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Abstract. It is shown that a uniform algebra can have a nonzero
bounded point derivation while having no nontrivial Gleason parts.
Conversely, a uniform algebra can have a nontrivial Gleason part
while having no nonzero, even possibly unbounded, point deriva-
tions.

1. Introduction

Let X be a compact Hausdor↵ space, and let C(X) be the algebra
of all continuous complex-valued functions on X with the supremum
norm kfk = sup{|f(x)| : x 2 X}. A uniform algebra A on X is a closed
subalgebra of C(X) that contains the constant functions and separates
the points of X. There is a general feeling that a uniform algebra A on
X either is C(X) or else there is a subset of the maximal ideal space
of A that can be given the structure of a complex manifold on which
the functions in A are holomorphic. However, it is well known that
this feeling is not completely correct. One is therefore led to consider
weaker forms of analytic structure. Perhaps the two most common of
these are nonzero point derivations and nontrivial Gleason parts. Thus
the question arises as to how these two weak forms of analytic structure
are related. More precisely, does the presence of one of these two weak
forms of analytic structure imply the presence of the other? The main
purpose of this paper is to show that the answer is no: Either form can
be present in the absence of the other.

Theorem 1.1. There exists a uniform algebra B on a compact metriz-

able space such that there exists a nonzero bounded point derivation on

B but B has no nontrivial Gleason parts.
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Theorem 1.2. There exists a uniform algebra B on a compact Haus-

dor↵ space such that B has a nontrivial Gleason part but there are no

nonzero point derivations on B.

These two results are new. However, Theorem 1.2 and its proof
below were found by Garth Dales and Joel Feinstein in response to a
question posed to them by the second author. We thank Dales and
Feinstein for allowing us to present their result in our paper so that
the complementary Theorems 1.1 and 1.2 appear together in a single
paper.

Note that the algebra in Theorem 1.1 has a nonzero bounded point
derivation while the algebra in Theorem 1.2 not only has no nonzero
bounded point derivations but moreover has no nonzero, possibly un-
bounded, point derivations. In fact, a uniform algebra with a nontrivial
Gleason part but no nonzero bounded point derivations was constructed
by John Wermer long ago [12]. Wermer’s example is R(K) for a certain
compact planar set K. Such a uniform algebra necessarily has nonzero
unbounded point derivations [1, Corollary 3.3.11 and Theorem 3.3.3].

Obviously Theorems 1.1 and 1.2 contain the weaker statement that
at a particular point x of the maximal ideal space of a uniform algebra
the condition that there is a nonzero point derivation at x and the
condition that x lie in a nontrivial Gleason part are independent of each
other. The statement that there need not be a nonzero point derivation
at a point in a nontrivial Gleason part seems to be new. That a point
at which there is a nonzero bounded point derivation need not belong
to a nontrivial Gleason part was shown by Stuart Sidney long ago [10,
Example 5.13]. However, in contrast to the algebra in Theorem 1.1,
Sidney’s uniform algebra does have nontrivial Gleason parts, and in
fact, its maximal ideal space contains many analytic discs.

Theorem 1.2 should be contrasted with the theorem of Andrew Brow-
der [2] (see also [1, Theorem 1.6.2]) that if a point x of the maximal
ideal space MB of a uniform algebra B is non-isolated in the metric
topology on MB, then there must be a nonzero (possibly unbounded)
point derivation at x.

We will show that the uniform algebras in Theorems 1.1 and 1.2 can
be taken to satisfy additional conditions. Specifically we will prove the
following two results that contain Theorems 1.1 and 1.2.

Theorem 1.3. There exists a normal uniform algebra B on a compact

metrizable space X and a point x 2 X such that B has a nondegener-

ate bounded point derivation of infinite order at x and B has bounded

relative units at every point of X \ {x}.
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Theorem 1.4. For each integer n � 2, there exists a strongly regular

uniform algebra B on a compact Hausdor↵ space X such that B has

a Gleason part P that has exactly n elements, B has bounded relative

units at every point of X\P , and there are no nonzero point derivations

on B.

That Theorems 1.3 and 1.4 strengthen Theorems 1.1 and 1.2 is a
consequence of known results recalled in Section 2 below. The reader
should compare Theorem 1.3 with [5, Theorems 5.1 and 5.3] of Fein-
stein.

In contrast to the situation in Theorems 1.1 and 1.3, it is unknown
whether the space on which the uniform algebras in Theorems 1.2
and 1.4 are defined can be taken to be metrizable. It is well known
that each point of a nontrivial Gleason part is a nonpeak point, and
it seems to be a di�cult open question whether there exist uniform
algebras (with or without nontrivial Gleason parts) on a metrizable
space having no nonzero, possibly unbounded, point derivations at a
nonpeak point. If in Theorem 1.2 we relax the requirements on B to
allow unbounded point derivations, then Wermer’s example shows that
metrizability can be achieved. Wermer’s example does not satisfy the
additional conditions given in Theorem 1.4. However, a modification
of the proof of Theorem 1.4 shows that subject to allowing unbounded
point derivations, metrizability can be achieved there as well.

