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Abstract

It is shown that a simple closed curve in Cn that is a uniform limit of
rectifiable simple closed curves each of which has nontrivial polynomial hull
has itself nontrivial polynomial hull. In case the limit curve is rectifiable, the
hull of the limit is shown to be the limit of the hulls. It is also shown that
every rectifiable simple closed curve in Cn, n ≥ 2, can be approximated in total
variation norm by a polynomially convex, rectifiable simple closed curve that
coincides with the original curve except on an arbitrarily small segment. As a
corollary, it is shown that every rectifiable arc in Cn, n ≥ 2, is contained in a
polynomially convex, rectifiable simple closed curve.

1. Introduction. It is known from the work of Forstnerič [6, 7], Forstnerič and
Rosay [8], and Løw and Wold [19] that given a compact, smooth manifold M of
dimension d ≤ min{n − 1, (2n + 1)/3}, the set of polynomially convex, totally real
embeddings of M in Cn of class C s, 1 ≤ s ≤ ∞, is open and dense in the space of all
embeddings of M in Cn of class C s in the C s topology. Specialized to simple closed
curves, this says that the set of polynomially convex simple closed curves of class C s

in Cn, n ≥ 2, is open and dense in the space of all simple closed curves in Cn of class
C s with the C s topology.

In this paper we establish stronger results regarding openness and denseness of
polynomially convex simple closed curves that, in particular, contain the statement
that the polynomially convex, rectifiable simple closed curves in Cn, n ≥ 2, form a
dense open set in the space of all rectifiable simple closed curves with respect to both
the supremum norm and the total variation norm. Regarding openness, we show
that if a simple closed curve γ is a uniform limit of rectifiable simple closed curves
each of which has nontrivial polynomial hull, then γ has nontrivial polynomial hull.
No regularity hypothesis is made on the limit curve γ in this result. We also show
that when the limit curve γ is rectifiable, the hull of the limit is the limit of the
hulls, but this can fail for non-rectifiable γ. Regarding denseness, we show that every
rectifiable simple closed curve in Cn, n ≥ 2, can be approximated in total variation
norm by a polynomially convex, rectifiable simple closed curve that coincides with the
original curve except on an arbitrarily small segment. Analogous results concerning
approximation of smooth simple closed curves in C s topologies are also presented.

As a corollary of our density results we prove that every rectifiable arc in Cn, n ≥ 2,
is contained in a polynomially convex, rectifiable simple closed curve, and every C s-
smooth arc is contained in a polynomially convex, C s-smooth simple closed curve. It
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is also true that every polynomially convex arc is contained in a polynomially convex
simple closed curve. However, the proof of that result will be published separately;
see [15]. Additional related results will be given in the first author’s papers [13] and
[14].

In the next section we introduce some terminology and notation. Our main re-
sults are stated in Section 3.. Proofs and related lemmas and examples are given in
Sections 4.–6..

2. Terminology and Notation. We denote the topological boundary of a subset
B of Cn by bB. Neighborhoods will always be taken to be open sets. We use the
standard notation ‖f‖X = sup{|f(x)| : x ∈ X} for the supremum of a bounded
complex-valued function f on a set X . If X is a compact subset of Cn, the polynomial
hull X̂ of X is defined by

X̂ = {z ∈ Cn : |P (z)| ≤ ‖P‖X for all polynomials P}.

The set X is said to be polynomially convex if X̂ = X . The polynomial hull of X is
said to be nontrivial if instead the set X̂ \X is nonempty.

Let J be either a closed interval in the real numbers or a circle. We denote
by CBVn(J) the space of all continuous maps from J into Cn that are of bounded
variation. The corresponding space of maps from J into Rn will be denoted by
CBVn

R(J). We denote the total variation of a map F over J by varF . The spaces
CBVn(J) and CBVn

R(J) are Banach spaces with the total variation norm ‖ ·‖bv given
by

‖F‖bv = ‖F‖J + varF.

In case F is injective, the total variation of F over J is simply the length of the
image F (J). We denote the unit circle by T. A continuous map γ : T → Rn is called
a closed curve. The elements of CBVn(T) are then the rectifiable closed curves. A
closed curve is simple if it is injective. An arc is an injective map of a closed interval
into Rn. Frequently below we will use the common abuse of notation and conflate a

map γ : J → Rn with the image γ(J) and, for example, write γ̂ instead of γ̂(T) for
the polynomial hull of the set γ(T).

We recall the definition of the Hausdorff metric. Let X be a metric space with
metric d, and let K denote the collection of all nonempty compact subsets of X . For
A,B ∈ K, the Hausdorff distance dH(A,B) between them is defined to be the number

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

We will use the following standard compactness result. A proof can be found in [17,
Theorem 4.26]. An outline of a proof can also be found in [20, Section 45, Exercise 7].

2.1. Theorem. If the metric space X is compact, then the collection of all nonempty
compact subsets of X is a compact space with respect to the Hausdorff metric.
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3. Main Results. The following is our principal result regarding convergence of
hulls:

3.1. Theorem. If {γk}k=1,2,... is a sequence of rectifiable simple closed curves in Cn

that converges uniformly to a simple closed curve γ, and if each γk has nontrivial
polynomial hull, then γ has nontrivial polynomial hull. If, in addition, the limit
curve γ is rectifiable, then the sequence {γ̂k}k=1,2,... of polynomial hulls converges in
the Hausdorff metric to γ̂.

Note that the first half of this theorem asserts something stronger than that the
set of polynomially convex, rectifiable simple closed curves is open in the set of all
rectifiable simple closed curves in the topology of uniform convergence: Given a
polynomially convex simple closed curve γ, whether rectifiable or not, there is an
ε > 0 such that every rectifiable simple closed curve σ satisfying ‖γ − σ‖T < ε is
polynomially convex. Since the topology of uniform convergence is weaker than the
topology of CBVn(T), the first half of Theorem 3.1. also implies an openness result
in the space CBVn(T):

3.2. Corollary. The set of polynomially convex, rectifiable simple closed curves is
open in the set of all rectifiable simple closed curves in the topology of the Banach
space CBVn(T).

