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THE SET OF BOUNDED CONTINUOUS NOWHERE LOCALLY
UNIFORMLY CONTINUOUS FUNCTIONS IS NOT BOREL

ALEXANDER J. 1ZZ0O

Communicated by Yasunao Hattori

ABSTRACT. It is known that for X a nowhere locally compact metric space,
the set of bounded continuous, nowhere locally uniformly continuous real-
valued functions on X contains a dense Gj set in the space Cy(X) of all
bounded continuous real-valued functions on X in the supremum norm.
Furthermore, when X is separable, the set of bounded continuous, nowhere
locally uniformly continuous real-valued functions on X is itself a Gg set.
We show that in contrast, when X is nonseparable, this set of functions is
not even a Borel set.

We call a function f : X — Y between metric spaces locally uniformly con-
tinuous at a point x if there is a neighborhood U of x on which f is uniformly
continuous. If f is locally uniformly continuous at every point of X, we say that
[ is locally uniformly continuous. If f is locally uniformly continuous at no point
of X, we say that f is nowhere locally uniformly continuous. Equivalently, f is
nowhere locally uniformly continuous if it is uniformly continuous on no open set
of X.

In [2] the author proved that for X a separable metric space that is nowhere
locally compact (i.e., locally compact at no point), the set of bounded continuous,
nowhere locally uniformly continuous real-valued functions on X is a dense G5
set in the space Cp(X) of all bounded continuous real-valued functions on X with
the supremum norm. In [3] the author extended this result by showing that in the
absence of the separability hypothesis, the set of bounded continuous, nowhere
locally uniformly continuous real-valued functions on X still contains a dense G
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set in Cp(X), and he noted that his argument in this case did not show that the
set actually is a Gs set. An (anonymous) referee of [3] wrote ... I believe that
the collection of n. 1. u. c. functions *is* a dense G-delta. I encourage the author
to prove this and re-submit the paper elsewhere.” The purpose of the present
paper is to show that on the contrary, for X nonseparable (and nowhere locally
compact) the set of nowhere locally uniformly continuous functions in Cp(X) is
not even a Borel set.

The proofs given here use an idea from the paper of Roberts [6] (which came to
the author’s attention from a footnote in the classic book [1]). A well-known result
in dimension theory asserts that if X is a separable metric space of topological
dimension n, then in the space I, 41 of all continuous mappings of X into the
(2n + 1)-dimensional Euclidean cube Io,; with the uniform metric, the set of
embeddings contains a dense G5 set, and in the case when X is compact, the
set of embeddings is a Gs set. Roberts proved that for a certain (noncompact)
separable metric space X the set of embeddings is not a Gs set in I, 11 by
finding an embedded Cantor set in I3y, whose intersection with the the set of
embeddings of X into Ia,41 is not a G set in the Cantor set. We will use a slight
modification of Roberts’ idea. If Y and Z are topological spaces and F' : Y — Z
is a continuous map, then F~1(E) is a Borel set in Y for every Borel set E in
Z. Thus to show that a set F in Z is not a Borel set, it is sufficient to find a
continuous map F : Y — Z such that F~!(E) is not Borel in Y.

The precise statement of our result is as follows.

Theorem 1. Let X be a nonseparable, nowhere locally compact metric space.
Then the set of bounded continuous, nowhere locally uniformly continuous real-
valued functions on X is not a Borel set in Cy(X).

Before proving the theorem we present an example that illustrates the main
idea behind the proof. The reader who wishes, can skip the example and proceed
directly to the proof of the theorem. On the other hand, the reader who is
content to verify only the ezistence of a metric space for which the conclusion of
the theorem holds can read only the example and omit the proof of the general
theorem.

Throughout R will denote the real line with the standard metric.

Example 2. Let S be a nowhere locally compact metric space with metric dg.
Let A be bounded subset of R that is not a Borel set, and let dy be the metric
on A that takes only the values 0 and 1. Finally, let X = S x A with the metric
d defined by d((s1, 1), (s2,a2)) = ds(s1, s2) + da(a1, az). We wish to show that
the set of bounded continuous, nowhere locally uniformly continuous real-valued
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functions on X is not a Borel set in Cy(X). As noted above, it will suffice to
construct a continuous map F : R — Cp(X) such that the inverse image under F
of the nowhere locally uniformly continuous functions in C(X) is not Borel in R.

Fix a bounded continuous, nowhere locally uniformly continuous real-valued
function f on S (which exists by [3]). For each r € R define a function f,. : X =
SxA—Rby

fr(sv a) = |a - 7’|f(5)
Each function f, is bounded, and since a function on X is continuous if its re-
striction to each set S x {a}, o € A, is continuous, each f,. is continuous. Now
define the map F : R — Cy(X) by F(r) = f,. A trivial computation shows that
for p and ¢ in R
1(p) = F(@)lloo < [P = dl | flloo,

where || - ||oo denotes the supremum norm. Thus F is continuous.