Theorem 1.5. For each integer n � 2, there exists a strongly regular

uniform algebra B on a compact metrizable space X such that B has

a Gleason part P that has exactly n elements, B has bounded relative

units at every point of X \P , and there are no nonzero bounded point

derivations on B.

In the next section we define various terms already used above and
present other needed background and preliminary results. In Sections 3
we discuss Brian Cole’s method of root extensions, which we will use in
constructing our examples. Finally, Theorems 1.1 and 1.3 are proved
in Section 4, while Theorems 1.2, 1.4, and 1.5 are proved in Section 5.
Notations introduced in Sections 2 and 3 will be used in Sections 4
and 5 without further comment.

2. Preliminaries

In this section we introduce terminology, notation, and conventions
that we will use. We also present some results we will need.
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Throughout the paper all spaces will tacitly be required to be Haus-
dor↵. Throughout this section A will be a uniform algebra on a com-
pact space X and x will be a point of X.

We tacitly regard X as a subspace of the maximal ideal space MA

of A by identifying each point of X with the corresponding point eval-
uation functional. When convenient, we will also tacitly regard A as
a uniform algebra on MA via the Gelfand transform. When clarity
seems to require it, the Gelfand transform of a function f in A will be
denoted in the customary way by bf .

The point x is said to be a peak point for A if there is a function f

in A such that f(x) = 1 and |f(y)| < 1 for every y 2 X \ {x}. The
point x is said to be a generalized peak point if for every neighborhood
U of x there exists a function f in A such that f(x) = kfk = 1 and
|f(y)| < 1 for every y 2 X \ U . When the space X is metrizable, the
notions of peak point and generalized peak point coincide.

For � 2 MA we define the ideals M� and J� by

M� = { f 2 A : bf(�) = 0 }

and

J� = { f 2 A : bf�1(0) contains a neighborhood of � in MA}.

The uniform algebra A is normal on X if for each pair of disjoint
closed subsets K0 and K1 of X there exists a function f in A such that
f |K0 = 0 and f |K1 = 1. It is well known [11, Theorem 27.3] that if
A is normal on X then X = MA. The uniform algebra A is strongly

regular at the point x if Jx is dense in Mx. The uniform algebra A

is strongly regular if it is strongly regular at every point of X. It was
proven by Donald Wilken that every strongly regular uniform algebra
is normal [13, Corollary 1].

The uniform algebra A has bounded relative units at the point x

if there exists a positive constant C such that for each compact sub-
set K of X \ {x} there exists a function f in Jx such that f |K = 1
and kfk  C. We will need the following result of Joel Feinstein [5,
Proposition 1.5].

Lemma 2.1. If A has bounded relative units at x, then x is a gener-

alized peak point for A and A is strongly regular at x.

We will also need the following lemma of Feinstein and Heath [7,
Lemma 4.3].
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Lemma 2.2. Let A be a uniform algebra on a compact space Y , and let

y be a point of Y . Suppose that, for each compact subset E of Y \ {y},
there exists an open neighborhood U of y and an f 2 A such that

(i) f |U = 1.
(ii) f |E = 0.
(iii) For each k 2 N there is a g 2 A with g

2k = f .

Then A has bounded relative units at y.

An ideal is said to be primary if it is contained in a unique maximal
ideal. (This use of the term primary is unrelated to its use in commu-
tative algebra.) If I is a primary ideal contained in Mx, then I is said
to be local if I contains Jx. (Observe that this condition is equivalent
to the statement that whether a function f 2 A belongs to I depends
only on the germ of f at x.) The notion of localness can be generalized
to arbitrary ideals in A, but we omit the general definition as we will
have no need of it. We will, however, need the following standard result
[4, Proposition 4.1.20(iv)] in the special case of primary ideals.

Lemma 2.3. Every ideal in a normal uniform algebra is local.

The Gleason parts for the uniform algebra A are the equivalence
classes in the maximal ideal space of A under the equivalence relation
� ⇠  if k� �  k < 2 in the norm on the dual space A

⇤. (That this
really is an equivalence relation is well-known but not obvious.) We
say that a Gleason part is nontrivial if it contains more than one point.

The following lemma is standard. (See [1, Lemmas 2.6.1].)

Lemma 2.4. Two multiplicative linear functionals � and  on a uni-

form algebra A lie in the same Gleason part if and only if

sup{| (f)| : f 2 A, kfk  1,�(f) = 0} < 1.

