to deduce our main theorems.
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4.1. Proof of Theorem 1.3
Recall, md(D) is the northmost then westmost diagonal path of D C [n]? and
or(w) ={(i,j) € D(w) : i >k,j > w(k)}.

For brevity, define fq(w) = #D(w) + >_}_; pa(or(w)).
We start by recalling a lemma from [8].

Lemma 4.1 (/8, Lemma 2.4]). Let w # wq be a 1432-avoiding permutation. If r is the
first ascent of w, then ws, is also 14/32-avoiding.

Proposition 4.2. If w is 1432-avoiding, there exists T € FSVD(w) such that

#T = fd(w)
In particular, deg(By) = fa(w).
Proof. This follows by Lemma 3.4 since #7,, = f4(w) by construction. O

Lemma 4.3. Let w # wq be a 1432-avoiding permutation and suppose r is the first ascent
of w. If there is a mazimal diagonal path in o.(w) which has no cells in row r + 1, then
there exists a mazimal set-valued Rothe tableau for w such that the entries in row r + 1
restricted to o.(w) are all strictly less than r + 1.

Proof. Suppose w is such that there is a maximal diagonal path in o, (w) which has no
cells in row r+ 1. Consider maximal T' € FSVD(w) such that 7" has boxes containing r+1
in row r 4 1 restricted to o, (w). We will construct 77 € FSVD(w) such that #T" = #T
and such that the entries in row r + 1 restricted to o,.(w) are all strictly less than r + 1.

Let by denote the box containing the eastmost occurrence of r 4+ 1 in row r+ 1 in 7.
For 1 < i < #md(o,(w)), we define b; € o,.(w) as the box containing the northmost, then
eastmost occurrence of 7+ in 7', in the region strictly east of b; ;. Thus {b;}ic[o, (w))
forms a diagonal path.

Let c; denote the northmost box of o,.(w) lying directly south of b; for each i €
[#md (o, (w))]. By the assumption that there is a maximal diagonal path in o,.(w) which
has no cells in row r + 1 and the definition of b;, {c;};e) exists for some 1 < k <
#md(o,.(w)). Let P be constructed as follows:

P={b;}U{b; : b;—1 € P and c¢;_; lies in the same row as b;}.

Let P’ = {c; : b; € P}. By maximality of T, it follows that {r +i,r +i—1} C T'(b;) for
each i € [#P]. Take T” such that
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T(bi) \ {r+i} if (z,y)=Db,
T(CZ)U{T+Z} if (z,y) = ¢,

T (z,y) == T(x,y) — if (z,y) lies directly between ¢; and b;41,
T(x,y) — if (z,y) = (r+1,y) € o,(w), lying west of by,
T(z,y) otherwise.

It is straightforward to check 77 € FSVD(w). Since #T = #T’, T’ is of the desired
form. O

Proposition 4.4. Suppose w € S, is 1432-avoiding. Let r denote the position of the first
ascent of w and {cy < -+ < co} ={w, <i < wpp1 : (r+1,4) € D(w)}. Then

D(w-s;) = (D(w) —{(r+1e):0<i<m}p)U{(r,c):0<i<mpU{(r,w,)}.
Proof. This follows by the definition of D(w), since r is the first ascent of w. O

Lemma 4.5. Let w # wq be a 1432-avoiding permutation, and suppose r is the first ascent
of w. If there is a mazimal diagonal path in o,.(w) which has no cells in row r + 1, then

fa(w) +1 = fa(wsy).

Otherwise,

fa(w) = fa(ws,).

Proof. By Proposition 4.4, #D(ws,) = #D(w) + 1. Further, since r was the first ascent
of w, (r,w,) € Dom(ws,). Further we see

pa(or(w)) = palor(ws,)) for k #r,r+1

by Proposition 4.4. By definition of r,

pa(ori1(w)) = pa(or(wsy)).

