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1. Introduction

A partition is a weakly decreasing sequence of positive integers A = (A1 > --- > Ax > 0). The Young diagram of a partition
A is a collection of left justified boxes, with A; boxes in the ith row from the top. The rank of a partition is the length of
the main diagonal in the Young diagram of the partition.

Let N > |A|. A semistandard tableau of shape X is an assignment of a single value from 1, ..., N to each box of A, such that
it is column standard (the values increase in each column from top to bottom) and row standard (the values increase weakly
in each row from left to right). A standard tableau is a semistandard tableau where N = |A| and each value in 1,...,N
appears exactly once.

An N-semistandard set-valued tableau of shape A is an assignment of a nonempty subset of the values from 1,...,N to
each box of A, such that if a single value from each box is selected then the result is column and row standard. An N-
standard set-valued tableau is a N-semistandard set-valued tableau such that each value from 1,..., N appears exactly once.
Let SVT(A, N) be the set of N-standard set-valued tableau of shape A and set

AN =18vT(h, N)|.

Set-valued tableaux were introduced in [2] by A. Buch to study the K-theory of Grassmannians. As part of this work,
he showed that the symmetric Grothendieck polynomial &; has a combinatorial interpretation as the generating function
for semistandard set-valued tableau. Subsequently, set-valued tableaux have appeared in the literature on poset edge den-
sities [15,9], combinatorial formulas for Lascoux polynomials [14,3], and in Brill-Noether theory [4,5]. In the latter setting,
the algebraic Euler characteristic of the Brill-Noether space can be expressed in terms of f*N for A rectangular.
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As observed by C. Monical, B. Pankow, and A. Yong in [13, Proposition 4.3], the computation of f*N is closely related to
counting Hecke words of length N whose Demazure product is a fixed permutation in the symmetric group. They show that
there is no algorithm for computing f*N that is polynomial-time in the bit length of |A| and N. This follows from the fact
that the output, f*V, is doubly exponential in the bit length of |A| and N.

The complexity class #P is comprised of problems which count the number of accepting paths of a non-deterministic
Turing machine which runs in polynomial time in the size of the input. A counting problem is #P-hard if any problem in
#P has a polynomial-time reduction to that counting problem. It is an open question if computing f*V is #P-hard. In light
of this, in [13] the authors ask:

Problem 1.1 ([13, Problem 1.5]). Does there exist an algorithm to compute f*N in time polynomial in |A| and N.

We give an answer to the approximation theoretic version of this question for partitions that are contained within the
union of a fixed rectangle with a partition of rank two. Such partitions will be referred to as asymptotically rank two since
in the limit, as || and N grow, the combinatorics of these shapes approximate that of partitions of rank two. Finally, we
give an approximation theoretic answer to Problem 1.1 for set-valued tableaux where either the size of the partition or the
difference between the maximum value and the size of the partition is fixed.

1.1. Main results

Our primary result is a randomized polynomial time algorithm that approximates f*N, when A is asymptotically rank
two, to within a factor of € € (0, 1] with high probability. Explicitly, we give fully polynomial randomized approximation scheme
(FPRAS) for the number of N-standard set-valued tableau for such A, which computes an approximation A such that

P(A-ef*N<A<+ef*Ny>1-3

for any €, § € (0, 1] in time polynomial in [A|, N, % and Ins~".
Theorem 1.2. Fix ;. = (p?) for some p, q € N. Let A be a partition such that ». C U A° where A° is a partition of rank two. There is
a FPRAS for f*N.

As a special case we have:
Corollary 1.3. Let A be a partition of rank less than three. There is a FPRAS for f*N.
We also give an FPRAS when some of the input parameters are fixed.
Theorem 14. If || or N — || is fixed, then there is a FPRAS for f*N.

A polynomial time algorithm for computing f*N exactly for any A with fixed N — || is given in [13, Proposition 4.5].
The authors are not aware of a polynomial time algorithm for computing f*N exactly for any N with fixed |A|. In [6],
P. Drube gives exact formulas, in the case of two row shapes, for the number of N-standard set-valued tableaux with fixed
density, that is, when each box contains a fixed number of entries.

1.2. Sampling and counting combinatorial objects

These results are achieved by first constructing a randomized algorithm, Algorithm 2 (SVGen), for generating a N-
standard set-valued tableau. Then SVGen is used to bootstrap the algorithm RSsyr(A, N, S), yielding a fully polynomial
almost uniform sampler (FPAUS) for N-standard set-valued tableau for asymptotically rank two partitions. A FPAUS on a set
S is an algorithm that takes as input a bias parameter § and outputs a random T € S from a distribution I" on S such that

drv (T, U) <34,

where dry is the total variance distance and U is the uniform distribution on S, in time polynomial in the problem size and
logs~1. We construct a FPAUS for a large class of standard set-valued tableau in Theorem 5.5, and by setting k = N in this
theorem we recover a FPAUS for asymptotically rank two A.

For problems in #P, the existence of a FPAUS in self-reducible problems is computationally equivalent to the existence
of a FPRAS [11]. This groundbreaking result, and a later generalization by M. Dyer and C. Greenhill [7], have been used,
especially in combination with Markov chain methods, to give FPRAS for many important problems in #P. One of the most
successful applications of this methodology is giving a FPRAS for computing the permanent of an arbitrary n x n matrix
with non-negative entries [10].
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The definition of self-reducibility is technical, and depends strongly on the encoding used for problem instances, and so
we will avoid introducing it. The fundamental idea at the core of self-reducibility is that the problem may be expressed as
a polynomially bounded (in the problem size) number of sub-problems, each of which are simpler versions of that same
problem. We will refer to such a problem as essentially self-reducible. We reformulate the computation of f*N so that it is
essentially self-reducible, and then employ the ideas of [11] to directly construct a FPRAS in Theorem 6.1 which culminates
in a proof of Theorem 1.2 and Theorem 1.4.

