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Origin of anomalously stabilizing ice layers on
methane gas hydrates near rock surface

Yang Li, *ab Robert W. Corkery,cd Sol Carretero-Palacios, e Kristian Berland, f

Victoria Esteso, gn Johannes Fiedler, hi Kimball A. Milton, *j Iver Brevik*k and
Mathias Boström *lm

Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice

layers. In a recent work [Boström et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface

region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously

stabilizing ice layers. In this paper, it is demonstrated that the Casimir–Lifshitz free energy in multi-layer

systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates

in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold

water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced

stresses, can also be of importance, and are briefly discussed.

1 Introduction

Methane hydrates exist in association with rock-forming minerals
on the Earth and likely elsewhere in the solar system and beyond.
The most common rock-forming minerals in the Earth’s crust are

quartz and feldspars, comprising more than 50% of the crust.
Indeed quartz and feldspars are also known in other bodies,
where hydrates have also been detected or hypothesized, such as
Mars, various planetary moons and asteroids. Methane hydrates
exist in states outside their respective ordinary temperature and
pressure windows of thermodynamic stability through the for-
mation of a stabilizing ice layer.1–6 This observed effect is referred
to as ‘self-preservation’ or ‘anomalous stabilization’.5,7 It has been
assumed5,7 that anomalous stabilisation occurs when a gas diffu-
sion barrier of ice forms on the outside of the methane hydrate
particles, retarding the hydrate decomposition on decompression.
This ice layer has been generally thought to form kinetically as the
hydrate partially depletes its outer hydrate cages close to its
stability field boundary, either in water or in air. The final ice
layer can give anomalous stability over short to long time scales
and is an effective diffusion barrier because of the annealing of
common hexagonal ice (Ih) domains to form a continuous layer,
often passing through an initial cubic ice phase to a hexagonal
one via a change in the density of stacking faults with time.7,8 The
diffusion barrier appears to be enhanced, as the stacking faults
are reduced when annealing is near completion. This occurs most
effectively just below 273 K, and in relatively low salinity water9

(less than 0.5 wt% NaCl) where the freezing point depression of
water is not so pronounced. The anomalous stabilization occur-
ring for higher salinity, i.e., larger than 0.5 wt% NaCl, is less
effective and depressed in temperatures close to 250–260 K.

Indeed, the permafrost hydrates are hosted within porous
rocks, comprising various minerals, and the effect of the stabiliz-
ing ice layers on GHs can be found when analysing onshore and
offshore Arctic hydrates associated with permafrost, where some
GHs, less than 200 m below the ground surface, have been
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considered unstable.10 However, even outside the window of stabi-
lity of a specific GH,10 dissociation is not immediate. Instead,
accounting for different sinks that prevent GH methanes from
reaching the atmosphere, Ruppel and Kessler suggest a timescale
of 400000 years for complete transfer.10 Chuvilin, Shakhova and
others,11–13 have found that hydrates in permafrost regions can
possibly exist at depths 0–200 m from the surface, whereas others
have deemed it unlikely, and argue that the anomalous stablization
of the water–ice layers is effective only under specific conditions.

We will here proceed as in a recent work,14,15 where an energy
contribution essential for the existence of relatively thick, mole-
cular scale ice coatings on partially degassed hydrates in ice-cold
water,15 was proposed. By using reliable dielectric optical
properties of water, ice, and GHs combined with a model for the
Casimir–Lifshitz energy there, it was established how nano- to
micron-sized ice-coated type-I CO2 clathrates can float in water
columns of ocean worlds, potentially forming thermally insulating
coatings deposited on top of these oceans, underneath or within
the ice caps.15 Our past findings15 were in line with an earlier work
that modelled the observed geophysics on Pluto.16

In this paper, a theory of the Casimir–Lifshitz free energy,
which supports the anomalous stabilization of methane GHs
near a rock surface, is presented. The necessity for the for-
mation of stabilizing ice layers is that the Lifshitz energy for a
five layered system with GHs (including separate surface
regions) in contact with ice and water inside the pore has an
energy minimum at some specific ice layer thicknesses. Given
the presence of large amounts of methane hydrates hosted in
contact with rock-forming minerals in permafrost and in con-
tinental shelf sediments,11,17 we extend our previous studies on
gas hydrate stabilisation due to Casimir-force-induced ice layers to

a simple model of mineral-lined rock pores interacting with
methane hydrates. Also, the current work could potentially explain
why GHs confined in nanopores have more stable ice layers
compared to GHs in larger pores.6 Methane hydrate is stable in
small quartz cavities even outside the normal stability window
(pressures and temperatures) as long as the system is below the
freezing temperature of water. This experimentally observed effect
is here proposed (at least partly) to be due to anomalously
stabilizing ice layers formed by Casimir–Lifshitz interactions at
the ice–water interface, when GHs are confined within small water-
filled pores in the rocky ground (e.g. quartz or albite), or in clay
(e.g. kaolinite). Finally, we outline a roadmap to extend the present
work to include other effects (e.g. ion free energies).

The left panel in Fig. 1 presents a schematic illustration of
our model system, which is represented as a closed pore,
connected to a larger pore system out of the plane of the figure.
This idealised pore is large compared to the layer thicknesses
such that it is possible to model a locally flat five-layered
system. We assume a cavity containing gas hydrate as the
initial state, and assume some loss of methane from the surface
layer of the hydrate which could be approximated as a single
gas-depleted low occupancy layer. We model this system at the
temperature and pressure of the quadruple point, where water
and ice coexist with methane hydrate in the pore.

2 Theory
2.1 Material modelling

2.1.1 Permittivity of water and ice. The key inputs required
to calculate Casimir–Lifshitz energies are the dielectric

Fig. 1 Left: Schematic representation of an idealised filled pore or cavity in a rock composed of quartz. In our model, quartz and high-occupancy (HO)
hydrate are infinite half spaces with respective dielectric functions eR and eL. Between these half spaces we model successive layers of low-occupancy
(LO) hydrate, ice, and water. The corresponding layer thicknesses are d1, d2 and d3, and the respective dielectric functions are e1, e2 and e3. Right: Detailed
cross section of the system plotted on the left. Schematic diagram of the five-layer CH4 hydrate system: high-occupancy (HO) gas hydrate eL;
low-occupancy (LO) hydrate, e1; pure H2O ice, e2; pure liquid H2O, e3, and rock surface, eR.
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functions of the interacting materials. Recently, Fiedler et al.18

showed that reparameterizing the real and imaginary dielectric
function of cold water results in the prediction of the formation
of micron-sized ice layers at water surfaces, in contrast to the
ice premelting found with the older parameterizations by
Elbaum and Schick.19,20 The result found in ref. 18 was subse-
quently confirmed21 using the more recent reparameterizations
of ice and water by Luengo-Márquez and MacDowell.22,23 In the
current work, we use the parameters from Luengo-Márquez and
MacDowell for ice and water,22,23 but evaluate the dielectric
functions at the quadruple point of methane GH (T = 272.9 K).
One should note that the parameterised models for ice and
water by Luengo-Márquez and MacDowell agree well (except at
very low frequencies) with the dielectric functions for imaginary
frequencies derived from experimental data on the real fre-
quency axis, but they do not obey Kramers–Kronig relation
(causality) which is valid for the model by Fiedler et al.

2.1.2 Permittivity of quartz, albite and kaolinite. To model
rock materials, quartz, albite and kaolinite are considered,
whose dielectric functions were obtained with density func-
tional theory (DFT) using the VASP software package24–26 start-
ing from experimental lattice constants.27–29 Both electronic
and vibrational contributions to the dielectric function at finite
frequencies were taken into account. The electronic contribu-
tions were obtained within the independent-particle approxi-
mation using the HSE06 hybrid functional,30,31 which provides
more accurate band gaps than standard DFT calculations in the
generalized gradient approximation (GGA). Phonon modes and
Born effective charges were computed at the GGA-level of theory.
The energy cutoff was set to 400 eV and the Brilloin-zone was
sampled using a k-point density of 0.33 Å�1. The dielectric
function was carefully converged (using visual inspection) with
the number of electronic bands, using respectively 200, 300,
and 400 for quartz, kaolinite, and albite, reflecting the different
number of atoms in the unit cells.

