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UNIFORMLY CONTINUOUS FUNCTIONS IS NOT BOREL
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Abstract. It is known that for X a nowhere locally compact metric space,

the set of bounded continuous, nowhere locally uniformly continuous real-

valued functions on X contains a dense G� set in the space Cb(X) of all

bounded continuous real-valued functions on X in the supremum norm.

Furthermore, when X is separable, the set of bounded continuous, nowhere

locally uniformly continuous real-valued functions on X is itself a G� set.

We show that in contrast, when X is nonseparable, this set of functions is

not even a Borel set.

We call a function f : X ! Y between metric spaces locally uniformly con-
tinuous at a point x if there is a neighborhood U of x on which f is uniformly

continuous. If f is locally uniformly continuous at every point of X, we say that

f is locally uniformly continuous. If f is locally uniformly continuous at no point

of X, we say that f is nowhere locally uniformly continuous. Equivalently, f is

nowhere locally uniformly continuous if it is uniformly continuous on no open set

of X.

In [2] the author proved that for X a separable metric space that is nowhere

locally compact (i.e., locally compact at no point), the set of bounded continuous,

nowhere locally uniformly continuous real-valued functions on X is a dense G�

set in the space Cb(X) of all bounded continuous real-valued functions on X with

the supremum norm. In [3] the author extended this result by showing that in the

absence of the separability hypothesis, the set of bounded continuous, nowhere

locally uniformly continuous real-valued functions on X still contains a dense G�
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set in Cb(X), and he noted that his argument in this case did not show that the

set actually is a G� set. An (anonymous) referee of [3] wrote “. . . I believe that

the collection of n. l. u. c. functions *is* a dense G-delta. I encourage the author

to prove this and re-submit the paper elsewhere.” The purpose of the present

paper is to show that on the contrary, for X nonseparable (and nowhere locally

compact) the set of nowhere locally uniformly continuous functions in Cb(X) is

not even a Borel set.

The proofs given here use an idea from the paper of Roberts [6] (which came to

the author’s attention from a footnote in the classic book [1]). A well-known result

in dimension theory asserts that if X is a separable metric space of topological

dimension n, then in the space IX
2n+1

of all continuous mappings of X into the

(2n + 1)-dimensional Euclidean cube I2n+1 with the uniform metric, the set of

embeddings contains a dense G� set, and in the case when X is compact, the

set of embeddings is a G� set. Roberts proved that for a certain (noncompact)

separable metric space X the set of embeddings is not a G� set in IX
2n+1

by

finding an embedded Cantor set in IX
2n+1

whose intersection with the the set of

embeddings of X into I2n+1 is not a G� set in the Cantor set. We will use a slight

modification of Roberts’ idea. If Y and Z are topological spaces and F : Y ! Z
is a continuous map, then F�1

(E) is a Borel set in Y for every Borel set E in

Z. Thus to show that a set E in Z is not a Borel set, it is su�cient to find a

continuous map F : Y ! Z such that F�1
(E) is not Borel in Y .

The precise statement of our result is as follows.

Theorem 1. Let X be a nonseparable, nowhere locally compact metric space.
Then the set of bounded continuous, nowhere locally uniformly continuous real-
valued functions on X is not a Borel set in Cb(X).

Before proving the theorem we present an example that illustrates the main

idea behind the proof. The reader who wishes, can skip the example and proceed

directly to the proof of the theorem. On the other hand, the reader who is

content to verify only the existence of a metric space for which the conclusion of

the theorem holds can read only the example and omit the proof of the general

theorem.

Throughout R will denote the real line with the standard metric.

Example 2. Let S be a nowhere locally compact metric space with metric dS .
Let A be bounded subset of R that is not a Borel set, and let dd be the metric

on A that takes only the values 0 and 1. Finally, let X = S ⇥ A with the metric

d defined by d
�
(s1,↵1), (s2,↵2)

�
= dS(s1, s2) + dd(↵1,↵2). We wish to show that

the set of bounded continuous, nowhere locally uniformly continuous real-valued
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functions on X is not a Borel set in Cb(X). As noted above, it will su�ce to

construct a continuous map F : R ! Cb(X) such that the inverse image under F
of the nowhere locally uniformly continuous functions in Cb(X) is not Borel in R.

Fix a bounded continuous, nowhere locally uniformly continuous real-valued

function f on S (which exists by [3]). For each r 2 R define a function fr : X =

S ⇥A ! R by

fr(s,↵) = |↵� r|f(s).
Each function fr is bounded, and since a function on X is continuous if its re-

striction to each set S ⇥ {↵}, ↵ 2 A, is continuous, each fr is continuous. Now

define the map F : R ! Cb(X) by F (r) = fr. A trivial computation shows that

for p and q in R
kF (p)� F (q)k1  |p� q| kfk1,

where k · k1 denotes the supremum norm. Thus F is continuous.