We believe that our methods provide a useful framework for tackling a multitude of open sampling and counting prob-
lems in algebraic combinatorics. Given a randomized polynomial-time algorithm that generates all elements of a set of
combinatorial objects with any distribution, Proposition 5.4 provides a guide for converting the algorithm into a FPAUS.
So long as the associated counting problem is essentially self-reducible, the FPAUS may be converted into a FPRAS. Many
problems, especially those involving counting fillings of Young diagrams, may be reformulated to become essentially self-
reducible. For example, counting semistandard tableaux of a fixed shape and content, i.e. computing Kostka coefficients, can
be reformulated to be essentially self-reducible.

Our paper is organized as follows: Section 2 recalls useful definitions and notations in tableau combinatorics and com-
plexity theory. In Section 3, we define the algorithms that form the building blocks of our FPAUS. In Section 4, we analyze
the probability that our algorithm returns a fixed standard set-valued tableau, as well as prove tight bounds on the mini-
mum and maximum probabilities. In Section 5, we convert the algorithm into a FPAUS, and prove that it runs in polynomial
time in certain cases. In Section 6 we show that this FPAUS generates a FPRAS.

2. Background and notation
In this section we introduce the definitions and notation that will be used throughout.
2.1. Set-valued tableaux notation and background

Let SSYT(A, N) be the set of semistandard tableau with values in 1,..., N and SYT(A) be the set of standard tableau of
shape A. When N = ||, SVT(A, N) = SYT(A).

For p C A, the skew partition A\ & consists of all boxes that are in A, but not in i. The Young diagram of A\ u is similarly
the Young diagram of A, with any boxes in the Young diagram of x removed. SYT( \ ) is the set of all standard tableau
of shape A \ w, which is defined identically to the case of partitions.

If there is a box in row r and column c of the Young diagram of A we write (r,c) € A. For T € SSYT(A, N) and (r,¢c) € A,
T(r,c) is the value assigned to that box of T. For T € SVT(), N), T(r,c) is the subset of {1,..., N} assigned to that box of
T.

For 0 <k <N, a N(k)-standard set-valued pre-tableau of shape A is an assignment of a subset of the values from k +
1,..., N to each box of A, such that

(i) each value from k+ 1, ..., N appears exactly once;
(ii) if T(r,c) #@, then (r+1,c) € A implies T(r +1,c) #¢@ and (r,c + 1) € A implies T(r,c+ 1) #@;
(iii) if T(r,c) # @, then (r + 1,c) € A implies max(T(r,c)) < min(T(r + 1,¢)) and (r,c + 1) € A implies max(T(r,c)) <
min(T (r,c+1));
(iv) {(r,c) eA:T(r,c) =0} <k.

Given a N (k)-standard set-valued pre-tableau S, let SVT(A, N, S) € SVT(X, N) be the subset of N-standard set-valued tableau
T of shape A, such that S C T (that is, S(r,c) € T(r,c) for (r,c) € A). If the choice of N for the argument is obvious (for
example, if S is non-empty), then it is omitted. It is routine to verify that SVT(x, N, S) > 0 for any such S. We denote the
unique N(N)-standard set-valued pre-tableau by E, n, with E; y(r,c) =@ for (r,c) € A. Then SVT(A, N) = SVT(A, N, E; n).
Any N(0O)-standard set-valued pre-tableau is itself a N-standard set-valued tableau.

Let f* =|SYTW)|, fAN = |SVT(, N)|, fAN:S = |SVT(A, N, S)|, and f*\W* = |SYT(A \ w)|. Let SVT be the set of all
(A, N, S) such that A is a partition, |A\| < N € N, and S a N (k)-standard set-valued pre-tableau of shape A for some 0 <k < N.

Example 2.1. A semistandard tableau for N =6, a standard tableau, a 9(5)-standard set-valued pre-tableau, and 9-standard
set-valued tableau of shape (3, 2) are listed below, as well as a standard tableau of shape (3,2) \ (2). The brackets in the
set notation are omitted for clarity.

233 1124 6 12[5]6] 2]
416 315 7.8.9 3,47,8,9 1|3
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2.2. Complexity theory

Given two functions f,g:NIj — R.o, f = 0(g) if there exist ¢, M1,... M, > 0 such that f(x1,...,%) <cg(x1,...xn)

whenever x; > M; for all i. Say that f =0O(g) if f =0(g) and g = O(f). Define f = poly(x1,...,xy) if there exists some
polynomial h € R[xq, ..., x;] such that f = O (h).

3. The generation algorithm

Fix a partition A and N > |A|. In this section we introduce the algorithm SVGen which generates a random N (k)-standard

set-valued pre-tableau. It will not generate these standard set-valued tableau uniformly at random, but will be the founda-
tion for the FPAUS.

Definition 1. The hook of a box (r,c) € A is
hy(r,c)={(p,q) er:p=rwithq>c, orq=cwithp >r}.
Definition 2. An (1, c) € A is a lower right box if h; (r,c) = 0.

For A C N2, let NW(A)={(r,c) € A:{(r,c)} = AN ([r] x [c])}. Let randEI(A) be a function which returns an element of
the set A, uniformly at random.

