APPROXIMATION BY AN ALGEBRA GENERATED BY
HOLOMORPHIC AND CONJUGATE HOLOMORPHIC FUNCTIONS
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ABSTRACT. Using methods from the theory of uniform algebras, we give a simple proof of an
approximation result of Sahutoglu and Tikaradze with L*-pseudoconvex domains replaced by
the open sets for which Gleason’s problem is solvable.

1. THE RESULTS

In [ST19] S6nmez Sahutoglu and Akaki Tikaradze proved, on what they referred to as L*-
pseudoconvex domains, an approximation result that can be viewed as a several complex
variables generalization of a weak form of an earlier approximation result in one complex
variable due to Christopher Bisho [Bis89]. They used their approximation result to give a
generalization to several complex variables of a theorem of Sheldon Axler, Zeljko Cugkovi¢,
and Nagisetti Rao regarding commuting Toeplitz operators [ACR00]. The main purpose of
the present paper is to give a simple proof of the approximation result of Sahutoglu and
Tikaradze, under a different hypothesis on the underlying domain, using methods from the
theory of uniform algebras.

We introduce here some notation and terminology we will use. Throughout the paper, ()
will be an open set in C" or in the Riemann sphere. The boundary of () will be denoted by
bQ). Following [ST19], given a holomorphic map f : (3 — C" we will denote by 7. the
set of all nonisolated points of f~1(1) and we set Q ¢ = Urecm (2f,2. For a compact space
X, we denote by C(X) the algebra of all continuous complex-valued functions on X. A uni-
form algebra on X is a supremum norm closed subalgebra of C(X) that contains the constant
functions and separates the points of X. In particular, a uniform algebra is a commutative
Banach algebra. We will denote the maximal ideal space of a commutative Banach algebra
A by M4. Given x € A we will denote the Gelfand transform of x as usual by x. If A is a
Banach algebra of continuous complex-valued functions on a subset of C"* and the complex
coordinate functions zj, ..., z, belong to A, we will let 74 : M4 — C" denote the map given
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by ma(x) = (Z1(x),...,Zu(x)). As usual H®(Q)) will denote the algebra of bounded holo-
morphic functions on () equipped with the supremum norm. If A is an algebra of bounded
continuous complex-valued functions on Q) and f1, . . ., f; are bounded continuous complex-
valued functions on ), we will denote by A[fy, ..., fi] the norm closed subalgebra of L*((})
generated by A and the functions fy, ..., f;. This last notation, which is rather standard, dif-
fers from the notation in [ST19] in that in [ST19] the notation A[fy, ..., fm] is used to denote
the algebra generated by A and f, ..., f without taking closure.

In the terminology of Sahutoglu and Tikaradze, an L*-pseudoconvex domain is a pseu-
doconvex domain on which the g-problem is solvable in L. (See [ST19] for the precise
definition.) The approximation theorem of Sahutoglu and Tikaradze referred to above is the
following.

Theorem 1 ([ST19], Theorem 1). Let Q) be a bounded L*-pseudoconvex domain in C" and let
fi € H(Q) forj=1,...,m. Set f = (f1,..., fm). Suppose that g € C(Q)) satisfies 8lboun, = 0.
Then g isin H®(Q)[fy, ..., f)-

This theorem can be regarded as a partial extension to several variables of an approxima-
tion theorem of Christopher Bishop.

Theorem 2 ([Bis89], Theorem 1.2). Suppose that () is an open set in the Riemann sphere and that

f € H*(Q)) is nonconstant on each component of Q. Then C(Q)) C H®(Q)[f].

Sahutoglu and Tikaradze’s proof of Theorem [1| was inspired by Bishop’s proof of Theo-
rem [2| and like Bishop’s proof, it is rather long and complicated. A simpler proof of Bishop’s
theorem was given by the second author of the present paper in [Izz93] using uniform alge-
bra methods. Here we will use uniform algebra methods to give a simple proof of Theorem]|
with the hypothesis that () is an L*-pseudoconvex domain replaced by the hypothesis that ()
is open when regarded as a subset of the maximal ideal space My 3y of H*(Q). (We regard
() as a subset of My () by identifying each point A in () with the functional “evaluation at
A”.) We state the result explicitly here.