2.1.3 Modelling methane hydrates of different occupancy.

Hydrates consist of water and gas molecules forming solid ice-like
structures. Larger molecules can form type-I clathrate structures,
while type-II clathrate structures typically host smaller mole-
cules.17 Methane hydrates pack in the type-I clathrate struc-
tures.17 In such a system, voids can be either filled or partially
degassed. The surface region could, due to diffusion, have a lower
density of gas molecules than the bulk region. We model the
permittivity for methane hydrates with a simple mixing model
considering water and methane molecules in a frozen structure.
Such a model for methane hydrate (emh) is described in our past
works,14,15 except here we use the improved model for dielectric
function of ice,22 ei, in the Lorentz–Lorenz model32 within the
mixing scheme for GHs taken from Bonnefoy et al.33,34

emhðiz;NgÞ ¼
1þ 2G

1� G
; (1)

with

G ¼
ei � 1

ei þ 2

nwh

ni
þ
4paMnM

3
; (2)

where ni is the number density of water molecules in ice, while
nwh and nM are the number densities of water and gas molecules
in the hydrate structure, respectively, and aM is the gas polariz-
ability. Eqn (2) means that the dominating factors for the
dielectric function of GHs are the ice polarizability (ei � 1)/
(ei + 2) weighted by the number density of water in the hydrate
relative to pure ice, and the polarizabilities of different gas
molecules weighted by their corresponding number densities.
The mass density of water in pure ice35 is 0.9167 g cm�3, giving
the number density of water molecules in pure ice as ni =
3.06434 � 10�2 Å�3. The number densities of water molecules
(nwh = 2.65681 � 10�2 Å�3) and gas molecules (nM = Ng � nwh/46)
in methane GH structures were all derived following the work by
Prieto-Ballesteros et al.36 (and references therein). The number
Ng of gas molecules per 46 water molecules in the GH unit cell
can vary with occupancy: Ng = 0 (empty), 1, 2, 3,. . ., 8 (fully
occupied).36 Later on in this work, for example in Section 3.1.2, a
distinction is made between surface (s) and bulk (b) regions,
replacing Ng with the more specific Ng,s and Ng,b values, respec-
tively. Calculations to obtain quantum chemical dynamic polar-
isabilities at discrete frequencies were fitted at arbitrary
imaginary frequencies ix to the 5-mode oscillator model,14

aMðizÞ ¼
X

j

aj

1þ ðz=ojÞ2
: (3)

The adjusted parameters for CH4 were given in our recent
work.37 This describes the dynamic polarisability accurately up
to a very small (0.02%) relative error.38

2.1.4 Overview of different materials’ permittivities. The
dielectric functions we model above are valid for materials at
temperature T = 273.16 K. However, due to the weak depen-
dence of dielectric functions on pressure and the proximity to
the quadruple point temperature of CH4 gas hydrates, we can
use, to a good approximation,14 the same parameterised dielec-
tric functions at the quadruple point for methane hydrate
(p = 25.63 bar and T = 272.9 K).17 Fig. 2 shows the dielectric
functions (at T = 272.9 K) employed in this work for water22,23

and ice,22,23 together with those for quartz, albite, kaolinite,
and methane hydrate with different gas molecular occupancies.
We observe that the curve for ice (in cyan) lies above the low
occupancy GH curves, and below the high occupancy curves,
which will result in different effects on ice formation depend-
ing on the occupancy. In contrast, the curve for water (in green)
is above the curves of all considered GHs (thus, above the ice
curve) indicating that the Casimir–Lifshitz interaction alone
cannot lead to premelting of ice in contact with a methane
hydrate surface. The three curves on the top (for quartz, albite
and kaolinite) in Fig. 2 are very close to each other, and the
relative magnitudes of these three permittivities with respect to
different materials at zero frequency only yield tiny qualitative
differences in the Casimir–Lifshitz interaction, as will be shown
in Fig. 10. For these reasons, we focus our studies just on quartz
in combination with ice, water and different methane hydrates
to address the study of Casimir–Lifshitz interactions. We also
study the effects on the Casimir–Lifshitz interaction from using
different rock materials, by comparing the corresponding
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stresses induced. Indeed, when exploiting the similar dielectric
functions found from DFT for quartz, albite and kaolinite, we
find only small variations for the Casimir–Lifshitz forces and
stresses, as it will be shown in Fig. 10. Other sets of materials,
material models, or type of interactions (e.g. salt induced
pressures), may lead to predictions with a larger diversity.
In addition, based on the relative differences amongst the
permittivities of the different materials considered in Fig. 2,
we can qualitatively estimate the configurations in which the
ice coating could be stabilized by Casimir–Lifshitz interactions,
as was done for other material combinations.21 In what follows,
we will analyze anomalously stabilized ice layers in cavities
modelled within a five layer Casimir–Lifshitz theory. The deri-
vation of this theory is given in the Appendix, and discussion
on ionic interactions and other non-Lifshitz effects are pro-
vided in Section 4.2.

2.2 Casimir–Lifshitz interaction in multi-layer

inhomogeneous systems

Lifshitz and co-workers derived the dispersion force between
interacting planar media.39 Afterwards, Ninham and co-workers
simplified the theoretical modelling of Casimir–Lifshitz disper-
sion forces in the early 1970s.40–43 The original Lifshitz theory
applied to just one intermediate layer (between the interacting
materials) which, for sufficiently large thicknesses, could be taken
as semi-infinite. Recently, it was demonstrated, in the case of a
four-layer geometry,22,44 how to extend the theory to two inter-
vening layers, which separately, might take infinite thickness. The
extension to consider multi-layer magnetodielectric induced
stress is straightforward and it arises from the difference in
magnetodielectric Casimir–Lifshitz forces22,44–49 in two adjacent

media. Here, we consider four- and five-layer configurations, with
ice and water as the two intervening layers. To evaluate the
Casimir–Lifshitz interactions in these configurations, the inter-
vening media are treated as inhomogeneous and the theoretical
framework proposed in ref. 48 is employed. With the inhomoge-
neous description, the Casimir–Lifshitz interaction in a general
n-slab structure can be obtained and is consistent with present
results, as detailed in the Appendix.

2.2.1 Four-layer configuration. For the four-layer confi-
guration,44 the stress across the ice–water interface induced
by Casimir–Lifshitz interactions, i.e. across layer 2 and 3
following the scheme in Fig. 1 (right panel), takes into account
the pressure contributions from both sides, that is,

PCL;23 = Pice,right + Pwater,left. (4)

As Pwater,left = �Pwater,right, we have

PCL;23 = Pice,right � Pwater,right. (5)

Suppose these four layers are stacked horizontally along the
positive z-direction frommedium 1 to medium 4 without losing
any generality. A positive stress thus corresponds to a force
directed rightwards, in the direction of positive z. In simple
terms, outward pointing pressures on the ice layer and on the
water layer have opposite directions at the ice–water interface.
The surface stress on the ice–water interface due to the Casi-
mir–Lifshitz interaction, acting from the ice side, is then†

PCL;23 ¼ �
T

2p

X1

m¼�1

ð1

0

dkk
X

s¼E;H

k2

Ds
2

�
k3

Ds
3

� �
; (6)

in which the sum is over Matsubara frequencies zm = 2pT|m|,
with m A Z, and E, H represent transverse electric (TE) and
transverse magnetic (TM) polarizations (also commonly
denoted by s and p), respectively. The multiple reflections
between the interfaces, as described by Esteso et al.44 give the
mode structures

1

Ds
2

¼
�rs12r

s
23e

�2k2d2

1þ rs12r
s
23e

�2k2d2
;

1

Ds
3

¼
�rs43r

s
32e

�2k3d3

1þ rs43r
s
32e

�2k3d3
; (7)

where d2, d3 are the thicknesses of layer 2 and 3, respectively.
Here we use the imaginary part of perpendicular wavevector43

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ mnðizmÞenðizmÞzm

2

q
; (8)

where k = |k| is the magnitude of the wavevector parallel to the
surface. For nonmagnetic materials, the permeability satisfies
m(izm) = 1 for all m values. The reflection coefficients at a single
interface, rsij, are given as eqn (28) in the Appendix, along with
the reflections at multiple interfaces,45,46,50 %risj, in eqn (36) for
the four-layer geometry.

2.2.2 Five-layer configuration. For the five-layer case, the
pressure on a surface, for instance the surface between medium
2 and 3, has the same form as in eqn (6), except that Ds

2 and Ds
3

Fig. 2 Dielectric functions for fully occupied (Ng = 8) methane GH, low
occupancy (Ng = 0, 2, 4, 6) methane GH, pure H2O ice, pure liquid H2O,
quartz, albite, and kaolinite, as functions of the exponent r, in which r is
defined as r = log10z/zT with zT = 2pT being the first nonzero Matsubara
frequency at the temperature of the quadruple point of methane GHs,
272.9 K. The static values of the dielectric constants for each material eX are
given in the legend.

† We utilize the natural units h� = e0 = m0 = c = kB = 1 throughout, unless specified.
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take the form

Ds
2 ¼

e2k2d2

rs23r
s
21

� 1; Ds
3 ¼

e2k3d3

rs3Rr
s
32

� 1: (9)

Here the reflection coefficients at multiple interfaces are given
in the Appendix in eqn (50a–c). The corresponding Casimir–
Lifshitz free energy in this inhomogeneous five-layer structure
is given by

FCL ¼
T

2

X1

m¼�1

ð
d2k

ð2pÞ2
lnDEDH; (10)

with DE given from eqn (46) in the Appendix, and DH obtained
by making the substitution e 2 m in the same expression. As
mentioned above, detailed derivations for the Casimir–Lifshitz
stress and free energy in general n-layered inhomogeneous
media are given in the Appendix. We bring here the specific
expression of FCL in a five-layer system [eqn (46) in Appendix.]