In [21, Remark 1.6] Nemirovski presents an argument which, mutatis mutandis,
shows that if γ is a polynomially convex, rectifiable simple closed curve, then every
rectifiable simple closed curve sufficiently near γ in the uniform norm is also polynomi-
ally convex (and hence, in particular, yields Corollary 3.2.). His argument, however,
cannot be applied to the case of non-rectifiable simple closed curves γ.

In the context of Theorem 3.1., it is not claimed, nor need it be true, that the
sequence {γ̂k}k=1,2,... of polynomial hulls converges to γ̂ when γ is not rectifiable. See
Example 4.4.. Note though that there is no requirement in Theorem 3.1. that the
lengths of the rectifiable curves γk be uniformly bounded.

It is clear that if a sequence {γk}k=1,2,... of simple closed curves in Cn converges
uniformly to a simple closed curve γ, then (regarded as a sequence of closed subsets
of Cn) the sequence {γk}k=1,2,... converges to γ in the Hausdorff metric. The con-
verse, however, does not hold. We will show by simple examples that both halves of
Theorem 3.1. become false if the hypothesis that {γk}k=1,2,... converges uniformly is
replaced by the weaker hypothesis that {γk}k=1,2,... converges in the Hausdorff metric
(Examples 4.5 and 4.6).

Theorem 3.1. is a result on simple closed curves. We will present examples illus-
trating difficulties that ensue when one tries to deal with more general kinds of sets
(Examples 4.7 and 4.8).

Regarding density of polynomially convex curves, we will show that every rectifi-
able simple closed curve in Cn, n ≥ 2, can be approximated in total variation norm by
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a polynomially convex, rectifiable simple closed curve that coincides with the original
curve except on an arbitrarily small segment:

3.3. Theorem. Given a rectifiable simple closed curve γ in Cn, n ≥ 2, given ε > 0,
and given an open ball B of Cn that intersects γ, there is a rectifiable simple closed
curve γa that is polynomially convex and satisfies ‖γ− γa‖bv < ε and γ \B = γa \B.

3.4. Corollary. In Cn, n ≥ 2, the set of polynomially convex, rectifiable simple
closed curves is dense in the space CBVn(T) of all rectifiable closed curves with the
total variation norm.

This corollary is immediate from Theorem 3.3. and the following result which
we will prove regarding density of embeddings in the space of continuous maps of
bounded variation.

3.5. Theorem. If J is either a closed interval or a circle, and if n ≥ 3, then the set
of injective maps in CBVn

R(J) is dense in CBVn
R(J).

Recall that an analogue of this result in the setting of smooth manifolds is a
standard result in differential topology: If M is a compact manifold of dimension
d and of smoothness class C s, 1 ≤ s ≤ ∞, then the set of embeddings of class C s

of M into Rk is dense in the space of all maps of class of C s, in the C s topology,
provided k ≥ 2d+1. This result is given in [11, Proposition 2.1.0] for 2 ≤ s < ∞ and
[11, Theorem 2.2.13] in general. As C 1(J) is not dense in CBVn

R(J), Theorem 3.5.
does not follow from this result. For the same reason, the density of polynomially
convex, rectifiable simple closed curves in the space of all rectifiable simple closed
curves with the total variation norm does not follow from the density of polynomially
convex, C 1-smooth, simple closed curves with the C 1 norm. (That C 1(J) is not
dense in CBVn

R(J) is easily seen by noting that C 1(J) is contained in the set AC(J)
of absolutely continuous functions and verifying that AC(J) is closed in CBVn

R(J). In
fact, the closure of C 1(J) in CBVn(J) is exactly AC(J) as can be seen by considering
scalar-valued functions and noting that the map that sends each function of bounded
variation on J to the corresponding regular Borel measure is an isometry and sends
C 1(J) to the set C (J) of continuous functions and AC(J) to L1(J).)

Note that the analogy that holds between rectifiable embeddings and smooth
embeddings with regard to density does not carry over to openness; every rectifiable
embedding can be modified by an arbitrarily small amount in total variation norm
so as to become constant on a small interval.

A second corollary of Theorem 3.3. concerns arcs:

3.6. Corollary. A rectifiable arc in Cn, n ≥ 2, is contained in a polynomially convex,
rectifiable simple closed curve, which can be chosen to lie in an arbitrarily small
neighborhood of the given arc.
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Finally we will establish the following analogue of Theorem 3.3. for smooth curves.
Here we denote by dC s(γ, γa) the distance from γ to γa in C s(T). This is of course
given by a norm when 1 ≤ s < ∞, but not when s = ∞.

3.7. Theorem. Given a simple closed curve γ of class C s, 1 ≤ s ≤ ∞, in Cn, n ≥ 2,
given ε > 0, and given an open ball B of Cn that intersects γ, there is a simple closed
curve γa of class C s that is polynomially convex and that satisfies dC s(γ, γa) < ε and
γ \B = γa \B.

The case of Theorem 3.7. in which s = ∞ follows immediately from [1, Theo-
rem 1.4]. However, we will give a single proof of Theorem 3.7. that applies in all
cases and is much simpler than the proof of [1, Theorem 1.4]. The analogues of
Corollaries 3.4. and 3.6. for smooth curves follow from Theorem 3.7..

3.8. Corollary. In Cn, n ≥ 2, the set of polynomially convex, simple closed curves
of class C s, 1 ≤ s ≤ ∞, is dense in the space C s(T) of all closed curves of class C s.