Theorem 3. Let Q) be a bounded open set in C" such that Q) is open in My, and let f; € H*(Q))

forj=1,...,m. Set f = (f1,..., fm). Suppose that g € C(Q) satisfies g|poun, = 0. Then g is in
H®(Q)[fy, - fl

By exactly the same method we will also establish the analogous assertion for the algebra
A(Q) of continuous complex-valued functions on Q) that are holomorphic on Q.

Theorem 4. Let () be a bounded open set in C" such that Q) is open in M y(qy), and let f; € A(Q)
forj=1,...,m. Set f = (f1,..., fm). Suppose that ¢ € C(Q) satisfies 8lvoua, = 0. Then g is in

AQfy - fl
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We will see also that a similar argument in combination with a result in the second author’s
paper [1zz03] yields yet another proof of Theorem [2|

The class of domains () for which () is open in My () (or My () is quite broad. To
see this, note that for A a Banach algebra of continuous complex-valued functions on (2
containing the functions zy, ..., zy,, the set (2 is open in M4 whenever 774 is injective over
(), since in that case () (regarded as a subset of 9t,4) coincides with 7(21(0). Furthermore
this injectivity over () obviously holds whenever Gleason’s problem is solvable for A, i.e.,
whenever, for every pointa = (ay,...,a,) € Q, the functions zy — a4, . .., z, — a, generate the
ideal of functions in A vanishing at a. Gleason’s problem has been extensively studied and
is known to be solvable for H*(Q)) and A(Q)) on many classes of domains. (See for instance,
[AS79] for the case of strongly pseudoconvex domains, or [Rud08] for the particular case of
the ball.)

Itis not evident what relationship there is between our condition that () be open in My ()
(or M4 () and the condition of Sahutoglu and Tikaradze that () be an L*-pseudoconvex
domain, i.e., it is not obvious whether either of these conditions implies the other. This issue
may be addressed in a future paper.

Theorems [1} |3 and 4| can be reformulated using the notion of essential set. For a uniform
algebra A on a compact space X, the essential set & for A is the smallest closed subset of
X such that A contains every continuous complex-valued function on X that vanishes on
&. The existence of the essential set was proved by Herbert Bear [Bea59] (or see [Bro69,
Section 2-8]). Theorem |4 asserts that under the given hypotheses on () and f, the essential
set for A(Q)[f,.-., f,,] is contained in bQ U ﬁf. The conclusion of Theorems |1| and 3| can
be reformulated as the assertion that the essential set for H*(Q)[f,..., f,,] regarded as a
uniform algebra on its maximal ideal space is contained in (M pe () \ Q) U ﬁf.

One reason for interest in the above theorems stems from an application to Toeplitz op-
erators given by Sahutoglu and Tikaradze. Let L2(Q)) denote the Bergman space, i.e., the
space of square integrable, holomorphic functions on ), and let P : L?(Q)) — L2(Q)) denote
the Bergman projection, i.e., the orthogonal projection of L2(Q) onto L2(Q)). For ¢ € L®(Q)
the Toeplitz operator Ty : L2(Q)) — L2(Q)) is defined by the equation Ty(f) = P(¢f). The
commuting Toeplitz operator problem is to characterize those functions ¢, € L®(Q) such
that Ty and Ty, commute. With the Hardy space in place of the Bergman space, the commut-
ing Toeplitz operator problem was solved by Arlen Brown and Paul Halmos in [BH64]. On
the Bergman space, the problem is still open even on the disk. There are, however, various
partial solutions including the following result due to Axler, Cu¢kovi¢, and Rao [ACRO0].

