
POLYNOMIAL HULLS OF ARCS AND CURVES II

ALEXANDER J. IZZO

Abstract. We prove that if a compact set E in CN is contained
in an arc J , then there is a choice of J whose polynomial hull bJ is
J [ bE. This strengthens an earlier result of the author. We also
correct an inaccuracy in the statement, and fill a gap in the proof,
of that earlier result.

1. Introduction

The purpose of this paper is to strengthen results in the author’s
earlier paper [5] and to address a gap in that paper. Our main result
shows that every compact set E that is contained in an arc in CN

is contained in an arc whose polynomial hull is no larger than it is
obviously forced to be by virtue of containing the set E.

Theorem 1.1. Let E be a compact set that is contained in an arc in
CN . Then there exists an arc J in CN that contains E and is such
that bJ = J [ bE. Furthermore, J can be chosen to lie in an arbitrary
connected neighborhood of E and such that each component of J \ E
is a C1-smooth open arc. In addition, J can be taken to be a simple
closed curve rather than an arc provided N � 2.

The special case when the set E is polynomially convex yields the
following.

Corollary 1.2. Each compact polynomially convex set E that is con-
tained in an arc in CN is contained in a polynomially convex arc J
that can be chosen to lie in an arbitrary connected neighborhood of
E. Furthermore, J can be chosen so that each component of J \ E
is a C1-smooth open arc. With that choice, if P (E) = C(E), then
P (J) = C(J). In addition, J can be taken to be a simple closed curve
rather than an arc provided N � 2.

2010 Mathematics Subject Classification. Primary 32E20; Secondary 32A38,
32E30.

Key words and phrases. polynomial convexity, polynomial hull, arc, simple
closed curve.

The author was supported by NSF Grant DMS-1856010.
1



2 ALEXANDER J. IZZO

In the statements of Theorem 1.1 and Corollary 1.2, we have tacitly
assumed that the set E contains at least two points. In case E consists
of a single point or is empty, the results are still true and rather trivial,
except that obviously the components of J \ E will not be open arcs.

We include the case N = 1 in the above results mainly for complete-
ness. In that case the polynomial convexity assertions are trivial since
every subset of an arc in the complex plane is polynomially convex.
Nevertheless, the results are not trivial when N = 1; in fact, there are
topological di�culties in that case that are not present when N � 2.

We recall here some standard terminology and notation already used
above. By definition an arc is a space homeomorphic to the closed unit
interval, and a simple closed curve is a space homeomorphic to the unit
circle. An open arc is a space homeomorphic to the open unit interval.
For convenience we will also use the term arc to refer to a topological
embedding whose domain is an interval. A mapping that is referred
to as a C1-smooth arc will be required not only to be injective and of
class C1 but also to be an immersion, i.e., to have nowhere vanishing
derivative. The supremum of a function f over a set S will be denoted
by kfkS. For a C1-smooth function f and a positive integer n, the
Cn-norm of f will be denoted by kfkCn . Throughout the paper, N
will be a positive integer whose value is arbitrary except where noted
otherwise. We denote by m the 2N -dimensional Lebesgue measure on
CN . Neighborhoods will be assumed to be open. For a compact set
X in CN , we denote by C(X) the space of all continuous complex-
valued functions on X and by P (X) the uniform closure in C(X) of
the polynomials in the complex coordinate functions z1, . . . , zN . The
polynomial hull bX of X is defined by

bX = {z 2 CN : |p(z)|  max
x2X

|p(x)| for all polynomials p}.