3.9. Corollary. An arc of class C s, 1 ≤ s ≤ ∞, in Cn, n ≥ 2, is contained in a
polynomially convex, simple closed curve of class C s, which can be chosen to lie in
an arbitrarily small neighborhood of the given arc.

4. Convergence of Hulls. In this section we prove Theorem 3.1. and present
related results and examples. We will use the following three lemmas whose proofs
we defer for the moment.

4.1. Lemma. If {Xk}k=1,2,... is a sequence of compact sets in Cn such that the se-

quences {Xk}k=1,2,... and {X̂k}k=1,2,... each converge in the Hausdorff metric, then

lim X̂k ⊂ l̂imXk.

4.2. Lemma. Let {γk}k=1,2,... be a sequence of rectifiable simple closed curves each
with nontrivial polynomial hull, and suppose the sequence {γk}k=1,2,... converges uni-
formly to a simple closed curve γ. Let f be a smooth C-valued function on Cn whose
restriction to γ is zero-free and has no continuous logarithm on γ. Then f has a zero
on each subsequential limit of {γ̂k}k=1,2,... in the Hausdorff metric.

4.3. Lemma. If γ is a compact set that is contained in a compact connected set of
finite length in Cn, and if p is a point of γ̂ \ γ, then there is a function f holomorphic
on a neighborhood of γ̂ that vanishes at p and at no other point of γ̂.

The set γ̂\γ in Lemma 4.3. is a purely one-dimensional analytic subvariety of Cn\γ
by [23, Theorem 3.1.1]. Note that because the function f in the lemma has a zero on
this variety, the argument principle implies that f has no continuous logarithm on γ.

Proof of Theorem 3.1. The sequence of hulls {γ̂k}k=1,2,... is contained in a compact
subset of Cn, say a large closed ball. Therefore, by Theorem 2.1., this sequence has
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subsequential limits in the Hausdorff metric. By Lemma 4.1., each subsequential limit
is contained in γ̂. Thus to show that γ has nontrivial polynomial hull, it suffices to
show that some subsequential limit is not contained in γ. Furthermore, to establish
that {γ̂k}k=1,2,... converges to γ̂ when γ is rectifiable, it suffices to show that in that
situation, every subsequential limit of {γ̂k}k=1,2,... contains γ̂.

Let Y be a subsequential limit of {γ̂k}k=1,2,.... Choose a continuous zero-free C-
valued function on γ that has no continuous logarithm. Extend the function to a
continuous function on Cn. Finally by taking a sufficiently good approximation to
that extension by a smooth function, obtain a smooth function f whose restriction
to γ is zero-free and has no continuous logarithm on γ. By Lemma 4.2., f has a zero
on Y . Hence Y , a subset of γ̂, is not contained in γ. Thus the polynomial hull of γ
is nontrivial.

When the limit curve γ is rectifiable, Lemma 4.3. and the remark following it show
that for any point p of γ̂ \ γ, the function f can be chosen so that its only zero on γ̂
is at p. Since Y is contained in γ̂, and we have shown that f must have a zero on Y ,
the point p must belong to Y . Consequently, in case γ is rectifiable, the set Y must
contain γ̂.

It remains to prove the lemmas.

Proof of Lemma 4.1. This is perhaps well known, but we include the easy proof
for completeness. Set X = limXk. Let P be an arbitrary polynomial on Cn, and let
ε > 0 be arbitrary. Then there exists N such that for all k ≥ N we have

‖P‖Xk
≤ ‖P‖X + ε.

This inequality continues to hold with Xk replaced by X̂k. Since lim X̂k is contained
in the closure of the set

⋃∞

k=N X̂k, it follows that ‖P‖lim X̂k
≤ ‖P‖X+ε. Consequently,

‖P‖lim X̂k
≤ ‖P‖X. Therefore, lim X̂k ⊂ X̂.

Proof of Lemma 4.2. Consider a subsequence of the sequence {γ̂k}k=1,2,... that
converges in the Hausdorff metric. For notational convenience, we assume the subse-
quence to be the entire sequence itself.

Let U be the neighborhood of γ given by U = {z ∈ Cn : f(z) )= 0}. Because
{γk}k=1,2,... converges uniformly to γ, for large k the curve γk is homotopic to γ in U .
Accordingly, f has no continuous logarithm on γk for large k.

The smooth one-form ω defined on U by ω = df/f is closed. For k large,
∫
γk

ω )= 0
since f has no continuous logarithm on γk.

By hypothesis γk is not polynomially convex, so the polynomial hull γ̂k is the union
of γk and a bounded purely one-dimensional variety Vk. (See [23, Theorem 3.1.1].)
If Vk were contained in U , then Stokes’ Theorem, which is valid in this context [18],
[23, pp. 193–194], would yield

∫
γk

ω =
∫
Vk

dω = 0. Since
∫
γk

ω )= 0 for k large, we
obtain that for k large, the variety Vk cannot be a subset of U . Therefore, for k large,
the set Vk, and hence the set γ̂k, meets the zero set of f . Consequently, the limit set
lim γ̂k must also meet the zero set of f .
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Proof of Lemma 4.3. If γ is a set in the complex plane, the result is evident.
We will treat first the result in C2 and then reduce the case of sets in Cn, n > 2,

to the case of sets in C2.
Consider then a compact set γ that is contained in a compact connected set of

finite length in C2. Let V = γ̂ \ γ. Then V is a purely one-dimensional analytic
subvariety of Cn \ γ (see, for instance, [23, Theorem 3.1.1]).

Denote by O the sheaf of germs of holomorphic functions on C2 and by O∗ the
sheaf of germs of zero-free holomorphic functions on the same C2. With the map
O → O∗ the map given by f *→ e2πif , there is the exact sequence of sheaves

0 → Z → O → O
∗ → 0.