Finally, by Proposition 4.4, o,41(ws,) = o.(w) — Ufzo(r, ¢i). Thus pg(o-(w)) =
pa(orr1(ws,)) if there is a maximal diagonal path in o,.(w) which has no cells in row
r 4+ 1. Otherwise, pq(o,(w)) = pa(or+1(ws,)) + 1, so the result follows by the definition
of fg. O

Proof of Theorem 1.3. We proceed by induction on £(wy) — ¢(w). In the base case, w =
wo and the formula is immediate since deg(wp) = ¢(wg) = #D(wo) = fa(wp).

Now pick w € S, so that w # wg. Assume the formula holds for all w’ € S,, so that
L(w") > £(w). Let r be the first ascent of w. Let R denote the set of boxes in o, (w) lying
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in row r + 1. By Proposition 4.4, one obtains D(ws, ) from D(w) by shifting all cells in
R up one row and then placing a new cell in position (r, w,.).
Consider T € FSVD(w). We will construct 7" € FSVD(ws;.) from T by the following;:

r if (x—1,y) = (r,w,),

T(x,y) —{r+1}U{r} (x,y)ER r+1eT(z,y), and r ¢ T(x,y),
T'(z—1,y) :== T(z,y) — {r +1} if (z,y) € R, r+1€T(z,y), andr € T(z,y),

T(z,y) if (xr,y) e R, r+1¢T(z,y),

T(x—1,y) otherwise.

Thus T" € FSVD(ws,) and #T" > #T, giving deg(®,,) < deg(B,s, ). We have two
cases to check.
Case 1: Suppose all maximal diagonal paths in o,.(w) have a cell in row r + 1.

We have

fa(w) < deg(B,,) (by Proposition 4.2)
< deg(Bus,)
= fa(ws;) (by inductive hypothesis).

By Lemma 4.5, fg(w) = fq(ws,). Thus, fq(w) = deg(B,,).
Case 2: Suppose there exists a maximal diagonal path in o,(w) which has no cells in row
r 4+ 1. By Lemma 4.3, there exists a maximal tableau T for w so that boxes in R have
entries less than r 4 1. Using the above construction for 7" € FSVD(ws,.), it follows that
#T' = #T + 1. As a consequence, deg(®,,) < deg(Gs, ).

Thus,

fa(w) < deg(B,,) (by Proposition 4.2)
< deg(Gus,)
= fa(ws,) (by inductive hypothesis)
= fa(w) +1 (by Lemma 4.5).

Thus fy(w) = deg(&,). O
4.2. Proof of Theorem 1.7

If v is vexillary, we associate to v the following statistic:

fa(v) = #D(v) +Zpa(ﬂ(v))~ (4.1)
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Note that by definition, #D(v) = |A(v)|. The goal of this section is to prove Theorem 1.7,
i.e., to show if v is vexillary, then deg(®,) = fq(v). We start with some lemmas.

We follow [22] for combinatorial background. The maximal corner (r,s) of w is the
position of the right most cell in the last row of D(w). Let ¢; ; denote the transposition
(i 7). Define wp := wt, ,~1(5). Then wp is the unique permutation such that

D(wp) = Dw) - {(r,)}. (4.2)
Grothendieck polynomials satisfy a recurrence known as transition. Recall ¢; ; denotes
the transposition (i,7). Let wp 1= wt, ,-1(5). Let i3 <iz < --- < ij be the list of those

indices ¢ < r for which ¢(wp) + 1 = l(wpt; ).

Theorem 4.6 (/2/]). Given w € Sy, with mazimal corner (r,s) and t;; ,’s as above,

Qﬁw = stp + (xT - 1)(611119 * (1 - ti1,7“)(]- - tizﬂ’) T (1 - tikﬂ’))’
where B, xu := By, .

When v is vexillary, there is at most one index i < r for which ¢(vp) + 1 = ¢(vpt;,).
When such an index exists, we define vo = vpt; . In this case, Theorem 4.6 specializes
to

By =6, + (2 — 1)(Gyp % (1 —tiy))
=Gyp + (T — 1)(Gyp — Gyp) (4.3)
=2,G,, + (1 — 2,)8,,.

If no such index exists, then necessarily (r,s) € Dom(v) and we have

6, =&y, + (xr - 1)(67119)

(4.4)
=2,6,,.