The set X is said to be polynomially convex if bX = X.
For the special case in which the set E is totally disconnected, a

result along the lines of Theorem 1.1 was presented in [5, Theorem 1.3]
and used there to establish the existence of arcs with certain properties.
However, the proof given there seems to have a gap. It was asserted
that given the existence of an arc that contains the totally disconnected,
compact set E, “one can show that there is such an arc J0 with the
additional property that the closure of each component of J0 \ E is a
C1-smooth arc”. We will prove in the present paper that there is an
arc J0 through E such that each component of J0 \E is a C1-smooth
open arc, but the author does not know whether these open arcs can be
chosen so that their closures are smooth (closed) arcs. That stronger
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condition was used in the proof given for [5, Theorem 1.3] in that it
gave that J0 \E was contained in a countable union of disjoint compact
one-dimensional smooth manifolds-with-boundary and thus made it
possible to use the stability of smooth embeddings in the C1-topology.

The (flawed) approach used in [5] can be adapted to give a correct
proof using the stability of smooth embeddings in the strong topology
(also known as the fine topology or the Whitney topology). (See [4,
p. 35] for the definition.) This, however, makes the details somewhat
more complicated. We will instead use a di↵erent approach that uses
results from [7]. Theorem 1.1 is closely related to [7, Theorem 1.1] and
can, in fact, be regarded as a generalization of that result which we
state here for the reader’s convenience.

Theorem 1.3. A polynomially convex arc � in CN , N � 2, is con-
tained in a polynomially convex simple closed curve � that can be chosen
to lie in an arbitrarily small neighborhood of the given arc. Further-
more, � can be chosen such that the open arc � \� is C1-smooth. With
this choice, if P (�) = C(�), then P (�) = C(�).

Fortunately the gap in the proof of [5, Theorem 1.3] has very little
e↵ect on the applications in [5]. The proof of [5, Theorem 1.1], which
gives the existence of arcs and simple closed curves in C3 having “hull
with dense invertibles” goes through unchanged except for invoking
Theorem 1.1 of the present paper in place of [5, Theorem 1.3]. Likewise
[5, Theorem 1.2] can be proven as in [5] invoking Corollary 1.2 above in
place of [5, Theorem 1.3]. However, we can actually obtain a stronger
result, which we state here, in that we do not need the hypothesis made
in [5, Theorem 1.2] that ⌦ is a Runge domain of holomorphy. (Note
that [5, Theorem 1.3] involved a Runge domain of holomorphy but that
this is not the case with Theorem 1.1 above.)

Theorem 1.4. Let ⌦ be a bounded, connected open set in CN , let x0

be a point of ⌦, and let " > 0. Then there exists a polynomially convex
arc J in CN such that x0 2 J ⇢ ⌦ and m(⌦ \ J) < ". Furthermore, J
can be chosen so that P (J) = C(J) and the set of polynomials zero-free
on J is dense in P (⌦). The same statements hold with “arc” replaced
by “simple closed curve” provided N � 2.

The proof of Theorem 1.4 is essentially the same as that given for
[5, Theorem 1.2] except for invoking Corollary 1.2 above in place of
[5, Theorem 1.3] and replacing [5, Lemma 2.4] by the more general
Lemma 2.5 below.

In the next section we present some preliminary results. Theorem 1.1
and Corollary 1.2 are proved in Section 3.
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2. Preliminary Results

We begin with some topological lemmas concerning arcs.

Lemma 2.1. Let � be a closed set in RN , N � 3, of Lebesgue covering
dimension at most 1, let a and a0 be two points in �, and let ⌦ be a
connected open set of RN that contains a and a0. Then there is an arc
J from a to a0 contained in ⌦ that intersects � only in the end points
a and a0 of J and is such that the open arc J \ {a, a0} is C1-smooth.

Proof. The proof is essentially a repetition of the proof of the n � 3
case of [7, Theorem 1.2]. ⇤

The above lemma becomes false with N = 2. There is, however, the
following weaker result.

Lemma 2.2. Let � be an arc in R2, let a and a0 be two points in �,
let �a,a0 be the subarc of � from a to a0, and let ⌦ be a neighborhood of
�a,a0 in R2. Then there is an arc J from a to a0 contained in ⌦ that
intersects � only in the end points a and a0 of J and is such that the
open arc J \ {a, a0} is C1-smooth.