FCL ¼ T
X1

m¼0

0

ð
d2k

ð2pÞ2

X

s¼E;H

ln
h
1þ rsL1r

s
12e

�2k1d1 þ rs12r
s
23e

�2k2d2

þ rs23r
s
3Re

�2k3d3 þ rsL1r
s
23e

�2ðk1d1þk2d2Þ þ rs12r
s
3Re

�2ðk2d2þk3d3Þ

þ rsL1r
s
3Re

�2ðk1d1þk2d2þk3d3Þ þ rsL1r
s
12r

s
23r

s
3Re

�2ðk1d1þk3d3Þ
i
;

(11)

in which the primed summeans them = 0 term is counted in its
half weight. A high symmetry is seen in the expression for FCL,
and its consistency with four-layered and three-layered config-
urations are obvious. Note, however, that the thickness of one
or two of the layers going to zero involves subtleties, as
described in detail in the Appendix.

2.2.3 Non-retarded limits. Thicknesses of intervening
materials involved when considering premelting and formation
of ice are typically on the nano- to micro-scale.14,15,18–21 Around
the quadruple point of methane hydrate (at T = 272.9 K), the
wavelength corresponding to the m = 1 Matsubara frequency is
lT E 1.36 mm. This means that in systems with relatively thin
mediating layers (several or few tens of nanometers), non-
retarded interaction will be sufficient to outline the main
properties of the Casimir–Lifshitz interaction. However, when
the thickness of the mediating layers becomes comparable with
1 mm, the retardation effect would inevitably and significantly
modify the non-retarded contributions. On the one hand,
retardation effects are usually thought to not alter the repulsive
or attractive character of the contribution to the Casimir–
Lifshitz stress from each Matsubara term, which could facilitate
qualitative estimations. On the other hand, these repulsive and
attractive effects are vital for the premelting and formation
phenomena investigated here. It is thus worthwhile, in this
work, to give some thought to the non-retarded behaviors
of multi-layer configurations, including as well three-layer
structures.51

Firstly, we consider the simple case of a three-layer system
consisting of nonmagnetic media and arranged as e1–e2–e3,
in the non-retarded limit, where the frequency and spatial

dependence separates due to the small thickness of the inter-
vening layer d, d { z1

�1. In this case, the Casimir–Lifshitz free
energy FCL can be expressed in terms of the Hamaker
constant52,53 (A123 = �12pd2FCL),

A123 ¼
�3T

2

X1

n¼0

0

ð1

0

dxx ln bD123ðzn; xÞ; (12)

where the coefficient bD123ðz; xÞ is defined as bD123ðz; xÞ ¼

1þ br12ðzÞbr23ðzÞe�x, the reduced reflection coefficient r̂ij is

brijðzÞ ¼
ejðizÞ � eiðizÞ

ejðizÞ þ eiðizÞ
; (13)

and the corresponding zero frequency Hamaker constant
(A123;0) takes the form

A123;0 ¼
�3T

4

ð1

0

dxx ln bD123ð0; xÞ: (14)

As previously pointed out,54 the m = 0 frequency Matsubara
term sometimes has the opposite sign to the rest of finite
frequency terms. For the case here, a positive sign for A123 (or
A123;0) indicates short range (or long range for A123;0) attraction,
while a negative sign indicates repulsion.51 The different
separation regimes for the three-layer interaction are short
range non-retarded regime (free energy p d�2), retarded
regime (free energy p d�3), and the long-range thermal regime
(free energy p d�2). Here, the retardation leads to a reduction
of the m 4 0 contributions to the Casimir–Lifshitz free energy,
leaving long-range results dominated by the m = 0 term (as long
as the effect of screening from ions on the m = 0 term at very
large separations is negligible). Hence, for a water–ice–vapor
system, the relation of the dielectric function fulfils e1 4 e2 4 e3

for finite frequencies, while the relation e2 4 e1 4 e3 is attained
at zero frequency. We thus find a negative A123 (repulsion) and a
positive A123;0 (attraction) zero frequency Hamaker constant,
indicating that the formation of a finite size ice layer on a water
surface at the triple point of water is possible, as it was recently
predicted based on the complete Casimir–Lifshitz theory using
a revised and improved set of dielectric functions.37 The argu-
ment relating relative magnitudes of dielectric functions in a
three layer structure to either attraction or repulsion, which can
be understood by considering eqn (12) and (14), goes back to
the original work by Dzyaloshinskii, Lifshitz, and Pitaevskii
(DLP).39 As an illustration, the different three-layer Hamaker
constants relevant for us are given in Table 1. For three-layer
configurations, the intervening layer would be stabilized by
a repulsive short-range and attractive long-range Casimir–
Lifshitz force. So only specific GH–ice–water and GH–ice–
quartz configurations with low enough occupancy numbers
for GH, and GH–water–quartz satisfiy this criterion. Particu-
larly, for the GH–ice–water–quartz structure, the consequences
of the competition between the formation of ice in the short
range, due to GH–ice–water, and the expansion of the water
phase due to the ice–water–quartz data in Table 1, are not
obvious and therefore require explicit evaluations as done in
Section 3.

PCCP Paper

P
u
b
li

sh
ed

 o
n
 1

6
 J

an
u
ar

y
 2

0
2
3
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
O

k
la

h
o
m

a 
o
n
 6

/4
/2

0
2
3
 9

:1
2
:1

6
 P

M
. 

View Article Online



This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 6636–6652 |  6641

Also these arguments provide a useful framework leading to
some intuitive understanding in the more complicated multi-
layer cases considered in this work, mainly four- and five-layer
configurations. As already known, in a four-layer system, the
contribution from four-layer interactions to the Casimir–
Lifshitz free energy can be derived as F14 = FCL � F123 � F234,
in which F123, as well as F234, is the Casimir–Lifshitz free energy
of the three-layer (or DLP) configuration. When thicknesses of
the intervening layers (2 and 3) are very small, the non-retarded
limit leads us to the Hamaker constant for F14 as

A14 ¼
�3T

2

X1

n¼0

0

ð1

0

dxx ln 1þ
br12ð1� br232Þbr34e�x

bD123ðzn; xZ2Þ
bD234ðzn; xZ3Þ

" #
;

(15)

in which Zi = di/d and d = d2 + d3 is the total thickness
of intervening layers. In the non-retarded limit, the Casimir–
Lifshitz free energy in this four-layer system is

F
ðnrÞ
CL ¼

�A1234

12pd2
; A1234 ¼

A123

Z2
2
þ
A234

Z3
2
þ A14: (16)

Similar generalizations apply to five-layer configurations, giving
the relations satisfied by the five-layer interaction Hamaker
constants A15 and the total one A1–5 as follows

A1�5 ¼
A1234

ð1� Z4Þ
2
þ

A2345

ð1� Z2Þ
2
�
A234

Z3
2
þ A15; (17)

where now d = d2 + d3 + d4. For inhomogeneous multi-layer
configurations, the details of mediating layers introduce extra
complexities as we shall see below.

3 Results
3.1 Predictions based on Casimir–Lifshitz free energy

considerations

3.1.1 Uniformly filled GH. Suppose a uniform methane GH
material filling a cavity is covered by two intervening layers,
namely ice and water layers, near a rock surface. Since the

distance between the outer surface of methane GH and the wall
of the rock cavity is almost fixed, it is reasonable to treat the
total thickness d of these ice and water layers as a constant.
Consider, first, a representative case with a total thickness of
the intervening layers being d = 1 mm. Fig. 3 shows that the
anomalously stabilizing ice layer on the GH tends to be
suppressed by the Casimir–Lifshitz interaction when it has a
relatively high occupancy (Ng Z 6). When the occupancy
number decreases, a clear-cut minimum of free energy occurs,
for instance an ice layer of about 3 nm with Ng = 4. For lower
occupancies, a relatively wide range of anomalously stabilizing
ice layer thicknesses, of about 100–700 nm, are allowed to form.
However, relatively minor perturbations can modify the ice
thickness formation, and hence, alter the ability to prevent
leakage of gas molecules. Yet, for very thin ice layers, a strong
repulsive Casimir–Lifshitz stress acts against further melting.
Notably, it would appear that, for a uniform bulk GH, the more
gases stored in it, the less stable its ice layer will be.