Algorithm 1 Use the hook walk algorithm to return a lower right box of A.
Require: A is a partition

1: procedure HOOK(%) > Returns a lower right box of 1
2 (r,c) <—randEI({(p, q) € A})

3 while h, (r,c) # ¢ do

4: (r, c) < randEl(hy (r, c))

5 end while

6 return (r, c)

7:

> (r,c) is a lower right box
end procedure

Algorithm 2 Generate a random N-standard set-valued tableau of shape .

Require: 1 is a partition, N > |A| is a positive integer, k < N a nonnegative integer, T a N(k)-standard set-valued pre-tableau such that SVT(x, N, T) >0

1: procedure SVGEN(A, N, k, T) > Returns an element of SVT(A, N, T)
2 if k = N then

3 (r,c) < Hook(})

4: T(r,c) < {N}

5: k< N-1

6: end if

7: for M <k to 1 do

8: AN < {(r,0)er:T(r,c) =0}

9: if rand(0, 1) < (M — |A/|)/M then

10: (r,c) <—randEl(NW ({(p,q) € A : T(p,q) #9}))
11: T(r,c) < T(r,c)U{M}

12: else

13: (r,c) < Hook(\")

14: T(r,c) < {M}

15: end if

16: end for

17: return T

> Ta N-standard set-valued tableau of shape A
18: end procedure

Proposition 3.1. SVGen(A, N, k, T) returns an element of SVT(A, N, T).
Proof. This follows from a straight-forward analysis of SVGen. O
4. Probability analysis

For N = |A], SVGen(A, N, 0, E; n) is precisely the Green-Nijenhuis-Wilf hook walk algorithm for generating standard
tableaux of shape A. The hook walk algorithm generates the standard tableaux in SYT()X) uniformly at random. In the

10
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case N > |x| and A has more than one row and column, SVGen(, N, 0, E; n) no longer generates SVT(A, N) uniformly at
random. Nonetheless, we are able to analyze the probability that a given T € SVT(4, N) is generated.

Let 8" = (n,n—1,..., 1) be the staircase of height n. Define sv(1) := max{k : ¥ C A}, and 8™ is known as the Sylvester
triangle of A. For T € SVT(A, N), define celly(k) to be the unique (r,c) such that k € T(r,¢), and T% to be the unique
N{k)-standard set-valued pre-tableau such that T € SVT(x, N, T)),

Let Peva (T, k) := P(T = SVGen(x, N, k, T*))). Similarly, for S a N(k)-standard set-valued pre-tableau of shape A define
A\S:={r,c)er:Sr,c)=0}, and A\ S)T:=A\S)UNW{(r,c) € A:|S(r,c)| > 0}). Given a fixed T € SVT(A, N), for
simplicity of notation we denote 1K) =\ T,

Proposition 4.1. Fixa T € SVT(A, N). Then

1
Povo(T,N)=——— [ INW(((,0) €k <max(T@,onhl . (1)
(m—l) ks£max(T (celly (k)))
ForO<k <N,
Psva (T, k) = FREE) [T  INWdG.0 en:i<maxT@, o™ (2)
|2 (k)| 1<i<k

izmax(T (celly (i)))
Proof. We begin by proving a claim regarding hook-insertion.
Claim 4.2. For any corner (r, ¢) of A, P((r, ¢) = Hook())) = fA\MT0b/ 2,

Proof. In their proof of the hook-length formula, Greene-Nijenhuis-Wilf [8] detail a probabilistic method for generating
standard Young tableaux uniformly at random. SVGen(A, N, 0, E; y) is identical to their method when N = |A|, and thus
generates elements of SYT(1) uniformly at random with probability 1/ f*.

If the first corner selected by Hook(X) in SVGen(,|A|,0, Ey j)) is (r,c), then the remaining entries of the filling are
recursively determined by SVGen(A, |A| — 1,1, X), where X is equal to E, ;) with the value |A| placed in (r,c). This is
equivalent probabilistically to filling the remaining entries via SVGen(A \ {(r, ¢)}, x| — 1,0, E;\((r,c)}.]a—1)- Thus, each output
will appear with probability 1/ M@0}, Therefore, 1/f* = P((r, ¢) = Hook(1))(1/ fA\@-Oh "which implies the claim. O

Now we consider the probability that the algorithm inserts the largest values of each cell in a way that would generate
T. Suppose that

{Max(T(r,0)): (r,0) € A} = (j1 < ja <--- < jiu}-

For each m € [|A]], AUn) is a partition with |A!m)| =m. Setting jo = 0, we have Atm-1) c A Um) with AU} =@ and AUR) = A,

For each m e [|A%]], consider the probability that SVgen(x, N, k, T*)) places j in celly (jm). If SVgen line 9 evaluates
to true, then jp will be placed in a cell with a larger value. Thus SVgen line 9 must evaluate to false, which occurs with
probability m/jy. Then, by Claim 4.2, the probability that j,, is placed in cellr (jn) by Hook is fwr"’“/f’wm). In total, the
probability that jp, is inserted into celly (jp) is

mf)\“m_l)

-1 U A (N=1)

I =T pm Iz
Next, we consider the probability that the algorithm inserts the non-largest values of each cell in a way that would

generate T. Suppose

(3)

otherwise.

if m < |A|, and

[NI\ {max(T(r,c)): (r,o0)erl={Lh<lh<---< lel)Ll}-

For each m e [k — |A%|], consider the probability that SVgen(x, N, k, T®) places I, in celly (I;z). If SVgen line 9 evaluates
to false, then I, will be the largest value in the cell in which it is placed. Thus SVgen line 9 must evaluate to true, which
occurs with probability m/Ip. Then, I, is inserted, uniformly at random, into a cell in

NW({(r,c) e A :lp <max(T(r,c))}).

