

APPROXIMATION BY AN ALGEBRA GENERATED BY HOLOMORPHIC AND CONJUGATE HOLOMORPHIC FUNCTIONS

TIMOTHY G. CLOS AND ALEXANDER J. IZZO

ABSTRACT. Using methods from the theory of uniform algebras, we give a simple proof of an approximation result of Sahutoğlu and Tikaradze with L^∞ -pseudoconvex domains replaced by the open sets for which Gleason's problem is solvable.

1. THE RESULTS

In [ST19] Sönmez Sahutoğlu and Akaki Tikaradze proved, on what they referred to as L^∞ -pseudoconvex domains, an approximation result that can be viewed as a several complex variables generalization of a weak form of an earlier approximation result in one complex variable due to Christopher Bishop [Bis89]. They used their approximation result to give a generalization to several complex variables of a theorem of Sheldon Axler, Željko Čučković, and Nagisetti Rao regarding commuting Toeplitz operators [ACR00]. The main purpose of the present paper is to give a simple proof of the approximation result of Sahutoğlu and Tikaradze, under a different hypothesis on the underlying domain, using methods from the theory of uniform algebras.

We introduce here some notation and terminology we will use. Throughout the paper, Ω will be an open set in \mathbb{C}^n or in the Riemann sphere. The boundary of Ω will be denoted by $b\Omega$. Following [ST19], given a holomorphic map $f : \Omega \rightarrow \mathbb{C}^m$ we will denote by $\Omega_{f,\lambda}$ the set of all nonisolated points of $f^{-1}(\lambda)$ and we set $\Omega_f = \bigcup_{\lambda \in \mathbb{C}^m} \Omega_{f,\lambda}$. For a compact space X , we denote by $C(X)$ the algebra of all continuous complex-valued functions on X . A *uniform algebra* on X is a supremum norm closed subalgebra of $C(X)$ that contains the constant functions and separates the points of X . In particular, a uniform algebra is a commutative Banach algebra. We will denote the maximal ideal space of a commutative Banach algebra A by \mathfrak{M}_A . Given $x \in A$ we will denote the Gelfand transform of x as usual by \hat{x} . If A is a Banach algebra of continuous complex-valued functions on a subset of \mathbb{C}^n and the complex coordinate functions z_1, \dots, z_n belong to A , we will let $\pi_A : \mathfrak{M}_A \rightarrow \mathbb{C}^n$ denote the map given

2010 *Mathematics Subject Classification.* Primary 46J10, 46J15, 32A38, 32A65, 30H50; Secondary 47B35.

Key words and phrases. uniform algebras, algebras generated by holomorphic and conjugate holomorphic functions, commuting Toeplitz operators.

The second author was supported by NSF Grant DMS-1856010.

¹Christopher Bishop should not be confused with Errett Bishop after whom the antisymmetric decomposition, which will appear later in our paper, is named.

by $\pi_A(x) = (\widehat{z}_1(x), \dots, \widehat{z}_n(x))$. As usual $H^\infty(\Omega)$ will denote the algebra of bounded holomorphic functions on Ω equipped with the supremum norm. If A is an algebra of bounded continuous complex-valued functions on Ω and f_1, \dots, f_m are bounded continuous complex-valued functions on Ω , we will denote by $A[f_1, \dots, f_m]$ the norm closed subalgebra of $L^\infty(\Omega)$ generated by A and the functions f_1, \dots, f_m . This last notation, which is rather standard, differs from the notation in [ST19] in that in [ST19] the notation $A[f_1, \dots, f_m]$ is used to denote the algebra generated by A and f_1, \dots, f_m without taking closure.

In the terminology of Sahutoğlu and Tikaradze, an L^∞ -pseudoconvex domain is a pseudoconvex domain on which the $\bar{\partial}$ -problem is solvable in L^∞ . (See [ST19] for the precise definition.) The approximation theorem of Sahutoğlu and Tikaradze referred to above is the following.