Furthermore, the fixed total thickness of ice and water
layers, or the size of GH compared to the volume of cavity, is
also important to the stability of the self-preserving ice film.
Fig. 4 shows a specific case examined in Fig. 3 corresponding to
the methane GH–ice–water–quartz configuration with the occu-
pancy number of GH being Ng = 0. As the distance between the
GH and the cavity wall, d, decreases, the ice layer tends to
become thinner. However, it is evident that when d decreases,
the Casimir–Lifshitz interaction gains a stronger ability to
stabilize a nano- to micron-sized ice layer on this GH (for the
d = 500 nm case here, its thickness is about 170 nm).

To illustrate the influence of the presence of quartz rock, we
evaluate the relevant three-layer scenarios in Fig. 5. The effect
of this presence, as shown in Fig. 4, is significant only when the
thickness of intervening layers is not large. The formation of ice

Table 1 The Hamaker constant A123 and its contributions from the zeroth
Matsubara term A123;0 for various three-layer configurations

Configurations (1–2–3) Ng A123 (meV) A123;0 (meV)

GH–ice–water 0 �6.00 � 100 2.25 � 10�1

4 �3.48 � 10�2 2.09 � 10�1

8 5.89 � 100 1.88 � 10�2

GH–water–ice 0 1.87 � 101 �2.21 � 10�1

4 1.27 � 101 �2.05 � 10�1

8 6.82 � 100 �1.83 � 10�1

GH–ice–quartz 0 �8.53 � 100 1.22 � 101

4 1.04 � 101 1.12 � 101

8 2.90 � 101 1.00 � 101

GH–water–quartz 0 �3.03 � 101 1.20 � 101

4 �1.73 � 101 1.10 � 101

8 �4.65 � 100 9.72 � 100

Ice–water–quartz — �2.80 � 101 �2.92 � 10�1

Ice–water-albite — �2.25 � 101 �2.79 � 10�1

Ice–water-kaolinite — �2.57 � 101 �2.92 � 10�1

Water–ice–vapor — �4.74 � 101 3.18 � 10�1

Ice–water–vapor — 5.98 � 101 �3.16 � 10�1

Fig. 3 The Casimir–Lifshitz free energy per unit area in four-layer systems,
namely the methane GH (GH)–ice–water–quartz, varying with the thickness
of medium 2, which is ice here, while the total thickness of ice and water
layers, denoted as d, is fixed to d = 1000 nm. The influence of different
occupancy number Ng of cages in the GH is also shown.
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layer for four-layer cases as those in Fig. 3 and 4 behaves
similarly to the GH in a bulk of water without any other
restrictions, when the total thickness of the intervening ice
and water layers is sufficiently large. This can be deduced by
comparing Fig. 3 and the bottom panel in Fig. 5. The shallow
energy minimum for an empty GH structure in contact with
cold water occurs at an ice layer thickness of about 265 nm (to
guide the eye, it is marked with a vertical dashed line in the
bottom panel of Fig. 5). On the other hand, for the methane
GH–ice–quartz structure, an ice layer forms only when the GH
has a very small occupancy number, and the intermediate layer

is thin (about 12 nm for Ng = 0 case, as in the top panel in
Fig. 5). So, in general, for the relatively large separation
distance between the GH and the micron-sized quartz material,
a single ice layer cannot fill in the whole space as an interven-
ing layer typically.

3.1.2 GH with specific surface layers. As shown above, for
the pure GH in a cavity, a naive guess is that its capability to
store the methane gas is quite limited because, as the number
of gas molecules increases, the Casimir–Lifshitz interaction
tends to prevent the formation of the anomalously stabilized
ice layers. Practically, however, the concentration or dilution
could happen near the surface of the GH, which complicates
the interaction and the related phenomena. It was recently
predicted15 that nano- to micron-sized anomalously stabilized
ice layers can form via Casimir–Lifshitz interactions on GHs,
with a low-occupancy surface region in contact with cold water.
Note that while a depleted surface region is physically realistic,
a GH with a bulk region totally depleted of gas molecules is
thermodynamically unstable. In the following section we will
demonstrate that a proper understanding of the effect from
confinement on anomalous stabilization requires a five-layer
Casimir–Lifshitz model. It enables us to include separate bulk
and surface regions for the methane GH as well as a layered
structure of ice, water and rock.

Suppose the methane GH is originally fully-occupied with
the occupancy number Ng,b = 8 (the subscript b denotes that it
is for bulk region), then the leakage of gas molecules, via
thermal diffusion, might result in a thin surface region with a
lower occupancy number Ng,s o 8 (the s here stands for the
surface region). When the surface of GH is not so empty, for
instance Ng,s = 6, the ice coating is still suppressed. But when
Ng,s = 4, this thin surface of GH facilitates the growth of ice.
However, its capability is quite limited, and an ice film at most
about 3 nm thickness appears when the surface GH is thick
enough. For the surface with a lower occupancy number, the
increasing surface thickness leads to an increasing equilibrium
ice film thickness. As shown in Fig. 6, for Ng,s = 0 and Ng,s = 2
cases, the respective equilibrium ice film thicknesses approach
their corresponding four-layer results in Fig. 3. Therefore, by
eliminating some gases stored in the surface of bulk GH, the
fully-occupied bulk can be stabilized under an ice coating of a
few hundreds of nanometers.

Besides the thickness of surface GH, the constraints due to
the quartz cavity are also important. As shown in Fig. 7, where
the Ng,s = 0 and Ng,s = 2 cases are given without losing any
generality, when the GH is closer to the quartz cavity wall,
the equilibrium thickness of ice layer will correspondingly
decrease. However, when the distance between the GH and
the quartz are large enough, only the thickness of surface GH
determines the size of the ice layer, as can be seen from Fig. 6.

3.2 Insights from Casimir–Lifshitz stresses

3.2.1 Relation between stress and free energy results. The
Casimir–Lifshitz stress approach can provide similar informa-
tion as the Casimir–Lifshitz free energy approach for all the
inhomogeneous scenarios considered here. This is in contrast

Fig. 4 The Casimir–Lifshitz free energy per unit area in the methane GH
(Ng = 0)–ice–water–quartz, varying with the thickness of ice film for
different fixed total thickness d of ice and water layers. The inset shows
the ratio bGQ = FCL/FGQ, where FGQ is the four-layer contribution obtained
by subtracting the GH–ice–water and ice–water–quartz contributions
from the total Casimir–Lifshitz free energy FCL, for the same settings
corresponding to the same color lines.

Fig. 5 The Casimir–Lifshitz free energy per unit area in three-layer
configurations: methane GH–ice–quartz (GIQ) (top panel), and methane
GH–ice–water (GIW) (bottom panel), varying with the thickness of ice film,
for different occupancy number Ng of cages in the GH. The labels denote
positions of the minima of the free energy.
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to the more complicated configurations, where GH–ice–water is
in contact with a flexible water vapor region. In such cases, the
free energy approach is superior since positions and depths of
both local and global energy minima can be predicted. Our
main results in this paper come from the free energy approach,
but here we also show in Fig. 8 the Casimir–Lifshitz stress of
four-layer systems studied in Fig. 3. The ice–water equilibrium
can be found from the thicknesses that give zero stress across
the ice–water interface. According to Fig. 8, with a relatively
large occupancy number, such as Ng = 6,8 here, the stress at the
ice–water interface is always negative, implying the suppression

of ice growth. When the methane GH has a lower occupancy
number, for instance Ng = 0, 2, 4, this stress varies from positive
to negative, as the thickness of the ice layer increases. Thus the
repulsive Casimir–Lifshitz stress for short range promotes the
ice growth, while its attractive counterpart for long range
prevents further freezing, resulting in a nano- or micron-sized
ice layer. These results based on Casimir–Lifshitz stress argu-
ments are consistent with those in Fig. 3 and 6, which are also
justified by comparing insets of Fig. 6 and 8. As for the five-layer
configurations investigated in Fig. 6 and 7, we demonstrate
in Fig. 9 the dependence of Casimir–Lifshitz stress across the
ice–water interface Piw and the corresponding free energy per
unit area, FCL, on ice and water layer thicknesses, denoted as d2
and d3 respectively. Their consistency with the results shown in
Fig. 6 and 7 is clearly seen, which again illustrates the equiva-
lence between stress and free energy arguments.

3.2.2 Effect on stress using three different cavity materials.

As shown in Fig. 2, the dielectric functions of the examined
rock (quartz and albite) and clay (kaolinite) materials are
similar, especially when compared with the dielectric functions
of the other materials involved in the cavities here considered,
that is, ice, water, and methane GHs. Fig. 10 shows the
Casimir–Lifshitz stress for three different cavities represented
by a four-layer system in which the rocky material is albite (blue
line, box), kaolinite (green line, triangle) or quartz (red line,
circle) and Ng = 0. We fix the size of the cavity between the GH
and the rock, and the total thickness of ice and water layers is
kept constant (d = 1000 nm), allowing the thickness of ice
to vary. Specifically, the four-layer systems considered here
comprise either GH–ice–water-rock or GH–ice–water-clay. The
difference between the stress and induced effects on stabili-
zation is very small in these cases, giving rise to anomalously
stabilized ice layer thicknesses of 245, 244 and 244 nm for

Fig. 6 The equilibrium thickness of ice layers, with the given total
thickness of ice and water layers as d = d2 + d3 = 1000 nm, varying as
functions of the thickness of surface GH layer in the configuration
high occupied GH (bulk)-lower occupied GH (surface)-ice–water–quartz.
Here as illustration we consider Ng,b = 8 and the values for Ng,s are given
in the figure.