Lemma 4.7. Fix any permutation w and suppose the mazimal corner (r,s) € Dom(w).
Then deg(®,,) = deg(B,,) + 1.

Proof. This is an immediate consequence of Equation (4.4) since multiplying any nonzero
polynomial by z, increases the degree by 1. O

Given a permutation w, the cell (r,s) € D(w) is called accessible if

(1) (r,s) ¢ Dom(w) and
(2) there are no other cells which occur weakly southeast of (r,s) in D(w).
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The maximal corner is an accessible box if and only if there exists ¢ < r such that
(wp)+1 = l(wpt; ). For vexillary permutations, there can be at most one such %, so we
define v = vpt; , in this case. We may construct vc graphically as follows. Consider the
cells in D(v) which sit weakly northwest of the accessible box in its connected component.
Move each of these diagonally one step in the northwest direction. This new diagram is
the D(’Uc).

Lemma 4.8. Fiz v vexillary, where the maximal corner (r,s) is an accessible box. Then
deg(®,) = max{deg(®,,),deg(G,.)} + 1.

Proof. The monomials of Grothendieck polynomials alternate in sign based on degree.
As such, Equation (4.3) is cancellation free. Therefore, the top degree monomials in &,
must come from z,8,, or x,&,,. O

Lemma 4.9. For v vexillary, if the mazimal corner (r,s) is in Dom(v), then f,(v) =
fa (’Up) + 1.

Proof. By Equation (4.2), A(vp) is obtained by removing the corresponding (boundary)
cell from A(v). The label of this cell in F, is zero since (r,s) € Dom(v). At all other
positions, F,, matches F,.. As such, 7;(v) = 7;(vp) for all i > 0. Therefore,

d(v) = [A(v)] + Zpa(n(v))

= [A(vp)|+1+ Zpa(ﬂ-(vp))

i=1

= fo(vp)+1. O

Lemma 4.10. Fiz v vezillary and suppose the mazimal corner (r,s) is an accessible boz.

(1) fa(v) = fa(UC’> +1.
s) is the only cell in its row within its connected component in D(v), then
= fa (vc) + 1.
> fa(vp) + 1.

Proof. Throughout, let (a,b) denote the position of the box in A(v) which corresponds
to (r,s). Write k = F,(a,b). By assumption since (r,s) ¢ Dom(v), k > 1.

(1) To get F, from F,, take all labels weakly northwest of (a, b) with label k and decrease
the value of these labels by 1. As such, 7;(v) 2 7;(v¢) for all i. Furthermore, since (r, s)
has label k, 7 (v) 2 7x(ve). In particular, 7(ve) is obtained from 74 (v) by removing

=
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a rectangular strip. Since this strip contains (r, s), removing this rectangle removes the
last row of 74 (v) entirely (and anything north of this row) by the definition of (r, s).
Therefore, any antidiagonal path in 7;(ve) can be completed to a larger antidiagonal
path in 7, (v) by adding a box row r. As such, ps(7%(v)) > pa(7:(vc)) and so

fa(v) = [A(v)] + Zpa(n(v))

> Mwo)| + Y palrilve)

i=1

= fa(ve).

Since these are all integers, fo(v) > fo(ve) + 1.

(2) Since there is a single box in the same row as (a,b) in 74(v) and this box is not in
Tr(ve) (nor any boxes in its same column) we claim p, (7, (v)) = po(7r(ve)) + 1. For
all other 4, we have 7;,(v) = 7;(ve) and so pu(73(v)) = pa(7i(ve)). Therefore, fo(v) =
falve) + 1.

(3) Using Equation (4.2), Fy,(i,7) = F,(i,7) for all (4,7) € A(vp). As such,

7i(v) ifi <k
Ti(vp) = 45
(vp) {Ti(’l}) —{(a,b)} otherwise. (45)

In particular, 7;(v) 2 7;(vp) for all i. Therefore,

Zpa(ﬂ-(v)) > Zpa(ﬂ-(vp))
Then
fa) = M)+ 3 pal(i(v))

> (@) + 1+ pa(7i(vr)

= fa(vp) + 1.