Proof. The proof is similar to the proof of the n = 2 case of [7, Theo-
rem 1.2] but requires some care, so we include the details. There is a
conformal map ' : U ! C⇤ \ � of the open unit disc U onto the com-
plement of � in the Riemann sphere C⇤. By [2, Theorem 2.1] (which
seems to be due to Marie Torhorst [9]), ' extends continuously to the
closure of U. Choose points p and p0 in the boundary @U of U such that
'(p) = a and '(p0) = a0 and such that on one of the open arcs ↵ on @U
determined by p and p0 the function ' never takes either of the values
a and a0. Then ' maps ↵ onto the interior of the arc �a,a0 . Let ` be
an arc in U [ {p, p0} with end points p and p0, and set J = '(`). Then
J is an arc from a to a0 that intersects � only in the points a and a0.
By choosing ` to lie su�ciently near ↵ and to be C1-smooth, we can
insure that J is contained in ⌦ and that J \ {a, a0} is C1-smooth. ⇤
Lemma 2.3. Let ⌦ be a connected open set in R2, and let J1, . . . , Jn be
finitely many disjoint arcs in ⌦. Then ⌦ \ (J1 [ · · ·[ Jn) is connected.

Proof. We merely sketch the proof, leaving the details to the reader.
By induction it su�ces to consider the case when there is just one arc
J . For that case, first show that ⌦ contains a connected neighborhood
V of J such that the complement of V in R2 is connected. Since V
is then homeomorphic to the plane, it is a standard fact that V \ J is
connected. Connectedness of ⌦ \ J follows. ⇤
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Lemma 2.4. Let E be a compact set that is contained in an arc in
RN . Then every connected neighborhood of E contains an arc J that
contains E and has the additional property that each component of J\E
is a C1-smooth open arc. In addition, J can be taken to be a simple
closed curve rather than an arc provided N � 2.

As in the statements of Theorem 1.1 and Corollary 1.2, we tacitly
assume in the above lemma that the set E contains at least two points.

Proof. It is su�cient to construct the desired arc; the existence of the
desired simple closed curve then follows immediately from [7, Theo-
rem 1.2]. The case N = 1 is trivial. We first treat the case N � 3; the
case N = 2 requires a more involved argument.

Let ⌦ be a connected neighborhood of E. Let � : [0, 1] ! RN

be an arc through E, and assume without loss of generality that the
end points of � are in E. Set L = ��1(E). The set [0, 1] \ L is an
at most countable union of disjoint open intervals (a1, b1), (a2, b2), . . ..
Note that the diameters diam

�
�([aj, bj])

�
go to zero as j ! 1 (if there

are infinitely many intervals (aj, bj)). In particular, �([aj, bj]) is con-
tained in ⌦ for all but finitely many j. For each j such that �([aj, bj])
is contained in ⌦, choose a connected neighborhood ⌦j of �([aj, bj])
contained in ⌦ and of diameter no more than twice the diameter of
�([aj, bj]). For j such that �([aj, bj]) is not contained in ⌦, set ⌦j = ⌦.
Note that then diam(⌦j) ! 0 as j ! 1.

By Lemma 2.1 there is an arc �1 : [a1, b1] ! ⌦1 from �(a1) to �(b1)
that is C1-smooth except possibly at its end points and that intersects
E only in its end points �(a1) and �(b1). Continuing inductively, we
can choose, for each j = 2, 3, . . ., an arc �j : [aj, bj] ! ⌦j from �(aj)
to �(bj) that is C1-smooth except possibly at its end points and that
intersects E [�1([a1, b1])[ · · ·[�j�1([aj�1, bj�1]) only in its end points
�(aj) and �(bj). Now defining ⌧ : [0, 1] ! ⌦ to coincide with � on
L and to coincide with �j on [aj, bj] for each j = 1, 2, . . . yields the
desired arc. (Continuity of ⌧ is a consequence of the conditions that
diam

�
�j([aj, bj])

�
 diam(⌦j) and diam(⌦j) ! 0 as j ! 1.) This

concludes the proof in the case N � 3.
We now consider the case N = 2, which we will establish in two

steps. First we will obtain an arc through E that is contained in ⌦ and
for which no smoothness is asserted, and subsequently we will obtain
the arc whose existence is asserted in the statement of the lemma.

