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Technology advances and lower equipment costs are enabling non-invasive, convenient recording of brain data
outside of clinical settings in more real-world environments, and by non-experts. Despite the growing interest
in and availability of brain signal datasets, most analytical tools are made for experts in the specific device
technology, and have rigid constraints on the type of analysis available. We developed BrainEx to support
interactive exploration and discovery within brain signals datasets. BrainEx takes advantage of algorithms
that enable fast exploration of complex, large collections of time series data, while being easy to use and learn.
This system enables researchers to perform similarity search, explore feature data and natural clustering,
and select sequences of interest for future searches and exploration, while also maintaining the usability of
a visual tool. In addition to describing the distributed architecture and visual design for BrainEx, this paper
reports on a benchmark experiment showing that it outperforms other existing systems for similarity search.
Additionally, we report on a preliminary user study in which domain experts used the visual exploration
interface and affirmed that it meets the requirements. Finally, it presents a case study using BrainEx to explore
real-world, domain-relevant data.
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Fig. 1. BrainEx is a web-based visual analytic tool, designed for exploring sequence similarity and clusters
within brain signals. On the left, we see 50 similar sequences with color used to encode metadata about the
search results, and on the right is a person wearing a functional near-infrared spectroscopy brain sensing cap.

1 INTRODUCTION

Recent innovations and declining costs for non-invasive brain monitoring technologies are paving
the way for future innovations in brain-computer interfaces, clinical applications, and intelligent
systems that adapt to changes in an individual’s dynamic cognitive state [23, 63]. While existing
tools help with brain data acquisition and signal processing, most are geared toward biomedical
engineers, scientists or clinicians who mainly analyze the sensor data in highly controlled and
specific contexts and are experts in the underlying device technology. Their well-established
practices come from traditional neuroimaging and neuroscience studies where data is collected
with highly controlled timing, often while doing strictly controlled tasks, and the data is analyzed
by the same research team that collected the data. While these practices are key to many of the
recent discoveries about the brain, the same experimental and analytical designs do not work as
well in more real-world contexts and when there is wider dissemination of datasets.

In these contexts, exploration can be valuable for gaining familiarity with the real world data
and finding brain signal patterns that could indicate a common cognitive state to study further.
For example, researchers may be interested in finding signature signal patterns that indicate that a
driver is distracted, or a student is focused. Or they may want to scan a dataset looking for patterns
that occur frequently to identify events that may have something in common within and across
experiments. Researchers may also be interested in finding events or tasks that lead to similar
brain signals, even if they had not been associated together prior to the data collection (e.g. doing
a particular math problem or detouring while navigating). These exploratory steps could inform
future confirmatory studies. Taking a data driven approach to find similar patterns within and
across datasets has been difficult because the brain signal analysis tools available have not been
designed to support this type of exploration, and do not leverage advances in time series data
mining in a broader sense.

In this paper, we introduce BrainEx, a web-based, brain data analytics platform for visual ex-
ploration and discovery of sequence similarity. Its core design philosophy is exploration at every
stage. BrainEx builds on data mining approaches for interactively finding similar sequences in large
datasets, and integrates them into a workflow specifically designed for brain signals. We focus
on signals from functional near infrared spectroscopy (fNIRS), a non-invasive neuroimaging tool
[14, 69] that has been used to measure cognitive states in real-time while participants complete
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computer-based tasks [2]. BrainEx preprocesses time series datasets and finds similarity structures
within. From there, it allows researchers to search through their dataset interactively. It exposes the
contents and metadata of each dataset, using its underlying clustering to give a sense of the overall
distribution of data and patterns. It also provides interactive searching, which allows analysts to
quickly retrieve potentially hundreds of sequences of interest and peruse their associated metadata.
Rather than provide this information purely through numeric output, BrainEx provides visual-
izations of the relationships it describes. This way, BrainEx is designed not simply for statistical
analysis, but broadly for empowering researchers to better understand their data, and to explore it
in search of meaningful relationships for further study.

The main contributions of this work showcase both the performance and the versatility of
BrainEx, as well as its potential impact on research using fNIRS and other brain signals. These are
described below:

e BrainEx enables researchers to perform expansive exploration of brain signal datasets through
its interactive visual interface. Researchers can use cluster exploration to discover patterns
within the features of their dataset and then choose unique queries to find the top-k similar
matches. These data-driven explorations can be customized using multiple elastic distances,
which may reveal insights that would be missed by the use of one single distance.

e An experimental evaluation shows that BrainEx is at least 10 times faster than state-of-the-art
competitors for diverse similarity-based operations. BrainEx consistently achieves over 99%
accuracy, outperforming Piecewise Aggregate Approximation (PAA) and Symbolic Aggregate
Approximation (SAX), and a query time of under 10 seconds, regardless of dataset size.

o A user study conducted with experts in data visualization, neuroscience, and human-computer
interaction reveals BrainEx’s effectiveness at achieving five functional goals: similarity search,
feature distribution exploration, cluster exploration, integration between different compo-
nents of BrainEx, and accessibility to researchers from different backgrounds. The positive
feedback shows promisee for advancing the field of brain-computer interaction.

e The case study using real-world study data with fNIRS showcases one way that BrainEx can
be used to explore datasets and uncover relationships between cognitive states, task events,
and brain regions of interest.

2 BACKGROUND

The BrainEx system brings together research on brain sensing with research on time series data
mining and visualization to address challenges in brain signal analytics, with a focus on functional
near-infrared spectroscopy (fNIRS) used in HCI settings. This section provides background on
NIRS, analytics tools for fNIRS, as well as time series similarity search and clustering.

2.1 Functional Near-Infrared Spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is a noninvasive form of neuroimaging that provides
time series data about cortical hemodynamics, which is correlated with brain activity [54], using
near-infrared light. fNIRS relies on the fact that infrared light can penetrate human skin and is
absorbed in different amounts dependent on the oxygenation of the blood. An fNIRS cap (Figure 1)
contains multiple fNIRS light sources and light detectors on it, with each source-detector pair form-
ing a channel of brain data. These measurements allow researchers to compare activity in different
areas in the brain at the same time [23]. fNIRS is a useful tool for researchers due to its accurate,
non-invasive, and portable properties. fNIRS research is a growing field within neuroscience [23];
in 2020, approximately 500 papers were published on the subject [29]. In addition, there has been a
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growing number of HCI publications that use fNIRS brain signals [3, 4, 18, 34, 42-44, 46, 55, 71, 74].
[43].

The data generated from an fNIRS study typically consists of multivariate time series, with
one time series from each channel in the fNIRS cap (e.g. [71]). These time series represent the
oxygenated and deoxygenated hemoglobin in the location where the channel is placed on the head.
In addition to the fNIRS data itself, a dataset usually includes additional metadata that describes
the sensor locations, the study participant identifier, the activity or events that occur during the
study, among other things. These characteristics are similar to other brain sensing modalities, such
as electroencephalography (EEG), as well as physiological sensing channels. Only the shapes of the
signals and the sampling rate would diffeer, depending on the sensing modality.

From these multivariate time series and the associated metadata, researchers typically search
for patterns in the brain data that indicate a particular cognitive or emotional state. This can be
done by using statistical methods to look for significant differences between two sets of labeled
sequences (e.g. distracted vs. focused). These labels would come from the experiment design where
particular states are elicited in a controlled way and then marked or labeled in the data. Machine
learning approaches are also common where labeled data is used to build a classifier for future
unknown data. Both statistical and machine learning approaches can be difficult when brain signal
sequences are of different lengths or different scales, but workarounds exist.

2.2 Analytic Tools for fNIRS

With the growing field, specialized tools have been developed to aid researchers in the analysis of
fNIRS brain data [26, 30, 32, 41, 60, 66, 75] and each device typically comes with some basic analysis
software (e.g. NIRx NIRSLab). These tools generally support the calculation of oxygenated and
deoxygenated hemoglobin, as well as various filtering and signal processing techniques. Visualiza-
tion of co-variance and activation on a 3D model of the human brain is also common [30, 32, 75].
However, many of these tools also expect a specific experimental design so that statistical models
can be built. For example, HomER [32] is a MATLAB-based graphical user interface program that
supports approaches such as general linear modeling, but assumes that stimuli have precisely
timed onsets and are all of the same length. This is typical for neuroscience experiments, but too
constraining for many real-world applications. NIRS-KIT allows researchers to analyze resting-state
fNIRS data in addition to the task-driven data which HomER and POTATo support [30]. Unlike
many of these offline analysis tools, Turbo Satori [41] was designed to enable real-time visualization
and classification of brain signals.