The associated cohomology sequence on γ̂ contains the segment

· · · → H1(γ̂;O) → H1(γ̂,O∗) → H2(γ̂;Z) → · · · .

In this, H1(γ̂;O) is the zero group because γ̂ is the intersection of a decreasing
sequence of Stein domains and because cohomology is continuous. We also have that
H2(γ̂;Z) = 0, because γ̂ is a polynomially convex set in C2. (It is a well-known
result of Andrew Browder [2] that for a compact polynomially convex set K in Cn,
the cohomology groups Hj(K;C) vanish for j ≥ n. It was observed in [4] that
with integral coefficients, the analogous vanishing theorem is also correct. Vanishing
theorems of this kind have been discussed in some detail in [23]. The specific theorem
we invoke here is [23, Corollary 2.3.6].)

Granted that H1(γ̂;O) and H2(γ̂;Z) both vanish it follows that H1(γ̂;O∗) = 0.
Since the set γ is of zero two-dimensional Hausdorff measure, it is rationally

convex. Thus there is a polynomial ϕ on C2 that vanishes at p but is zero-free on
γ. This polynomial will be identically zero on no branch of V , for otherwise its zero
locus would meet γ.(2)

As the intersection of the zero locus of ϕ with each irreducible branch of V is a
(possibly empty) discrete set, there is an open ball B in C2 centered at p such that
B is disjoint from γ and such that on B ∩ V the polynomial ϕ vanishes only at p.
Let D be a neighborhood in C2 of the compact set γ̂ \B that is disjoint from the set
B ∩ ϕ−1(0). We now have a set of Cousin II data on the open set D ∪B: Take ϕ on
B and the function identically one on D. Because H1(γ̂;O∗) = 0, this set of Cousin
data is solvable on some neighborhood Ω of γ̂,(3) so there is a function defined and
holomorphic on a neighborhood of γ̂ whose zero set meets γ̂ only at p.

2It should perhaps be observed that granted only that γ is contained in a compact connected
set of finite length, the variety V is not assured to be irreducible; indeed, it could have infinitely
many topological components. However, each germ of an analytic variety has only finitely many
irreducible branches.

3A word of explanation may be in order here. Let {∆j}j=1,2,... be a decreasing sequence of
compact neighborhoods of the set γ̂ with ∩j∆j = γ̂ and with ∆1 ⊂ D∪B. Thus, γ̂ is the inverse limit
of the ∆j with the inclusion maps ιj,k : ∆j → ∆k for j > k, and the cohomology group H1(γ̂;O∗) is
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To deduce the Cn version of the result from the C2 version, we proceed by pro-
jection.

Thus, let γ be a compact set that is contained in a compact connected set of finite
length in Cn, and let p be a point in V = γ̂ \ γ. Exactly as in the case when γ was
in C2, we can obtain a polynomial ϕ1 on Cn that vanishes at p but is zero-free on γ,
and this polynomial will be identically zero on no branch of V .

The set ϕ−1
1 (0)∩ γ̂ is polynomially convex and has p as an isolated point. Conse-

quently, there is a polynomial ϕ2 that vanishes at p and at no other point of ϕ−1
1 (0)∩γ̂.

Let Φ = (ϕ1,ϕ2) : Cn → C2. The map Φ carries γ to a compact set σ in C2 that is
contained in a compact connected set of finite length, and it carries γ̂ into, though
perhaps not onto, the hull σ̂. Moreover, Φ(p) /∈ σ.

The version of our lemma already proved in C2 provides a function f holomorphic
on a neighborhood of σ̂ whose zero set meets σ̂ only at the origin. The composition
f ◦ Φ is holomorphic on a neighborhood of γ̂ and vanishes at the point p and at no
other point of γ̂.

The lemma is proved.

With Lemmas 4.1.–4.3. established, the proof of Theorem 3.1. is complete.

As mentioned in Section 3., in the context of Theorem 3.1., the sequence {γ̂k}k=1,2,...

of polynomial hulls can fail to converge to γ̂ when γ is not rectifiable. An example of
this phenomenon is the following.

4.4. Example. Let C be a simple closed curve of positive area in the plane(4), and
let F = (f1, f2, f3) be a continuous injective map from the Riemann sphere into C3

that is holomorphic on the interior Di of C and also on the exterior De of C. Such
maps were considered by Wermer [25] as follows. Set

f1(z) =

∫

C

dζ ∧ dζ

ζ − z
and f2(z) = zf1(z).

Then choose a point z0 in C \ C at which f1(z) does not vanish and define f3 by

f3(z) =
f1(z)− f1(z0)

z − z0
.

With these three functions, the map F = (f1, f2, f3) carries the Riemann sphere
continuously and injectively into C3 and is holomorphic off the curve C.

the direct limit of the system H1(∆j ;O∗) with the induced maps ι∗j,k : H1(∆k;O∗) → H1(∆j ;O∗)
for j > k. This direct limit is 0.
The set of Cousin II data we have constructed above on D ∪ B gives rise by restriction to a set

of Cousin II data on each ∆j and so for each j a cohomology class cj ∈ H1(∆j ;O∗). We have
ι∗j,k(ck) = cj for j > k. For each j, there is the map H1(∆j ;O∗) → H1(γ̂;O∗) which is the zero
map. Consequently, for sufficiently large j, the cohomology class cj is zero. This means that our
Cousin II problem is solvable on ∆k for large k.

4Such curves were constructed by Osgood [22].
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Let ϕ be a conformal map from the unit disc U in C onto Di. The map ϕ extends
to a homeomorphism of U onto Di. The existence of this extension is a theorem of
Carathéodory which is given in [9, p. 13].

For k = 2, 3, . . . let βk be the boundary of the disc ∆k = {z ∈ C : |z| ≤ 1 − 1
k}.

Let γk be F (ϕ(βk)). Each γk is a real-analytic simple closed curve, and γk tends
uniformly to the curve γ obtained from F ◦ ϕ by restricting to the boundary of U.