For � in MA, a point derivation on A at � is a linear functional d on
A satisfying the identity

(1) d(fg) = d(f)�(g) + �(f)d(g)

for all f and g in A. A point derivation is said to be bounded if it is
bounded (continuous) as a linear functional. Now let n be a positive
integer or 1. A point derivation of order n at � is a sequence d =
(d(k))nk=0 of linear functionals on A such that for all f and g in A

d
(0)
f = f(�)(2)
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and

d
(k)(fg) =

kX

j=0

(d(j)f)(d(k�j)
g) for all k = 1, 2, . . ..(3)

The point derivation d is bounded if each d
(k) is bounded. The point

derivation d is nondegenerate if d(1) 6= 0. We define the kernel ker d of
the point derivation d = (d(k))nk=0 by

ker d = { f 2 A : d(k)f = 0 for all k = 0, 1, 2, . . .}.
When d is nondegenerate the functionals d(0), d(1), d(2), . . . are linearly
independent.

There is some ambiguity in our use of the term “point derivation”
since it can refer either to a single linear functional satisfying equa-
tion (1) or a sequence of linear functionals satisfying equations (2)
and (3). The careful reader will be able to discern which meaning is in-
tended from the context. Clearly a linear functional d(1) that is a point
derivation at � can be identified with a point derivation d = (d(k))1k=0

of order 1 at � by taking d
(0) to be the functional of evaluation at �.

It is standard [1, p. 64] that a linear functional  on A is a point
derivation at � if and only if  annihilates M2

� and the constant func-
tions, and hence there exists a nonzero point derivation at � if and only
if M2

� 6= M�, and there exists a bounded point derivation at � if and

only if M2
� 6= M�. It is elementary that the kernel of a point derivation

d = (d(k))nk=0 is an ideal, and for n finite, the kernel of d contains Mn+1
� .

Consequently, the kernel of a point derivation of finite order is a pri-

mary ideal. However, the kernel of a point derivation of infinite order
can fail to be primary. However, the following simple consequence of
Lemma 2.3 insures that on a normal uniform algebra even the kernel
of a point derivation of infinite order is primary.

Lemma 2.5. Let A be a normal uniform algebra, and let d = (d(k))nk=0

be a derivation of order n, with 1  n  1, on A. Then ker d is a

local, primary ideal.

Proof. The ideal ker d is local by Lemma 2.3, and we have noted above
that the kernel of every finite order point derivation is primary. We
must show that ker d is primary in the case n = 1. Denote the kernel
of d = (d(k))1k=0 by I, and for each finite r = 1, 2, . . . denote the kernel
of the finite order point derivation (d(k))rk=0 by Ir. Then I =

T1
r=1 Ir.

Let x denote the point at which the derivation d is located. Then
Ir � Jx for every r = 1, 2, . . .. Therefore, I � Jx. Because A is normal,
Jx is primary. Consequently, I is primary as well. ⇤
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It is well known (and obvious from Lemma 2.4) that every generalized
peak point is a one-point Gleason part. It is also well known that at
a generalized peak point there are no nonzero point derivations [1,
Section 1–6].

We will achieve the strong regularity of the algebras in Theorems 1.4
and 1.5 by using a beautifully simple method from the paper of Fein-
stein [5]. Following the notation of Feinstein, we set Ax = Jx � C · 1,
where C · 1 denotes the constant functions on X. The following two
lemmas are contained in [5, Lemmas 4.1 and 4.3].

Lemma 2.6. Let the uniform algebra A be normal. Then Ax is a

normal uniform algebra that is strongly regular at x.

Lemma 2.7. Let the uniform algebra A be normal. Let y be a point of

X distinct from x. Then (Ax)y = (Ay)x = Ax \ Ay.

We will need the following observation whose straightforward proof
is left to the reader.

Lemma 2.8. Let the uniform algebra A be normal. Suppose A has

bounded relative units at a point y 2 X. Then Ax has bounded relative

units at y, as well.

Corollary 2.9. Let the uniform algebra A be normal, and let x1, . . . , xn

be points of X.

(i) At each of the points x1, . . . , xn, the uniform algebra Ax1\ · · ·\
Axn is strongly regular.

(ii) At each point of X where A has bounded relative units, so does

Ax1 \ · · · \ Axn.

Proof. By an induction argument left to the reader, it follows from
Lemma 2.7 that for every permutation � of x1, . . . , xn we have

Ax1 \ · · · \ Axn =
�
· · ·

��
A�(x1)

�
�(x2)

�
�(x3)

· · ·
�
�(xn)

The corollary is then immediate from Lemmas 2.6 and 2.8. ⇤

3. Cole’s method of root extensions

Cole’s method of root extensions involves an iterative process. We
begin by discussing a single step of the iteration.

Let A be a uniform algebra on a compact space X, and let F be a
(nonempty) subset of A. Endow CF with the product topology. Let
p1 : X ⇥ CF ! X and pf : X ⇥ CF ! C denote the projections given
by p1(x, (zg)g2F ) = x and pf (x, (zg)g2F ) = zf . Define XF ⇢ X ⇥ CF

by

XF = { y 2 X ⇥ CF :
�
pf (y)

�2
= f

�
p1(y)

�
for all f 2 F },
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and let AF be the uniform algebra on XF generated by the set of
functions { f �p1 : f 2 A}[{ pf : f 2 F}. On XF we have p2f = f �p1
for every f 2 F . Set ⇡ = p1|XF , and note that ⇡ is surjective. There
is an isometric embedding ⇡⇤ : A ! AF given by ⇡⇤(f) = f � ⇡.