Because f is nowhere locally uniformly continuous, f, is nowhere locally uni-
formly continuous for each » € R\ A. In contrast, for r € A the function f, is
identically zero on the open set S x {r}, and hence, is not nowhere locally uni-
formly continuous. Thus the inverse image of the bounded continuous, nowhere
locally uniformly continuous functions under F' is the non-Borel set R\ A. O

In preparation for the proof of Theorem 1, we mention an elementary fact from
descriptive set theory that will be used: There exists a bounded subset of R that
is not a Borel set and whose cardinality is X; (the first uncountable cardinal). To
see this, choose a subset F of R that is uncountable but contains no Cantor set
(i.e., contains no set homeomorphic to the usual middle-thirds Cantor set). The
existence of such a set is given by [5, §40.1, Theorem 1]. Then choose a bounded
subset A of E of cardinality N;. Since A contains no Cantor set, A is non-Borel
by [4, Theorem 13.6]. An alternative way to obtain the desired set is to note
first that if the continuum hypothesis holds, then every non-Borel subset of R
has cardinality N;. If the continuum hypothesis fails, then every subset of R of
cardinality N is non-Borel, since every uncountable Borel subset of R contains a
Cantor set ([4, Theorem 13.6] again) and hence has the cardinality of R.

PROOF OF THEOREM 1. We will construct a continuous map F : R — Cy(X)
such that the inverse image under F' of the nowhere locally uniformly continuous
functions in C(X) is not Borel in R. As noted earlier, this will establish the
theorem.

Fix a bounded subset A of R that is not a Borel set and has cardinality N;. Let
d denote the metric on X. Because X is a nonseparable metric space, there is a
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locally discrete collection % of nonempty open sets of X that has cardinality N;.
(This is immediate from the Bing metrization theorem. It can also be proven
directly by showing that there exists a § > 0 and a subset C of X that has
cardinality N; such that d(cy,c2) > 6 for every pair of distinet points ¢; and ¢
in C, and then taking € to be the collection of §/3-balls centered at the points
of C'). Choose a bijection A — % and denote the member of ¢ corresponding to
a € A by U,. For each «, choose a nonempty open set V, such that V, C U,.
Then choose, for each «, a locally uniformly continuous function ¢, : X — [0,1]
such that ¢, (V,) = {1} and ¢, (X \ U,) = {0}. For instance, one can define ¢,
by
B dx\v, ()
(1) Pa(z) oo, (@) +dy (@)

where dg(z) = inf{d(x,e) : e € E} (the distance from the point x to the set F).
The easy proof that the function ¢, defined by equation (1) is locally uniformly

continuous is given in [2, Lemma 5]. Choose a bounded continuous, nowhere
locally uniformly continuous real-valued function f on X (which exists by [3]).
Now for each r € R, define f, : X — R by

F@ = [1- T (-la-rea)|fa)
a€cA
Because each point of X has a neighborhood on which at most one of the ¢, is
not identically zero, f, is a well-defined continuous function. Note also that f, is
a bounded function. Now define the map F : R — Cy(X) by F(r) = f.
For p and ¢ in R and z in X we have

150) = 5@ = || (a5l ~ - al) (o) 0

acA
<3 (1o =2l = lo = )@/l
acA
< | X o dlonl@)] 11
acA
<[p—al | flloe

since ¢, () is nonzero for at most one «. Thus F is continuous.

To complete the proof we show that the inverse image of the set of bounded
continuous, nowhere locally uniformly continuous functions under F' is the non-
Borel set R\ A. Observe that for r € A, the function f, is identically zero on V.,
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and hence, is not nowhere locally uniformly continuous. Now consider r € R\ A.
Define g, : X — R by

gr(@) =1-Y (1—la—r|)pa(x)
a€cA
so that f. = g, f. For each x € X, each term in the sum over A in the definition of
gy is strictly less than 1, and since at most one of the terms is nonzero, g, is zero
free. Furthermore, since each ¢, is locally uniformly continuous and the supports
of the ¢, form a locally discrete family, g, is locally uniformly continuous. Thus
the following lemma yields that f;. is nowhere locally uniformly continuous thereby
concluding the proof. O

Lemma 3. The product of a zero free locally uniformly continuous real-valued
function and a continuous, nowhere locally uniformly continuous real-valued func-
tion is nowhere locally uniformly continuous.

PROOF. Suppose that f, g, and, h are real-valued functions such that h = gf,
that g is zero free and locally uniformly continuous, and that f is continuous. We
show that if A fails to be nowhere locally uniformly continuous, then so does f.
Let U be an open set on which A is uniformly continuous. By shrinking U, we
can assume that h is bounded on U. By shrinking U further, we can also assume
that g is uniformly continuous on U and that ¢ is bounded away from zero on
U. Then 1/g is bounded and uniformly continuous on U. Thus the restriction of
f =h/g to U is a product of two bounded uniformly continuous functions and
hence is uniformly continuous. O
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