Theorem 1 ([ST19], Theorem 1). *Let Ω be a bounded L^∞ -pseudoconvex domain in \mathbb{C}^n and let $f_j \in H^\infty(\Omega)$ for $j = 1, \dots, m$. Set $f = (f_1, \dots, f_m)$. Suppose that $g \in C(\overline{\Omega})$ satisfies $g|_{b\Omega \cup \Omega_f} = 0$. Then g is in $H^\infty(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$.*

This theorem can be regarded as a partial extension to several variables of an approximation theorem of Christopher Bishop.

Theorem 2 ([Bis89], Theorem 1.2). *Suppose that Ω is an open set in the Riemann sphere and that $f \in H^\infty(\Omega)$ is nonconstant on each component of Ω . Then $C(\overline{\Omega}) \subset H^\infty(\Omega)[\bar{f}]$.*

Sahutoğlu and Tikaradze's proof of Theorem 1 was inspired by Bishop's proof of Theorem 2 and like Bishop's proof, it is rather long and complicated. A simpler proof of Bishop's theorem was given by the second author of the present paper in [Izz93] using uniform algebra methods. Here we will use uniform algebra methods to give a simple proof of Theorem 1 with the hypothesis that Ω is an L^∞ -pseudoconvex domain replaced by the hypothesis that Ω is open when regarded as a subset of the maximal ideal space $\mathfrak{M}_{H^\infty(\Omega)}$ of $H^\infty(\Omega)$. (We regard Ω as a subset of $\mathfrak{M}_{H^\infty(\Omega)}$ by identifying each point λ in Ω with the functional "evaluation at λ ".) We state the result explicitly here.

Theorem 3. *Let Ω be a bounded open set in \mathbb{C}^n such that Ω is open in $\mathfrak{M}_{H^\infty(\Omega)}$, and let $f_j \in H^\infty(\Omega)$ for $j = 1, \dots, m$. Set $f = (f_1, \dots, f_m)$. Suppose that $g \in C(\overline{\Omega})$ satisfies $g|_{b\Omega \cup \Omega_f} = 0$. Then g is in $H^\infty(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$.*

By exactly the same method we will also establish the analogous assertion for the algebra $A(\Omega)$ of continuous complex-valued functions on $\overline{\Omega}$ that are holomorphic on Ω .

Theorem 4. *Let Ω be a bounded open set in \mathbb{C}^n such that Ω is open in $\mathfrak{M}_{A(\Omega)}$, and let $f_j \in A(\Omega)$ for $j = 1, \dots, m$. Set $f = (f_1, \dots, f_m)$. Suppose that $g \in C(\overline{\Omega})$ satisfies $g|_{b\Omega \cup \Omega_f} = 0$. Then g is in $A(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$.*

We will see also that a similar argument in combination with a result in the second author's paper [Izz03] yields yet another proof of Theorem 2.

The class of domains Ω for which Ω is open in $\mathfrak{M}_{H^\infty(\Omega)}$ (or $\mathfrak{M}_{A(\Omega)}$) is quite broad. To see this, note that for A a Banach algebra of continuous complex-valued functions on Ω containing the functions z_1, \dots, z_n , the set Ω is open in \mathfrak{M}_A whenever π_A is injective over Ω , since in that case Ω (regarded as a subset of \mathfrak{M}_A) coincides with $\pi_A^{-1}(\Omega)$. Furthermore this injectivity over Ω obviously holds whenever Gleason's problem is solvable for A , i.e., whenever, for every point $a = (a_1, \dots, a_n) \in \Omega$, the functions $z_1 - a_1, \dots, z_n - a_n$ generate the ideal of functions in A vanishing at a . Gleason's problem has been extensively studied and is known to be solvable for $H^\infty(\Omega)$ and $A(\Omega)$ on many classes of domains. (See for instance, [AS79] for the case of strongly pseudoconvex domains, or [Rud08] for the particular case of the ball.)

It is not evident what relationship there is between our condition that Ω be open in $\mathfrak{M}_{H^\infty(\Omega)}$ (or $\mathfrak{M}_{A(\Omega)}$) and the condition of Sahutoğlu and Tikaradze that Ω be an L^∞ -pseudoconvex domain, i.e., it is not obvious whether either of these conditions implies the other. This issue may be addressed in a future paper.