Theorem 5 (JACRQ0]). Let Q) be a domain in the complex plane, let ¢ be a nonconstant bounded
holomorphic function on Q), and let 1 is a bounded measurable function on Q) such that Ty and Ty
commute. Then 1 is holomorphic.
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Axler, Cuckovi¢, and Rao obtained this theorem as a consequence of Theorem|g| of Bishop.
Sahutoglu and Tikaradze used their partial extension of Bishop’s theorem to several variables
(Theorem |l| above), to give a generalization of the Axler-Cuc¢kovi¢-Rao theorem to several
variables.

Theorem 6 ([ST19], Corollary 2). Let Q) be a bounded L*-pseudoconvex domain in C", let g €
L*(Q), and let f; € H*®(Q) forall j = 1,...,m. Suppose the Jacobian of the map f = (f1,---, fm) :
QO — C" has rank n at some point z € () and Ty commutes with Ty, for all 1 < j < m. Then g is
holomorphic.

As an intermediate step in the proof of Theorem |6, Sahutoglu and Tikaradze used Theo-
rem|1|to prove an LP-approximation theorem.

Theorem 7 ([ST19], Corollary 1). Let Q) be a bounded L*™-pseudoconvex domain in C" and f; €
H*®(Q) forallj =1,...,m. Then the following are equivalent.

(i) H®(Q)[fy, ..., f,,] is dense in LP(Q) forall 0 < p < oo.

(i) H®(Q)[fy, .-, f,,) is dense in LP(Q) for some 1 < p < co.

(iii) the Jacobian of the map f = (f1,..., fm) : Q — C™ has rank n at some point z € Q).

Repeating the proofs of Theorems [p| and [7| given in [ST19] with our Theorem [3|in place of
Theorem [1|shows that Theorems [6| and [7] continue to hold with the hypothesis that () is an
L*-domain replaced by the hypothesis that () is open in My (). (See, however, Remark
at the end of our paper).

2. THE PROOFS
We will need the following elementary lemma whose proof we include for completeness.

Lemma 8. Let X be a topological space and let A be a supremum normed Banach algebra of bounded
continuous complex-valued functions on X that separates points and contains the constants. Let
f1, -+, fm be functions in A. Then the map r : I Alfpof] 9 4 that sends each multiplicative

linear functional on A[f, ..., f, ] to its restriction to A is injective.

Proof. By replacing the functions in A and the functions f,,..., f,, by their continuous ex-
tensions to the closure of X in 94, we may assume without loss of generality that ¥ is com-
pact and A and A[f,, ..., f,,] are uniform algebras on £. Now suppose ¢; and ¢ are two
multiplicative linear functionals on A[f,..., f, ] whose restrictions to A coincide. Choose
representing measures 1 and yp on X for ¢1 and ¢y, respectively. Then foreachj=1,...,m,
we have

o1(f;) = /7jdl/‘1 = /fjdl/‘l = ¢1(fj) = ¢a2(fj) = /fjduz = /7de2 = 92(f))-
Consequently, ¢1 = ¢». O
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Proof of Theorems |3|and |4 Set A = H®(Q), for the proof of Theorem 3| or A = A(Q), for the
proof of Theorem lég Set B = A[fy,...,f,,)- Let B denote the uniform algebra on 9z whose
members are the Gelfand transforms of the functions in B. By Lemma |§| we can regard IMip
as a subspace of M4 by identifying each element of M1z with its restriction to A. Since () is
open in 914 and is contained in the subspace Mg, the set () is open in Mip as well.

We can regard g as defined and continuous on all of C" by considering g to be identically
zero on C" \ Q). Note that (), regarded as a subset of M, is closed in ngl (Q)) (because it is the
subset of ngl (Q)) where the two continuous functions 713 and the identity function agree).
Thus the closure of ) in Mg is contained in QU 75 (C" \ Q). Since the function g o 7t is
identically zero on 7t (C" \ Q), it follows that there is a well-defined continuous function §
on Mg given by

() (gomp)(x) for x in the closure of Q) in Mip
§X) =
0 for x in Mp \ Q.