We do not know what γ̂ is, but it does contain the sets F (Di) and F (De). For
each k, it is clear that γ̂k ⊃ F (ϕ(∆k)). The set F (ϕ(∆k))\γk is an analytic subvariety
of Cn \ γk. (This can be seen by showing that the derivative of the map F is nowhere
vanishing on C\C, and hence F (C\C) is, in fact, a complex manifold. Alternatively,
it is a very minor case of Remmert’s proper mapping theorem [10, Theorem N1]).
Since the variety γ̂k \ γk is irreducible [23, Theorem 4.5.5], γ̂k \ γk can be no larger
than F (ϕ(∆k)) \ γk. Therefore, γ̂k = F (ϕ(∆k)).

The sequence of sets {γ̂k}k=1,2,... = {F (ϕ(∆k))}k=1,2,... is increasing and has union
F (ϕ(U)). It follows that γ̂k → F (Di). Consequently, {γ̂k}k=1,2,... does not converge
to γ̂.

As mentioned in Section 3., both halves of Theorem 3.1. become false if the hy-
pothesis that {γk}k=1,2,... converges to γ uniformly is replaced by the weaker hypothesis
that {γk}k=1,2,... converges to γ in the Hausdorff metric. This is demonstrated by the
next two examples.

4.5. Example. Let γ be the unit circle in the plane. For each k let λk be the arc
on the circle {z : |z| = 1 + 1/2k} consisting of those points whose argument lies in
the interval [π/2k, 2π− π/2k]. Let {γk}k=1,2,... be a sequence of smooth simple closed
curves in the plane such that, for each k, the arc λk is contained in the bounded
component of the complement of γk, and such that γk is contained in the slit annulus
obtained from the annulus {z : 1 < |z| < 1 + 1/k} by deleting the positive real axis.
(See Figure 1.) Then γk → γ in the Hausdorff metric, but γ̂k → γ )= γ̂ = U.

γ
γk

Figure 1
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4.6. Example. Let σ and σk be, respectively, the images of the simple closed curves
γ and γk of the previous example under the map of C into C2 given by z *→ (z, 1/z).
Then {σk}k=1,2,... converges to σ in the Hausdorff metric, but σ is polynomially convex
while each σk boundes an analytic disc on the analytic variety {(z, 1/z) : z ∈ C\{0}}
and hence has nontrivial polynomial hull.

Theorem 3.1. is a result about simple closed curves, or in other words, about
topological embeddings of a circle into Cn. The following two examples show that
both halves of Theorem 3.1 fail when the circle is replaced by a more general compact,
connected space, even under the additional hypothesis that there is a uniform bound
on the lengths of the embedded sets.

4.7. Example. Let K be the subspace of the plane that is the union of the unit
circle bU and a countable collection of circles Ck, k = 1, 2, . . ., with each Ck externally
tangent to bU at the point eiπ/k and of radius |eiπ/k − eiπ/(k+1)|/4. Note that K is
a compact, connected space. Let pk = (eiπ/k, e−iπ/k). For each k = 1, 2, . . ., choose
circles Gk and Ek in C2 of radius |pk−pk+1|/4 that intersect the circle {(eiϑ, e−iϑ) : 0 ≤
ϑ ≤ 2π} only in the point pk and such thatGk is contained in the plane {(z, z) : z ∈ C}
and Ek is contained in the plane {pk + (z, 0) : z ∈ C}. Let

X = {(eiϑ, e−iϑ) : 0 ≤ ϑ ≤ 2π} ∪
∞⋃

k=1

Gk.

Set Xk = (X \Gk)∪Ek so that Xk is the set obtained from X by removing the circle
Gk and replacing it with the circle Ek. Let ρ : K → X and ρk : K → Xk be the
obvious homeomorphisms. Then the Xk all have the same finite length, each Xk has
nontrivial polynomial hull, ρk → ρ uniformly, but X lies in the plane {(z, z) : z ∈ C}
and hence is polynomially convex.

4.8. Example. Let K be the union of two circles meeting in a single point given by

K = { z : |z| = 1} ∪ { 2 + z : |z| = 1}.

Note that K is compact and connected. Set

Ek = {(2 + z, 1/k) : |z| = 1},

set
Xk = {(z, z/k) : |z| = 1} ∪ Ek,

and set
X = {(z, 0) : |z| = 1} ∪ {(2 + z, 0) : |z| = 1}.

Let ρ : K → X and ρk : K → Xk be the obvious homeomorphisms. Then the lengths
of the Xk are bounded by 2(

√
2 + 1) π and ρk → ρ uniformly. By applying Kallin’s

lemma [16, p. 302] (or see [23, Theorem 1.6.19]), one obtains that

X̂k = {(z, z/k) : |z| = 1} ∪ {(2 + z, 1/k) : |z| ≤ 1}.
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Thus

lim X̂k = {(z, 0) : |z| = 1} ∪ {(2 + z, 0) : |z| ≤ 1}

# {(z, 0) : |z| ≤ 1} ∪ {(2 + z, 0) : |z| ≤ 1} = X̂.

5. Density of Rectifiable Embeddings. This section is devoted to proving
Theorem 3.5. on the density of rectifiable embeddings in the space of continuous
maps of bounded variation. The proof depends on two lemmas, the first a simple
result in geometric measure theory.

We denote the k-dimensional Hausdorff measure of a set E in Rn by H k(E). By
the length of a rectifiable curve γ, we mean the total variation of γ. Note that in case
γ is not injective, the length of γ may well exceed H 1(γ(J)).

5.1. Lemma. If J is either a closed interval or a circle, and if γ : J → Rn is a
rectifiable arc or curve of length l, then H 2(γ × γ) ≤ (π/2)l2. In particular, γ × γ
has finite 2-dimensional Hausdorff measure.