Combining, the probability that I, is inserted into celly (i) is

IE|NW({(r, c) €A:ly <max(T(r, c))})|_1. (4)

11
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If 0<k <N, then {jm:m e [|A%® ]} and (I, : m € [k — |A%|]} partition [k]. This, in combination with (3) and (4), yields

1.0 mfAin-v k— 1tk m
_ _ »
Psva(T.0) = | [] [ [ INW (. 0) €2 < max(T(r, )|

. Alim)
m=1 Jm f m=1

1k — adopr (P paney

(jm)
k! el
k—[280
1—[ INW {(r,¢) € A : Iy < max(T(r, o)}
m=1
1 i -
= [l NWdeoerismaxTe o
fa (M<">\)~ 1<i<k
izzmax(T (cellT (1))
1 i -
=—~ Il INWdEoeri=maxTr ol
f (|,\<k>|) 1<i<k

iz£max(T (celly (i)))
On the other hand, if k = N, then Psyg(T, k) is the probability that N gets inserted into cellr (N) of A, times the proba-
bility that all of the other values are inserted in a way that would generate T. So

]PSVG(Tv N) = ]P(HOOK()») = ceIIT(N)) . IPSVG(Ta N — 1)

AN 1
= TR e N [T INW(e o er:i<maxTophl™
f (Ww—m) 1<i<N-1
iz#max(T (cellT (i)))

= — 7 I1 INW({(r, ¢) € A1 < max(T(r,c)}| ",
f (|)L|71) 1<i<N-1
i#max(T (cell (i)))

which completes the proof. O

Corollary4.3. Fixa T € SVT(A, N). Then
1
PR svoDN-

and forall0 <k <N,

1
N—1 (5)

f (m—])

< Pgya(T,N) < -

1
Y (|,\I<<k>|)(SV((A<k))+))k7mk>‘

These bounds are tight for any N, A, k.

1
< Psva(T. k) < ————- (6)

f)L > (|)L<k)|)

Proof. To prove the upper bounds in (5) and (6), observe that there exists a cell whose maximum label is N. Thus, {(r,c) €
Ari<max(T(r,c))} # @ for 1 <i < N. This implies INW({(r,c) € > :i <max(T(r,c))})| > 1 for each i, and the inequality
follows.

To see that this upper bound is tight, consider a T € SVT(A, N) such that |T(r,c)| =1 for all (r,c) # (1,1). For such a T,
i = max(T (cellt (k))) implies i € [N — |1|]. For each i € [N — [A|], {(r,c) € A :i <max(T(r,c))} = A, and hence INW({(r,c) €
A:i<max(T(r,c)})| =1{(1, 1)}| = 1. This yields the desired equality for the upper bound.

Claim 4.4. If A ¢ N2 such that A C x and no element of A is weakly northwest of any other element, then |A| < sv(}).

Proof. By the definition of sv()), there exists t € [sv(1) + 1] such that (t,sv(A) +2 —t) ¢ A. Fix such a t. Then, A C {(r,c):
r<tyU{(r,c):c<sv(r)+2—t}. By hypothesis, |AN{(r,c):r <t} <t—1,and |AN{(r,c):c <sv(A)+2—t}| <sv(h)+1—t.
Hence [A|=|ANA <|AN{(r,c):r <t} +|AN{(r,c):c<sv(h) +2—t}| <sv(h). O

12
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To prove the lower bounds in (5) and (6), it is sufficient to show that, for all k > 0 and i € [k] such that i #
max(T (cellp (1)),

sv(ANYHy > INW ({(r, ¢) € A : i < max(T(r, c)})|.

Observe that NW ({(r,c) € A : i < max(T(r,¢))} € (A*)t and no element of NW ({(r,c) € A : i <max(T(r,c))} is weakly
northwest of any other element. Thus, Claim 4.4 gives us our lower bound.
To show the lower bounds in (5) and (6) are tight, let k>0, T € SVT(A, N) such that

1 r,c)l=1forall (r,c) e sv((A s R

(i) IT(r,0)l =1 for all r,0) A\ {( (<k<’<>>+) 1)

(ii) celir (i) € V=1 for all j e \83"(((;( R

(i) TV %)) D 2 k= 0]+ (YO77) + (v ®) ), Dy n ki s @01,

Such a T can be constructed by starting with any N(k)-standard pre-tableau of shape A. The remaining values are placed,
first satisfying (ii), by placing a single value in each cell in §"**Y)=1 in any way that does not violate standardness. Then
values are placed in cell (sv((*%")™), 1) satisfying (iii). Then the remaining empty cells of A*X) are filled with a single value
in any way that does not violate standardness.

For such a T, i # max(T (cellr(i))) and i € [k] implies that

|83v(()\<k>)+)71| <i < k— |)L<k)| + |58V(()\<k))+)71 |’
and

((r,c) €2 :i <max(T(r, c))} = A \ sV DH-1,
Thus

NW({(r,0) € 1§ <max(T(r, o)) = {(¢, sv(*)F) =t + 1) st e [sv(G M) D),
which implies

INW{(r,c) e A:i <max(T(r,c))})| = sv(()\“‘))*),

resulting in equality for the lower bound. O

5. A FPAUS via rejection sampling

Our goal in this section is to convert the SVGen algorithm presented in Section 3 into a FPAUS for N-standard set-valued
tableau via rejection sampling.