While all of these tools are valuable and widely used in particular use cases, they are designed for
researchers with particular expertise. In addition, none of them are designed with visual exploration
as a priority, as has been done in other medical fields [10-12]. There are few tools available for
gaining a broad sense of a dataset, or that enable browsing the relationships and structures within
datasets. There are even fewer methods and tools that specifically support functional near-infrared
spectroscopy. Researchers need better tools for interactively searching through brain signal data
and exploring the search results.

Facilitating brain data exploration is particularly critical today as there has been a recent push
to publish and share datasets and to enable more robust analysis across larger datasets that are
collected in diverse contexts. This means that researchers may look at brain signal data that other
researchers collected, and that they are not necessarily familiar with. As more fNIRS data becomes
available, there may be valuable insights to be found by leveraging advances in time series data
mining, and for building on work in other domains with time series data. To date, finding insights
in heterogeneous datasets from different sources and studies has been difficult.
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Dynamic Time Warping
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Fig. 2. Comparison of how DTW and point wise similarity matching occurs. DTW (on top) allows for a
one-to-many mapping, as seen by points from the top sequence all mapping to a single area on the bottom
sequence that occurs earlier. Pointwise (on bottom) only allows for a one-to-one mapping of points that occur
at the same time in both sequences.

2.3 Exploring Similar Sequences in Time Series

Finding similar sequences of fNIRS data is an essential operation for identifying brain signals that
might be indicative of key cognitive or emotional states. Similarity search also plays a prominent
role in many other applications; search engines and weather forecasts rely on finding the most
similar sequences given some query. Distance-based similarity search is a key analytical method for
these datasets, which often span tens of thousands of time points at minimum [51]. However, this
is far from trivial, especially when considering sequences of different lengths and with temporal
misalignments.

Pointwise distance metrics, such as Euclidean or Manhattan, are easy to compute, but require a
one-to-one match which necessitates the compared time series to be of the same length. Elastic
distance metrics warp the points into a one-to-many match. One data point in the first sequence can
be mapped to more than one point in the second sequence. The compared time series sequences
do not need to have the same length, which makes elastic distance metrics more flexible than
point-wise comparisons as they are capable of focusing more on the shape of sequences than their
values [19].

One of the most widely used elastic distances is Dynamic Time Warping (DTW) [5, 58, 61], which
warps Euclidean distance by compressing and expanding the time axis, allowing multiple matches
to the same point. A comparison between DTW and pointwise matching is shown in Figure 2.
In practice, DTW is suitable for exploring a wide array of datasets due to its flexibility and high
accuracy [52]. DTW has become increasingly popular due to its expressiveness when applied to
RNA expression data in bioinformatics [1] and ECG pattern matching in medicine [9]. Recently,
there has been increasing interest in using DTW to match temporally misaligned sequences in
brain data [15, 20, 45]. DTW has also been integrated in statistical programming languages such as
R [24] and Python through fastdtw and pyts [22, 68].

However, these strengths are overshadowed by its algorithmic complexity: computation time
and required memory grow quadratically in relation to the size of the input sequences [36, 48].
This makes it impractical for very large datasets, such as fNIRS and other neurological data. These
shortcomings are compounded by the lack of a proven triangle inequality, making it hard to scale.
Despite these challenges, thousands of research works in the past twenty years have focused
on making DTW the tool of choice for key operations, such as similarity search and clustering.
Countless modifications of the classic DTW have been proposed to optimize its performance by
indexing, preprocessing, caching, and other optimizations [21, 38, 57, 70, 76].

DTW is a Euclidean-based approach, but it has been established that application domains
often need a variety of distance measures to solve their specific problems [13]. A single distance
metric may “collapse” a group of points together in a way that distorts the similarity and causes
a misclassification. Previous research has shown that different distance metrics will collapse the
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groups differently and reduce the number of misclassifications [50]. For example, compound
classification in chemistry can use Minkowski distance to select relevant chemical descriptors
[35], while image retrieval reflecting human visual perception utilizes Manhattan [64, 67] and
Mahalanobis distances [62]. It is therefore necessary for any distance-based exploratory tools to
include multiple distance metrics.

The examples above all use pointwise distances, failing to perform well when sequences are of
different lengths or have temporal misalignments. Neamtu et al. [52] extended warping abilities to
diverse point-wise distances by designing a universal alignment tool, called Generalized Dynamic
Time Warping (GDTW). This framework is flexible due to its preprocessing steps. It uses multiple
cheap-to-compute point-wise warped distances such as Euclidean, Manhattan and Minkowski to
cluster all the sequences during a preprocessing step [50]. Then data is clustered in a reduced subset
of the original dataset based on specific sequences to explore appropriate warped counterparts,
namely DTW, warped Manhattan, and warped Minkowski [52]. This flexible and generalized
approach for efficient similarity search has promise for interactive exploration of fNIRS signals.
However, there are no existing tools that support this for general use by non-experts.

Data Series Sequences

Cluster 1 Cluster 2 Cluster 3

Representative 1 2 3

Fig. 3. Representations and groupings derived by GDTW. The colors of the sequences correspond to clusters
of similar sequences and their respective representatives.

2.4 Efficient Sequence Similarity Search Using Multiple Warped Distances

BrainEx rests on the foundation created by the frameworks introduced in ONEX [51, 53] and
GENEX [52], enabling researchers to perform very fast and highly accurate similarity searches in
large datasets. Below, we discuss these approaches.

ONEX [51] introduced the novel idea of using a preprocessing pipeline that uses a cheap-to-
compute Euclidean distance to create clusters of sequences that can then be efficiently queried
using DTW to find the best match to a target sequence. This preprocessing allows for the one-time
time-intensive work of clustering to be done offline and many-use fast queries of the data by
researchers exploring the similarities of sequences. Such similarity search is possible due to proving
a customized triangle inequality between the Euclidean distance used for clustering sequences and
DTW used for similarity searches. This leads to highly accurate results, while reducing the time
to find similar sequences by only using the representatives of each cluster for comparisons to the
target sequence. This has further been extended [53] to retrieve multiple ranked similar sequences.
By allowing for fast, accurate similarity search online, researchers may explore the similarity of
time series more easily and interactively.

GENEX [50] is a novel framework that allows researchers to warp their own distances and then
incorporate them in a cardinality reduction pipeline. It generalized the idea of combining pairs of
pointwise distances and their warped counterparts, while still retaining the clustering pipeline with
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Fig. 4. BrainEx Pipeline Overview. When preprocessing a dataset, the time series are divided into all possible
sequences of all possible lengths and then clustered into similar groups of equal length. After preprocessing,
researchers can interactively explore the clusters and perform a fast similarity search by finding the cluster
representatives most similar to the target sequence, and only searching the clusters they represent.

the customized triangle inequality properties of ONEX. However, the main challenges encountered
by GENEX stem from the need for very large amounts of memory to preprocess the raw data and
for exploring all the cluster representatives to find the ranked similar sequences. These challenges
impact GENEX’s ability to deal with very large datasets, both due to the high memory demands and
the increased response times. A distributed system would be better suited to provide interactive
response times and reasonable memory requirements.

3 BRAINEX ENGINE ARCHITECTURE

When conducting studies with brain signals such as fNIRS, researchers generate large, complex
and often noisy datasets. These datasets consist of multivariate time series of brain signals coming
from multiple scalp recording locations. They also contain metadata documenting the participant,
the sensor channel, and any events occurring during the experiment session. A common goal in
this research would be to better understand the impact of one or more of these attributes on the
corresponding time series data. For example, researchers may want to answer questions such as:
What parts of the dataset look the most similar to a particular instance of user distraction? Are there
particular patterns that are frequent in the dataset, in general? Are there particular patterns that are
frequent for a particular study participant? Or sensor location? Or event? Or a combination of these
factors? To answer these questions, researchers cannot assume that all sequences in the dataset are
the same length, since real-world tasks can vary. However, the search results should still find the
most similar sequence. Many of these questions could be answered by building on the foundation
of GENEX.

In this vein, we created BrainEx, which uses GENEX’s cardinality reduction methods for similarity
searches as the foundation for enabling analysts to explore complex time series datasets, yet it
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Fig. 5. The BrainEx System Architecture. The first component on the left is the BrainEx Engine Server,
developed in Python and usable with Linux OS. The middle component is the API that preprocesses datasets,
performs similarity searches, and clusters data which is implemented with Django. The last component is the
BrainEx website interface which the user accesses and is developed in HTML, CSS, React, and D3js.

employs a distributed architecture based on a novel preprocessing scheme to dramatically reduce
both the response time and the needed amount of memory. In addition to increasing the performance
and scalability, BrainEx provides a customized exploratory experience by taking advantage of the
rich metadata and enabling researchers to perform multiple operations, including cluster exploration,
filtering, and sorting. The novel preprocessing algorithm paved the way for the introduction of a
much-needed user interface that makes data exploration available to researchers without requiring
coding experience. In addition, the general framework and modular implementation make BrainEx
an easy-to-expand tool, requiring merely a few lines of code to warp new distances to use to
discover new insights into datasets.