Proof. Fix ε > 0. The lemma will be established once we show that there exists a
countable collection of sets A1, A2, . . . that covers γ × γ with each set Aj of diameter
δ(Aj) < ε and such that

(π/4)
∑

j

δ(Aj)
2 ≤ (π/2)l2.

Choose m ∈ Z+ large enough that l/m < ε/
√
2. Partition J into m subintervals

J1, . . . , Jm such that each of the restrictions γj = γ|Jj has length l/m. Then γ × γ =⋃m
j,k=1 γj ×γk. A trivial computation shows that δ(γj×γk) ≤

√
2(l/m) for each j and

k so that
m∑

j,k=1

δ(γj × γk)
2 ≤

m∑

j,k=1

2(l/m)2

= 2m2(l/m)2

= 2l2.

Thus

(π/4)
m∑

j,k=1

δ(γj × γk)
2 ≤ (π/2)l2,

and the lemma is proved.

5.2. Lemma. Let J be either a closed interval or a circle. Let γ : J → Rn, n ≥ 4, be
an injective continuous map of bounded variation, and let ε > 0. Let P : Rn → Rn−1

denote the projection onto the last n − 1 coordinates. Then there exists a linear
operator T : Rn → Rn−1 with ‖T − P‖ < ε such that T ◦ γ is injective.
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Proof. Let P̃ denote the orthogonal projection of Rn onto {0} × Rn−1. Given v in
the unit sphere Sn−1 in Rn with v not in {0}× Rn−1, let Tv : Rn → Rn be the linear
projection with range {0} × Rn−1 and null space the linear span of v. It suffices to
show that the set of vectors v such that Tv ◦ γ is injective is dense in Sn−1, for if v
is sufficiently close to the vector (1, 0, . . . , 0), then ‖Tv − P̃‖ < ε, and hence setting
T = P ◦ Tv yields the lemma.

Let ∆ denote the diagonal ∆ = {(x, y) ∈ Rn×Rn : x = y} in Rn×Rn, and define
g : (Rn × Rn) \∆ → Sn−1 by

g(x, y) =
x− y

|x− y|
.

Then, for v in Sn−1 \
(
{0}× Rn−1

)
, the map Tv ◦ γ is injective if and only if v is not

in g
(
(γ × γ) \ ∆

)
. By the above lemma, γ × γ has finite 2-dimensional Hausdorff

measure. Since g is a smooth map on (Rn ×Rn) \∆, it follows that g maps compact
subsets of (γ × γ) \∆ to sets of finite 2-dimensional Hausdorff measure in Sn−1, and
so, in particular, g

(
(γ × γ) \ ∆

)
has 3-dimensional Hausdorff measure zero. Thus

g
(
(γ × γ) \∆

)
has empty interior in Sn−1, and the lemma is proved.

Proof of Theorem 3.5. Let γ : J → Rn be a continuous map of bounded variation,
and let ε > 0. In case J is the unit interval, let σ : J → R1+n be the graphing map
σ(x) =

(
x, γ(x)

)
. By the preceding lemma, there is a linear operator T : R1+n → Rn

such that T ◦ σ is injective and ‖T − P‖ < ε/‖σ‖bv, where P is the projection
R1+n → Rn onto the last n coordinates. Then

‖(T ◦ σ)− γ‖J = ‖(T ◦ σ)− (P ◦ σ)‖J ≤ ‖T − P‖ ‖σ‖J

and
var

(
(T ◦ σ)− γ

)
= var

(
(T ◦ σ)− (P ◦ σ)

)
≤ ‖T − P‖ varσ

so ‖(T ◦ σ)− γ‖bv < ε.
The proof when J is a circle is the same except that one needs to apply the lemma

twice since in that case the graph of γ lies in R2+n.

6. Density of Polynomially Convex Simple Closed Curves. In this section
we prove Theorems 3.3. and 3.7. and Corollaries 3.6. and 3.9. The proofs are based
on the following characterization of those rectifiable simple closed curves that are
polynomially convex.

6.1. Theorem. The rectifiable simple closed curve γ in Cn is polynomially convex
if and only if there is a holomorphic one-form α on Cn such that

∫
γ α )= 0.

This result is given in [23, p. 194]. For the convenience of the reader, we recall
its brief proof. (Here we denote by C (γ) the algebra of all continuous C–valued
functions on γ, by R(γ) the subalgebra of C (γ) comprising those functions that can
be approximated uniformly on γ by rational functions holomorphic on a neighborhood
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of γ, and by P(γ) the subalgebra of C (γ) comprising those functions that can be
approximated uniformly on γ by holomorphic polynomials.)

Proof. If γ is not polynomially convex, its polynomial hull is γ ∪ V with V an
irreducible one-dimenional variety. Stokes’ theorem, which is valid in this context
[18], [23, pp. 193–194], gives ∫

γ

α =

∫

V

dα = 0

for every holomorophic one-form α on Cn because the holomorphic two-form dα van-
ishes on the one-dimensional variety V . On the other hand, if γ is polynomially
convex, then P(γ) = C (γ). (To see this, note that the rectifiability of γ implies that
R(γ) = C (γ) by [23, Theorem 1.6.7] for instance, and the polynomial convexity of γ
implies that P(γ) = R(γ).) It follows that there exists a holomorphic one-form α
on Cn such that

∫
γ α )= 0. The theorem is proved.

Proof of Theorem 3.3. Choose a point p of B ∩γ. Let Bp be an open ball centered
at p with radius less than ε/8 and small enough that Bp is contained in B and that
there is an arc λ in γ of length less than ε/8 such that γ ∩ Bp ⊂ λ ⊂ B. Let Λ be
the component of γ \Bp that contains γ \ λ. Note that Λ is an arc and that its end
points, which we will denote by a and b, are in bBp.