Let ⌦, �, and L be as before. Since L is a compact set contained
in the (relatively) open set ��1(⌦) of [0, 1], the set L is contained in
a finite union of intervals that are open in [0, 1] and are contained in



6 ALEXANDER J. IZZO

��1(⌦). Consequently, we can choose points

0 = c0 < d0 < c1 < d1 < · · · < cn < dn = 1
such that

E ⇢ �
⇣
[c0, d0) [ (c1, d1) [ · · · [ (cn�1, dn�1) [ (cn, dn]

⌘

⇢ �
⇣
[c0, d0] [ [c1, d1] [ · · · [ [cn�1, dn�1] [ [cn, dn]

⌘
⇢ ⌦.

By modifying � near each of the points d0, . . . , dn�1 and c1, . . . , cn,
we may assume that there are open Euclidean balls Bd0 , . . . , Bdn�1

and Bc1 , . . . , Bcn centered at �(d0), . . . , �(dn�1) and �(c1), . . . , �(cn),
respectively, whose closures are disjoint and lie in ⌦ such that the
intersection of �([0, 1]) with each of these balls is a straight line seg-
ment. Choose, from ⌦ \ �

�
[c0, d0] [ · · · [ [cn, dn]

�
, points q00, . . . , q

0
n�1

and p01, . . . , p
0
n in Bd0 , . . . , Bdn�1 and Bc1 , . . . , Bcn , respectively. The

set ⌦ \ �
�
[c0, d0] [ · · · [ [cn, dn]

�
is connected by Lemma 2.3, so there

is an arc from q00 to p01 in ⌦ \ �
�
[c0, d0] [ · · · [ [cn, dn]

�
. By discard-

ing initial and final segments of this arc, we can obtain an arc � in
⌦ \

⇥
�
�
[c0, d0] [ · · · [ [cn, dn]

�
[ Bd0 [ Bc1

⇤
whose end points q̃ and p̃

lie on the boundary of Bd0 and Bc1 , respectively. Let Lq̃ and Lp̃ be
the straight line segments from �(d0) to q̃ and from �(c1) to p̃, respec-
tively. Set `0 = Lq̃ [ � [ Lp̃. Then `0 is an arc in ⌦ that intersects
�
�
[c0, d0] [ · · · [ [cn, dn]

�
only in the end points �(d0) and �(c1) of `0.

Continuing inductively we can similarly choose, for each j = 1, . . . , n�
1, an arc `j in ⌦ from �(dj) to �(cj+1) that, aside from its end points,
is disjoint from �

�
[c0, d0][ · · ·[ [cn, dn]

�
and from each of the previously

chosen arcs `1, . . . , `j�1. Then �
�
[c0, d0][ · · ·[ [cn, dn]

�
[ `0 [ · · ·[ `n�1

is an arc in ⌦ that contains E.
The passage from the arc just obtained to the desired arc J is similar