(4) By assumption, (r,s — 1) € D(v). As such, if (a,b) € 7;(v) then (a,b—1) € 7;(v) as
well. Fix an antidiagonal path of cells in 7;(v). If it does not use (a,b), then it is also
an antidiagonal path of cells in 7;(vp). If it does use (a, b), then we can construct a new
antidiagonal path of cells of the same size by replacing (a,b) with (a,b — 1). By (4.5),
we see that this new antidiagonal path is also in 7;(vp). As such, pa(7:(v)) = pa(7:(v)).
Then we conclude f,(v) = fo(vp)+1. O
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Proof. Fix v vexillary. The statement is trivial for the identity, so assume £(v) > 1. We

will proceed by induction on the position of the maximal corner (r,s) (ordering cells of

the grid lexicographically). In the base case, v = 21, we confirm deg(®,) =1 = f,(v).
Assume the formula holds for any vexillary v’ whose maximal corner occurs before

(r,8), i.e., deg(&y ) = fo (V).

Case 1: (r,s) € Dom(v). By Equation (4.2), the maximal corner of vp occurs before

(r,s). Furthermore, vp is vexillary. As such,

deg(®,) = deg(®,,,) +1 (by Lemma 4.7)
= fa(vp) +1 (by induction hypothesis)
= fa(v) (by Lemma 4.9).

Case 2: (r,s) ¢ Dom(v) (i.e., it is an accessible box).
Both vp and v are vexillary and their maximal corners (when defined) occur before
(r,s). We know by Lemma 4.8 and the induction hypothesis that

deg(&,) = max{deg(®,, ), deg(Gy. )} + 1 = max{fa(vp), fa(vo)} + 1. (4.6)

In particular, 1 + f,(vp) < deg( ») and 1+ fo(ve) < deg(®,). Applying Lemma 4.10
to (4.6), we see that deg(®,) < f,(v). By parts (2) and (4) of Lemma 4.10, since (r, s) is
an accessible box, 1+ fo(vp) = fo(v) or 1+ fo(ve) = fo(v). Then fo(v) = deg(®,). O

5. Castelnuovo-Mumford regularity of Schubert determinantal ideals

We begin this section by recalling the connection between the Castelnuovo-Mumford
regularity in the Cohen-Macaulay setting and the degree of a K-polynomial (Subsec-
tion 5.1). We then provide some background on Schubert determinantal ideals, explain
how to express Castelnuovo-Mumford regularity of Schubert determinantal ideals in
terms of degrees of Grothendieck polynomials, and prove Theorems 1.1 and 1.5 (Subsec-
tion 5.2).

5.1. Castelnuovo-Mumford regularity and connections to K-polynomials

Let S = k[z1,...,z,] be a polynomial ring over the field k, and assume that S is
positively Z?-graded so that degyS = k. Let M be a finitely generated graded S-module.
The multigraded Hilbert series of M is a formal power series in indeterminates t1, . .., t4:

K(M;t)

= 3 dimy (M)t = — Y ) = ag
aezzd, [Timy (1 —t2) '

The numerator K (M;t) € k[t*] is called the K-polynomial of M. When S has the
standard grading, that is deg(x;) = 1, the K-polynomial is a Laurent polynomial in a
single indeterminate ¢.
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For the rest of this subsection, assume that S has the standard grading, and let I C S
be a homogeneous ideal. There is a minimal free resolution

0%@S §)P I — @5 S(—j)Pr-ra 11 — %@S )P0 S/ 5 /T — 0
J

where [ < n and S(—j) is the free S-module obtained by shifting the degrees of S by j.
The Castelnuovo-Mumford regularity of S/I, denoted reg(S/I), is defined as

reg(S/I) :==max{j —i : 3;;(S/I) # 0}.
When S/I is Cohen-Macaulay, we have that
reg(S/I) = deg K(S/I;t) — htgl, (5.1)

where htgl denotes the height of the ideal I. See, for example, [2, Lemma 2.5] for
justification of this formula. In this paper, we use Equation (5.1) to compute Castelnuovo-
Mumford regularity of coordinate rings of certain matrix Schubert varieties and certain
standard-graded Kazhdan-Lusztig varieties.