BrainEx is implemented as a full stack application with three main components (Figure 5). The
core BrainEx package is implemented in Python, and supports both Python native multiprocessing
and Apache Spark [77]. In order to preprocess the dataset and perform a similarity search quickly,
it relies on significant computing power. Therefore, BrainEx is hosted as a web application, with
the BrainEx engine running on a server. End users can connect to a website, built using React, to
interact with the tool. An API, written in Django, allows the website to communicate with the
server. The BrainEx website uses the API to contact the server and load the list of preprocessed
datasets, perform similarity searches, and gather the cluster data for exploration. The web browser
handles the code to generate the graphs of the feature distributions returned by the server.

In the following sections, we discuss the algorithms and distributed architecture underlying
BrainEx that enable interactive visual exploration and discovery. Its fast response time builds on the
process once, query many paradigm [7, 72] described earlier. The two-step methodology includes
first reducing the data cardinality by forming distributed similarity clusters and identifying their
representatives (Section 3.1). Then, given a query sequence, the tool quickly finds the matches
guided by the distances between the query and the cluster representatives (Section 3.2). The visual
exploration interface that is built on top of the BrainEx engine is then described in Section 4.

3.1 BrainEx Engine: Distributed Preprocessing Algorithm to Compute Clusters

As noted above, to achieve fast similarity search, BrainEx groups the time series dataset into clusters,
each of which is characterized by its “representative” time series. These clusters are defined below
in Definition 3.1.

Definition 3.1. Given the set T of all possible sequences (Xp)j.—sequences of time series X, of
length i beginning at position j—in the dataset, T is divided into subsets called clusters C,, where
k is the cluster index, such that: (1) all sequences (XP);. in C; have the same length, and (2) each
cluster C;_has one representative sequence R} such that the normalized distance between it and any
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Fig. 6. The Preprocess Data page is where a user will upload a new dataset and specify the parameters
for preprocessing. A) Users must manually provide the number of header rows and feature columns; the
default for each is 0. B) The user-defined similarity threshold is the minimum similarity requirement between
sequences in the same cluster. C) The length of interest is the range for subsequences to be spliced; the
default is 1-n where n is the maximum sequence length in the dataset. D) The available warped distances for
similarity matching. Currently, Warped Euclidean, Warped Manhattan, and Warped Chebyshev are available,
however the code is built to easily accept more warped distances.

(Xp)j. inC ]’C is smaller than half of the user-defined similarity threshold. The user-defined similarity
threshold is the minimum similarity requirement between sequences in the same cluster (Figure 6).

Improving upon the resource requirements of GENEX, in order to form clusters in the prepro-
cessing stage, the algorithm first slices the time series into subsequences, and distributes them
onto multiple cores using the Distributive Step Slicing (DSS) schema, which ensures that a time
series dataset is evenly segmented across data nodes in the distributed computing context. For the
preprocessing job, the head node uses caching to store a copy of the entire time series, which each
worker node can quickly access. The head node also tells each worker node which data points in
each time series the worker should use as the starting point for finding all sequences for that time
series that start with those particular data points. Valid sequences contain at least two data points,
and are temporally ordered with no discontinuities.

In the context of distributed computing, when distributing a time series dataset D that has N
time series, onto a context with a parallelism P, the naive, or default methodology would be to
evenly assign % time series to each executor. The drawback of this approach comes when N is not
divisible by P; in this case, some executors would need to work a larger load. This load unbalancing
would cause idle time for executors with smaller loads regardless of the value of P or N.

The Generalized DSS algorithm ensures that the loads are roughly balanced for computing
the clusters. To form clusters, a worker node will iterate through its list of sequences of a given
length that were generated by Generalized DSS. Each worker node will create a set of clusters,
and sets of clusters are not aggregated by the head node (e.g. each worker node’s clusters are
kept as they are). The algorithm builds on a customized triangle inequality between point-wise
distance and their counterpart warped distance inspired by and generalized from ONEX [51] and
GENEX [50]. Clusters are built using cheap-to-compute pointwise distances such as Euclidean and
Manhattan. Since they can only compare sequences of the same length, clusters will also contain
such sequences.
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For each sequence, the worker will check if a particular sequence is close to (as defined by the
similarity threshold the end user inputted) the representative of any of the existing clusters for
that sequence length. If this sequence is close (within the similarity threshold chosen by the user)
to the representative of a cluster, then that sequence is added to that cluster. If the sequence is not
close to the representative of any cluster, then a new cluster will be formed with this sequence as
the new cluster’s representative. This arbitrary selection of representatives is a method to discover
the natural distribution of clusters in the dataset. Representatives are not updated throughout this
process, so each cluster will have the first sequence that was sent to that cluster as representative.
Once a worker node has clustered all the sequences for all the lengths specified, it then sends its
partition to the head node. Once the head node has received the partition information from all the
worker nodes, the preprocessing is complete.

At this point, the user can investigate each individual cluster to understand its characteristics,
such as what features are present in the cluster, how many sequences it contains, and the length of
the sequences. This feature will be referred to as cluster exploration.

sequence 1. O—O—O—O— o&
seauence 4 OO~ @-

(AN | A
Sequence 2 m
Sequence 3

@ (b)

Fig. 7. Parts (a) and (b) demonstrate the difference between the naive distribution scheme and our imple-
mentation of distributive step slicing (DSS). The discs on the time series are individual data points. The
curves above the data points represents the sliced subsequences. Different colored curves represent work
done by different executors. Figure (a) shows the naive distribution scheme, when the number of time series
is not divisible by the number of executors. This results in load imbalances. In this case, the load of the
‘orange’ executor is twice the amount of its fellows. Figure (b) shows a Generalized DSS for load (number of
sub-sequences) balances over multiple time series; note that the executors’ start index for each time series is
set in a round-robin style to ensure further balancing of the loads.

3.2 BrainEx Engine: Distributed Similarity Search Algorithm

The similarity search functionality enables the end user to provide a search query in the form of
a time series and BrainEx will return similar sequences from within the larger dataset. As with
GENEX [50], instead of having to query all time series to find the similarity, BrainEx checks only
the representative of each cluster. If a given representative is not within the similarity threshold
of the time series used for the query, then the other time series in the corresponding cluster are
not queried, thereby significantly reducing the amount of time series to query. On the other hand,
if a representative is within the similarity threshold of the time series used for the query, then
our algorithm will query all other time series within that cluster to find the similarity between
these time series and the one used as the query. Unlike GENEX, BrainEx implements a distributed
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algorithm for executing these similarity searches within a time series dataset. This improves both
the preprocessing time and the query time on datasets as the distributed algorithm does more than
simply parallelizing GENEX (Figure 7).

When the similarity search is initiated, representatives of all clusters are queried, and the
distance between the target sequence and the representative of each cluster is specified. The query
is broadcast to all worker nodes. If the representative is close to the target sequence, the worker
will iterate through the cluster for that representative and compute the similarity between the
target sequence and all sequences in the cluster. Once a worker is finished iterating through all
necessary sequences, it will sort the sequences based on similarity. Finally, each worker will send
the top-k sequences from its sorted list back to the head node along with its partition. The head
node will then sort the final sequences based on similarity and output the top-k sequences to the
user as the query result. These sequences can be a variety of lengths due to BrainEx using warped
measurements instead of pointwise comparisons. The result output includes the sequence, the
features of the sequence, and the sequence’s similarity to the query.

We generalize DSS to let it iterate over multiple time series. Because the naive approach would
result in the first executor having the most load, we dynamically set the begin index in a round-robin
fashion as an executor working through the list of time series. Again, because the largest load
unbalance is equal to P, when the number of time series and their length are sufficiently large, the
impact of this imbalance becomes negligible.

3.3 BrainEx Engine: Time Series Indexing and Memory Optimization

Dividing time series into subsequences occupies a large amount of memory. A time series X,
of length n can be subdivided into at most }I_, i = @ subsequences if we are dividing into
subsequences of all lengths between 1 and n. Given that we have N such time series, caching
this information is computationally prohibitive, yet BrainEx’s clustering scheme requires keeping
tracking of all the sequences throughout. To mitigate this problem, we use an ID-start-end indexing
technique.