We call the uniform algebra AF or the pair (AF , XF ), the F -
extension of A, and we call ⇡ the associated surjection. Note that
if X is metrizable and F is countable, then XF is metrizable also. By
[3, Theorem 1.6], if X = MA, then XF = MAF . Given x 2 X, if F is
contained in Mx, then the set ⇡�1(x) consists of a single point.

There is an operator S : AF ! ⇡
⇤(A) given by integrating over

the fibers of ⇡ using the measure on each fiber that is invariant under
the obvious action of (Z/2)F on each fiber. See [3] or [11, pp. 194–
195] for details. Rather than working with S, we will use the operator
T : AF ! A obtained from S by identifying ⇡

⇤(A) with A. The
following properties of T are almost obvious.

Lemma 3.1.

(i) kTk = 1.
(ii) T � ⇡⇤

is the identity.

(iii) Given distinct functions f1, . . . , fr 2 F and a function f 2 A,

T
�
⇡
⇤(f)pf1 · · · pfr

�
= 0.

The following is contained in [5, Theorem 2.4].

Lemma 3.2. If A is normal, then so is AF .

One can iterate the above extension process to obtain an infinite
sequence of uniform algebras and then take a direct limit to obtain
another uniform algebra. That is the procedure we will use to obtain
the examples in Theorems 1.1 and 1.3. However, for some purposes
that procedure is inadequate and transfinite induction is needed to
obtain the desired algebra; this is the case in the proof of Theorems 1.2
and 1.4. Then the notion of a system of root extensions is needed.

Let ⌧ be a fixed infinite ordinal. A system of root extensions is a
triple of indexed sets

�
{A↵}, {X↵}, {⇡↵,�}

�
(0  ↵  �  ⌧) (denoted

for brevity by {A↵}0↵⌧ ) where each A↵ is a uniform algebra, each
X↵ is a compact space, and each ⇡↵,� is a continuous surjective map
⇡↵,� : X� ! X↵ such that the following conditions hold:

(i) The equation ⇡
⇤
↵,�(f) = f � ⇡↵,� defines a homomorphism of

A↵ into A�.
(ii) For ↵  �  �, ⇡↵,� � ⇡�,� = ⇡↵,�, and ⇡↵,↵ is the identity on

X↵.
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(iii) For ↵ < ⌧ , there is a subset F↵ of A↵ such that A↵+1 is the
F↵-extension of A↵ and ⇡↵,↵+1 is the associated surjection.

(iv) For � a limit ordinal, X� is the inverse limit of the inverse sys-
tem {X↵, ⇡↵,�}↵�<� , the maps ⇡↵,� : X� ! X↵ are those as-
sociated with the inverse limit, and A� is the closure in C(X�)
of

S
↵<�

⇡
⇤
↵,�(A↵).

The existence of systems of root extensions is of course proved by
transfinite induction. A choice of the subsets F↵ uniquely determines
a system of root extensions.

The following is contained in [3, Theorem 2.1]

Lemma 3.3. Given a system of root extensions {A↵}0↵⌧ there is a

linear operator T⌧ : A⌧ ! A0 such that

(i) kT⌧k = 1.
(ii) T⌧ � ⇡⇤

0,⌧ is the identity.

The following is [5, Corollary 2.9].

Lemma 3.4. Given a system of root extensions {A↵}0↵⌧ , if A0 is

normal, then A↵ is normal for all ↵.

4. Nonzero bounded point derivations in the absence of
nontrivial Gleason parts

The following lemma is the key to our construction of a uniform
algebra on which there is a nonzero bounded point derivation but which
has no nontrivial Gleason parts.

Lemma 4.1. Let A be a uniform algebra on a compact space X, and

let x be a point of X. Suppose that d = (d(k))nk=0 is a nondegenerate

bounded point derivation of order n (1  n  1) at x, and that F is a

subset of ker d. Then there is a nondegenerate bounded point derivation

D = (D(k))nk=0 of order n on the F -extension AF of A, at the point

y = ⇡
�1(x), satisfying D

(k) � ⇡⇤ = d
(k)

and kD(k)k = kd(k)k for all

k = 0, 1, 2, . . ..