to the proof of the lemma in the case N � 3 but with Lemma 2.1
replaced by Lemma 2.2, so we will compress the details. Let �̃ : [0, 1] !
⌦ be a parametrization of the arc just obtained satisfying �̃|L = �|L.
With [0, 1] \ L = (a1, b1) [ (a2, b2) [ · · · as in the case N � 3, we
choose, for each j = 1, 2, . . ., a connected neighborhood ⌦j of �̃([aj, bj])
contained in ⌦ in such a way that diam(⌦j) ! 0 as j ! 1. By
Lemma 2.2 there is an arc �1 : [a1, b1] ! ⌦1 from �̃(a1) to �̃(b1) that
is C1-smooth except possibly at its end points and that intersects
�̃([0, a1] [ [b1, 1]) only in its end points �̃(a1) and �̃(b1). Define ⌧1 :
[0, 1] ! ⌦ to coincide with �̃ on [0, a1] [ [b1, 1] and to coincide with �1
on [a1, b1]. Then ⌧1 is an arc. Continuing inductively, we can obtain,
for each j = 2, 3, . . ., an arc �j : [aj, bj] ! ⌦j from �̃(aj) to �̃(bj) and
an arc ⌧j so that �j is C1-smooth except possibly at its end points and
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intersects ⌧j�1([0, aj] [ [bj, 1]) only in its end points �̃(aj) and �̃(bj),
and ⌧j coincides with ⌧j�1 on [0, aj] [ [bj, 1] and coincides with �j on
[aj, bj]. The sequence (⌧n) converges uniformly, and its limit is the
desired arc. ⇤

Next we present three results we will need concerning polynomial
convexity. The first of these is an almost immediate consequence of
[6, Lemma 3.2], and as mentioned in the introduction generalizes [5,
Lemma 2.4].

Lemma 2.5. Let Y be a compact set in CN , let x0 be a point of Y ,
and let " > 0. Let {pj} be a countable collection of polynomials on CN

such that pj(x0) 6= 0 for all j. Then there exists a totally disconnected,
compact polynomially convex set E with x0 2 E ⇢ Y such that
(i) each pj is zero-free on E
(ii) m(Y \ E) < ".

Proof. By making a complex a�ne change of coordinates, we may as-
sume without loss of generality that x0 = 0 and that Y is contained
in the open unit ball B of CN . Then [6, Lemma 3.2] gives a totally
disconnected, compact polynomially convex set K with 0 2 K ⇢ B
such that

(i) each pj is zero-free on K
(ii) m(B \K) < ".

Let E = K \ Y . Then E is compact and totally disconnected. Also
x0 = 0 2 E ⇢ Y , each pj is zero-free on E, and m(Y \E)  m(B\K) <
". Because K is a totally disconnected, compact polynomially convex
set, it follows from the Shilov idempotent theorem that P (K) = C(K)
(see [1, p. 48, Corollary 3] for instance), and hence, P (E) = C(E), so
E is polynomially convex. ⇤

The following result, a special case of [7, Theorem 1.3], will play a
key role in the proof of Theorem 1.1.

Theorem 2.6. Let Y ⇢ CN be a compact polynomially convex set, and
let � be a rectifiable arc both of whose end points lie in Y but that is
otherwise disjoint from Y . If a nonempty open subarc of � is contained
in a purely one-dimensional analytic subvariety V of CN but � is not
entirely contained in V , then Y [ � is polynomially convex.

The next result, which is [7, Theorem 1.7], will be used in the proof
of Corollary 1.2.

Theorem 2.7. Let � be an arc in CN , and let E be a compact subset of
� that is polynomially convex. Suppose that � \ E is locally rectifiable.



8 ALEXANDER J. IZZO

Then � is polynomially convex. Furthermore, if P (E) = C(E), then
P (�) = C(�).

Finally we will need the following technical lemma.

Lemma 2.8. Let � : [a, b] ! CN , N � 2, be a C1-smooth arc. Fix
a positive integer n, an " > 0, and an open interval U contained in
[a, b]. Then there exists a C1-smooth arc ⌧ : [a, b] ! CN and a purely
one-dimensional analytic subvariety V of CN such that
(i) some nonempty open subarc of ⌧([a, b]) is contained in V but ⌧([a, b])
is not entirely contained in V ,
(ii) k⌧ � �kCn < ", and
(iii) ⌧ coincides with � except in U .

The proof of Lemma 2.8 will use the following real variable lemma
whose proof we also include.

Lemma 2.9. Let [a, b] ⇢ R be an interval whose interior contains 0,
let n be a positive integer, and let f : [a, b] ! RN be a C1-smooth
map such that f(0) = f 0(0) = · · · = f (n)(0) = 0. Fix " > 0, and fix
a neighborhood U of 0 in (a, b). Then there exists a C1-smooth map
g : [a, b] ! RN such that g coincides with f on a neighborhood of 0,
such that kgkCn < ", and such that the support of g is contained in U .