Before preprocessing, each time series in D is assigned a universal unique identifier (UUID)
Dip = (ID1,ID,, ..., IDy). After the subdivide stage, the resulting subsequences are represented
by Sequence objects. For example, a subsequence X,: (Xp)j. will be represented by Sequence(ID =
ID,, start = i,end = j)

The original time series dataframe is broadcasted over all workers. When a computation needs to
be performed on a Sequence, its data is fetched from the public dataframe and evicted from memory
as soon as the computation completes. This way, the memory consumption is reduced to a linear
increase, and we will later show in the experiment section the system’s scalability in handling large
datasets compared to competitors.

3.4 BrainEx Engine: Operations

BrainEx performs three main operations: best match selection, ranked similarity search, and cluster
exploration. To assist in these operations, the user is presented with a number of parameters to
filter the results. Below are descriptions of the parameters and operations they assist; more robust
descriptions of similarity search and cluster exploration are found in Sections 4.4 and 4.5 respectfully,
where we discuss the user interface.

3.4.1 Similarity Search. BrainEx’s similarity search includes four parameters to adjust either
the query or the sequences that match the query. Users specify their target sequence from the
preprocessed dataset and then specify the start and end index from that sequence to search for
matches. The returned matches will be approximately the same length as the target sequence with
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a +1 margin of error. The user can choose any number of matches for their target sequence with an
upper limit of the total number of sequences of similar length to the target. The last two parameters
limit the sequences that can be selected as a match. First, the user can limit the overlap between
results to prevent results from the same parent sequence that are offset by only a few data points.
Secondly, the user can exclude sequences that include points from the target sequence.

3.4.2 Cluster Exploration. All clusters can be filtered by how many sequences are grouped in the
cluster (cluster size) and the length of the sequences. Each cluster contains sequences of a single
length. Therefore, if one sequence in the cluster is of length 40, all of its sequences have length 40.

In addition, the user can also filter clusters by values of specific user-customized features. In brain
signal datasets (e.g., fNIRS), common features are participant name, event name, and channel name.
By filtering by these features, the user can search for clusters that are primarily composed of a
certain event or a specific subject, or look for clusters that have an equal number of sequences
from different channels.

3.5 BrainEx Engine: Supported Datasets

BrainEx supports the input of TSV and CSV files. Columns contain features or datapoints for a
sequence while each row is an individual sequence. Each sequence must contain the same number of
features. The sequences do not need to be of an equal length, e.g. a dataset could contain sequences
of various lengths, for example 20, 35, and 51. We show below a snapshot of an example dataset,
containing one header row, two features, and sequences of length 3.

Subject | Condition
1 Individual | 1.1 | 1.2 | 1.3
1 Cooperative | 2.3 | 2.4 | 2.5
2 Individual | 1.9 | 2.0 | 2.1
2 Cooperative | 2.8 | 2.9 | 3.0

4 BRAINEX VISUAL EXPLORATION DESIGN

The BrainEx engine described above provides sophisticated time series analytical tools to enable
interactive exploration. All of the functionality described above can be accessed using command
line APIs. However, this requires expert users with deep technical knowledge to execute. In addition,
without visual representation of the data, the functionality is not particularly useful for an end
user to familiarize themselves with and truly explore the data.

Thus, we aimed to build an effective visual interface on top of the BrainEx engine to expose the
underlying cluster exploration and similarity search algorithms in a way that is easy to use by
users of all skillsets. The goal is not necessarily to introduce novel ways of visualizing time series
data, but rather to make the algorithms more accessible and valuable to researchers, so they can
more easily explore and discover interesting relationships in time series datasets. Expert users of
BrainEx may not be familiar with command line interfaces and would not be able to use BrainEx to
its full potential without a visual interface.

4.1 Usage Goals

We developed the following simple usage scenario to motivate the design of the BrainEx interface. A
researcher has performed a fNIRS study, collecting data from several participants as well as multiple
sensor locations on each participant, creating multivariate time series signals. In this hypothetical
study, participants were asked to complete several short tasks, some that were calibrated as easy,
others that were calibrated as hard, and some task with unknown difficulty. The researcher is
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interested in better understanding this data during the task of unknown difficulty, and would like
to use the data collected during the other two calibrated tasks to see if there are connections.

In this scenario, a researcher would need to get a sense of the distribution of the data by
understanding which sequences are similar to each other in the dataset. In this case, they would
not have any particular sequences of interest in mind. Instead, they would need to explore the
entirety of the data. The researcher may want to understand how the sensor location and task
are related to the underlying brain activation. They may also want to get a sense of the ‘shape’
of a time series which represents some grouping. In the process of exploring, a researcher might
come across a sequence which is of particular interest. It is important to be able to search for any
number of sequences similar to the one discovered. Once these are retrieved, they will need to
explore the distribution of the related metadata. When a researcher has identified any subset of
the data, whether by exploration or searching, it is important that they are able to explore the
distributions of one or more features of this data. This is just a simple scenario that helped to
develop the functional requirements for the visual interface design. However, much more complex
analysis can be performed, and some of this is illustrated in the case study described in Section 7.

4.2 Functional Requirements

By exploring the usage goals, we determined five functional requirements to incorporate from the
BrainEx Engine into the user interface. The first requirement is the ability to compare one sequence
to the rest of the dataset by finding which sequences it is most similar to.

Requirement 1: Similarity Search

a) Support retrieving and ranking any number of sequences similar to another sequence of a
researcher’s choice.
b) Support exploration of search results and attributes of the sequences in the result set.

The second requirement is the ability to explore the feature distribution in a set of sequences
that are naturally grouped together.
Requirement 2: Feature Distribution Exploration

a) Support exploring the distribution of a single feature in a cluster or result set.

b) Support exploring the joint distribution of two features in a cluster or result set.

c¢) Support comparing the relationships between three or more features in a cluster or result set.
d) Support identifying a sequence shape that well-represents a cluster or result set.

Similarly, BrainEx should support the ability to explore the distribution of all such natural
groupings in the dataset.
Requirement 3: Cluster Exploration

a) Support exploring the range of cluster sizes and sequence lengths within clusters.
b) Support finding clusters of similar sequences with skewed feature distributions (i.e. clusters
that mostly contain a particular User, Channel, or Event).

From the insights gained by exploration into clusters of sequences and feature distributions,
BrainEx should support using these insights to start new explorations and searches on sequences
found to be of interest.

Requirement 4: Integration

a) Support searching and finding sequences of interest to explore further based on the results
of cluster exploration.
b) Support exporting sequences of interest and other findings to explore further in other tools.
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Fig. 8. Similarity Search. BrainEx Visual interface for conducting similarity search consisting of search options
in the left panel (marked A) and a visualization of the dataset’s sequences on the right (marked B).

In addition to the functional requirements above, the final requirement was that use of the tool
should not be limited to a small group of highly trained researchers with access to high performance
computing.

Requirement 5: Accessible to All Researchers

a) Support fast computations, regardless of researcher’s computer.

b) Support researchers at all levels, from novice to expert.

c) Support diverse experiments to be explored, and remain agnostic to the particular user-
customized metadata (e.g. participant, events, channels, etc.) that are associated with the
dataset.

4.3 Interface Components

Based on these requirements, we built a visual interface on top of the BrainEx engine. It provides
an integrated pipeline for researchers to move between the broad exploration of a dataset and
queries for specific sets of most similar sequences. Our tool is fully agnostic, and can accommodate
any number of customized, researcher-specified labels on the data. A user can select any of the
preprocessed datasets and then select Similarity Search (Figure 8) to find the best k matches to a
specific subsequence of the dataset or the user can select Cluster Exploration (Figure 9) to explore
the distribution of features among clusters in the dataset.

4.4 Similarity Search

Our visual interface leverages the power of time series analysis [50, 51, 53] and expands it with
interactive visualizations, as well as analytic workflows developed for fNIRS data analysis, to
provide the time series exploration experience outlined in Figure 4.

BrainEx enables researchers to visually investigate the sequences in the dataset. Before initiating
a similarity search, researchers can explore the sequences in the dataset via a line chart. To reduce
the number of sequences visible and to enable more targeted exploration, BrainEx provides filtering,
zooming, and panning support in the sequence view seen in Figure 8.B. For a more specific search,
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Fig. 9. Cluster Explorer. BrainEx interface for exploring the clusters consisting of a table of filtering options in
the left panel (marked A), a table of the dataset’s clusters and their color-coded feature distributions (marked
B), and a visualization showing the overall distribution of clusters in the dataset (marked C). When a cluster
is selected, the visualization changes to show that cluster’s representative.

BrainEx enables researchers to select start and end indices, specify a maximum number of results to
return, and exclude the target sequence from the search results. As there may be overlap between
the target sequence and a similar sequence, BrainEx also enables the selection of a percentage of
allowed overlap. These filters can be set with the options shown on the left side in Figure 8.A.