5.1. Rejection sampling

Given a finite state space X, rejection sampling is a method for converting an algorithm that generates each element
x € X with probability 77 (x) into one with probability distribution v(x). The exact process is as follows. Let § be a bias
parameter, and let m = minyc y % Then, since Y m(x) =1 =) v(x), there exists a x € X such that 7w (x) < v(x),som <1.
Use the original algorithm to generate an element x € X. With probability mv(x)/m (x), return x, otherwise repeat the
process. If m <1 and the process has not returned a tableau after [log;_,, §] steps, return that the process failed.

If our target distribution is the uniform distribution on X, then v(x) = 1/|X| for all x € X. Thus m = | X' | minye x 7 (X).
Lemma 5.1. The probability that the process terminates at any given step is m.

Proof. At any step on the process, the probability that x will be sampled is 7 (x), and the probability that this sample will
be accepted is mv(x)/m (x). Therefore, the probability that a given step in the process will return x is 7 (x)(mv(x)/m (x)) =
mv(x). As a result, the probability that the process will terminate at this step is ) mv(x) =m> v(x) =m. O

Lemma 5.2. The probability that the process returns a failure is at most é.

Proof. If m =1, the process will always terminate after the first step. Otherwise, by Lemma 5.1, the probability that the
process has not terminated in [log,_,, 8] steps is

(1 —m)lo81-mdl < (1 —m)logi-md — 5

13
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Lemma 5.3. The distribution of returned elements will be between (1 — §)v(x) and v(x).

Proof. By Lemma 5.2, the probability that the process returns a tableau is between (1 — §) and 1. At any given step,
Lemma 5.1 implies that with probability m the step is the final one. The probability that x is sampled and accepted is
7T (x)(mv(x)/m(x)) =mv(x), and so the probability that the process returns x when it returns an element is (mv(x))/m =
v(x). Multiplying this by the probability that an element is returned gives the desired bounds. O

5.2. The FPAUS

Denote by U the uniform distribution on the set SVT(, N, S). A FPAUS for N-standard set-valued tableau is a randomized
algorithm that takes as input k, 2, and S, as well as a bias parameter § and outputs a random T € SVT(A, N, S) from a
distribution T" on SVT(A, N, S), with dry(T", U) <4, in time polynomial in k, |A \ S|, loga_l. When S =E, n, then k=N,
A\ S =4 and this gives a distribution I on SVT(X, N).

Let Psyg be the distribution on SVT(A, N, S) given by Psyg(T) = P(T = SVGen(4, N, S)). We define RSsyr(A, N, S) to
be the randomized algorithm produced by applying rejection sampling to SVGen(i, N, S), with target distribution U.

Proposition 5.4. RSsyt (A, N, S) is an FPAUS for SVGen(A, N, S) if and only if

min ~ Psyr(T) ! = poly(|A%], k).
L svT(T)) poly(|A*™|, k)

(|SVT(A, N, S)|
Proof. By Lemma 5.3 we know that the distribution of RSsyt(A, N, S) will be between (1—8)U and U. As a result, the total
variation distance between RSgyt(A, N, S) and U is at most §, so it suffices to show that the algorithm runs in polynomial
time. The runtime of the algorithm will be the runtime of SVGen(x, N, k, T), which is polynomial in |A%| and k, times
[log;_m 81. Therefore, it is equivalent to show that log;_,, 8 = log/log(1 — m) = —logs~1/log(1 — m) is polynomial in k,
A\ S|, logs~!, or equivalently —(log(1 —m))~! is polynomial in k and |1\ S|. As k and |A\ S| get larger, m gets smaller and
o}

—(log(1—m) '~ —(-m)"'=m~ ' = (SVT(A,N,S)|__min _ Peyr(T)"",
TeSVT(A,N,S))

completing the proof. O

Theorem 5.5. Fix a rectangle (v = (p9). Let Fp ¢ € SVT be the subset such that A € p U A° where A° is a partition of rank less than
three. Then RSsvt(A, N, S) is a FPAUS for F 4.

Proof. Without loss of generality, we may assume that p,q > 2 since Fpq C Fp o for all p’>p and ¢’ >q. Fixa T e
SVT(A, N, S). Recall that A%) := 2\ T =\ S. By Proposition 5.4, it suffices to show that

-1
<|svm,N,s>| min Psve(r,lo) = poly(|a®], k). (7)
TeSVT(:,N,S)

By Proposition 4.1, (7) is equivalent, if k = N, to showing that

( ISVT(A, N, S)| >]_f’\(|’1_11)(sv(k))Nx
2(

N VON - ISVT(A, N)|

= poly(|A], N), (8)

and if 0 <k < N, that

-1 ko k _ ik
ISVT(A, N, S)] T (o (sv(GI) P ‘—poly(|k<k>| 0 ©)
Fr0 (M’fk)l)(SV((MIc))-&—))k—\Mk)\ ISVT(A, N, S)] T
In either case, it is equivalent to show that
bk k) k=K
F27 (i) (VYD)
_ = poly(11%], k), (10)

ISVT(A, N, S)|

since (10) is equivalent to (9), and differs from (8) by a polynomial factor, \TN|
Our goal is to lower-bound |[SVT(%, N, S)| by constructing elements F € SVT(4, N, S) as follows. We break the construc-
tion into three cases.

14
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Case 1 (M) > 1®); > p and (A ®)) > L), > q): Let

12 = {(r,0) e AR\ sCDDT e o, M)y, (%), 1)}

and

p'=(((p+ DTNk p?.

Let DA™, u) € SYT(A®)) be all elements Fq such that cellg, (i) € u! for all i € [|i!]], and cellg, (i) € u? for all i € [|A%)] —
[+ 1, 12 0).