Proof. Let T : AF ! A be as in Section 3. For each k = 0, 1, 2, . . .,
define D

(k) : AF ! C by

D
(k) = d

(k) � T.
Clearly each D

(k) is a bounded linear functional and by Lemma 3.1(ii),
D

(k) � ⇡⇤ = d
(k) � T � ⇡⇤ = d

(k). To see that kD(k)k = kd(k)k, note
that kD(k)k  kd(k)k kTk = kd(k)k, while also kD(k)k � kd(k)k because
for each f 2 A we have D

(k)
�
⇡
⇤(f)

�
= d

(k)
�
T (⇡⇤(f))

�
= d

(k)
f . In
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particular, D(1) 6= 0, so D = (D(k))nk=0 is nondegenerate. Note also
that D(0)

f = f(y) for f 2 AF .
It remains to be shown that D satisfies, for each k = 1, 2, . . ., the

derivation identity

(4) D
(k)(fg) =

kX

j=0

(D(j)
f)(D(k�j)

g)

for all f, g 2 AF . It su�ces to prove equation (4) for f and g belonging
to the dense subalgebra H of AF that is algebraically generated by
⇡
⇤(A) [ { pf : f 2 F} . Functions f and g in H can be expressed in

the form

f = ⇡
⇤(f0) +

sX

u=1

⇡
⇤(fu)Fu

and

g = ⇡
⇤(g0) +

tX

v=1

⇡
⇤(gv)Gv

where f0, f1, . . . , fs, g0, g1, . . . , gt 2 A and each Fu and each Gv is a
nonempty product of distinct functions of the form pf for f 2 F .

By Lemma 3.1, Tf = f0 and Tg = g0, so for each r = 0, 1, 2, . . .,

D
(r)
f = (d(r) � T )(f) = d

(r)
f0

and

D
(r)
g = (d(r) � T )(g) = d

(r)
g0.

Since for each k = 1, 2, . . .,

d
(k)(f0g0) =

kX

j=0

(d(j)f0)(d
(k�j)

g0),

the proof will be complete once we show that D(r)(fg) = d
(r)(f0g0) for

each r.
View fg as a sum of four terms:

fg = ⇡
⇤(f0g0) +

✓ sX

u=1

⇡
⇤(fug0)Fu

◆
+

✓ tX

v=1

⇡
⇤(f0gv)Gv

◆

+

✓ sX

u=1

tX

v=1

⇡
⇤(fugv)FuGv

◆
.
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By Lemma 3.1,

(5) T
�
⇡
⇤(f0g0)

�
= f0g0

(6) T

✓ sX

u=1

⇡
⇤(fug0)Fu

◆
= 0

(7) T

✓ tX

v=1

⇡
⇤(f0gv)Gv

◆
= 0.

Now for fixed u and v, consider T
�
⇡
⇤(fugv)FuGv

�
. We have Fu =

pf1 · · · pfa and Gv = pg1 · · · pgb where f1, . . . , fa are distinct elements
of F and g1, . . . , gb are also distinct elements of F . Note that each
of the sets {f1, . . . , fa} and {g1, . . . , gb} is necessarily nonempty. If
{f1, . . . , fa} = {g1, . . . , gb}, then FuGv = p

2
f1 · · · p

2
fa = ⇡

⇤(f1 · · · fa), and
hence

(d(r)�T )
�
⇡
⇤(fugv)FuGv

�
= (d(r)�T )

�
⇡
⇤(fugvf1 · · · fa)

�
= d

(r)(fugvf1 · · · fa);
the last quantity above is zero because f1, . . . , fa belong to the ideal
ker d. If instead {f1, . . . , fa} 6= {g1, . . . , gb}, then FuGv can be ex-
pressed as the product of a possibly empty set of elements of ⇡⇤(A) and
a nonempty set of functions ph1 , . . . , phc with h1, . . . , hc 2 {f1, . . . , fa, g1, . . . , gb};
consequently, T

�
⇡
⇤(fugv)FuGv

�
= 0 by Lemma 3.1(iii). We conclude

that

(8) (d(r) � T )
✓ sX

u=1

tX

v=1

⇡
⇤(fugv)FuGv

◆
= 0.

Collectively, equations (5)–(8) yield that

D
(r)(fg) = (d(r) � T )(fg) = d

(r)(f0g0),

as desired. ⇤
Theorem 4.2. Let A be a uniform algebra on a compact Hausdor↵

space Y , and let x0 be a point of MA. Suppose that there is a nondegn-

erate bounded point derivation d = (d(k))nk=0 of order n with 1  n  1
on A at x0. Then there exists a uniform algebra A

D
on a compact Haus-

dor↵ space Y
D
and a continuous surjective map ⇡ : MAD ! MA such

that

(i) ⇡(Y D) = Y .

(ii) The formula ⇡
⇤(f) = f � ⇡ defines an isometric embedding of

A into A
D
.

(iii) ⇡�1(x0) consists of a single point which we denote by x!.
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(iv) There is a nondegenerate bounded point derivation D = (D(k))nk=0

on A
D
at x! that satisfies the equation D

(k) � ⇡⇤ = d
(k)
.

(v) There is a dense subset F of kerD such that every member of

F has a square root in F . If the algebra A is normal, then F
can be chosen so that for every point y 2 Y

D \ {x!} and every

compact subset E of Y
D \ {y}, there exists a neighborhood U

of y and a function f 2 F such that f |U = 1 and f |E = 0.