5.2. Regularity of Schubert determinantal ideals and proofs of Theorems 1.1 and 1.5

We begin by recalling basic facts about Schubert determinantal ideals. Fix an n x n
permutation matrix w. Let X = (z;;) be an n x n matrix of distinct indeterminates,
and let X, 4 denote the matrix formed by intersecting the first p rows of X and the
first ¢ columns of X. Let k[x] := k[z;; : 1 <4, j < n]. The Schubert determinantal ideal
I, C k[x] is the ideal

I, = (minors of size r,,(i,j) + 1 in X5 : (4,5) € Ess(w)).

By [10], I, is a prime ideal, and k[x]/I, is Cohen-Macaulay. Recall that k[x]/L,, is
the coordinate ring of the matrix Schubert variety B_wB; C Maty(n,n) where B_
GL, (k) is the Borel subgroup of invertible lower triangular matrices, By < GL, (k) is
the Borel subgroup of invertible upper triangular matrices, and Maty(n,n) is the affine
space of n X n matrices with entries in k. Schubert determinantal ideals are homogeneous
with respect to the standard grading of k[x].

Proof of Theorems 1.1 and 1.5. We first recall how to express the regularity of k[x]/I,,

in terms of the degree of a Grothendieck polynomial. This was originally discussed in
[32]. By [10], we have htyx I, = #D(w). It then follows by (5.1) that

reg(k[x]/L,) = deg K(k[x]/L,) — #D(w).



184 J. Rajchgot et al. / Journal of Algebra 617 (2023) 160-191

By [3, Theorem 2.1] (see also [21, Theorem A]), K(S/IL,;t) = G,(1 —t,...,1 —t).
Furthermore,

deg &, (1 —t,...,1 —t) =deg &y (z1,...,25)

since the coefficients in the homogeneous components &,,(x1,. .., z,) all have the same
sign (see, for example, [21]). Thus,

reg(k[x]/I,,) = deg By (x1,...,2n) — #D(w). (5.2)

Theorems 1.1 and 1.5 are now immediate from Theorems 1.3 and 1.7. O
6. Regularity of homogeneous Kazhdan-Lusztig ideals

In this section, we recall the basics of Kazhdan-Lusztig ideals J, . (Section 6.1) and
provide preliminary combinatorial formulas for regularity of Kazhdan-Lusztig ideals
Jyw when v is a 321-avoiding permutation (Section 6.2). We then provide an easily-
computable combinatorial formula for the regularity of open patches of Schubert varieties
in Grassmannians (Section 6.3). This proves a (generalization of a) conjecture from [32]
giving a correction to a conjecture of [23].

6.1. Kazhdan-Lusztig ideals

We next recall Kazhdan-Lusztig ideals, which were introduced by A. Woo and A.
Yong in [35] to study singularities of Schubert varieties. Given a permutation matrix
v € Sy, consider the matrix M) which has 1’s at locations (i, v;), indeterminate Zij
in location (¢,j) € D(v), and 0’s elsewhere. Let k[z"] := k[z;; : (¢,j) € D(v)]. Given
w € Sy, define the Kazhdan-Lusztig ideal J, ,, C k[z"] to be

Jypw = (minors of size ,(4,5) + 1 in M[(;]’)[j] : (i,7) € Ess(w)),

which is not the unit ideal precisely when w < v in Bruhat order. The Kazhdan-
Lusztig ideal J,, , is the prime defining ideal of the intersection of the Schubert variety
B_\B_wBy C B_\GL, (k) with the opposite Schubert cell B_\B_vB_ (see [35, Corol-
lary 3.3] and the preceding discussion). Furthermore, k[z"]/J, ., is Cohen-Macaulay. This
follows by [19, Lemma A.4] together with the Cohen-Macaulayness of Schubert varieties
[33]. See [35, Section 3.2] for further discussion.