Now, let R C [k] such that |R| = |A%)| and [|u!|]U [k — |4?| + 1, k] € R. Partition [k]\ R into R, Ry, ..., Rey((ut0y+)- For
an Fo e DA, ), F is constructed as follows.

(1) Start with S

(2) Place the it" smallest element of R in cellg,y (i).

(3) Starting with the smallest value and moving in increasing order, insert the values of Ry into the highest box in the first
column such that the inserted element is not the largest element of its cell.

(4) Starting with the largest value and moving in decreasing order, insert the values of R, into the lowest box of the second
column such that the inserted element is not the smallest element of its cell.

(5) For 3 <i <sv((A*)*™) — 2, insert all of the elements of R; into (sv((A*)™) +1—1,1).

(6) Starting with the largest value and moving in decreasing order, insert the values of Reviaty+)—1 into the rightmost box
of the second row such that the inserted element is not the smallest element of its cell.

(7) Starting with the smallest value and moving in increasing order, insert the values of Ry, w+, into the leftmost box in
the first row such that the inserted element is not the largest element of its cell.

After each step, F remains row and column standard and hence F € SVT(A, N, S). It is an easy check to verify that
each choice of Fo, R, R, Ra, ..., and R, )+ yields a unique F. Then d®, )y = D%, )| is the number of possible

choices for Fy. There are (Mfk)_‘lfllll,_lgjlz‘) choices for R and (SV((A(k))Jr))k*IMI()\ choices for R, ..., Reyutoy+)- As a result,
k— 1 _ 2
o, u)( Sl )(sv((x“‘))*))k*‘““' < ISVT(, N, S)I.
(AR — 1t — ||
Thus, the left hand side of (10) becomes:

fA(k> (|)LI<<’<)|) (sv((k<k))+))k7b‘<k)‘ ) ka) (M'fm‘)(SV((Mk))ﬂ)k*W)‘
ISVT(A, N, S)| - d(nk, ’u“)(IA’<<">7\‘—M|1;,‘L;\|—M|22|)(SV((A(M)JF))IFWICH

fk(k> (l)hlfk) ‘)

= Kl =22
AO-H 40 (o )

Y el 12
= 0
d®, ) (
A (k)

|A<k>|\u‘\+\uz\)
=—— poly(r¥ k),

TR AL
where in the last step we have used the fact that ||+ |u2| < |u|+ 6 = ©(1). Thus the following claim proves our desired

result in this case.

Claim 5.6.

f)h(k)

ol A("),k
OGN poly(|A™ [, k)

Proof. By the hook-length formula,
ARl

ka) _
[Ter.oyerwo Iy (o)l +17

We lower bound d(A%), i) by constructing elements F € D(A), p1). First, fill the boxes of F in p! with the values [|u!|]
in any way that is row and column standard. Second, fill the boxes of F in u? with the values in [|A%] — |u2] + 1, |A%)|] in
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any way that is row and column standard. There is always at least one way to do each of these two steps. Third, we need to
fill the boxes of F in A%\ (1! U u?) with the values [|u!|+ 1, A% | — |u2] + 1] in a way that is row and column standard.
This may be achieved as follows.

Notice that A%\ (! U u?) has the shape of two separate partitions, one in the first two rows of A%\ (1! U u?), and
another in the first two columns. Denote these two partitions v! and V2, respectively. For (r,c) € v! or (r,c) € V2, let (1, ¢)°
be the corresponding box in A%\ (! Upu?) and A%, Partition [|p!]+1, A% — 2| +1] into subsets R; and Ry of size |v|
and |v?|, respectively. Given a Z; € SYT(v!) we place the ith smallest element of Ry into F in (r, c)° where (r,c) = cellz, (i)
in V1. Given a Z, € SYT(v?) we place the ith smallest element of R, into F in (r,c)° where (r,c) =cellz, (i) in v1. Once
this is done we have F e DA%, ).

2
The number of ways to achieve the third step is thus (lvlll;ﬁllv ')f"] f”z. We conclude that

<|v1| + v

1|

1 2
)f” 7 =do®, ). (11)
For each (r,c) e v! and (a, b) € v?, [hy1(r, ©)] < |hyw ((r,©)°)] and |h,2(a, b)| < |h, ((a, b)°)|. This implies

[1 (hpa o+ [T (het.ol+1) < [T dhweol+1 (12)

(r,c)ev! (r,c)ev? (r,o)ex®\(uluu?)

Combining the above arguments we have

fA(k) f)\<k>
<
(k) — 1 2
d@5, ) = gt per( \‘;lwv )
B 1001 I—[(r,c)evlﬂhvl(r, o)+ 1)]_[(r,c)evz(|hvz(r, o|+1)
[r.on Iy (.ol +1 (VT + 2!
B Ak [ir.0ren0 1oy (e (r O + 1)
" Tigerw (hw @Ol +1) (Wt +v2))!
ARl
N 2D T o epiupe (Mo (1 01+ 1)
%!

<
(2!

—( 8 )<| 12
BAAESE A

— O(M(k) ||M1|+|M2|)O(1)
= poly(12], k)

where the first inequality is by (11), the second inequality is by (12), and the last two equalities follow from the fact that
W+ 11| < |l +6=01). O

Case 2 (A®)1 > W), @y > %)), and either (1*); < p or (A%)), < q): In this case, the construction to lower
bound |SVT(A, N, S)| is almost identical to Case 1. The first difference is that the set u? will also include any (r,c) €
A\ (@)= in rows or columns wholly contained in . The second difference is that when inserting the values in R;,
if the values in R; would be inserted into a column or row wholly contained in w«, then the values are instead inserted into
(sv((A*"HT)y — i +1,1). Otherwise, proceeding exactly as in Case 1, we arrive at a lower bound on |SVT(%, N, S)| which is
then used to show that (10) is satisfied.