If the maximal ideal space of A is metrizable, then A
D

can be chosen

so that its maximal ideal space is metrizable as well. If A is normal,

then A
D
can be chosen so as to be normal as well.

Proof. Let ⌃0 = MA, and let A0 denote A regarded as a uniform
algebra on ⌃0. Set d0 = d. Let F0 be a dense subset of ker d. If MA

is metrizable, choose F0 to be countable. (If MA is nonmetrizable,
one can take F0 = ker d.) If A is normal, then applying Lemma 2.5
shows that we can, and therefore we shall, choose F0 such that for
every point y 2 ⌃0 \{x0} and every compact subset E of ⌃0 \{y} there
exists a neighborhood U of y and a function f 2 F0 such that f |U = 1
and f |E = 0. Now form the F0-extension of A0. Denote the resulting
uniform algebra by A1, the space on which A1 is defined by ⌃1, and
the canonical map ⌃1 ! ⌃0 by ⇡1. Recall that then ⇡�1

1 (x0) consists
of a single point; denote that point by x1. If ⌃0 is metrizable, then ⌃1

is metrizable. By Lemma 4.1, there is a nondegenerate bounded point
derivation d1 = (d(k)1 )nk=0 of order n on A1 at x1 such that d(k)1 �⇡⇤

1 = d
(k)
0

and kd(k)1 k = kd(k)0 k for all k = 0, 1, 2, . . .. By Lemma 3.2, if A0 is
normal, then so is A1.

We then iterate the process of taking root extensions to obtain a
sequence {(Am,⌃m, ⇡m, xm, dm,Fm)}1m=0, where each Am is a uniform
algebra on ⌃m, ifMA is metrizable so is each ⌃m, each ⇡m : ⌃m ! ⌃m�1

is a surjective continuous map, xm = ⇡
�1
m (xm�1), dm = (d(k)m )nk=0 is a

nondegenerate bounded point derivation of order n on Am at xm such
that d(k)m � ⇡⇤

m = d
(k)
m�1 and kd(k)m k = kd(k)m�1k for all k = 0, 1, 2, . . ., and

each Fm is a dense subset of ker dm such that for every f 2 Fm the
function f � ⇡m+1 is the square of a function in Fm+1, and if MA is
metrizable, then Fm is countable; furthermore, if A is normal, then Am

is normal and Fm is such that for every point y 2 ⌃m \{xm} and every
compact subset E of ⌃m \ {y} there exists a neighborhood U of y and
a function f 2 Fm such that f |U = 1 and f |E = 0. Finally we take
the inverse limit of the system of uniform algebras {Am}. Explicitly,



ONE-POINT GLEASON PARTS AND POINT DERIVATIONS 13

we set

⌃! =
n
(yj)

1
j=0 2

1Q
j=0

⌃j : ⇡m+1(ym+1) = ym for all m = 0, 1, 2, . . .
o
,

and letting qm : ⌃! ! ⌃m be the restriction of the canonical projectionQ1
j=0 ⌃j ! ⌃m, we let A! be the closure of

S1
m=0{h � qm : h 2 Am} in

C(⌃!). Set x! = (xm)1m=0. Set ⇡ = q0. Then ⇡�1(x0) = x!.
Note that for each m = 0, 1, 2, . . ., the formula q

⇤
m(f) = f � qm

defines an isometric embedding of Am into A!, and A! is the closure ofS1
m=0 q

⇤
m(Am). Observe that q⇤m+1 � ⇡⇤

m+1 = q
⇤
m, and hence q

⇤
m(Am) ⇢

q
⇤
m+1(Am+1). Define d̃

(k)
m (k = 0, 1, 2, . . .) on q

⇤
m(Am) by

d̃
(k)
m

�
q
⇤
m(h)

�
= d

(k)
m (h) for all h 2 Am.

Then one easily checks that d̃(k)m+1 agrees with d̃
(k)
m on q

⇤
m(Am) for each

m and k. Thus, for each fixed k, the union of the functionals d̃(k)m , m =
0, 1, 2, . . ., yields a well-defined linear functional d̃(k) on

S1
m=0 q

⇤
m(Am).

Because the functionals d̃
(k)
m , m = 0, 1, 2, . . ., all have the same norm

kd̃(k)0 k, the functional d̃(k) is bounded, and hence extends to a bounded
linear functional D(k) on A!. Moreover, D = (D(k))nk=0 is a nondegen-
erate bounded point derivation of order n on A! at x!.

By [3, Theorem 2.3], the maximal ideal space of A! is ⌃!, and the
inverse image under ⇡ of the Shilov boundary for A0 is the Shilov
boundary for A!. Consequently, setting Y

D = ⇡
�1(Y ) and A

D equal
to the restriction algebra A!|Y D, we have that AD is a uniform algebra
isometrically isomorphic to A!. Obviously we can regard the derivation
D as a derivation on A

D. Set F =
S1

m=0 q
⇤
m(Fm). As the reader can

verify, conditions (i)–(v) all hold.
Note that if ⌃0 is metrizable, then so is ⌃!. If A is normal, then so

is AD by Lemma 3.4. ⇤
Lemma 4.3. Let A be a uniform algebra, let J be a primary ideal in

A, and let E = { f 2 : f 2 J }. If E is dense in J , then each point of

MA is a one-point Gleason part.