Proof. It su�ces to consider the case N = 1. Taylor’s theorem shows
that there is a constant C1 (depending only on max{�a, b} and the
particular formula one uses for the Cn-norm) such that every C1-
smooth function u on [a, b] satisfying u(0) = u0(0) = · · · = u(n�1)(0) = 0
also satisfies the inequality

kukCn  C1ku(n)k[a,b].
Choose a C1-smooth function  : [a, b] ! R such that 0    1
everywhere,  is identically 1 on a neighborhood of 0, and the support
of  is contained in U . Then it follows from Leibniz’ formula that there
exists a constant C2 such that every C1-smooth function u on [a, b]
satisfies the inequality

k ukCn  C2kukCn .

Choose � > 0 small enough that

kf (n)k[��,�] < "/2C1C2.

Choose a C1-smooth function � : [a, b] ! R such that 0  �  1
everywhere, � is identically 1 on [��, �], and the support of � lies in a
su�ciently small neighborhood of [��, �] that

k�f (n)k[a,b]  2kf (n)k[��,�].
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Let h : [a, b] ! R be the function satisfying h(n) = �f (n) and h(0) =
h0(0) = · · · = h(n�1)(0) = 0. Set g =  h. Then g satisfies all the
conditions asserted in the statement of the lemma. ⇤

Proof of Lemma 2.8. Without loss of generality assume that 0 is in U .
Choose a polynomial map F : C ! CN such that for each component
of F the Taylor coe�cients at 0 match those of the corresponding
component of � up to order n but di↵er for order n+1. Set V = F (C).
Then V is a purely one-dimensional analytic subvariety of CN (as a
special case of Remmert’s proper mapping theorem [3, Theorem N1]).
Note that �(0) is in V , but there exists a point t1 in (a, b) such that the
point �(t1) is not in V . Define f : [a, b] ! CN by f(t) = F (t) � �(t).
By the stability of smooth embeddings in the C1-topology, there exists
"0 > 0 such that every C1-smooth map �̃ : [a, b] ! CN satisfying
k�̃ � �kCn < "0 is a C1-smooth arc. By Lemma 2.9 there exists a
C1-smooth map g : [a, b] ! CN such that g coincides with f on
a neighborhood of 0, such that kgkCn < min{", "0}, and such that the
support of g is contained in U and does not contain the point t1. Setting
⌧ = � + g yields the lemma. ⇤

3. Proofs of Theorem 1.1 and Corollary 1.2

Corollary 1.2 is a special case of Theorem 1.1, but we give an inde-
pendent proof since the corollary is much more easily established than
the general theorem.

Proof of Corollary 1.2. Let ⌦ be an arbitrary connected neighborhood
of E. Let J be the arc in ⌦ given by Lemma 2.4. Then Theorem 2.7
gives that J is polynomially convex and that P (J) = C(J) if P (E) =
C(E). The statement about a simple closed curve then follows from
Theorem 1.3. ⇤

Proof of Theorem 1.1. The caseN = 1 follows immediately from Lemma 2.4
since every arc in the complex plane is polynomially convex. From now
on we assume that N � 2. We treat only the construction of the arc.
The simple closed curve can be constructed similarly.

Let ⌦ be an arbitrary connected neighborhood of E. Lemma 2.4
yields the existence of an arc �0 : [0, 1] ! ⌦ such that �0({0, 1}) ⇢
E ⇢ �0([0, 1]) and such that the restriction �0|([0,1]\��1

0 (E)) is a C1-
embedding. The proof will be complete once we establish that there
is an arc � : [0, 1] ! ⌦ that has the properties just listed for �0
and has the additional property that setting J = �([0, 1]) we have that
bJ = J[ bE. We will obtain � as a limit of a sequence of arcs �n : [0, 1] !
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⌦ that will be constructed inductively. We will also simultaneously
construct a sequence (Kn) of compact polynomially convex sets.