By applying the Bishop antisymmetric decomposition (see [Bro69, Theorem 2.7.5], [Gam84,
Theorem I1.13.1], or [Sto71, Theorem 12.1]), we will show that g is in B. It follows that gisin
B.

Let E be a maximal set of antisymmetry for B. Since the real and imaginary parts of each
of f1,..., fm lie in B, the set E must be contained in a common level set of the functions
]?1, .. .,]?m. Let Ay,..., Ay denote the respective constant values of j?l,. . .,]:\m on E. By the
definition of (), each point of the set Ly = {z € O : (f1(2),..., fu(2)) = (A1, ..., Am)} that
is not in ()¢ is an isolated point of L,. Because () is open in M, it follows that each point of
L, that is not in ()¢ is also an isolated point of the set Ly={zecmp: (fl (2),.. ,fm(z)) =
(A1,...,Am)}. Since each maximal set of antisymmetry for a uniform algebra on its maximal
ideal space is connected [Sto71, Remarks 12.7], it follows that E must be either a singleton
set or else be contained in (Mg \ Q) U Q. Since g is identically zero on (Mp \ Q) U Qf, we
conclude that g|f is in B|g. Therefore, § is in B by the Bishop antisymmetric decomposition.

O

We now show how a similar argument yields a new proof of the theorem of Bishop dis-
cussed earlier.

Proof of Theorem |2} Set B = H*(Q)) [f]. Let B denote the uniform algebra on Mg whose mem-
bers are the Gelfand transforms of the functions in B. Regard 905 as a subspace of My (@)
via Lemma

There is a continuous map 7y«q) — Q) that is the identity on Q) and takes My () \ Q
onto bQ). When ) C C is bounded, 7y~ (q) is just the Gelfand transform of z. In the general
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case the definition of 7Ty~ (() is more complicated. See [Gam70]. In particular, () is open in
m H®(Q)/ and hence, in the subspace Mp. Let 7t be the restriction of T () tO Mp.

Each maximal set of antisymmetry for B must be contained in a level set of f,and by [Sto71,
Remarks 12.7] must be connected. Since each level set of a nonconstant holomorphic function
of one complex variable is discrete, and () is open in 93, it follows that each maximal set of
antisymmetry for B is either a singleton set of else is contained in My \ Q = 7 1(bQ).
Invoking the Bishop antisymmetric decomposition, we conclude that the essential set for
H®(Q)[f] is contained in 77~ 1(bQ)). By [1zz03, Theorem 4.1], which we quote below for the

reader’s convenience, it follows at once that C(Q)) C H*®(Q)[f]. O

Theorem 9 ([1zz03]). Let Q) be an open set in the Riemann sphere, and let A be a uniformly closed
algebra of bounded continuous complex-valued functions on Q). If O C C is bounded assume that
A D A(Q)), and if Q) is unbounded assume that A O H®(Q)). Let & denote the essential set of A
regarded as a uniform algebra on M 4. Then A D C(Q) if and only if & C w1 (bQY).

When () is bounded, the proof of this theorem is rather easy. The case of unbounded () is
more difficult.

Remark 10. While the basic idea of the proof of Theorem |Z| given in [ST19] is correct, there is
an incorrect statement there in the proof of the implication (ii) implies (iii). (The algebra gen-
erated by the functions z1, . . ., z, is not dense in H*(B) for B an open ball in C".) We therefore
repeat the proof of this implication avoiding that error. Suppose that H*(Q)[f,, ..., f,,] is
dense in LP(Q)) for some 1 < p < oo. Then applying [IL13, Theorem 4.2 or Lemma 4.3] yields
that at some point z € () the differentials of the functions in the set H*(Q) U {f,,..., f,.}
span a 2n-dimensional vector space (the complexified cotangent space to C"). Since the dif-
ferential of every function in H*(Q) lies in the n-dimensional space spanned by dz, ..., dz,,
it follows that the Jacobian of f = (f1,..., fu) has rank n at z.
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