Kazhdan-Lusztig ideals are not always homogeneous with respect to the standard
grading on k[z(“)]. However, when v is 321-avoiding, and hence when v is a Grassmannian
permutation, J, ., is homogeneous with respect to the standard grading, see e.g., [20,
Footnote on pg. 25]. Some further partial results on the problem of when Kazhdan-
Lusztig ideals are homogeneous with respect to the standard grading [35, Problem 5.5]
can be found in the recent preprint [30].
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6.2. Preliminaries on reqularity of Kazhdan-Lusztig ideals J, ., where v is 321-avoiding

We next describe a formula for the regularity of k[z"]/J, . where J, ,, is a standard-
graded Kazhdan-Lusztig ideal. This formula will be in terms of &, (x;y), a double
Grothendieck polynomial. Let G, (x;y) denote the double Grothendieck polynomials
in [21], so that G (x;y) = &(1 —x;1 — %) We also let G, 4 (t) = &y (1 —t).

The torus T™ acts on the opposite Schubert cell B_\B_vB_ by right multiplication.
This induces a grading on k([z"] where variable z;; in the matrix M @) has degree €u(i) — €5,
where e; € Z™ denotes the i'" standard basis vector. By [36, Theorem 4.5], the K-
polynomial of k[z"]/J, ., for this Z™-grading is given by

K(k[z”]/]ww; t) = Gw (tv(l)7 e 7tv(n); tl, A ,tn) = Gv,w(tij — tv(i)/tj). (61)

Note that the conventions in [36] differ from ours.

In the case where v is 321-avoiding, there is a coarsening of the grading f : Z™ — Z
which gives each z;; € k[z;;] degree 1. Specifically, take f(e;) = 1 if there exists k > 4
such that v=1(k) < v=1(i) and f(e;) = 0 otherwise (see e.g., the footnote on page 25 of
[20]). Then the K-polynomial of k[z"]/J, ., with respect to the standard grading, is

K(k[zy]/Jv,wQ t) — Gw(tf(e”“)), o 7tf(ev(n)); t—f(el)7 o ’t_f(en))

6.2
= G’U,w (t” — tf(ev(i))+f(€j)). ( )

Example 6.1. Let v = 34512 and w = 21435. Using Equation (2.1), we may compute
Gpw(t) = ti1tsr + t11taz — t11teetsr. For the Z"-grading, the substitution provided in
Equation (6.1) yields

K2} Joit) = (1= D)1= 2)+ (1= D)1= 2 - (1= D= DHa-2).

Using Theorem 3.2, we may compute

& ( ) 1 I3 1 T2 1 I X1 X1 T2 1 1 X3 Ir1 X2 X3 X1 X1 X2 X3
xXjy)— —— —_— -_— Y = — — — —_— .
v Y 1 Yt Y2 Y1 Ys Y1 Y3 Y2 Y1 Ys h1 Y1 Y2 41 Y1 Ys Y2 Y1

Combining this with Equation (6.2) yields
K(k[2"]/Jyw;t) = Gu(1, 1, 1,6, 6675 71 1,1,1) = 2(1 — )% — (1 —¢)?
under the Z-grading. <

Lemma 6.2. Let v € S,, such that v is 321-avoiding. If (i,5) € D(v), then f(e;) =1 and
flev,) =0.
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Proof. Since (i,7) € D(v), there is k = v; such that v; > j and i < v;l, thus f(e;) = 1.
If f(ey,) =1, then there is k > v; such that U;l < 4. This would then imply that there
is a 321-pattern in v. In particular, we would have Uk_l << vj_l, with j < v; < k. As
v is 321-avoiding, we conclude that f(e,,) =0. O

Lemma 6.3. Let v,w € S, such that v is 321-avoiding and w < v. Then

K(K[z")/Jowit) = Gou(tiy > 1) = > (=1)#FF1 —p)#P, (6.3)
P€Pipes(v,w)

Proof. The coarsening of the grading f : Z" — Z combined with Lemma 6.2 ensures
that t/(ev@)+/(€)) = ¢ for (i,j) € D(v). Thus, the result follows by Equations (2.1) and
(6.2) together with the fact that G, .,(t) = &, ,(1 —t). O