Fig. 7 The equilibrium thicknesses of ice layers, with different given
thicknesses d1 of surface GH layers, varying as functions of the total
thickness of ice and water layers in the configuration high occupied GH
(bulk)-lower occupied GH (surface)-ice–water–quartz. Here we consider
Ng,b =8 and the values for Ng,s are given in the figure.

Fig. 8 The Casimir–Lifshitz ice–water stress in four-layer systems,
namely the methane GH (GH)–ice–water–quartz, varying with the thick-
ness of medium 2, which is ice here, while the total thickness of ice and
water layers, denoted as d, is fixed to d = 1000 nm. The influence of
different occupancy number Ng of cages in the GH is also shown.
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cavities formed by albite, kaolinite and quartz, respectively.
Also for higher Ng values we find similar anomalously stabilized
ice thicknesses. Considering Ng = 2, the stabilized ice thickness
becomes 145 nm for albite and kaolinite, and 144 nm for quartz
cavities, whereas when the gas molecules is set to be Ng = 4, the
ice thickness is 3 nm for the three materials. However, one can
imagine situations where the experimental dielectric function
of specific rock or clay materials may have much stronger
effects on the melting of stabilized ice layers, which merits

further investigations on such effects and various geophysical
applications.

4 Discussion
4.1 Analysis of the results

4.1.1 Limitations of the Hamaker approach. According to
the results above, when one of the intervening layers is not
thick, the interaction between its two interfaces dwarfs others.
Multi-layer interactions, such as four- and five-layer inter-
actions here, introduce more complexities compared with the
three-layer cases. As detailed in the Appendix, we can extract
the contribution from the pure four-layer interaction to the
total Casimir–Lifshitz free energy FCL, denoted as FGQ for the
configurations depicted in Fig. 3 and 4, by subtracting two
three-layer interaction contributions, namely GH–ice–water
(FGIW) and ice–water–quartz (FIWQ), that is, FGQ = F � FGIW �

FIWQ. The inset of Fig. 4 shows significances of FGQ. When
either ice or water layer is thin, then the interaction between
the two closest interfaces of this medium dominates; while
both ice and water layers are relatively thick, the four-layer
interaction could contribute much more than the three-layer
interactions. On the other hand, in the non-retarded limit, the
contributions from the four-layer interaction are typically quite
small. For example, when Ng = 0, AGQ resulting from the four-
layer interaction, is only about 2% of the the total Hamaker
constant A at best, as illustrated by the left case of Fig. 11.
This is quite different from the inset of Fig. 4 and the right cese
of Fig. 11, in which we clearly see a region where |bGQ| o 1,
proving the influence of retardation effects.

Fig. 9 Contour plots of the Casimir–Lifshitz stress across ice–water interface Piw and its corresponding free energy per unit area FCL as functions of ice
and water layer thicknesses, denoted as d2 and d3 respectively, for a configuration with GH (bulk)-GH (surface)-ice–water–quartz (GbGsIWQ)
schematically shown in right panel of Fig. 1, with various occupancy numbers (Ng,s = 0, 2, 4, 6) of a ‘‘thick’’ (500 nm) layer of surface GH. The solid
black curves indicate the equilibrium systems with zero stress.

Fig. 10 The Casimir-Lifshitz ice-water stress in four-layer systems,
namely the methane GH (GH)–ice–water-rock, varying with the thickness
of medium 2, which is ice here, while the total thickness of ice and water
layers, denoted as d, is fixed to d = 1000 nm and Ng is equal 0.
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Moreover, for multi-layer contributions, their non-retarded
forms, marked by their corresponding Hamaker constants, are
influenced not just by the dielectric functions of materials
involved as in three-layer cases, but also by the relative size of
the intervening media. The dependence of Hamaker constants
on the relative size of the ice layer in the configuration
described by Fig. 3 and 4, is shown in detail in Fig. 11.
As expected, when Z2 = d2/d approaches 0 or 1, the total
Hamaker constant A goes to the three-layer contribution
Z2

�2AGIW (red lines) or Z3
�2AIWQ (green lines). The pure four-

layer interaction term AGQ can only contribute in a limited way
for the Ng = 0 and Ng = 4 cases, and would not change the sign
of A, which is determined by Z3

�2AIWQ. Since the permittivity of
methane GH with the occupancy number Ng = 8 is between that
of ice and water, more subtleties exist and are shown by the
solid lines in Fig. 11. There is a section of Z2 (about 0.30 to 0.45)
when Ng = 8, in which AGQ has the magnitude comparable or
even larger than two three-layer contributions. In this region,
even a subtle balance, where a vanishing total Hamaker con-
stant appears, can be achieved.

The case on the right in Fig. 11 (retarded), which shows the
ratios of free energy for the same system with a relatively large
total thickness of ice and water layers of 1000 nm thickness, is
evidently different from the case on the left (non-retarded). As it
has been seen on the left panel, when Z2 approaches 0 or 1, FGIW
or FIWQ should dominate. However, with the retardation effects
included, the purely four-layer contribution FGQ could overwhelm
three-layer contributions FGIW and FIWQ in a quite large range of
Z2, for instance 0.2o Z2o 0.7, which manifests the crucial role of
the retardation effect in multi-layer interactions. Thus, it seems
the non-retarded approximations are not very reliable in this case.
However, the three-layer Hamaker constants have some merit
providing predictions on formation of ice or water layers.

4.1.2 Analysis of energy contributions. The results in the
previous sections were derived from careful computations of
the free energy and stress for a large number of different
inhomogeneous four-layer and five-layer geometries. As an
example, we show in Fig. 9 the contour plots for a system with
a 500 nm thick low-occupancy methane GH surface layer above
the bulk methane GH. The equilibria, that is, the thicknesses of
ice and water giving energy minima, depend on the distances
between the GH and quartz. We observe that the thinner the
GH surface layers are, the smaller the equilibrium thicknesses
of the ice film will be. This is in line with the general results for
multi-layered Casimir–Lifshitz interactions as discussed in the
book by Parsegian.55 For five-layer cases, the contributions to
the reduced Casimir–Lifshitz free energies Fr = FCL � FGbGsI,
obtained for inhomogeneous systems by omitting the contribu-
tion irrelevant to the thickness of ice layer, for the same
configuration as in Fig. 9, are analysed in Fig. 12. Due to the
four-layer interaction, FGsQ almost always dominates, while the
other four-layer contributor FGbW is suppressed. There is an
exception to the above, which occurs when the regularized free
energy Fr vanishes due to cancellations between the various
contributions. Three-layer contributions are significant only
when Z2 approaches 0 or 1 as expected. The five-layer contribu-
tion is also typically small, but usually comparable with or even
larger than the three-layer contributions.

4.2 Some general remarks on the role of ions

Here our focus is on systems where the stability of ice layers
on methane gas hydrates within pores can be influenced.
In previous sections, we predict that the effect of surface
confinement, via Casimir–Lifshitz free energies in inhomogen-
oeus systems, and the corresponding stresses, tends to reduce
the thickness of anomalously stabilized ice layers, but also to

Fig. 11 Left: The ratios of the Hamaker constant A = AGIWQ = Z2
�2AGIW +

Z3
�2AIWQ + AGQ for the methane GH–ice–water–quartz (GIWQ) configu-

ration relative to its contributions, namely (Z2
�2AGIW)/A (red), (Z3

�2AIWQ)/A
(green) and AGQ/A (blue), with the GHs of different occupancy numbers,
Ng = 0 (dotted), Ng = 4 (dashed) and Ng = 8 (solid). Right: The corres-
ponding Casimir–Lifshitz free energy ratios, namely FGIW/F, FIWQ/F and
FGQ/F, with the same settings as the left case and the total thickness of ice
and water layers is 1000 nm. Singularities occur when A or F = 0.

Fig. 12 Ratios of the contributions to the reduced Casimir–Lifshitz free
energy Fr = FCL � FGbGsI

= FGsIW
+ FIWQ + FGbW

+ FGsQ
+ FGbQ

for the
methane GH (bulk)-methane GH (surface)-ice–water–quartz (GbGsIWQ)
configuration relative to the total. Namely, shown are the relative con-
tributions of FGsIW

/Fr (orange), FIWQ/Fr (purple), FGbW
/Fr (blue), FGsQ

/Fr
(green) and FGbQ

/Fr (red), with various occupancy numbers Ng,s of the
500 nm surface GH and the total thickness of ice and water layers is
1000 nm.
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enhance the stabilising Casimir–Lifshitz free energy minima.
While under specific conditions a dominating, and always
contributing, role has been proposed for the Casimir–Lifshitz
induced stresses across ice–water interface, another salt-
dependent contribution56–61 can induce destabilisation via
repulsive forces for ice–water–quartz regions.