Case 3 (A1 = k), or (A ®)) = (A%))): This case can be reduced to one of the first two cases by placing the value k
(and if needed k — 1) into S in the outermost box of the second row and/or second column. Say this augmented S is ST.
Since |[SVT(%, N, ST)| < |SVT(x, N, S)|, we can lower bound |[SVT(%, N, S)| by lower bounding |SVT(A, N, ST)|. This can be
achieved by applying Case 1 or 2 to S*. O

Letting p = q =2 we may prove the following corollary.

Corollary 5.7. Let R<z € SVT be the subset such that the rank of A is less than three. Then RSsyt(x, N, S) is a FPAUS for R <3.
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To extend Theorem 5.5 to all (A, N, S) would require devising a method for inserting the values of the R;, from the proof
of Theorem 5.5, in a row and column standard way when there are more than two arbitrarily long rows (or columns). We
believe that this should be possible if the number of such rows and columns is upper bounded by a constant, which leads
us to the following conjecture.

Conjecture 5.8. Let d € N and F3 € SVT be the subset such that sv((A \ S)™) < d. Then

ka) (|,\l<<k>|) (sv(()h<k))+))kf\k<">\

= poly(|A%], k).
ISVT(L N, S)| poly(IA771. k)

This, combined with Proposition 5.4, would imply a more comprehensive version of Theorem 5.5:

Conjecture 5.9.Let d € N and F; € SVT be the subset such that sv((A \ S)*) < d. Then RSsyr(A, N, S) is an FPAUS for all
(A, N,S) e Fy.

We also see that RSsyt(A, N, S) is a FPAUS when certain parameters are fixed.

Theorem 5.10. Let Fix(|A \ S|), Fix(k — |A \ S|) € SVT be the subsets such that |1 \ S| and k — |1 \ S| are, respectively, O (1). Then
RSsvr(, N, S) is a FPAUS for each of Fix(|A \ S|) and Fix(k — |1 \ S|).

Proof. Fix a T € SVT(A, N, S). Recall that A®) := 1\ T® =2\ S. By (10), it suffices to show that

fw) (|)Ll<<k)|)(SV((}L<’<))+)I<7|;L<I<)|

= poly(]A %], k).
ISVT(L. N, S)| poly(1A71. k)

If k= 0(1), then since |A*| <k, we have that f*", (l)ﬁk)),(R((A<k>)+)k*‘*(k)‘ = 0(1). Thus even the lower bound
[SVT(A, N, S)| > 1 gets us the desired growth bounds.

If A% = 0(1), then F*" sv((x®)*)=0(1) and (M’fm) = 0((k)"*"1). We will construct elements F € SVT(x, N, S) as
follows. Initialize F to equal S. Then fill the cells of F that are in §(*")") 0 1% in any way with the smallest values
in [k], such that one value is in each cell and F remains row and column standard. There is always at least one way to
do this. Then, for the next k — |A¥| labels, place each value in a cell of the form (i, sv((A*))*) + 1 — i). This process has
k — 1% values that each independently have sv((»*))*) choices for the cell they are placed in. Hence (sv((3.%) k=121 <
[SVT(A, N, S)|. As a result,

(k) —alk) (k) —atk)
P (o) vy Hyk e 7 () (sv( By =R

ISVT(., N, S)| = V(M) k=]
otk k . CT
= poly(12], k)

completing the proof in this case.

If k— A% = 0(1), then sv((2®)*) = 0(1A%]) and sv((A*)) k=121 = poly(]a®)|, k). Similarly, (1) = 0 ((k)k=1*"1y =
poly(|»*!|, k). We construct elements F € SVT(x, N, S) as follows. Initialize F to equal S. Then place the values 1,..., |z
into F such that F remains column and row standard. From largest to smallest, place each value [A*'| +1,...,k in the
leftmost cell of the first row of F such that the value is the smallest element in that cell. By the hook-length formula, there
are f** ways to arrange the first [z )| labels, and so f*“ <SVT(x, N, S). Thus

(k) — |tk (k) — 1tk
f* (Iklé‘)l) (sv((k<k))+)" (219 f* (M’<<I<)‘)(SV(()\(I<>)+)I< |21
VTN o

k )
— (k) k—|A%

= 0 (0o (a k) =121y
=poly(|a®], k)

completing the proof. O
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6. Approximate counting

We are now ready to construct a FPRAS for the number of N-standard set-valued tableau that contain a fixed N(k)-
standard set-valued pre-tableau. Let A be a partition, |[A| < N € N, and S a N(k)-standard set-valued pre-tableau of shape A
with 0 <k < N, error parameter € € (0, 1] we desire to compute an approximation A such that

PA—f NS <A<+ N2

in time polynomial in |A\ S|, k, % The confidence parameter of % may be boosted to 1 — 4§ for any § > 0 by performing
O(Ins~1) trials and taking the median result [11]. By choosing S = E; y we may approximate f*N,

Let Sp,..., Sk be a sequence such that, for 0 <m <k, Sy is a N(m)-standard set-valued pre-tableaux and S¢o 2 S1 2
.-+ D Sk_1 2 Sk =S. Such a sequence must exist since f*N:5 > 0. Define SV,; = SVT(A, N, Sin) for 0 <m < k. Then

SVm:USVT(A,N,A) (13)
A

where the sum is over all N(m — 1)-standard set-valued pre-tableau A such that S;; C A.
Then f*N-S can be computed via the telescoping product

11 ISVl ISVl ISVl
FRNS TSVl T ISVl 1SVieal ISVl

Note that |SVg| =1 since 1 may only be placed in the (1, 1) block, and Sg will always be a N-standard set-valued tableau.
Our FPRAS will approximate f*N-S by approximating the ratios Islg/{,”r;;‘
An F C SVT is downwardly stable if for all (A, N, S) € F, if S’ is a N{k’)-standard set-valued pre-tableau of shape A such

that S € S/, then (A,N,S’) € F.