We will use the following to prove the main result of this section (Theorem 6.5).
Proposition 6.4. Let v,w € S, such that v is 321-avoiding and w < v. Then,
deg K (k[z"]/ Jyw;t) = deg &, ., (t). (6.4)
Furthermore, the Castelnuovo-Mumford regularity of k[z]/Jyw is given by
reg(k[z"]/Jy.w) = deg &, (t) — #D(w) = max{#P | P € Pipes(v,w)} — #D(w). (6.5)

Proof. Equation (6.4) is immediate from Lemma 6.3. Equation (6.5) follows from Equa-
tions (6.4), (5.1) and the fact that htypeJyw = #D(w). O

6.3. Castelnuovo-Mumford reqularity of patches of Grassmannian Schubert varieties

In [32], we gave a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-
Seshadri from [23] on the Castelnuovo-Mumford regularity of coordinate rings of standard
open patches of certain Schubert varieties in Grassmannians. We then gave a conjecture
of a correct formula [32, Conjecture 5.6]. In this short subsection, we prove a generaliza-
tion of this conjecture.

Identify the Grassmannian Gr(k,n) with P\GL,(k) where P C GL,(k) is the
parabolic subgroup of block lower triangular matrices with block sizes k and n — k
down the diagonal. Let v and g be a pair of Grassmannian permutations with descent
at k. The Kazhdan-Lusztig ideal J, 4 is the prime defining ideal of the intersection of
the Schubert variety P\PgB, C P\GL, (k) with the open set P\PuB_ C P\GL,(k).
The following theorem gives the regularity of the coordinate rings of these open sets of
Grassmannian Schubert varieties.

Theorem 6.5. Fiz Grassmannian permutations g and u with descent at position k so that
A(g) € A(u). Let v be the vexillary permutation such that D(v) = Dyot (A(u), A(g)). Then,
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reg(k(z"]/Ju,q) = deg(&,(x)) — [Mg)| = Zpa(ﬁ'(v))-

Proof. The first equality follows due to Equation (6.5), Theorem 2.5, and the fact that
htyzu)Ju,g = |A(g)|. The second equality is then immediate by Theorem 1.7 and the fact
that |A(g)| = #D(v) by construction of v. O

We note that [32, Conjecture 5.6] concerned the special case of the above theorem
whereu=(n—k+1) (n—k+2)...n12...(n— k), written in one line notation.

7. Regularity of ladder determinantal ideals

Our next goal is to provide a formula for the Castelnuovo-Mumford regularity of
any one-sided ladder determinantal ideal. Ladder determinantal ideals are generalized
determinantal ideals which were introduced by S. S. Abhyankar [1] to study singularities
of Schubert varieties. There has since been substantial interest in their properties. For
example, see [29,18,5-7,12,13,22,14,15,11] and references therein. The work of Ghorpade
and Krattenthaler [11] on a-invariants of certain ladder determinantal ideals is most
closely related to our results. This is discussed in more detail at the end of Section 7.1.

7.1. One-sided ladder determinantal ideals

A ladder L is a Young diagram (in English notation) filled with distinct indeter-
minates. Observe that a ladder is determined by a collection of southeast corners
L% = {(aj, b;)}ic[s) ordered northeast to southwest. Label the northwest corner of
L to be (0,0). Take (as41,bs4+1) to be the southwestmost corner of the ladder and take
(a1, b1) be the northeastmost corner of the ladder.

Let P denote the lattice path from (asi1,bs+1) to (a1,b1) which travels along the
boundary of the ladder, so that cells weakly northwest of the P are in L and boxes weakly
southeast of P are not in L. Let P = {(c;,d;)};e[s/] denote a collection of distinguished
points along P. To each (c;,d;) € P, assign a value r; € Z~¢. Let L; ; denote the subset
of L with row indices in I and column indices in J for I, J C [n].

Let k[L] denote the polynomial ring generated by these indeterminate entries. Define
the one-sided mized ladder determinantal ideal Iy, »:

It » = (minors of size 7; in L) q,) : J € [s']) € k[L].