Let K0 be a closed ball in CN whose interior contains �0([0, 1]).
Choose a sequence (Un) of neighborhoods of bE with U0 = CN andT1

n=0 Un = bE. Set L = ��1
0 (E). Roughly, the �n will be constructed

by succesively changing �0 at most once on each member of a collection
of disjoint open intervals contained in [0, 1] \ L.

The sequence of arcs (�n) and the sequence of compact polynomially
convex sets (Kn) will be chosen so that the following conditions hold
for all n = 1, 2, . . ..

(i) bE ⇢ Int(Kn) ⇢ Kn ⇢ Int(Kn�1) \ Un.

(ii) Kn has C1-smooth boundary @Kn.

(iii) �n|L = �0|L.
(iv) The restriction of �n to [0, 1] \ L is a C1-immersion.

(v) k�n � �n�1k[0,1] < 1/2n.

(vi) k�n|([0,1]\L) � �n�1|([0,1]\L)kCn < 1/2n.

(vii) �n�1 is transverse to @Kn (i.e., at each point where �n�1([0, 1])
and @Kn intersect, the real linear span of their tangent spaces
is CN).

(viii) �n([0, 1]) ⇢ Kn�1 [ �n�1([0, 1]).

(ix) Condition (vii) implies that ��1
n�1(CN \ Kn) is a finite union

of open intervals (a1, b1), . . . , (au, bu). The map �n coincides
with �n�1 everywhere on [0, 1] except on those intervals (aj, bj)
such that �n�1

�
(aj, bj)

�
is contained entirely in Kn�1. Also

�n
�
(a1, b1) [ · · · [ (au, bu)

�
is disjoint from Kn.

(x) For each component � of �n([0, 1]) \Kn there is a purely one-
dimensional analytic subvariety ofCN that contains a nonempty
open subarc of � but does not contain all of �.

Before constructing the sequences (�n) and (Kn) we show that their
existence will yield the theorem. First we note a special property that
the sequence (�n) has as a consequence of conditions (vii) and (ix).
Given a point t0 in [0, 1], if �0(t0) is not in bE =

T1
n=0 Un =

T1
n=0 Kn =T1

n=0 Int(Kn), then there is a smallest integer s � 1 such that �0(t0)
is not in Int(Ks). In this case, there is an open interval (↵, �) ⇢
[0, 1] containing t0 such that �s�1 and �s may di↵er on (↵, �), but
�0, . . . , �s�1 coincide on (↵, �), and �n coincides with �s on (↵, �) for
all n � s. If instead �0(t0) is in bE, then for each integer n � 1 there is
a neighborhood of t0 in [0, 1] on which �n coincides with �0.
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Condition (v) implies that the sequence (�n) converges uniformly
to a continuous map � : [0, 1] ! ⌦, and condition (vi) implies that
�|([0,1]\L) is C1-smooth. Condition (iii) implies that �|L = �0|L. In
combination with condition (iv), the special property of the sequence
(�n) observed in the preceding paragraph yields that �|([0,1]\L) is an
immersion. Furthermore, � is injective because given t1 6= t2 in [0, 1]
there exists an s such that �(t1) = �s(t1) 6= �s(t2) = �(t2). Thus �, or
more precisely J = �([0, 1]), is an arc, and each component of J \E is
a C1-smooth open arc.

Recall that �|L = �0|L, and hence J � �0(L) = E. Consequently,
bJ � J [ bE. To establish the reverse inclusion it su�ces to show that
J [ bE is polynomially convex.