Theorems 1, 3, and 4 can be reformulated using the notion of essential set. For a uniform algebra A on a compact space X , the *essential set* \mathcal{E} for A is the smallest closed subset of X such that A contains every continuous complex-valued function on X that vanishes on \mathcal{E} . The existence of the essential set was proved by Herbert Bear [Bea59] (or see [Bro69, Section 2–8]). Theorem 4 asserts that under the given hypotheses on Ω and f , the essential set for $A(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$ is contained in $b\Omega \cup \overline{\Omega}_f$. The conclusion of Theorems 1 and 3 can be reformulated as the assertion that the essential set for $H^\infty(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$ regarded as a uniform algebra on its maximal ideal space is contained in $(\mathfrak{M}_{H^\infty(\Omega)} \setminus \Omega) \cup \overline{\Omega}_f$.

One reason for interest in the above theorems stems from an application to Toeplitz operators given by Sahutoğlu and Tikaradze. Let $L_a^2(\Omega)$ denote the Bergman space, i.e., the space of square integrable, holomorphic functions on Ω , and let $P : L^2(\Omega) \rightarrow L_a^2(\Omega)$ denote the Bergman projection, i.e., the orthogonal projection of $L^2(\Omega)$ onto $L_a^2(\Omega)$. For $\phi \in L^\infty(\Omega)$ the Toeplitz operator $T_\phi : L_a^2(\Omega) \rightarrow L_a^2(\Omega)$ is defined by the equation $T_\phi(f) = P(\phi f)$. The commuting Toeplitz operator problem is to characterize those functions $\phi, \psi \in L^\infty(\Omega)$ such that T_ϕ and T_ψ commute. With the Hardy space in place of the Bergman space, the commuting Toeplitz operator problem was solved by Arlen Brown and Paul Halmos in [BH64]. On the Bergman space, the problem is still open even on the disk. There are, however, various partial solutions including the following result due to Axler, Čučković, and Rao [AČR00].

Theorem 5 ([AČR00]). *Let Ω be a domain in the complex plane, let ϕ be a nonconstant bounded holomorphic function on Ω , and let ψ is a bounded measurable function on Ω such that T_ϕ and T_ψ commute. Then ψ is holomorphic.*

Axler, Cučković, and Rao obtained this theorem as a consequence of Theorem 2 of Bishop. Sahutoğlu and Tikaradze used their partial extension of Bishop's theorem to several variables (Theorem 1 above), to give a generalization of the Axler-Cučković-Rao theorem to several variables.

Theorem 6 ([ST19], Corollary 2). *Let Ω be a bounded L^∞ -pseudoconvex domain in \mathbb{C}^n , let $g \in L^\infty(\Omega)$, and let $f_j \in H^\infty(\Omega)$ for all $j = 1, \dots, m$. Suppose the Jacobian of the map $f = (f_1, \dots, f_m) : \Omega \rightarrow \mathbb{C}^m$ has rank n at some point $z \in \Omega$ and T_g commutes with T_{f_j} for all $1 \leq j \leq m$. Then g is holomorphic.*

As an intermediate step in the proof of Theorem 6, Sahutoğlu and Tikaradze used Theorem 1 to prove an L^p -approximation theorem.

Theorem 7 ([ST19], Corollary 1). *Let Ω be a bounded L^∞ -pseudoconvex domain in \mathbb{C}^n and $f_j \in H^\infty(\Omega)$ for all $j = 1, \dots, m$. Then the following are equivalent.*

- (i) $H^\infty(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$ is dense in $L^p(\Omega)$ for all $0 < p < \infty$.
- (ii) $H^\infty(\Omega)[\bar{f}_1, \dots, \bar{f}_m]$ is dense in $L^p(\Omega)$ for some $1 \leq p < \infty$.
- (iii) the Jacobian of the map $f = (f_1, \dots, f_m) : \Omega \rightarrow \mathbb{C}^m$ has rank n at some point $z \in \Omega$.