Once a researcher has completed their search, the results are presented via a table containing
details about the resulting sequences and a line chart where each sequence is visualized. The table
enables the researcher to see each sequence, the features associated with it, and its distance from the
target sequence. For easy comparison, the target sequence is always located at the top of the table
and is highlighted in the line chart. Hovering over a sequence in either the line chart or the table
highlights the sequence in both locations and scrolls to the sequence in the table if it is not already
visible. To enable more refined control over the visualization of the results, the sequences can be
sorted and filtered by each feature, the number of visible results can be limited, and a maximum
distance can be specified. BrainEx also allows researchers to export the resultant sequences as
a CSV file and to save the line chart as an image for further exploration and/or interpretation.
Moreover, the distribution of features in the result sequences can be investigated through the
feature distribution explorer.

4.5 Cluster Exploration

BrainEx enables researchers to explore the clusters of sequences through a table (Figure 9.B)
containing information about every cluster in the dataset. This information includes the number of
sequences in each cluster, the length of the sequences in each cluster, and the single distribution of
the features of sequences in each cluster. Cells describing the feature distributions are colored to
show the salience of that feature value in the sequence, allowing researchers to scan for clusters
with interesting distributions to investigate further.

To ensure agnosticism regarding the features of the dataset, BrainEx allows the table to be
expanded and contracted by the user by providing the left panel of table filter options (Figure 9.A).
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This variability is available for both the number of rows and columns shown at once, allowing a
researcher to customize how much information they would like immediately available. BrainEx
also provides an option to view the average feature distributions across the dataset, providing
researchers a baseline to compare when finding a cluster.

The number of clusters can grow quickly as the number of sequences and the range of sequence
lengths increases. To provide researchers with the ability to target their exploration in this large
space, BrainEx provides sorting on each column, filtering, and a visualization. Researchers may use
sorting to quickly find clusters that may be more interesting, such as clusters with more sequences
or those with particularly skewed feature distributions. This sorting can also be tuned by using
the filtering on the length and number of sequences in the clusters that are shown in the table. As
researchers may not know how best to apply these filters, we also provide a scatter plot (Figure 9.C)
showing the distribution of clusters against the number and length of sequences within each cluster.
This visualization can provide context for the researcher’s expectations when applying the filters,
while also describing more general properties of the dataset’s sequences and their tendencies to be
clustered together.

In addition to exploring the distribution of clusters and the features within those clusters,
researchers may also explore the shapes of sequences in each cluster. These shapes are provided
in the form of the cluster representative sequence to which the other sequences in the cluster are
similar. Once a researcher selects a cluster, they see a line plot of this representative sequence to
show this shape with a scale to allow comparison between the representatives of different clusters.

4.6 Feature Distribution Exploration

Once BrainEx retrieves a group of sequences, either from a similarity search or from cluster
exploration, it supports visualization of relevant information. This is complicated by the fact that
BrainEx is fully agnostic of the user-defined, customized metadata provided. When researchers
preprocess the dataset, they can specify any number of attributes (e.g. channel, user id, condition),
which can have different values and data types. Also, researcher-selected datasets can vary in size.

As a result, the visualization techniques must be able to show the distribution for an arbitrary
number of sequences. Further, they must be able to present the distribution with respect to any
number of feature labels. Thus, BrainEx combines several data visualization techniques to present
data depending upon the sort of information a researcher is looking for.

Researchers can choose the set of features that they are interested in by using feature specification
checkboxes. As they check boxes, the visualization display pane updates in real time, allowing
for seamless exploration. The display may change among four states: single feature bar charts,
two feature heatmaps, many feature parallel coordinates views, and a time series sequence view.
Detailed information about individual visualizations is presented when a user clicks the “More
Info" button.

The first visualization state is a bar chart (Figure 10.A), which is used whenever a researcher
needs to display the distribution with respect to one feature. Bar charts are well-studied for
the application of comparing two or more values in a single dimension [16]. The bar chart has
a mouseover component, which allows researchers to explore the precise number and percent
prevalence of any value presented.

The second state is a heat map (Figure 10.B) that presents the joint distribution over two user-
selected features. It uses a linear saturation scale from white to the primary orange or blue color of
BrainEx, orange when in dark mode and blue when in light mode. White corresponds to 0 percent
prevalence, and the full saturation to the highest prevalence present. The use of a consistent,
single-hue color scheme means researchers who examine multiple heat maps don’t have to learn a
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Fig. 10. The three different vizualizations to explore the content of a cluster. A user will progress from the
bar chart (A) to the heat map (B) then to the parallel coordinates (C) as they add additional features to the
visualization. A) A bar chart displaying the distribution of a single feature in a sample set of sequences. B) A
heat map displaying the joint distributions of two features in a sample dataset. C) A parallel coordinates
view displaying the joint distributions between three features in a sample dataset. This visualization will be
used for any number of features > 3.

new encoding every time. Mouseover text is also available, giving the precise counts and prevalence
of the joint distribution.

The third is a parallel coordinates view (Figure 10.C). Parallel coordinates allow the visualization
of N-dimensional data in 2-dimensional space, making them a powerful choice for researchers who
could be interested in any number of data labels [33]. BrainEx lets researchers select any number
of features, and visualize the joint distribution of all of them at once. Like many implementations,
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BrainEx allows researchers to rearrange the ordering of the axes to explore different pairwise
distributions. While increasing the number of features is known to increase the time necessary to
explore the data [47], researchers can choose to visualize only features which they are interested
in, reducing this exploration time. There are known cases where the display of thousands of data
points on a single parallel coordinates map can become unreadable [47]. To accommodate this, we
provide a box-select tool, which allows researchers to indicate which sequences they would like
highlighted. This allows researchers to separate out a readable subset of the dataset whenever it
becomes too large to read.

Once a researcher has some understanding of the overall distribution, they may want to do a
more sequence-focused exploration of the data. For this reason, the tool provides a plot sequence
feature. This button allows researchers to view a line plot of any set of sequences. This line plot
uses color encoding to show the association between the sequences and a single feature of the
researcher’s selection. This allows researchers to visually check for patterns within the sequence
data with respect to the features, or to get a sense of the sort of shapes of series that they are
studying. An example of this is in Figure 1.

4.7 Integration Pipeline

As mentioned before, BrainEx provides researchers the ability to perform similarity searches on
time series data. It also provides overviews and visualizations to allow researchers to understand
the shape and content of their data. These tools cover the breadth of our first three functional
requirements. All of these requirements are important for the exploration of time series data and
can be used effectively on their own. However, by integrating the separate tools we can allow
researchers to have a more powerful exploration workflow.

When exploring the data distribution within a cluster, researchers may discover interesting time
series sequences that they want to explore further outside of the feature distribution exploration.
We allow researchers to select a time series from this feature exploration view and then perform a
similarity search with that sequence as the target. This allows researchers to better understand the
contents of the cluster. Additionally, it allows researchers to find sequences similar to interesting
time series discovered in the exploration workflow. This will allow researchers to better understand
their data during exploration and potentially reveal previously unknown patterns in the dataset.

In order to integrate BrainEx’s exploration capabilities with other systems, our tool also enables
researchers to export the contents of similarity search or cluster exploration to a CSV file. This data
can then be used in other tools for further analysis of the time series data after initial exploration
and pattern discovery is accomplished by BrainEx.

5 PERFORMANCE BENCHMARK EXPERIMENT

To demonstrate the power of BrainEx, we present a performance benchmark on a large number of
datasets from the UCR archive [17], a well-known collection of time-series datasets from many
research areas that is widely used for similarity exploration. In it, we compare the accuracy and
response time of BrainEx with several competitors when performing similarity search using
three different warped distances (warped Euclidean, warped Manhattan, warped Chebyshev). To
comprehensively validate the precision and performance of BrainEx, the system was tested on the
UCR archive using the pipeline described below.

5.1 Competitors

We compared the BrainEx data mining tool with three state-of-the-art systems that are able to
employ multiple warped distances and are extensively used in the literature. These competitors are
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Generalized Dynamic Time Warping (GDTW) [52], Piecewise Aggregate Approximation (PAA)
[37], and Symbolic Aggregate Approximation (SAX) [40].

GDTW is the generalized warped distance framework proposed in [52], which finds exact
solutions by comparing a query with all possible candidates (Table 1). We use the results of GDTW
as ground-truth for our evaluation. PAA [37] is a dimensionality reduction method that compresses
time series by averaging consecutive equal-length subsequences. We averaged subsequences of
length 3, following the empirical practice in [50]. SAX [40] is another data reduction method that
is similar to PAA in that it reduces the dimension of a time series by combining a specified number
of data points. The SAX approach takes this a step further by encoding the values aggregated by
PAA as strings.