Proof. The proof is similar to the proof of [3, Lemma 1.1 (i)]. Let x be
the point of MA such that J is contained in Mx. Let y 2 MA \ {x} be
arbitrary, and let z be an arbitrary element of MA distinct from y. By
hypothesis there is a function f in J such that f(y) 6= 0. By multiplying
f by a function in A that vanishes at z but not at y and rescaling, we
may assume in addition that f(z) = 0 and kfk < 1. Since E is dense
in J , for each n 2 N and " > 0, there exist functions f1, . . . , fn in J

such that kf � f
2
1k < ", . . . , kfn�1 � f

2
nk < ". Choosing " > 0 small
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enough, f 2n
n can be made arbitrarily close to f . Consideration of the

function fn�fn(z) then shows that there is a function g in A such that
g(z) = 0 and g

2n is arbitrarily close to f . Since |f(y)|2�n ! 1, choosing
n large enough |g(y)| can be made arbitrarily close to 1. Thus y and z

lie in di↵erent Gleason parts by Lemma 2.4 ⇤

Proof of Theorems 1.1 and 1.3. To prove Theorem 1.1 we start with
any uniform algebra A that is defined on a compact metrizable space
and has a nonzero bounded point derivation of order 1. For instance,
take A to be the disc algebra. Then taking B to be the uniform algebra
A

D given by Theorem 4.2 yields the result. That B has no nontrivial
Gleason parts is a consequence of condition (v) by Lemma 4.3.

To prove the stronger Theorem 1.3 we impose on our starting uniform
algebra A the additional requirements that A be normal and that there
exist a nondegenerate bounded point derivation of infinite order on A.
An example of a uniform algebra satisfying these requirements was
given by Anthony O’Farrell [9]. Now take B to be the uniform algebra
A

D given by Theorem 4.2 choosing F as discussed in condition (v).
The assertion in Theorem 1.3 about bounded relative units then holds
by Lemma 2.2. ⇤

5. Nontrivial Gleason parts in the absence of
nonzero point derivations

In this section we prove Theorems 1.2, 1.4, and 1.5. The uniform
algebra we give with the properties in Theorem 1.5 is essentially the
uniform algebra constructed by Feinstein in [6]. The uniform algebra
constructed in the proofs of Theorem 1.2 and 1.4 is a modification of
that uniform algebra.

Proof of Theorems 1.2 and 1.4. Start with any normal uniform algebra
A that has a Gleason part with at least n points. For instance take A

to be the normal uniform algebra constructed by Robert McKissick [8]
(which is also presented in [11, Section 27]). Set (A0, X0) = (A,MA)

and let x(1)
0 , . . . , x

(n)
0 be n distinct points belonging to a common Glea-

son part for A0. Let ⌦ denote the first uncountable ordinal.
Recall that when forming the F -extension of a uniform algebra A

on a space X, if F is contained in Mx for a point x 2 X, then ⇡�1(x)
consists of a single point. Consequently, one easily sees that there is a
system of root extensions

�
{A↵}, {X↵}, {⇡↵,�}

�
(0  ↵  �  ⌧) such

that
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(i) for each 0  �  ⌦ there are distinct points x
(1)
� , . . . , x

(n)
�

in X� such that ⇡�1
↵,�(x

(j)
↵ ) = x

(j)
� for each 1  j  n, and

0  ↵  �  ⌦, and
(ii) for each 0  ↵ < ⌦, the pair (A↵+1, X↵+1) is the F↵-extension

of (A↵, X↵) with F↵ = M
x
(1)
↵

\ · · · \M
x
(n)
↵
.

Set F = M
x
(1)
⌦

\ · · · \ M
x
(n)
⌦
, and note that F =

S
0↵<⌦

F↵. Con-

sequently, every function in F has a square root in F . For nota-
tional convenience, set Ã = A⌦, set xj = x

(j)
⌦ (j = 1, . . . , n), and set

P = {x1, . . . , xn}.
By Lemma 3.4, Ã is normal. Applying Lemma 2.2 then yields that

Ã has bounded relative units at every point of X \ P . Therefore, by
Lemma 2.1, every point of X \P is a generalized peak point, and hence,
is a one-point Gleason part. Consequently, to show that P is a Gleason
part, it is enough to show that each pair of points of P lie in a common
Gleason part. For that, note that given h 2 Ã with khk  1, the
function T⌦h is in A with kT⌦hk  1, and so given 1  j, k  n,

��h(xj)� h(xk)
�� =

��(T⌦h)(x
(j)
0 )� (T⌦h)(x

(k)
0 )

��

 kx(j)
0 � x

(k)
0 k;

consequently kxj � xkk  kx(j)
0 � x

(k)
0 k, and hence, xj and xk lie in a

common Gleason part.
There are no nonzero point derivations on Ã at points of X \ P

because each of these points is a generalized peak point. To show that
there are no nonzero point derivations on Ã at points of P , we consider
a point y 2 P and a function f 2 My and will show that f is in M

2
y .