Letting I; denote the ideal of r; X r; minors of L) [4;], one observes that
Ine= Y I,
Jels’]

Following [21], we assume
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0<cp—T<c—1r<--<cg—reandl<d —r1 <dyg—r9<--<dg —71g
(7.1)

so that I; C Ij for any j # k, j,k € [s']. As outlined in [10, Proposition 9.6], L can
be identified with a vexillary matrix Schubert variety X, where Ess(v) are the boxes
indexed by P and the ranks satisfy r,(c;,d;) =r; — L.

Example 7.1. To the left is a ladder L. Then L% = {(5,3),(3,5)} with marked points
and corresponding ranks given in red. To the right is the associated permutation v.

211|212 |213|214|%15

I = 221|222 223| 224|225

|
231|232 | 233 234|235 D

® 3
241|242|243| 2 D
251|252 | 253
© 3 I

Then

I » = (3 — minors of L5 (3,2 — minors of Lz (3,3 — minors of Lz 5))

= <det(L[3]7{374,5})7 2 — minors of L[g]v[g],det(L{37475}7[3])>. O

For certain one-sided mixed ladder determinantal ideals, regularity formulas can be
deduced through a-invariant formulas of Ghorpade-Krattenthaler [11]. Their formulas
give results in the case in which (ry,7o,...,7¢) = (1,2,...,¢,t — 1,...,1) for some
t € Z~g, where Equation (7.1) is not imposed. Thus, for example, L as in Example 7.1 is
not in the class of ladders considered in [11]. We note that an algorithm for a-invariant
formulas is given in [11] for two-sided mixed ladder determinantal ideals with the same
restriction on ranks.

7.2. One-sided ladder determinantal ideals via Grassmannian Kazhdan-Lusztig ideals

We now recall that each one-sided ladder determinantal ideal is a Kazhdan-Lusztig
ideal NV, , where u and g are Grassmannian permutations. This was first shown by
Gonciulea-Miller [13, Theorem 4.7.3]; we include it here for completeness.

Take a ladder L with L3% = {(a;, b;)};cs, and marked points P = {(c;,d;)};e(s1
assigning ranks r;. Define v € S, as the concatenation of partial permutations u;,
where for i € [s]

w; = ida;—q;,, +bi + a0 — a;, and
(7.2)
Ust1 = [z +y| \ Uigpsts-
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Set (co,do) := (ag,bo) with rg = 1 and (cs/41,ds +1) := (@s41,bs41) with reyq = 1.
Define g € S,y as the concatenation of partial permutations g;, where for ¢ € [s' 4 1],

gi =idg, g, , +ki—1 + hi—1, and
: (7.3)
gsr+2 = [T+ Y] \ Usg[sr+1)Gis

where k; =cg—c¢; +r; —1and h; =d; — ;.

Note that Equation (7.1) and the assumption that each indeterminate appears in at
least one minor ensure that L(code(u)) = L(code(g)) and u; > g; for each j € [z + y].
Then by [13, Theorem 4.7.3] we have the following:

Proposition 7.2. Given a one-sided ladder determinantal ideal Iy, and u,g as above,
Ju,g and Iy, . share the same generators.

Example 7.3. For L as in Example 7.1, below are D(u) and D(g) for the u, g as defined
in Equations (7.2) and (7.3).

1 n O

As a consequence to Proposition 7.2, the K-polynomial of each one-sided ladder de-

terminantal ideal can be expressed both as a single Grothendieck polynomial and as a
specialized double Grothendieck polynomial. Combining this with [10], we have:

Corollary 7.4. Given a one-sided ladder L with marked points P = {(c;,d;)} e[ assign-
ing ranks rj,

n

reg(S/11) = reg(S/ Jug) = Y pa(m(v)),

k=1

where u, g are as defined in Equations (7.2) and (7.3). Here v is the vezillary permutation
such that Ess(v) are the bozes indexed by P and ry(c;,d;j) =r; — 1.

Data availability

Macaulay2 and Sage were used to generate data which aided in the research described
in this article.
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