The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory62,63

for interactions between charged particles, or surfaces, in salt
solutions treats colloid stability in terms of a balance of an
attractive van der Waals force and a repulsive electrical double-
layer force. An applied theory for salt-dependent forces in
systems with ice–water–vapor was discussed a few years ago
by Thiyam et al.61 We focus in the current work on cases with
high salt concentrations and/or pH near the isoelectric points
(where surface charges are assumed close to zero), and the
Casimir–Lifshitz interaction is dominating. It would be of
interest in the future to address salt effects away from such
specific limits (e.g. study cases with low salt concentrations,61

varying pH,61 or including different types of background salt
ions58,64). A brief discussion on salt can be illuminating and
indicate how salt is expected to influence the result. In order to
quantify such additional contributions one must account for
ions in water and the surface charges of ice, quartz, albite, and
kaolinite. Some concentration of ions are always present in
water, even in pure water due to autodissociation into H+ and
OH� at pH 7. Autodissociation of water (ice) molecules at the
ice–water interface (and correspondingly for quartz, albite and
kaolinite) still takes place, generating an ice surface charge.
Measurement of the zeta potential of the interfaces can be
understood through a pH-dependent charge regulation model
involving chemisorption of H+ ions. When surface ice mole-
cules dissociate at high pH, H+ is liberated into solution
leaving a negative charge due to OH� remaining bound to
the interface. At low pH, H+ ions bind to surface molecules
(analogous to forming an hydronium ion), resulting in a
positive surface charge. The presence of surface charge
induces physisorption of ion through electrostatic interactions.
Physisorption can be modelled through a Poisson-Boltzmann
model where the electrostatic potential of ions and surface
charge is determined by solving the Poisson equation for the
physisorbed ion concentration profiles65 and chemisorbed
surface charge.60 Equilibrium physisorption profiles are
described using a Boltzmann distribution determined from
ion electrostatic energies. The free energy, and the force
derived from the free energy, due to charge chemisorption
and physisorption can be determined from the electrostatic
energy of the electric field generated by the ions and surface
charge, the entropic energy of ion concentration profiles,66

and a charge transfer force.60

In the same way as when only Casimir–Lifshitz interactions
are accounted for above, P23 is given by the difference of
pressure across ice and pressure across salt water. One can
then assume that the total stress across the water–ice interface
can be approximated as,

P23 C PCL,23 � PS,3. (18)

The corresponding free energy is approximately given by the
sum of the five-layer Casimir–Lifshitz and ion free energies

F C FCL + FS. (19)

The zeta potentials for ice,67 quartz68 and albite,68 as functions
of salt concentration and pH, are all negative for pH 7,
indicating negative surface charges. Usui56,57 considered the
salt induced pressure between a pair of surfaces with dissimilar
electrostatic surface potentials both with same sign of the
surface charge within the Gouy–Chapman–Stern–Grahame
double-layer model. It was demonstrated that the double-layer
force at low concentrations under surface charge regulation,
was always repulsive between a pair of negatively charged
surfaces, increasing with a decreasing surface separation.56,57,59

These salt induced free energies are thus expected to promote
growth of the liquid water layer. Since the total thickness of the
ice and water layers is assumed fixed, this suggests melting of
the ice layer. For low salt concentrations this effect is expected
to dominate over the Lifshitz free energies. Hence, further
studies away from the limits of high salt concentrations (e.g.
sea salt) and/or pH at isoelectric points will be highly important
expansions.

There can in fact also be effects of aqueous ions on the
dielectric function of water, and therefore on the reflection
coefficients used in the current work. This effect is known to be
exceedingly small except at very high salt concentrations
(exceeding 1 mol L�1).69 This is higher than the salt concen-
tration of, for example, ocean water. Nevertheless, in general
the possibility of tuning the formation of ice externally, or
controlling the heat flux with an external electric field (which
was studied for metal surfaces70,71) merits further study.
One should note that a correction to the Casimir–Lifshitz
interaction energy can occur, at high salt concentrations and/
or thick water layers, due to screening of the zero frequency
term by ions.72–75 The impact of electrostatic energies of aqu-
eous ions is usually more significant than the corresponding
indirect impact on the Casimir–Lifshitz interaction.

5 Conclusions

It is well established that GHs containing a large fraction of
methane molecules can exist under conditions of low tempera-
tures and high pressures.6 Such conditions may, for example,
occur below the seabed and in deep permafrost layers. However,
GHs have also been observed in shallow permafrost layers below
the freezing point of water.13 To be specific, ice layers covering
methane GH surfaces have been associated with the stabilisation
of GHs and believed to prevent the methane gas molecules from
leaking out.4–6

In this work, we have demonstrated how Casimir–Lifshitz
interactions at the quadruple point help to stabilize ice layer
covers separating water from methane GHs inside porous
rocks. Confinement effects are, within our Casimir–Lifshitz
model, predicted to favor reduced ice layer thickness, compared
to those of methane hydrates in larger reservoirs of ice cold
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water.15 Notably, while the self-preservation layers becomes
thinner in pores, they may turn out to be more stable against
perturbations compared to in larger water reservoirs.

Future work should further explore the potential environ-
mental impacts from such stabilized gas hydrates. As was
discussed in the introduction, Chuvilin, Shakhova and others,11–13

have experimentally found that hydrates in permafrost regions
seem to exist at very shallow depths from the surface. In fact,
hydrates were found outside the expected pressure and tem-
perature stability zone. For example Froitzheim et al.76 reported
observation of methane from particular rock types likely
sourced from deep methane hydrates. The current investigation
of GH self-preservation in pores is thus both relevant and
important. Our study urgently calls for examining other rele-
vant energy contributions, including those due to salt61,77,78

and curvature,79 as well as effects accounting for tempera-
tures23 below the quadruple point in future work.
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Appendix

Casimir–Lifshitz interaction
Derivation of the Casimir–Lifshitz free energy for four-slab

system

In this appendix, we use natural units, with h� = c = kB = 1, and
rationalized Heaviside–Lorentz electromagnetic units. We con-
sider a 4-slab system, each slab being homogeneous:

e; mðzÞ ¼

zo a: e1; m1;

ao zo b: e2; m2;

bo zo c: e3; m3;

co z: e4; m4:

8
>>>>>><

>>>>>>:

(20)

The free energy is given in general by

F ¼
T

2

X1

m¼�1

ð
d2k

ð2pÞ2
lnDEDH; (21)

the sum being over Matsubara frequencies zm, and E, H
represent transverse electric (TE) and transverse magnetic
(TM) polarizations, respectively. We will use the inhomoge-
neous medium description given by Li and co-workers.48

We regard the regions 2 and 3 as a single region, labeled with
‘‘in’’, as an inhomogeneous medium. To obtain an unambi-
gously finite result, we subtract a reference energy corres-
ponding to removing the boundary a, that is, letting medium
2 to extend to �N. Then, we add back in the energy corres-
ponding to that reference energy. So

F = Fsub + Fref. (22)

Here we consider the TE contribution only, the TM contribu-
tion being obtained by the obvious substitutions, E - H, e 2
m.

Consider first the reference situation, which is just the
familiar DLP (three-layer) configuration. There

DE
ref ¼ 1�

½e
2;�; e3;��mðbÞ½e3;þ; e4;þ�mðcÞ

½e
2;�; e3;þ�mðbÞ½e3;�; e4;þ�mðcÞ

; (23)

where ei satisfies

@z
1

mi
@z �

k2

m i

� eiz
2

� �
ei ¼ 0: (24)

(The overline on the 2 is to remind us that region 2 has been
extended to �N.) The generalized Wronskians are defined by

½ei; ej �m ¼
1

mi
e
0

iej �
1

mj
e
0

jei; (25)

evaluated at the same point. In this DLP configuration, we
may define

ei;� ¼ e�kiz; ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ eimiz

2
p

: (26)

Then it is immediate to find DE
ref = DE

234, in which

DE
234 �1 � rE23r

E
43e

�2k3(c�b), (27)

in terms of the reflection coefficients

rEij ¼
k̂j � k̂i

k̂j þ k̂i
; k̂i ¼

ki

mi
: (28)