By conditions (ix) and (x), there are finitely many disjoint arcs
�1, . . . ,�u such that Kn [ �n([0, 1]) = Kn [ �1 [ · · · [ �u where each
�j intersects Kn precisely in its two end points and is such that there
is a purely one-dimensional analytic subvariety of CN that contains
a nonempty open subarc of �j but does not contain all of �j. Conse-
quently, repeated application of Theorem 2.6 shows that Kn[�n([0, 1])
is polynomially convex. We will show that

(1)
1T
n=0

h
Kn [ �n([0, 1])

i
= J [ bE

thereby establishing the polynomial convexity of J [ bE. Clearly bE is
contained in the left hand side of equation (1) by condition (i). For
each point x0 in J there is an s such that x0 is in �n([0, 1]) for all
n � s. Since conditions (i) and (viii) show that the sequence of sets�
Kn[�n([0, 1])

�
is decreasing, this yields that also J is contained in the

left hand side of equation (1). Thus the left hand side of equation (1)
contains the right hand side. For the reverse inclusion note that for a
point x0 in the left hand side of equation (1) that does not lie in bE there
is an s such that x0 does not lie in Ks; then x0 is in �n([0, 1]) for all
n � s, and thus x0 must be in J . This concludes the verification that
the existence of the sequences (�n) and (Kn) will yield the theorem.

It remains to construct the sequences (�n) and (Kn). We already
have �0 and K0. We proceed by induction. Suppose for some k � 0 we
have chosen �0, . . . , �k and K0, . . . , Kk so that conditions (i)–(x) are
satisfied for all n = 1, . . . , k.

By well-known theorems in several complex variables regarding the
existence of plurisubharmonic exhaustion functions and the equality of
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polynomial hulls and plurisubharmonic hulls (see for instance [8, Theo-
rems II.5.11 and VI.1.18]) there exists a C1 strictly plurisubharmonic
exhaustion function ' on CN such that

'(z) > 0 for z 2 CN \ (Int(Kk) \ Uk+1)
and

'(z) < 0 for z 2 E.

Set Kr = {z 2 CN : '(z)  r}. Set M = maxz2E '(z). Then for
M < r < 0 the set Kr is a compact polynomially convex set such that
bE ⇢ Int(Kr) ⇢ Kr ⇢ Int(Kk) \ Uk+1. Furthermore, since for these
values of r the boundary of Kr is disjoint from E, we can choose, by
Sard’s theorem, a value r0 satisfying M < r0 < 0 such that Kr0 has C1-
smooth boundary @Kr0 and �k is transverse to @Kr0 . Set Kk+1 = Kr0 .

Because �k is transverse to @Kk+1, the set ��1
k (CN \ Kk+1) is a

finite union of disjoint open intervals. Of those open intervals, let
(a1, b1), . . . , (aw, bw) denote those whose image under �k is entirely con-
tained in Kk. For each j = 1, . . . , w, choose a point xj in �k

�
(aj, bj)

�
\

Int(Kk). Then choose disjoint closed balls B1, . . . , Bw centered at
x1, . . . , xw, respectively, with radii strictly less than 1/2k+1 and small
enough that each Bj is contained in Kk and the intersection of each
Bj with Kk+1 [ �k([0, 1]) is contained in �k

�
(aj, bj)

�
. By applying

Lemma 2.8 choose, for each j = 1, . . . , w, a C1-smooth arc ⌧j :
[aj, bj] ! ⌦ such that ⌧j coincides with �k|[aj ,bj ] except on some interval
that is mapped into Bj by both �k and ⌧j, such that there is a purely
one-dimensional analytic subvariety of CN that contains a nonempty
open subarc of ⌧j([aj, bj]) but does not contain all of ⌧j([aj, bj]), and
such that k⌧j��k|[aj ,bj ]kCk+1 < 1/2k+1. Finally, define �k+1 : [0, 1] ! ⌦
to coincide with �k on [0, 1] \

�
(a1, b1) [ · · · [ (aw, bw)

�
and to coincide

with ⌧j on [aj, bj] for each j = 1, . . . , w. Then �k+1 is an arc. Further-
more, conditions (i)–(x) hold for all n = 1, . . . , k + 1. This completes
the induction and the proof. ⇤
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