As BrainEx employs distributed computing, in an effort to make the comparison fair, we paral-
lelized the competitors’ distance calculations to take advantage of a multi-processing context. Our
preliminary study showed that with BrainEx being able to handle large data, the competitors, if run
on a single core, quickly become impractical if we were to run an extensive experiment comparing
to them. Reflecting this fact, we distributed the candidate-to-query distance calculation that happens
in GDTW, PAA, and SAX. (E.g., for a dataset with 32,000 points, the distance calculation using
SAX takes about 300 seconds on a single core, but only 15 seconds on 32 cores.) Doing so does not
affect the accuracy of the results of these algorithms, because calculating the distance between a
candidate and the query is an independent task.

5.2 Experimental Methodology

5.2.1 Preparing Datasets. Each dataset in the UCR archive is separated into training and test sets.
As the training set from each dataset generally contains more time series than the test sets [17], we
use these as part of the preprocessing phase for clustering. We then explore the clusters using target
sequences from both the training sets and the test sets. All sequences were min-max normalized
based on the minimum (min) and maximum (max) of their respective datasets. Le., given a sequence
X = (x...xn), the normalized value for each point x; is %

The response time of retrieving one or more matches for a target sequence is highly dependent
on the size of the dataset. To better understand the relationship between performance and the size
of the datasets, we divide the datasets into three groups and run separate experiments for each
group. The grouping of the datasets is based on the number of data points they contain. In this
experiment, we grouped the 128 datasets into three bins: (1) Small datasets have a range of [1,
50,000] data points and contain 69 datasets; (2) Medium datasets have a range of [50,001, 1,500,000]
data points and contain 56 datasets; (3) Large datasets have over 1,500,000 data points and contain
3 datasets. This binning is heuristically determined to ensure each bin contains approximately the
same number of aggregated time series (Appendix A). We use the same experimental procedure
for each dataset and the outcomes for all datasets are aggregated within their respective bin when
presenting the results. For the small datasets, we used 32 CPU cores and 68 gigabytes of memory.
For the medium datasets, we used 80 CPU cores and 700 gigabytes of memory. The jobs were ran
on a high-performance computing cluster [56] using a singularity image running BrainEx and
containing the UCR archive datasets. The jobs had exclusive access to the nodes used, therefore no
other jobs were ran on the same node as the experiments.

5.2.2  Query Selection. When selecting queries, half of query sequences are taken internally from
the training set and the other half externally from the test set, and are randomly selected. This
simulates searching for similar sequences with queries from both inside and outside the dataset. To
ensure the system is evaluated on queries of varying length, we created three query length ranges
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Table 1. Definitions of each distance

Definition Normalized distance
Euclidean | Y7, (x; — yi)? ED(X,Y) = EM%
Manhattan | Y7, |x; — yil MD(X,Y) = w
Chebyshev | max] | |x; — y;] Cheb(X,Y) = Cheb(X,Y)
GDTW GDTW, GDTW 4(X, Y) = CPWaXT]

(small, medium, and large), and select n, queries from each length range from both the training and
test sets, with the total number of queries equal to 20% of the number of time series in the dataset.
The experiment follows these steps:

(1) For each dataset, we selected a subset of queries as follows: the query sequences are selected
from three distinct length bins. The length range for the small bin is 1 to one third of the longest

time series in this dataset (lexﬂJ), the medium is from 1 + PWT’FI} to le -1;

and the large is from 1 + [w-l to lmax — 1. The number of query sequences per bin,

ng, is defined as [max {1, %}] where N is the number of time series in the dataset. This
process is applied to both the test and training sets in the UCR Archive. For example, if the
longest sequence in a dataset of 60 time series was 100 points, then we would have query
ranges of 1, 33], 34, 66] and [67, 99], and 2n, = 4 random queries would be selected within
each range limit for a total of 12 queries. Each query range contains 4 queries, ny = 2 from
the test set and ny = 2 from the training set.

(2) We then preprocess the dataset with BrainEx using each of the three distances: warped
Euclidean, warped Manhattan, and warped Chebyshev (Table 1).

(3) We iterate over the query sequences generated from step 1. For each query, we run three k-
similar-sequences experiments: one for best-match retrieval (k=1), and two ranked-matches—
one for k=5 and one for k=15. These numbers were selected because they are commonly
chosen by users [50]. This iteration is performed with BrainEx, PAA, and SAX.

With the above experiment procedure, we compile the results to show: (1) how BrainEx performs
on ranked matching performance (time and accuracy); (2) how dataset size, length of the time series,
and the number of time series affect the response time and accuracy; and (3) how the preprocessing
time of BrainEx varies with differently sized datasets.

5.3 Experiment results

Of the 128 datasets from the UCR Archive, 100 were tested with all three warped distances and 4
more were tested with warped Euclidean and warped Manhattan. We could not test these datasets
with warped Chebyshev due to its longer preprocessing time paired with the long query times
from PAA and SAX. In addition, 24 datasets were not tested at all, including the three datasets from
the large bin, because of PAA and SAX’s long query times. While BrainEx took approximately 5
seconds for its queries on the medium bin, SAX took over 7 minutes on average and PAA took over
10 minutes (Table 2). The competitors would not have performed better than BrainEx because as the
size of the dataset increased, the response times increase. We limited each dataset to a maximum
run time of 168 hours to complete its preprocessing and querying for each method. We did not
split each method into its own session to ensure that the same node on the Turing cluster was used
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Table 2. Query Time for Medium Datasets

Warped Euclidean Warped Manhattan Warped Chebyshev

Method k=1 k=5 k=15 k=1 k=5 k=15 k=1 k=5 k=15

PAA 674.58 s | 674.58 s | 674.58 s | 622.20 s | 622.20s | 622.20 s | 352.95s | 352.95s | 352.95 s

SAX 461.51s | 461.51s | 461.51 s | 427.35s | 427.35s | 427.35s | 283.61 s | 283.61 s | 283.61 s
BrainEx | 5.32s 5.23s 520 s 5.05s 5.01s 5.00 s 393 s 3.89s 3.88s
GDTW | 872.39s | 872.39s | 872.39s | 829.61s | 829.61s | 829.61s | 395.84s | 395.84s | 395.84 s

Table 3. Query Error for Medium Datasets

warped Euclidean warped Manhattan warped Chebyshev

Method | k=1 | k=5 | k=15| k=1 | k=5 | k=15| k=1 | k=5 | k=15
PAA 0.0067 | 0.0087 | 0.0135 | 0.0033 | 0.0043 | 0.0068 | 0.0334 | 0.0441 | 0.0674
SAX 0.0746 | 0.0773 | 0.0831 | 0.0548 | 0.0572 | 0.0628 | 0.1799 | 0.1886 | 0.2023

BrainEx | 0.0005 | 0.0007 | 0.0008 | 0.0002 | 0.0002 | 0.0003 | 0.0032 | 0.0042 | 0.0057

for each method. Appendix A contains the name of each UCR Archive dataset, its total number of
data points, its bin classification, and if it was included in the results.

5.3.1 Ranked Matching Accuracy. We use the results from GDTW as the ground-truth. The query
accuracy for the other three algorithms (BrainEx, PAA, SAX) are calculated as follows, for a single
query and n number of matches:

n

—q ~
Z IDGprw; — Darcoriram,| s (1)
=1

where BqGDTWi is the normalized warped distance between the query and i-th match found by

GDTW and BZLGORITHMZ_ is the same distance but with the match found by one of the three other
algorithms. Tables 4 and 5 contain the query time and errors for the small datasets while Tables 2
and 3 contain the query time and errors for the medium datasets. Even after distributing the GDTW,
PAA, and SAX algorithms, BrainEx performs at least two orders of magnitude faster on queries in
both the small and medium datasets.

For the small bin, Figures 12, 13, and 14 show that GDTW, PAA, and SAX become much slower,
regardless of warped distance, for some datasets with between 30,000 and 40,000 data points. This is
because the datasets in that size range were irregularly sized, which means that within the dataset
the time series were of varying lengths. This irregularity caused GDTW, PAA and SAX to slow
down while BrainEx maintained the same efficiency. In addition, Figures 13, 12, and 14 show that
SAX has a substantially more errors than PAA or BrainEx while BrainEx has consistently the lowest
errors.