Repeating the proofs of Theorems 6 and 7 given in [ST19] with our Theorem 3 in place of Theorem 1 shows that Theorems 6 and 7 continue to hold with the hypothesis that Ω is an L^∞ -domain replaced by the hypothesis that Ω is open in $\mathfrak{M}_{H^\infty(\Omega)}$. (See, however, Remark 10 at the end of our paper).

2. THE PROOFS

We will need the following elementary lemma whose proof we include for completeness.

Lemma 8. *Let Σ be a topological space and let A be a supremum normed Banach algebra of bounded continuous complex-valued functions on Σ that separates points and contains the constants. Let f_1, \dots, f_m be functions in A . Then the map $r : \mathfrak{M}_{A[\bar{f}_1, \dots, \bar{f}_m]} \rightarrow \mathfrak{M}_A$ that sends each multiplicative linear functional on $A[\bar{f}_1, \dots, \bar{f}_m]$ to its restriction to A is injective.*

Proof. By replacing the functions in A and the functions $\bar{f}_1, \dots, \bar{f}_m$ by their continuous extensions to the closure of Σ in \mathfrak{M}_A , we may assume without loss of generality that Σ is compact and A and $A[\bar{f}_1, \dots, \bar{f}_m]$ are uniform algebras on Σ . Now suppose φ_1 and φ_2 are two multiplicative linear functionals on $A[\bar{f}_1, \dots, \bar{f}_m]$ whose restrictions to A coincide. Choose representing measures μ_1 and μ_2 on Σ for φ_1 and φ_2 , respectively. Then for each $j = 1, \dots, m$, we have

$$\varphi_1(\bar{f}_j) = \int \bar{f}_j d\mu_1 = \overline{\int f_j d\mu_1} = \overline{\varphi_1(f_j)} = \overline{\varphi_2(f_j)} = \overline{\int f_j d\mu_2} = \int \bar{f}_j d\mu_2 = \varphi_2(\bar{f}_j).$$

Consequently, $\varphi_1 = \varphi_2$. □

Proof of Theorems 3 and 4. Set $A = H^\infty(\Omega)$, for the proof of Theorem 3 or $A = A(\Omega)$, for the proof of Theorem 4. Set $B = A[\bar{f}_1, \dots, \bar{f}_m]$. Let \widehat{B} denote the uniform algebra on \mathfrak{M}_B whose members are the Gelfand transforms of the functions in B . By Lemma 8 we can regard \mathfrak{M}_B as a subspace of \mathfrak{M}_A by identifying each element of \mathfrak{M}_B with its restriction to A . Since Ω is open in \mathfrak{M}_A and is contained in the subspace \mathfrak{M}_B , the set Ω is open in \mathfrak{M}_B as well.

We can regard g as defined and continuous on all of \mathbb{C}^n by considering g to be identically zero on $\mathbb{C}^n \setminus \Omega$. Note that Ω , regarded as a subset of \mathfrak{M}_B , is closed in $\pi_B^{-1}(\Omega)$ (because it is the subset of $\pi_B^{-1}(\Omega)$ where the two continuous functions π_B and the identity function agree). Thus the closure of Ω in \mathfrak{M}_B is contained in $\Omega \cup \pi_B^{-1}(\mathbb{C}^n \setminus \Omega)$. Since the function $g \circ \pi_B$ is identically zero on $\pi_B^{-1}(\mathbb{C}^n \setminus \Omega)$, it follows that there is a well-defined continuous function \tilde{g} on \mathfrak{M}_B given by

$$\tilde{g}(x) = \begin{cases} (g \circ \pi_B)(x) & \text{for } x \text{ in the closure of } \Omega \text{ in } \mathfrak{M}_B \\ 0 & \text{for } x \text{ in } \mathfrak{M}_B \setminus \Omega. \end{cases}$$

By applying the Bishop antisymmetric decomposition (see [Bro69, Theorem 2.7.5], [Gam84, Theorem II.13.1], or [Sto71, Theorem 12.1]), we will show that \tilde{g} is in \widehat{B} . It follows that g is in B .