Given points x and y, let [x, y] denote the straight line segment from x to y.
Choose a point c ∈ Bp that is not on the complex line through a and b. Let σ denote
the simple closed curve that is the boundary of the triangle with vertices a, b, and c
oriented so that σ = [a, b] ∪ [b, c] ∪ [c, a].

Introduce two rectifiable simple closed curves γ+ and γ− as sets by

γ+ = Λ ∪ [a, b] and γ− = Λ ∪ [a, c] ∪ [c, b].

As maps from the circle, define γ+ and γ− to each coincide with the map γ on the
set γ−1(Λ) and to map γ−1(γ \Λ) one-to-one onto [a, b] and [a, c]∪ [c, b], respectively,
traversed in the direction that yields well-defined continuous maps.

The simple closed curve σ is polynomially convex, since it is contained in a totally
real plane. Thus by Theorem 6.1., there is a holomorphic one-form α on Cn such that∫
σ α )= 0. For this α we have

∫

γ+

α −
∫

γ−

α =

∫

σ

α )= 0,

so at least one of
∫
γ+ α and

∫
γ−

α is nonzero. Consequently, by Theorem 6.1., at least
one of γ+ and γ− is polynomially convex.

Observe that ‖γ − γ±‖T is bounded above by the sum of the length of λ and the
radius of Bp, and var(γ − γ±) is bounded above by the sum of the length of λ and
twice the diameter of Bp. Consequently, ‖γ−γ±‖bv ≤ 7ε/8 < ε. Also γ \B = γ± \B.

The theorem is proved.
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Proof of Theorem 3.7. The map γ : T → Cn is of class C s, is injective, and has
nonvanshing derivative at each point of T.

Given the ball B, fix a point p ∈ B ∩ γ. Without loss of generality p = γ(1).
Let ∆ denote the diagonal ∆ = {(z, w) ∈ Cn × Cn : z = w} in Cn × Cn, and define
g : (Cn × Cn) \∆ → S2n−1 = {z ∈ Cn : |z| = 1} by

g(z, w) =
z − w

|z − w|
.

Since γ × γ is a smooth 2-dimensional manifold and g is a smooth map, the set
g
(
(γ× γ) \∆

)
has measure zero in the sphere S2n−1. Therefore, we can choose a unit

vector v not in g
(
(γ×γ)\∆

)
and such that the real-linear span of v and the tangent

vector to γ at p is a totally real two-plane. Define G : T× R → Cn by

G(eiϑ, t) = γ(eiϑ) + tv.

By our choice of v, the map G is injective and carries some neighborhood of (1, 0) in
T×R onto a totally real manifold through p in Cn. By the local polynomial convexity
of totally real manifolds in Cn, we can choose an interval I in T centered at the point 1
and an η > 0 such that every compact subset of G(I×[−η, η]) is polynomially convex.
By choosing I and η small enough, we can also arrange to have G(I × [−η, η]) ⊂ B.

Choose a nonnegative function χ of class C ∞ defined on T such that the support
of χ is a nonempty interval I0 contained in the interior of the interval I and such that
dC s(χ, 0) < min{η, ε}.

Define maps γ+ and γ− from T to Cn by

γ+(eiϑ) = γ(eiϑ) + χ(eiϑ)v and γ−(eiϑ) = γ(eiϑ)− χ(eiϑ)v.

By our choice of v, these maps are both simple closed curves.
The present argument now finishes along the lines of the previous proof: Let σ be

the simple closed curve γ+(I0) ∪ γ−(I0), which is not smooth but is rectifiable. Then
σ is polynomially convex since it is contained in the set G(I × [−η, η]). Thus there is
a holomorphic one-form α on Cn such that

∫

γ+

α −
∫

γ−

α =

∫

σ

α )= 0,

whence at least one of γ+ and γ− is polynomially convex.
The curves γ± satisfy dC s(γ, γ±) = dC s(χ, 0) < ε and γ \B = γ± \B.
The theorem is proved.

Corollary 3.6. is a consequence of Theorem 3.3. and the following lemma.

6.2. Lemma. If λ is a rectifiable arc in Rn, n ≥ 2, and Ω is a neighborhood of λ,
then there is a rectifiable simple closed curve γ that contains λ and that is contained
in Ω.
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Proof. We will treat first the case n ≥ 3, and then give a different argument for the
case n = 2. Note that we need the result only for n ≥ 4, so the argument for the case
n = 2 can be omitted.

Suppose then that n ≥ 3. We may assume without loss of generality that Ω is
connected. Let the end points of λ be p0 and q0. Because the projective space of real
lines in Rn through p0 has dimension n−1 and λ has finite length, there is a real line
that passes through p0 and is otherwise disjoint from λ. Let p1 be a point on this
line such that the straight line segment [p0, p1] is contained in Ω. Similarly, there is
a real line through q0 that is disjoint from (λ \ {q0}) ∪ [p0, p1]. Let q1 be a point on
this line such that the straight line segment [q0, q1] is contained in Ω. Choose open
Euclidean balls Bp and Bq centered at p1 and q1, respectively, such that the closures
of Bp and Bq are disjoint and lie in Ω, such that Bp is disjoint from λ ∪ [q0, q1], and
Bq is disjoint from λ∪ [p0, p1]. Choose points p′ and q′ in Bp \ [p0, p1] and Bq \ [q0, q1],
respectively. The set Ω \

(
λ ∪ [p0, p1] ∪ [q0, q1]

)
is connected (because a connected

manifold of real dimension greater than or equal to three cannot be disconnected
by a subspace of topological dimension one [12, Corollary 1, p. 48]), so there is a
rectifiable arc from p′ to q′ in Ω\

(
λ∪ [p0, p1]∪ [q0, q1]

)
. By discarding initial and final

segments of this arc, we can obtain an arc 0 in Ω \ (λ ∪ [p0, p1] ∪ [q0, q1] ∪ Bp ∪ Bq)
whose end points p2 and q2 lie on the boundary of Bp and Bq, respectively. Let [p1, p2]
denote the straight line segment from p1 to p2 and similarly with p replaced by q.
Then λ ∪ [p0, p1] ∪ [p1, p2] ∪ 0 ∪ [q1, q2] ∪ [q0, q1] is a rectifiable simple closed curve in
Ω that contains λ. This completes the proof in the case n ≥ 3.