BrainEx’s largest errors on the small datasets were 0.0012 for warped Euclidean, 0.0005 for
warped Manhattan, and 0.0060 for warped Chebysheyv, all of which are less than 1% error rates.
However, PAA’s largest errors were 0.0117 for warped Euclidean, 0.0062 for warped Manhattan and
0.0538 for warped Chebyshev, while SAX’s largest errors were 0.0944 for warped Euclidean, 0.0717
for warped Manhattan, and 0.2210 for warped Chebyshev. While these are competitive accuracies,
BrainEx consistently has better performance across each elastic distance (Table 5). In addition,
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Table 4. Query Time for Small Datasets

Warped Euclidean Warped Manhattan Warped Chebyshev
Method | k=1 k=5 | k=15 | k=1 k=5 | k=15 | k=1 k=5 | k=15
PAA 24355 | 2435s | 24.35s | 22.16s | 22.16s | 22.16s | 21.45s | 21.45s | 2145 s
SAX 26.83 s | 26.83s | 26.83s | 25.095s | 25.09s | 25.09s | 24.46s | 24.46s | 24.46 s
BrainEx | 0.70s | 0.69s | 0.69s | 0.63s | 0.63s | 0.62s | 0.68s | 0.67s 0.67s
GDTW | 24.90s | 2490s | 2490s | 21.81s | 21.81 s | 21.81s | 21.055 | 21.05s | 21.05 s

Table 5. Query Error for Small Datasets

Warped Euclidean Warped Manhattan Warped Chebyshev

Method | k=1 | k=5 | k=15| k=1 | k=5 | k=15| k=1 | k=5 | k=15
PAA 0.0045 | 0.0067 | 0.0117 | 0.0022 | 0.0034 | 0.0062 | 0.0216 | 0.0321 | 0.0538
SAX 0.0847 | 0.0876 | 0.0944 | 0.0633 | 0.0660 | 0.0721 | 0.1989 | 0.2060 | 0.2210

BrainEx | 0.0007 | 0.0009 | 0.0012 | 0.0003 | 0.0004 | 0.0005 | 0.0032 | 0.0045 | 0.0060

BrainEx is on average 33.7x faster than GDTW, 33.8x faster than PAA, and 38x faster than SAX on
the small datasets (Table 4).

For the medium bin, Figures 15, 16, and 17 show that while BrainEx is consistently faster than
GDTW, PAA, and SAX, BrainEx is substantially faster on datasets greater than 140,000 data points.
BrainEx consistnetly has the highest accuracy on all datasets in this bin, though PAA is comparable.
SAX has the lowest accuracy for all datasets in this bin though it performs queries faster than PAA
on average. BrainEx does not compromise between efficiency and speed, however, as it makes the
fastest queries with the highest accuracy comparatively to PAA and SAX.

BrainEx’s largest errors on the medium datasets were 0.0008 for warped Euclidean, 0.0003 for
warped Manhattan, and 0.0057 for warped Chebysheyv, all of which are less than 1% error rates.
However, PAA’s largest errors were 0.0135 for warped Euclidean, 0.0068 for warped Manhattan
and 0.0674 for warped Chebyshev, while SAX’s largest errors were 0.0831 for warped Euclidean,
0.0628 for warped Manhattan, and 0.2023 for warped Chebyshev. Once more, BrainEx consistently
has better performance across each elastic distance (Table 3). BrainEx is on average 144.1x faster
than GDTW, 114.2x faster than PAA, and 81.8x faster than SAX on the medium datasets (Table 2).

Table 6. Average clustering time for small and medium dataset bins by warped distance. Time is in seconds.

Distance | Warped Euclidean | Warped Manhattan | Warped Chebyshev
Small bin 99.30 s 67.28 s 288.72s
Medium bin 2,776.08 s 1,810.26 s 6,544.69 s

5.3.2  BrainEx Clustering Time. “To achieve these fast query times, BrainEx clusters sequences
together based upon their sequence length and similarity, as shown in 3.1. Figure 11 shows the
clustering time for each dataset in the small bin (top) and medium bin (bottom) along with a line of
best fit for each warped distance. Consistently across both bins, warped Manhattan has the fastest
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Fig. 11. (Top) The time (seconds) it takes for BrainEx to cluster the sequences for each small dataset, marked
by dots, along with a fitted line for the clustering time for each warped distance. (Bottom) The time (seconds)
it takes for BrainEx to cluster the sequences for each medium dataset, marked by dots, along with a fitted
line for the clustering time for each warped distance.

clustering time while warped Chebyshev has the slowest. Warped Euclidean is in between the two,
but is most similar to warped Manhattan.

6 PRELIMINARY USER STUDY

To get feedback on the visual exploration interface, we conducted a preliminary user study.

6.1 Study Design

For this study, participants were invited to use an instance of BrainEx that included a preprocessed
dataset containing 8 users with activity in 4 channels. This dataset was generated to represent
the usage scenario described in Section 4.1. To ensure the study delivered meaningful insights, we
sought to draw on the experience of experts in the fields of fNIRS, data visualization, and/or HCI
research. The participants were encouraged to spend time exploring the preprocessed dataset in
BrainEx before answering a questionnaire. The participants were also encouraged to refer back to
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Query Time Across Small Datasets for Distance Type: Euclidean k=1
Each dot represents one dataset
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Fig. 12. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for the small bin and warped Euclidean distance. (Bottom) The normalized error for
PAA, SAX, and BrainEx for finding the best match to a given query using the GDTW method as ground truth.
This is for warped Euclidean distance on the small dataset bin.

the application while taking the survey. The study was designed to take approximately 45 minutes
to an hour to complete.

6.1.1 Questionnaire. The questionnaire was an online survey developed in Qualtrics. The form
consisted of three main sections: one for general demographic questions, the largest section focused
on the functional requirements defined in Section 4.2, and one section for general BrainEx usability
and usage questions. The general demographic questions collected background information about
the participants’ experiences with fNIRS, other brain activity tools, data visualization, and HCI. The
functional requirements section of the survey asked study participants to explore a preprocessed
dataset through the lens of the usage scenario described in Section 4.1. For each of the bullet points
within the first four functional requirements, participants were asked to rank how much they agreed
with the statement on a 5-point Likert scale. They were also asked to provide any insights they
made about the dataset, and any positive or negative comments about their experience completing

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 162. Publication date: June 2022.



BrainEx: Interactive Visual Exploration and Discovery of Sequence Similarity in Brain Signals 162:25

Query Time Across Small Datasets for Distance Type: Manhattan k=1
Each dot represents one dataset
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Fig. 13. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for warped Manhattan distance on the small dataset bin. (Bottom) The normalized
error for PAA, SAX, and BrainEx for finding the best match to a given query using the GDTW method as
ground truth. This is for warped Manhattan distance on the small dataset bin.

the requirement. The final section asked the study participants to rate the general usability of
BrainEx as well as share other comments about BrainEx.

6.1.2  Participants. Our study was sent to 40 neuroscience researchers, data visualization experts,
and HCI experts who represent our target user base. Of these, 10 responded and participated in our
user study. The recruited participants represented a diverse group of target users. The education
level and self reported expertise of the participants can be seen in Table 7. Six of the participants
have published fNIRS or neuroscience research, and five have published HCI papers. Three of the
participants had used BrainEx before. All participants used Chrome or Firefox to complete the
study.

6.1.3  Limitations of the Study. The results of this study are predicated on the subjective responses
of the survey participants. We limited the study participants to data visualization researchers, HCI
experts, and fNIRS researchers because they are the most likely primary users of BrainEx. This is
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Query Time Across Small Datasets for Distance Type: Chebyshev k=1
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Fig. 14. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for warped Chebyshev distance on the small dataset bin. (Bottom) The normalized
error for PAA, SAX, and BrainEx of finding the best match to a given query using the GDTW method as
ground truth. This is for warped Chebyshev distance on the small dataset bin.

Table 7. Participant Demographics

This table provides demographics details for the 10 user study participants. It includes their academic positions and their
self-identified expertise in several fields.

Participant Position fNIRS Neural Data Analysis HCI Data Visualization
P1 Other Expert Knowledgeable Expert Knowledgeable
P2 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Knowledgeable
P3 Bachelor Passing Knowledge No Knowledge Knowledgeable Passing Knowledge
P4 PhD Candidate Knowledgeable Knowledgeable Knowledgeable Knowledgeable
P5 Bachelor Knowledgeable Knowledgeable Passing Knowledge Knowledgeable
P6 Post Doc Knowledgeable Expert Expert Knowledgeable
P7 Master Passing Knowledge Expert Expert Expert
P8 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Passing Knowledge
P9 PhD Candidate  Passing Knowledge  Passing Knowledge  Passing Knowledge Passing Knowledge
P10 PhD Candidate Knowledgeable Passing Knowledge Knowledgeable Knowledgeable
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Query Time Across Medium Datasets for Distance Type: Euclidean k=1
Each dot represents one dataset
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Fig. 15. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for warped Euclidean distance on the medium dataset bin. (Bottom) The normalized
error for PAA, SAX, and BrainEx of finding the best match to a given query using the GDTW method as
ground truth. This is for warped Euclidean distance on the medium dataset bin.

part of what contributed to the small sample size for this preliminary user study. It is also important
to note that since the fNIRS research community is small and well-connected, the Likert scale
results may experience a positive skew due to familiarity with the research team.