(14)

Theorem 6.1. Let F be a downwardly stable subset of SVT such that there is a FPAUS for F. There is a FPRAS that computes f*N-S
for (A\,N,S) € F.

Proof. Let (A, N, S) € F and set Sy = S. We will approximate the ratios from (14) for m =k, k — 1, ..., 1, inductively, by
sampling almost uniformly at random from SV, using the FPAUS. We run the FPAUS, with bias parameter n = ZO\fW' to
sample s samples from SV;; = SVT(A, N, Sp;) with distribution 7 such that dty(;r, u) < n. By (13), each sample is contained
ina SVT(A, N, A) for A a N(m — 1)-standard set-valued pre-tableau A such that S;;; C A. Let S;;—1 be the N(m — 1)-standard
set-valued pre-tableau such that subset SVT(A, N, Sp;—1) contains the largest number of samples. The set F is downwardly
stable, and hence (A, N, S;—1) € F. Thus, we construct the sequence S =S, C Sy_1 C--- € S1 C Sp of pre-tableau with
SV =8VT(A,N,Sp) for 0<m <k. If

1SVim—1]
TSVl

then, dry (s, u) <n implies

’

Tm—N=u(SVm_1) =N <m0 (SVm-1) SuSVm-1) +n=rm+1n. (15)

Our aim is to estimate r; within a multiplicative factor of (1 + €/4k) with probability 1 — 1/4k. Let X;j, for 1 <i <s, be a
random variable equal to 1 if sample i is in SVj;_1, and 0 otherwise. Let 02 = Var(Xy) = ... = Var(Xs). Let XM =33 X;.
Note that the choice of S;_; and (13) ensures that 1/|x\ S| < X[™/s. The Chebyshev inequality [1, Theorem 4.1.1] implies

2
1

P(Ep) i=P(X™ /s = 1 (SVi-1)| 2 1) < oz < —.
sn sn

Choosing s > Sk(ZOIlﬂ)z, we have that with probability greater than 1 — ﬁ the event E; (the complement of event E{)
occurs and
1 [m]
M\—S|§X /S T(SVim—1) +n <rm+21. (16)

Applying a Chernoff bound [12, Corollary 4.5], with 0 <71 < 1, yields

P (X — E[XM)| > pE[XIM]) < 2e =7 EXM/3,

Given that the event E; occurs and choosing s > max{Sk(w)z, B(M)z% log(16k)} by (16)
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2o MEIXMI3 _ o =1Ps(rg—m/3 _ 5, —nPs(gs - 1
- - — 8k
Thus the probability of Ey and |X!™ — E[XI™]| < nE[X™] is greater than 1— 4. Hence with probability greater than 1— 7,
we have
xtmys < 1+ pEXM™)/s = (147 (SVin_1)
< A+mm+mn By (15).
= rm(1+ 0+ 0/fm +10*/rm) < tm(1+ 1+ 20/rm)

1
< rm(1 2n/(——— —2 By (16).
= m(1+n+ n/(lk\Sl m) y (16)
€
= (145N S =rm(+ —).
4k
The third inequality above follows from 1 < 1 and the final inequality from the fact that 29 < L. By a nearly identical

203
argument we have r; (1 — f—k) < XIMl/s. Now, multiplying € by a sufficiently small constant if needed (that does not depend
on €), we have that 1/(1+ €/4k)¥ > (1 — €/4k)* > (1 — €) and 1/(1 — €/4k)¥ < (1 4 €/2k)* < (1 + €). This, combined with
the above arguments and (14), implies that if A =[T_, x™/s,

3
P -e)f*"* <1/A<A+e) %)= 2.
The FPAUS for each SV, is polynomial in |A \ S;;|, and m by hypothesis and hence are polynomial in |1\ Sk|, and k.

A total of k- max{8/<(w)2,3(w)z% log(8k)} samples are required from the FPAUS. Thus our approximation is
1

computed in time polynomial in [A\ S|, k, z. O
Corollary 6.2. There is a FPRAS computing f*N-S for F 4.
Proof. The subset Fj ¢ € SVT is downwardly stable. Our result now follows from Theorem 5.5 and Theorem 6.1. O

Corollary 6.3. There is a FPRAS computing f**NS for Fix(|A \ S|) and Fix(k — |A \ S|).

Proof. The subsets Fix(|A \ S|), Fix(k — |A \ S|) € SVT are each downwardly stable. Our result follows from Theorem 5.10
and Theorem 6.1. O

We conclude with proofs of our main theorems.

Proof of Theorem 1.2. The set of (A, N, E; n) where A is a partition such that A € ;¢ UA° and A° is a partition of rank less
than three is a subset of 7} 4. The existence of a FPRAS for ) 4 yields a FPRAS for this subset. O

Proof of Theorem 1.4. This follows by an identical argument to the proof of Theorem 1.2, applying the existence of a FPRAS
for Fix(|]A \ S|) and Fix(k — [A\ S]). O
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