There exists g 2 Ã such that g(xj)2 = f(xj) for j = 1, . . . , n. Note
that g is in My. Clearly f � g

2 is in F , so there exists h 2 F such
that f � g

2 = h
2. Then h is in My, and hence so are g ± ih. Since

f = (g + ih)(g � ih) we obtain that f is in M
2
y , as desired.

We have shown that Ã satisfies the properties required of the alge-
bra B in Theorem 1.4 with strong regularity replaced by the weaker
condition of normality. In particular, Theorem 1.2 is proved.

To obtain a strongly regular uniform algebra, set B = Ax1\· · ·\Axn ,
where we are using the notation introduced in the paragraph preceding
Lemma 2.6. By Lemma 2.9(ii), B has bounded relative units at each
point of X \ P , and hence is strongly regular at each point of X \ P

by Lemma 2.1. Moreover, by Lemma 2.9(i), B is also strongly regular
at each point of P as well. Because B is a subalgebra of Ã, points in
a common Gleason part for Ã must also lie in a common Gleason part
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for B. In the present situation, that implies that the Gleason parts
for B coincide with the Gleason parts for Ã. To show that B has no
nonzero point derivations, we argue just as we did for Ã noting that
the functions involved in the factorization f = (g+ ih)(g� ih) for f in
the ideal My of B can be chosen to lie in B. ⇤
Proof of Theorem 1.5. The proof is essentially the same as the one just
given except that instead of using a root system with index set the
ordinals less than or equal to ⌦, we simply form an infinite sequence of
uniform algebras and take a direct limit once (as we did in the proof
of Theorem 1.1), and rather than set F↵ = M

x
(1)
↵

\ · · ·\M
x
(n)
↵

we take
F↵ to be a countable dense subset of M

x
(1)
↵

\ · · · \M
x
(n)
↵
. ⇤

Acknowledgments

We have already expressed our gratitude to Dales and Feinstein for
allowing us to include their work in the paper. In addition, we thank
them for valuable discussions and correspondence.

Some of the work presented here was carried out while the second
author was a visitor at Indiana University. He thanks the Department
of Mathematics for its hospitality.

References

[1] A. Browder, Introduction to Function Algebra, Benjamin, New York, NY,
1969.

[2] A. Browder, Point derivations on function algebras, J. Functional Analysis,
1 (1967), 22–27.

[3] B. J. Cole, One-Point Parts and the Peak Point Conjecture, Ph.D. Thesis,
Yale University, 1968.

[4] H. G. Dales, Banach algebras and automatic continuity, London Mathe-
matical Society Monographs, New Series, Volume 24, The Clarendon Press,
Oxford, 2000.

[5] J. F. Feinstein, A non-trivial, strongly regular uniform algebra, J. London
Math. Soc. (2), 45 (1992), 288–300.

[6] J. F. Feinstein, Regularity conditions for Banach function algebras, in Func-
tion spaces (Edwardsville, Il., 1994), Lecture Notes in Pure Appl. Math.
172, Dekker, New York, 1995, 117–122.

[7] J. F. Feinstein and M. J. Heath, Regularity and amenability conditions
for uniform algebras, Function spaces, Contemporary Math., 435 (2007),
159–169.

[8] R. J. McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math.

Soc., 69 (1963), 391–395.
[9] A. G. O’Farrell, A regular uniform algebra with a continuous point deriva-

tion of infinite order, Bull. London Math. Soc., 11 (1979), 41–44.
[10] S. J. Sidney, Properties of the sequence of closed powers of a maximal ideal

in a sup-norm algebra, Trans. Amer. Math. Soc., 131 (1968), 128–148.



ONE-POINT GLEASON PARTS AND POINT DERIVATIONS 17

[11] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, New
York, 1971.

[12] J. Wermer, Bounded point derivations on certain Banach algebras, J. Func-
tional Analysis, 1 (1967), 28–36.

[13] D. R. Wilken, A note on strongly regular uniform algebras, Canad. J. Math.

21 (1969), 912–914.

Department of Mathematics, Southwestern Oklahoma State Uni-
versity, Weatherford, OK 73096, USA

Email address: swarup.ghosh@swosu.edu

Department of Mathematics and Statistics, Bowling Green State
University, Bowling Green, OH 43403

Email address: aizzo@bgsu.edu


	1. Introduction
	2. Preliminaries
	3. Cole's method of root extensions
	4. Nonzero bounded point derivations in the absence of nontrivial Gleason parts
	5. Nontrivial Gleason parts in the absence of nonzero point derivations
	References