Let E be a maximal set of antisymmetry for \widehat{B} . Since the real and imaginary parts of each of f_1, \dots, f_m lie in B , the set E must be contained in a common level set of the functions $\widehat{f}_1, \dots, \widehat{f}_m$. Let $\lambda_1, \dots, \lambda_m$ denote the respective constant values of $\widehat{f}_1, \dots, \widehat{f}_m$ on E . By the definition of Ω_f , each point of the set $L_\lambda = \{z \in \Omega : (f_1(z), \dots, f_m(z)) = (\lambda_1, \dots, \lambda_m)\}$ that is not in Ω_f is an isolated point of L_λ . Because Ω is open in \mathfrak{M}_B , it follows that each point of L_λ that is not in Ω_f is also an isolated point of the set $\tilde{L}_\lambda = \{z \in \mathfrak{M}_B : (\widehat{f}_1(z), \dots, \widehat{f}_m(z)) = (\lambda_1, \dots, \lambda_m)\}$. Since each maximal set of antisymmetry for a uniform algebra on its maximal ideal space is connected [Sto71, Remarks 12.7], it follows that E must be either a singleton set or else be contained in $(\mathfrak{M}_B \setminus \Omega) \cup \Omega_f$. Since \tilde{g} is identically zero on $(\mathfrak{M}_B \setminus \Omega) \cup \Omega_f$, we conclude that $\tilde{g}|_E$ is in $\widehat{B}|_E$. Therefore, \tilde{g} is in \widehat{B} by the Bishop antisymmetric decomposition. \square

We now show how a similar argument yields a new proof of the theorem of Bishop discussed earlier.

Proof of Theorem 2. Set $B = H^\infty(\Omega)[\bar{f}]$. Let \widehat{B} denote the uniform algebra on \mathfrak{M}_B whose members are the Gelfand transforms of the functions in B . Regard \mathfrak{M}_B as a subspace of $\mathfrak{M}_{H^\infty(\Omega)}$ via Lemma 8.

There is a continuous map $\pi_{H^\infty(\Omega)} \rightarrow \overline{\Omega}$ that is the identity on Ω and takes $\mathfrak{M}_{H^\infty(\Omega)} \setminus \Omega$ onto $b\Omega$. When $\Omega \subset \mathbb{C}$ is bounded, $\pi_{H^\infty(\Omega)}$ is just the Gelfand transform of z . In the general

case the definition of $\pi_{H^\infty(\Omega)}$ is more complicated. See [Gam70]. In particular, Ω is open in $\mathfrak{M}_{H^\infty(\Omega)}$, and hence, in the subspace \mathfrak{M}_B . Let π be the restriction of $\pi_{H^\infty(\Omega)}$ to \mathfrak{M}_B .

Each maximal set of antisymmetry for \widehat{B} must be contained in a level set of \widehat{f} , and by [Sto71, Remarks 12.7] must be connected. Since each level set of a nonconstant holomorphic function of one complex variable is discrete, and Ω is open in \mathfrak{M}_B , it follows that each maximal set of antisymmetry for \widehat{B} is either a singleton set or else is contained in $\mathfrak{M}_{H^\infty(\Omega)} \setminus \Omega = \pi^{-1}(b\Omega)$. Invoking the Bishop antisymmetric decomposition, we conclude that the essential set for $H^\infty(\Omega)[\overline{f}]$ is contained in $\pi^{-1}(b\Omega)$. By [Izz03, Theorem 4.1], which we quote below for the reader's convenience, it follows at once that $C(\overline{\Omega}) \subset H^\infty(\Omega)[\overline{f}]$. \square

Theorem 9 ([Izz03]). *Let Ω be an open set in the Riemann sphere, and let A be a uniformly closed algebra of bounded continuous complex-valued functions on Ω . If $\Omega \subset \mathbb{C}$ is bounded assume that $A \supset A(\Omega)$, and if Ω is unbounded assume that $A \supset H^\infty(\Omega)$. Let \mathcal{E} denote the essential set of A regarded as a uniform algebra on \mathfrak{M}_A . Then $A \supset C(\overline{\Omega})$ if and only if $\mathcal{E} \subset \pi^{-1}(b\Omega)$.*

When Ω is bounded, the proof of this theorem is rather easy. The case of unbounded Ω is more difficult.