For the case n = 2, identify R2 with C, and let C∗ denote the Riemann sphere.
We will use the following theorem which appears with proof as [3, Theorem 2.1] and
seems to be due to Marie Torhorst [24] but forgotten.

6.3. Theorem. If G is a simply connected region in C∗ such that bG is a nonde-
generate Peano continuum, then each prime end is a single point. Thus, if f is any
conformal homeomorphism of U onto G, then f can be extended to U to be continu-
ous.

Note that C∗ \ λ is a simply connected region in C∗ whose boundary λ is a non-
degenerate Peano continuum. Thus by the theorem just quoted, each conformal
homeomorphism of U onto C∗ \ λ extends to a continuous map of U onto C∗. Choose
such a map f that takes the point 1 to an end point e1 of λ and sends the point −1
to the other end point e−1 of λ. Let α denote the point of U such that f(α) = ∞.
Then the function g given by g(z) = (z − α)2f ′(z) lies in the Hardy space H1(U) [9,
pp. 221-222].

Choose r such that |α| < r < 1 and such that r is large enough that the set
f({z : r ≤ |z| ≤ 1}) is contained in Ω. Let D1 denote the disc with center (1 + r)/2
and radius (1− r)/2, so that the boundary of D1 is a circle contained in the annulus
{z : r ≤ |z| ≤ 1} passing through the points r and 1. Let D−1 denote the disc
obtained by reflecting D1 through the imaginary axis.
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Since the function g is in H1(U), the function g has a harmonic majorant on U,
that is, there exists a harmonic function u on U such that |g(z)| ≤ u(z) for all z ∈ U
[5, Theorem 2.12]. Consequently, f ′ has a harmonic majorant on D1 and hence lies
in H1(D1). It follows that the curve f(bD1) has finite length. Similarly, the curve
f(bD−1) has finite length as well.

We conclude that if we let 0−1 denote a semicircular arc along the circle bD−1

from −1 to −r, let 0 denote a semicircular arc along the circle {z : |z| = r} from
−r to r, and let 01 denote a semicircular arc along the circle bD1 from r to 1, then
f(0−1 ∪ 0 ∪ 01) ∪ λ is a rectifiable simple closed curve in Ω containing λ.

The lemma is proved.

Corollary 3.9. is a consequence of Theorem 3.7. and the following smooth analogue
of the preceding lemma.

6.4. Lemma. If λ is an arc of class C s, 1 ≤ s ≤ ∞, in Rn, n ≥ 2, and Ω is a
neighborhood of λ, then there is a simple closed curve γ of class C s that contains λ
and that is contained in Ω.

Proof. The outline of the proof is similar to that of the n ≥ 3 case of the previous
lemma. We may assume without loss of generality that Ω is connected. Throughout
the proof, by smooth we shall mean of class C s. Let the end points of λ be p0 and
q0. In some smooth local coordinate system about the point p0, the arc λ is just a
straight line segment ending at p0. Therefore, there is an arc λp from p0 to another
point p1 such that the union λ∪λp is a smooth arc contained in Ω. Similarly, there is
an arc λq from q0 to another point q1 such that the union λ∪λp∪λq is also a smooth
arc contained in Ω. Choose open Euclidean balls Bp and Bq centered at p1 and q1,
respectively, such that the closures of Bp and Bq are disjoint and lie in Ω, such that
Bp is disjoint from λ ∪ λq, and Bq is disjoint from λ ∪ λp. Choose points p′ and q′

in Bp \ λp and Bq \ λq, respectively. The set Ω \ (λ ∪ λp ∪ λq) is connected. (When
n ≥ 3, this is immediate from dimensional considerations [12, Corollary 1, p. 48]. To
see that it holds also when n = 2, first show that every connected neighborhood U
of an arc J in the plane contains a connected neighborhood V whose complement in
the plane is connected. Since V is then homeomorphic to the plane, it is a standard
fact that V \ J is connected. Connectedness of U \ J follows.) Therefore, there is a
smooth arc 0 from p′ to q′ in Ω \ (λ ∪ λp ∪ λq). By perturbing the radii of the open
balls Bp and Bq, we may assume that their boundaries intersect 0 and λ ∪ λp ∪ λq

transversally. Let λ∗ be the subarc of λ ∪ λp ∪ λq that is disjoint from Bp ∪ Bq and
connects a point of bBp to a point of bBq. Define 0∗ similarly but with λ ∪ λp ∪ λq

replaced by 0. The following lemma, whose proof we leave to the reader, then yields
arcs 0p and 0q in Bp and Bq, respectively, such that λ∗∪0p∪0∗∪0q is a smooth, simple
closed curve that contains λ and that is contained in Ω.

6.5. Lemma. Let B be an open ball in Rn, n ≥ 2, let a and c be points outside B,
let b and d be points inside B. Let ab and cd denote arcs of class C s, 1 ≤ s ≤ ∞, the
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first with end points a and b, the second with end points c and d. Suppose that ab
and cd each intersect bB transversally. Let a∗ and c∗ be the unique points of bB such
that the subarcs aa∗ and cc∗ of ab and cd, respectively, are disjoint from B. Then
there is an arc a∗c∗ with end points a∗ and c∗ contained in B such that aa∗∪a∗c∗∪cc∗

is an arc of class C s.
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