This directly gives the Casimir–Lifshitz energy and pressure.
Now for the subtracted four-slab configuration, we need to

compute

DE
sub ¼ 1�

½e1;�; ein;��mðaÞ½ein;þ; e4;þ�mðcÞ

½e1;�; ein;þ�mðaÞ½ein;�; e4:þ�mðcÞ
; (29)

where the effort is only in finding the solution in the 2 + 3
region. We can take ein8,(z) to be e�k2z for a o z o b; then by
requiring, from the differential eqn (24), continuity of the

solution, and of
1

m
times the derivative of the solution, we find
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ein,8(z) = e�k2z, a o z o b, (30a)

while for b o z o c,

ein;�ðzÞ ¼ ðk̂3 � k̂2Þe
�k3ðz�bÞ þ ðk̂3 þ k̂2Þe

�k3ðz�bÞ
h ie�k2b

2k̂3
: (30b)

Then DE
sub is readily calculated to be

DE
sub ¼ 1þ rE12e

�2k2ðb�aÞr
E
23e

2k3ðc�bÞ þ rE34
e2k3ðc�bÞ þ rE34r

E
23

: (31)

When this is multiplied by DE
ref in eqn (27), the denominator in

eqn (32) is cancelled, and we are left with DE = DE
1234, in which

DE
1234 � 1 + rE43r

E
32e

�2k3(c�b) + rE32r
E
21e

�2k2(b�a)

+ rE21r
E
43e

�2k2(b�a)e�2k3(c�b). (32)

Casimir–Lifshitz pressure on intermediate surface

We know that the principle of virtual work is satisfied in this
formulation. Therefore, the force on the intermediate interface,
b, between media 2 and 3, is

pb ¼ �
@

@b
T
X1

m¼0

0
X

s¼E;H

ð
d2k

ð2pÞ2
lnDs: (33)

Here,

@

@b
ln Ds ¼

2k2

Ds
2

�
2k3

Ds
3

; (34)

where, after a bit of rearrangement,

Ds
3 ¼ �1�

e2k3ðc�bÞ

rs43r
s
32

; Ds
2 ¼ �1�

e2k2ðb�aÞ

rs12r
s
23

; (35)

and the effect of the fourth medium is absorbed in the effective
reflection coefficients

rs32 ¼
rs32 þ rs21e

�2k2ðb�aÞ

1þ rs32r
s
21e

�2k2ðb�aÞ
; rs23 ¼

rs23 þ rs34e
�2k3ðc�bÞ

1þ rs23r
s
34e

�2k3ðc�bÞ
: (36)

Casimir–Lifshitz theory with n intervening slabs

Let us generalize the above considerations to the situation with
n homogeneous layers sandwiched between two semi-infinite
bulks. The situation is illustrated in Fig. 13.

The free energy is still given by eqn (21), and to obtain a
finite energy we subtract the reference situation, which would
now be given by letting the region 1 extend to �N, that is,
eliminate the boundary a, which gives the n � 1 intermediate
slab configuration. The subtracted D is given by the generali-
zation of eqn (29),

DE
sub ¼ 1�

½eL;�; ein;��mðaÞ½ein;þ; eR;þ�mðcÞ

½eL;�; ein;þ�mðaÞ½ein;�; eR;þ�mðcÞ
; (37)

In the outer slabs, we take ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ zm

2eiðzmÞmiðzmÞ
p� �

eL,� = ekLz, eR,+ = e�kRz, (38)

while in the first interior slab, we may take

e1,8 = e�k1z, a o z o b1, (39)

while ein in the remaining slabs can be written as

ein,8(z) = Ai
�eki

z + Bi
�e�k

i
z, bi�1 o z o bi, (40)

where A+1 = 1, A�1 = 0, B+1 = 0, B�1 = 1, and the coefficients are
obtained by the continuity of the function, and of 1/m times the
derivative of the function, at the interfaces. These matching
conditions can be written in matrix form:

Miþ1c
�
iþ1 ¼ Nic

�
i ; c

�
i ¼

A�
i

B�
i

� �
; (41)

with the matrices

Miþ1 ¼
ekiþ1bi e�kiþ1bi

k̂iþ1e
kiþ1bi �k̂iþ1e

�kiþ1bi

 !

;

Ni ¼
ekibi e�kibi

k̂ie
kibi �k̂ie

�kibi

 !

;

(42)

and then in terms of the transfer matrix

Ti ¼ Mi
�1
Ni�1

¼
1

2ki

ðki þ ki�1Þe
�ðki�ki�1Þbi�1 ðki � ki�1Þe

�ðkiþki�1Þbi�1

ðki � ki�1Þe
ðkiþki�1Þbi�1 ðki � ki�1Þe

ðki�ki�1Þbi�1

" #

;

(43)

we have for the amplitude in the last intermediate slab

c�
n ¼ TnTn�1Tn�2 � � �T2c

�
1 ; cþ

1 ¼
1

0

� �
;c�

1 ¼
0

1

� �
: (44)

This multiplicative structure makes it easy to go from the result
for n layers to that for n + 1 layers.

Fig. 13 Geometry of n homogeneous parallel slabs, with interfaces at bi,
i = 0,1,2,. . .,n,n + 1, with permittivity ei and permeability mi in the i 4 0 th slab.
These slabs are sandwiched between two parallel semi-infinite media, where
for z o a, the permittivity and permeability are eL, mL, and for z 4 c, the
permittivity and permeability are en+1 = eR, mn+1 = mR, where a = b0 o b1 o

b2 o . . . o bn o bn+1 = c.
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Using this machinery, let’s write down the basis function in
the 3rd intermediate slab for the five-layer system:

ein;�ðzÞ ¼
k̂1 þ k̂2

2k̂2

k̂2 þ k̂3

2k̂3
ek1b1ek2ðb2�b1Þ 1þ r12r23e

�2k2ðb2�b1Þ
h in

� ek3ðz�b2Þ þ r23 þ r12e
�2k2ðb2�b1Þ

h i
e�k3ðz�b2Þ

o
;

b2 o zo c;

(45a)

ein;þðzÞ ¼
k̂1 þ k̂2

2k̂2

k̂2 þ k̂3

2k̂3
e�k1b1ek2ðb2�b1Þ r12 þ r23e

�2k2ðb2�b1Þ
h in

� ek3ðz�b2Þ þ r23r12 þ e�2k2ðb2�b1Þ
h i

e�k3ðz�b2Þ
o
;

b2 o zo c:

(45b)

We can check these results by noting that if r23 = 0 and k3 = k2

this reduces to the formula (30b) for the two intermediate slab
situation.

We can now readily compute the DE
sub from the Wronskians

in eqn (37). The denominator that appears is precisely can-
celled by multiplying the 4-slab D given in eqn (32), with
suitable notation changes. The result DE = DE

subD
E
ref is actually

very simple, and can be readily interpreted:

DE ¼ 1þ rEL1r
E
12E

�2k1ðb1�aÞ þ rE12r
E
23e

�2k2ðb2�b1Þ þ rE23r
E
3Re

�2k3ðc�b2Þ

þ rEL1r
E
23e

�2k1ðb1�aÞe�2k2ðb2�b1Þ þ rE12r
E
3Re

�2k2ðb2�b1Þe�2k3ðc�b2Þ

þ rEL1r
E
12r

E
23r

E
3Re

�2k1ðb1�aÞe�2k3ðc�b2Þ

þ rEL1r
E
3Re

�2k1ðb1�aÞe�2k2ðb2�b1Þe�2k3ðc�b2Þ:

(46)

We can check this result by verifying that this gives the correct
pressure across the interfaces. For example, the pressure on the
b2 interface is

pb2 ¼ Tzzðb2�Þ � Tzzðb2þÞ ¼ �
@

@b2
T
X1

m¼0

0
X

s¼E;H

ð
d2k

ð2pÞ2
lnDs;

(47)

where, for example,

@

@b2
lnDE ¼

2k2

DE
2

�
2k3

DE
3

; (48)

with

DE
2 ¼

1

rE23r
E
21

e2k2ðb2�b1Þ � 1; (49a)

DE
3 ¼

1

rE3Rr
E
32

e2k3ðc�b2Þ � 1; (49b)

where the multiple scattered reflection coefficients are

rE23 ¼
rE23 þ rE3Re

�2k3ðc�b2Þ

1þ rE23r
E
3Re

�2k3ðc�b2Þ
; (50a)

rE21 ¼
rE21 þ rE1Le

�2k1ðb1�aÞ

1þ rE21r
E
1Le

�2k1ðb1�aÞ
; (50b)

rE32 ¼
rE32 þ rE21e

�2k2ðb2�b1Þ

1þ rE32r
E
21e

�2k2ðb2�b1Þ
: (50c)

This agrees with the results of Ellingsen46 and Buhmann.50

Analogous results hold for the TM modes. These results are
used in the calculations in this paper after a simple replace-
ment: b1�a - d1, b2 � b1 - d2, and c � b2 - d3.