Remark 10. While the basic idea of the proof of Theorem 7 given in [ST19] is correct, there is an incorrect statement there in the proof of the implication (ii) implies (iii). (The algebra generated by the functions z_1, \dots, z_n is not dense in $H^\infty(B)$ for B an open ball in \mathbb{C}^n .) We therefore repeat the proof of this implication avoiding that error. Suppose that $H^\infty(\Omega)[\overline{f}_1, \dots, \overline{f}_m]$ is dense in $L^p(\Omega)$ for some $1 \leq p < \infty$. Then applying [IL13, Theorem 4.2 or Lemma 4.3] yields that at some point $z \in \Omega$ the differentials of the functions in the set $H^\infty(\Omega) \cup \{\overline{f}_1, \dots, \overline{f}_m\}$ span a $2n$ -dimensional vector space (the complexified cotangent space to \mathbb{C}^n). Since the differential of every function in $H^\infty(\Omega)$ lies in the n -dimensional space spanned by dz_1, \dots, dz_n , it follows that the Jacobian of $f = (f_1, \dots, f_m)$ has rank n at z .

3. ACKNOWLEDGMENT

We thank Akaki Tikaradze for useful conversations.

REFERENCES

- [AČR00] Sheldon Axler, Željko Čučković, and N. V. Rao, *Commutants of analytic Toeplitz operators on the Bergman space*, Proc. Amer. Math. Soc. **128** (2000), no. 7, 1951–1953. MR 1694299
- [AS79] P. Ahern and R. Schneider, *Holomorphic Lipschitz functions in pseudoconvex domains*, Amer. J. Math. **101** (1979), 543–565.
- [Bea59] H. S. Bear, *Complex function algebras*, Trans. Amer. Math. Soc. **90** (1959), 383–393.
- [BH64] Arlen Brown and P. R. Halmos, *Algebraic properties of Toeplitz operators*, J. Reine Angew. Math. **213** (1963/64), 89–102. MR 160136

- [Bis89] Christopher Bishop, *Approximating continuous functions by holomorphic and harmonic functions*, Trans. Amer. Math. Soc. **311** (1989), 781–811.
- [Bro69] Andrew Browder, *Introduction to function algebras*, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [Gam70] T. W. Gamelin, *Localization of the corona problem*, Pacific J. Math. **34** (1970), 73–81.
- [Gam84] Theodore W. Gamelin, *Uniform algebras*, second edition ed., Chelsea, 1984.
- [IL13] Alexander J. Izzo and Bo Li, *Generators for algebras dense in L^p -spaces*, Studia Math. **217** (2013), no. 3, 243–263. MR 3119758
- [Izz93] Alexander J. Izzo, *Uniform approximation by holomorphic and harmonic functions*, J. London Math. Soc. **47** (1993), 129–141.
- [Izz03] ———, *Algebras containing bounded holomorphic functions*, Indiana Univ. Math. J. **52** (2003), no. 5, 1305–1342.
- [Rud08] Walter Rudin, *Function theory in the unit ball of \mathbb{C}^n* , Classics in Mathematics, Springer-Verlag, Berlin, 2008, Reprint of the 1980 edition. MR 2446682
- [ST19] Sönmez Sahutoğlu and Akaki Tikaradze, *On a theorem of Bishop and commutants of Toeplitz operators in \mathbb{C}^n* , Rend. Circ. Mat. Palermo (2) **68** (2019), no. 2, 237–246. MR 4148742
- [Sto71] Edgar Lee Stout, *The theory of uniform algebras*, Bogden & Quigley, Inc., Tarrytown-on-Hudson, N. Y., 1971. MR 0423083

DEPARTMENT OF MATHEMATICAL SCIENCES, KENT STATE UNIVERSITY, KENT, OH 44242

Email address: tclos@kent.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OH 43403

Email address: aizzo@bgsu.edu