Because f is nowhere locally uniformly continuous, fr is nowhere locally uni-

formly continuous for each r 2 R \ A. In contrast, for r 2 A the function fr is

identically zero on the open set S ⇥ {r}, and hence, is not nowhere locally uni-

formly continuous. Thus the inverse image of the bounded continuous, nowhere

locally uniformly continuous functions under F is the non-Borel set R \A. ⇤

In preparation for the proof of Theorem 1, we mention an elementary fact from

descriptive set theory that will be used: There exists a bounded subset of R that

is not a Borel set and whose cardinality is @1 (the first uncountable cardinal). To

see this, choose a subset E of R that is uncountable but contains no Cantor set

(i.e., contains no set homeomorphic to the usual middle-thirds Cantor set). The

existence of such a set is given by [5, 40.I, Theorem 1]. Then choose a bounded

subset A of E of cardinality @1. Since A contains no Cantor set, A is non-Borel

by [4, Theorem 13.6]. An alternative way to obtain the desired set is to note

first that if the continuum hypothesis holds, then every non-Borel subset of R
has cardinality @1. If the continuum hypothesis fails, then every subset of R of

cardinality @1 is non-Borel, since every uncountable Borel subset of R contains a

Cantor set ([4, Theorem 13.6] again) and hence has the cardinality of R.

Proof of Theorem 1. We will construct a continuous map F : R ! Cb(X)

such that the inverse image under F of the nowhere locally uniformly continuous

functions in Cb(X) is not Borel in R. As noted earlier, this will establish the

theorem.

Fix a bounded subset A of R that is not a Borel set and has cardinality @1. Let

d denote the metric on X. Because X is a nonseparable metric space, there is a
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locally discrete collection C of nonempty open sets of X that has cardinality @1.

(This is immediate from the Bing metrization theorem. It can also be proven

directly by showing that there exists a � > 0 and a subset C of X that has

cardinality @1 such that d(c1, c2) � � for every pair of distinct points c1 and c2
in C, and then taking C to be the collection of �/3-balls centered at the points

of C). Choose a bijection A ! C and denote the member of C corresponding to

↵ 2 A by U↵. For each ↵, choose a nonempty open set V↵ such that V ↵ ⇢ U↵.

Then choose, for each ↵, a locally uniformly continuous function '↵ : X ! [0, 1]
such that '↵(V ↵) = {1} and '↵(X \ U↵) = {0}. For instance, one can define '↵

by

(1) '↵(x) =
dX\U↵

(x)

dX\U↵
(x) + dV ↵

(x)

where dE(x) = inf{d(x, e) : e 2 E} (the distance from the point x to the set E).

The easy proof that the function '↵ defined by equation (1) is locally uniformly

continuous is given in [2, Lemma 5]. Choose a bounded continuous, nowhere

locally uniformly continuous real-valued function f on X (which exists by [3]).

Now for each r 2 R, define fr : X ! R by

fr(x) =


1�

X

↵2A

�
1� |↵� r|

�
'↵(x)

�
f(x).

Because each point of X has a neighborhood on which at most one of the '↵ is

not identically zero, fr is a well-defined continuous function. Note also that fr is

a bounded function. Now define the map F : R ! Cb(X) by F (r) = fr.
For p and q in R and x in X we have

��fp(x)� fq(x)
�� =

�����

 X

↵2A

⇣
|↵� p|� |↵� q|

⌘
'↵(x)

�
f(x)

�����



�����
X

↵2A

⇣
|↵� p|� |↵� q|

⌘
'↵(x)

�����kfk1


 X

↵2A

|p� q|'↵(x)

�
kfk1

 |p� q| kfk1
since '↵(x) is nonzero for at most one ↵. Thus F is continuous.

To complete the proof we show that the inverse image of the set of bounded

continuous, nowhere locally uniformly continuous functions under F is the non-

Borel set R \A. Observe that for r 2 A, the function fr is identically zero on Vr,
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and hence, is not nowhere locally uniformly continuous. Now consider r 2 R \A.

Define gr : X ! R by

gr(x) = 1�
X

↵2A

�
1� |↵� r|

�
'↵(x)

so that fr = grf . For each x 2 X, each term in the sum over A in the definition of

gr is strictly less than 1, and since at most one of the terms is nonzero, gr is zero

free. Furthermore, since each '↵ is locally uniformly continuous and the supports

of the '↵ form a locally discrete family, gr is locally uniformly continuous. Thus

the following lemma yields that fr is nowhere locally uniformly continuous thereby

concluding the proof. ⇤
Lemma 3. The product of a zero free locally uniformly continuous real-valued
function and a continuous, nowhere locally uniformly continuous real-valued func-
tion is nowhere locally uniformly continuous.

Proof. Suppose that f , g, and, h are real-valued functions such that h = gf ,
that g is zero free and locally uniformly continuous, and that f is continuous. We

show that if h fails to be nowhere locally uniformly continuous, then so does f .
Let U be an open set on which h is uniformly continuous. By shrinking U , we

can assume that h is bounded on U . By shrinking U further, we can also assume

that g is uniformly continuous on U and that g is bounded away from zero on

U . Then 1/g is bounded and uniformly continuous on U . Thus the restriction of

f = h/g to U is a product of two bounded uniformly continuous functions and

hence is uniformly continuous. ⇤
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