On the other hand, by regarding the regions 1, 2 and 3 as a
single inhomogeneous medium, then we obtain the interaction
Casimir free energy between L-1 and 3-R surfaces FLR

FLR ¼
T

2

X1

m¼�1

ð
d2k

ð2pÞ2
lnDE

LRD
H
LR; (51)

in which Ds
LR,s = E,H is written as

Ds
LR ¼ 1þ

rsL1ð1� r12
s2Þð1� r23

s2Þrs3R
Ds
L123D

s
123R

e�2ðk1d1þk2d2þk3d3Þ: (52)

The total Casimir free energy of this five-layer system F can be
expressed as F = FLR + FL123 + F123R � F123, in which FLR results
from the pure five-layer interaction.

Interpretation of nonhomogeneous Lifshtz theory

Although the energy forms are quite simple, they are not quite so
obvious from a geometrical point of view. The interpretation of
the force expressions are quite simple, in contrast, because of the
locality of the stess tensor. We can follow the multiple reflection
argument given in ref. 80 to write down the form of the reduced
Green’s function (for a given frequency and wavenumber) in the
ith slab for a given scalar mode, for bi�1 o z; z0 o bi:

gðz; z0Þ ¼
1

2ki

n
e�ki jz�z0j þ e2kiðbi�bi�1Þ � ri;iþ1ri;i�1

h i�1

�
h
2ri;i�1ri;iþ1 cosh kiðz� z0Þ

þ ri;iþ1e
kiðzþz0�2bi�1Þ þ ri;i�1e

�kiðzþz0�2biÞ
io

:

(53)

(This multi-layer Green’s function was first obtained by Tomaš.45

See also the book by Chew.81) The reduced stress tensor is
given by

tzz ¼
1

2
ð@z@z0 � k2Þ

1

i
gðz; z0Þjz¼z0 ; (54)

which annihilates all but the hyperbolic cosine, and yields
immediately for Euclidean frequencies

tzzðbi�Þ ¼ �
2ki

Di

; tzzðbiþÞ ¼ �
2kiþ1

Diþ1

; (55)

where

Di ¼
1

ri;iþ1

1

ri;i�1

e2kiðbi�bi�1Þ � 1: (56)

which implies eqn (47).
As for the effective reflection coefficients appearing here, in

terms of reflection and transmission coefficients we see by
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considering multiple reflections from the right, (di+1 = bi+1 � bi)

ri;iþ1 ¼ ri;iþ1 þ ti;iþ1e
�kiþ1diþ1riþ1;iþ2e

�kiþ1diþ1 tiþ1;i

þ ti;iþ1e
�kiþ1diþ1riþ1;iþ2e

�kiþ1diþ1 riþ1;ie
�kiþ1diþ1riþ1;iþ2

� e�kiþ1diþ1 tiþ1;i þ . . .

¼ ri;iþ1 þ tiþ1;iti;iþ1

1

ri;iþ1

1

1�
1

riþ1;i

1

riþ1;iþ2

e2kiþ1diþ1

:

(57)

Here, the transmission coefficients are related to the reflection
coefficients by tij = 1 + rij, so because for the primitive reflection
coefficients, rij = �rji, ti+1,iti,i+1 = 1 � ri,i+1

2 and so

ri;iþ1 ¼
ri;iþ1e

2kiþ1diþ1 þ riþ1;iþ2

e2kiþ1diþ1 þ ri;iþ1riþ1;iþ2

: (58)

Similarly, for the reflection coefficients on the left:

ri;i�1 ¼
ri;i�1e

2ki�1di�1 þ ri�1;i�2

e2ki�1di�1 þ ri;i�1ri�1;i�2

: (59)

Here, for the first and last slabs, the distinction between r and %r
disappears:

%rn,R = rn,R, %r1,L = r1,L. (60)

Thin-thickness limits

Suppose the thickness of one of the intervening layers, say
medium i as depicted in Fig. 13, vanishes (di = 0), then %ri+1,i can
be expressed as

riþ1;i ¼
riþ1;iðe

2ki�1di�1 þ ri;i�1ri�1;i�2Þ þ ri;i�1e
2ki�1di�1 þ ri�1;i�2

e2ki�1di�1 þ ri;i�1ri�1;i�2 þ riþ1;iðri;i�1e2ki�1di�1 þ ri�1;i�2Þ

¼
riþ1;i�1e

2ki�1di�1 þ ri�1;i�2

e2ki�1di�1 þ riþ1;i�1ri�1;i�2

� riþ1;i�1;

(61)

and similarly %ri�1,i takes the form

ri�1;i ¼
ri�1;iðe

2kiþ1diþ1 þ ri;iþ1riþ1;iþ2Þ þ ri;iþ1e
2kiþ1diþ1 þ riþ1;iþ2

e2kiþ1diþ1 þ ri;iþ1riþ1;iþ2 þ ri�1;iðri;iþ1e2kiþ1diþ1 þ riþ1;iþ2Þ

¼
ri�1;iþ1e

2kiþ1diþ1 þ riþ1;iþ2

e2kiþ1diþ1 þ ri�1;iþ1riþ1;iþ2

� ri�1;iþ1:

(62)

Here, we have defined for the vanishingly thin slab the effective
reflection coefficients

riþ1;i�1 ¼
riþ1;i þ ri;i�1

1þ riþ1;iri;i�1

; ri�1;iþ1 ¼
ri�1;i þ ri;iþ1

1þ ri�1;iri;iþ1

: (63)

Therefore, in this limiting case, the pressures on other inter-
faces are obtained just as though the medium i has never
existed. The only subtleties come from the vanishing layer,
which will typically give rise to divergences in its own Casimir–
Lifshitz free energy and corresponding pressure. We will not go

deeper into the interpretation of this vanishing layer at
this point.

We can subtract the effects of the vanishing layer from the
Casimir–Lifshitz free energy. To be more specific and relevant,
consider the four- and five-layer cases as in the main text. For
the 1–2–3–4 structure as described by eqn (32), when the
medium 2 has vanishing thickness (d2 = b � a - 0), the total
Casimir–Lifshitz free energy can be subtracted, leaving for the
remaining parts Fr = F � F123, which means the corresponding
‘‘renormalized’’ factor Ds

reg is

Ds
reg ¼

Ds
1234

Ds
123

¼ 1þ rs43r
s
32e

�2k3ðc�bÞ; (64)

which means that, with b�a = 0 and %rs32 = rs32, this four-layer
structure is reduced to the well-known three-layer case. For the
five-layer case L-1-2-3-R, with the thickness of medium 1 being
zero, the regularized factor is just that of the four-layer case L-2-
3-R, Ds

reg = Ds
L123R/DL12 = Ds

L23R.
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67 N. Kallay, A. Čop, E. Chibowski and L. Holysz, J. Coll. Interf.

Sci., 2003, 259, 89–96.

68 L. O. Filippov, A. Duverger, I. V. Filippova, H. Kasaini and
J. Thiry, Miner. Eng., 2012, 36–38, 314–323.

69 R. A. Robinson and R. H. Stokes, Electrolyte Solutions,
Butterworths Scientific Publications, 2nd edn, 1959.

70 A. I. Volokitin, JETP Lett., 2019, 109, 749–754.
71 A. I. Volokitin and B. N. J. Persson, J. Condens. Matter Phys.,

2020, 32, 255301.
72 B. W. Ninham and V. Yaminsky, Langmuir, 1997, 13,

2097–2108.
73 B. W. Ninham, M. Boström, C. Persson, I. Brevik, S. Y.

Buhmann and B. E. Sernelius, Eur. Phys. J. D, 2014, 68,
328.

74 P. A. Maia Neto, F. S. S. Rosa, L. B. Pires, A. B. Moraes,
A. Canaguier-Durand, R. Guérout, A. Lambrecht and
S. Reynaud, Eur. Phys. J. D, 2019, 73, 178.

75 R. O. Nunes, B. Spreng, R. de Melo e Souza, G.-L. Ingold,
P. A. Maia Neto and F. S. Rosa, Universe, 2021, 7, 156.

76 N. Froitzheim, J. Majka and D. Zastrozhnov, Proc. Natl. Acad.
Sci., 2021, 118, e2107632118.

77 L. A. Wilen, J. S. Wettlaufer, M. Elbaum and M. Schick, Phys.
Rev. B: Condens. Matter Mater. Phys., 1995, 52, 12426–12433.

78 J. S. Wettlaufer, Phys. Rev. Lett., 1999, 82, 2516–2519.
79 P. Parashar, K. V. Shajesh, K. A. Milton, D. F. Parsons,

I. Brevik and M. Boström, Phys. Rev. Res., 2019, 1, 033210.
80 K. A. Milton, J. Phys. A, 2004, 37, R209–277.
81 W. C. Chew,Waves and Fields in Inhomogeneous Media, IEEE,

1995.

PCCP Paper

P
u
b
li

sh
ed

 o
n
 1

6
 J

an
u
ar

y
 2

0
2
3
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
O

k
la

h
o
m

a 
o
n
 6

/4
/2

0
2
3
 9

:1
2
:1

6
 P

M
. 

View Article Online