The dataset used for this study is smaller than most {NIRS datasets and may not be reflective of all
possible brain datasets. Thus, we assume some use scenarios may result in future users interacting
with BrainEx in ways that the study participants did not. The functional requirements defined for
this paper can be abstracted from our usage scenario to cover possible use cases. In addition, the
questionnaire was designed to encourage participants to explore the tool and all of its features.

6.2 User Study Results

Study participants were asked to rank their agreement with statements matching the sub-requirements
discussed in Section 4.2. The Likert scale covered the range of strongly disagree to strongly agree;
these were mapped to the range 1 to 5 for visualization purposes (Figure 18).
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Query Time Across Medium Datasets for Distance Type: Manhattan k=1
Each dot represents one dataset
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Fig. 16. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for warped Manhattan distance on the medium dataset bin. (Bottom) The normalized
error for PAA, SAX, and BrainEx of finding the best match to a given query using the brute force method as
the ground truth. This is for warped Manhattan distance on the medium dataset bin.

Requirement 1: Similarity Search. Participants agreed that BrainEx successfully met our functional
requirements for similarity search. Participants ranked both sub-requirements very high as seen in
Figure 18. Nine out of ten participants said they agreed or strongly agreed with the statements,
six of the participants strongly agreed with both statements. Six of the participants (P1, P2, P4, P5,
P6, P10) provided additional positive feedback in the optional text field informing us the task was
very easy to perform and provided results that looked correct and useful. P10 summarized their
experience: “I loved it - very comprehensive. I liked that I could query the most important aspects of the
data, and have a fine-grained level of control." Despite the positive feedback, P4 and P10 expressed
issues with the filter feature of the similarity search.

Requirement 2: Feature Distribution Exploration. Participants were overall satisfied that the system
allowed them to explore feature data through BrainEx. In general, the more features users attempted
to explore, the less strong their agreement. In the case of exploring a single feature, all but one par-
ticipant (P9) at least somewhat agreed that BrainEx supported them, with six participants believing
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Query Time Across Medium Datasets for Distance Type: Chebyshev k=1
Each dot represents one dataset
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Fig. 17. (Top) The exact time (seconds) and fitted time for SAX, PAA, BrainEx, and GDTW to find the best
match to a given query for warped Chebyshev distance on the medium dataset bin. (Bottom) The normalized
error for PAA, SAX, and BrainEx of finding the best match to a given query using the brute force method as
the ground truth. This is for warped Chebyshev distance on the medium dataset bin.

this strongly. The results were similar when considering the visualization of joint distributions.
Only one participant (P9) expressed neutrality, and six participants strongly agreed.

The sub-requirements of exploring the distributions of three or more features had weaker, but
still favorable results. Two participants (P7, P9) were neutral as to whether the system supported
this use case. The rest agreed, but only four participants strongly agreed.

In particular, users expressed an appreciation for the options presented in BrainEx. P10 listed
the fine level of control as a positive experience when interacting with the system. P5 found the
tasks related to feature distribution more challenging than the other tasks, citing the amount of
work they had to do in manually examining the data. P6 expressed confusion about the dataset
presented in the trial. Despite this, they were able to use the feature-wise visualization to explore
the dataset, and make statements about the different user attributes. They felt the software was
“very adaptable," as they were not bound to specific filters. This suggests BrainEx may be useful to
analysts who still need to learn more about their dataset of interest.
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User Study Results
Users were asked to rank their agreement with the following statements: BrainEx supports...
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Fig. 18. The results of the user study. For each plot, the x-axis shows possible responses and the y-axis shows
the frequency of each.

Requirement 3: Cluster Exploration. Both sub-requirements of the cluster exploration requirement
were found to be well supported. Figure 18 shows that eight out of ten participants agreed or
strongly agreed with requirements 3a and 3b. P5, P6, and P10 liked the fine control provided over
what characteristics of the clusters they could view at a time when selecting the cluster. Despite
the positive feedback, P2, P4, P5, P6, and P10 found the task of finding an interesting cluster
overwhelming due to the number of clusters and desired more features in the cluster exploration
tool.

Some of this feedback pertained to features that currently exist in the tool that participants may
not have been aware of. For example, the ability to sort and filter the table to more manageable sizes
exists as described in Section 4.5. Additionally, a toggle is available to show the average feature
distribution for the dataset as a baseline for comparison of feature skewness in individual clusters
as desired by P10.

Additional features were also suggested in the feedback to improve the efficiency of scanning
the cluster list and the ability for cluster comparison. P4 and P10 suggested adding a mechanism
for paging through the table quicker and to change the color gradient used for different feature
groups to make the cluster table quicker to sift through and easier to separate different feature
sets. To improve the ability to compare clusters, P2 suggested being able to view multiple cluster
representatives at once so that they could be directly compared.

Future work can make the task of finding an interesting cluster less overwhelming and more
informative. Filtering, sorting, and baseline comparison features can be made more exposed to the
users and features for more powerful sorting, fine-grained filtering, and navigation through the
table can be added. Additionally, the suggested features for comparing multiple clusters and cluster
representatives as well as differentiating between feature groups in the table can also be added.
However, the results of these survey results still indicate that BrainEx successfully supports the
exploration of clusters within a dataset.

Requirement 4: Integration. Both of the integration requirements scored very highly. Eight out of
ten participants agreed or strongly agree with requirement 4a and nine out of ten participants
agreed or strongly agreed with requirement 4b. Requirement 4b was rated as strongly agree by
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seven participants implying they found BrainEx’s ability to export findings into other tools to be
very strong. The feedback for this section matched the positivity of the responses. In particular,
four participants (P2, P5, P6, P10) filled out an optional text feedback section to share that they
thought the integration of the cluster explorer and similarity search was very easy to use and
allowed for “exploring potentially interesting aspects of the data" (P10). P6 rated this requirement
the lowest (neither agreeing or disagreeing with the first sub-requirement), and found the user task
somewhat overwhelming and hard to keep track of the patterns and data they were comparing.
However, they found the concept of the integration pipeline very promising stating “The pipeline
of clustering and search has a lot of potential to explore the data" (P6).

Future work could be done to polish the workflow pipeline and make it easier for analysts to
remember the clusters they began the similarity search from. However, the results of this user study
show that BrainEx successfully completes functional requirement 4 and shows that the cluster
exploration and similarity search pipeline provides a novel and powerful exploration workflow for
time series exploration.

Requirement 5: Accessible to All Researchers. The accessibility requirement was measured by the
ability of participants to use BrainEx successfully during the study. Based on feedback of only two
users (P2, P8) having bandwidth issues when searching for over a 1000 similar sequences, BrainEx
supports fast computations. Additionally, based on the positive feedback for the other requirements
and the varied expertise and experience of the participants, BrainEx can support researchers of all
levels. However, improvements can be made to reduce the overwhelming nature of the presented
information to further support analysts.

Usability and Additional Feedback. While not surveyed directly, based on the text feedback for each
of the functional requirements, participants found BrainEx generally usable. Study participants
particularly enjoyed the amount of detailed control they had for exploring the data as well as the
ease of using the visuals. For example, P1 commented that “very clear presentation of the results
and enable users to explore different attributes" with regards to the Similarity Search requirement.
However, participants found the amount of information to be overwhelming at times. For example,
P6 noted after the cluster exploration task that “The number of clusters is often overwhelming" and
that “It is not easy to identify which ones are most important to look at or to compare a specific small
selection of clusters." BrainEx does provide filtering on the table of clusters. However, this feedback
indicates that this functionality should be better exposed and expanded to allow the user more
control over managing the data. While participants did not find severe usability issues with the
system, there is room for improvement to expose hidden features, distinguish and clarify elements
of the user interface, and allow for better management of large amounts of information.

7 FNIRS CASE STUDY

To further illustrate the potential of BrainEx, we describe a case study using real-world experiment
data from an fNIRS study on cognitive control [31]. This dataset has been analyzed in more
traditional methods with mixed effects modeling and investigating the sequence shape. In the
study, participants performed the AX-Continuous Performance Task (AX-CPT) which induces
different cognitive control states, such as proactive and reactive control [6]. The study concluded
that proactive and reactive cognitive control can both be seen in the right dorsolateral prefrontal
cortex.

For this case study, we developed a model of the expected fNIRS brain signal when a participant
is in each of the two cognitive control states that we were studying. These model sequences were
based on the expected hemodynamic response, given the tasks and timing of stimuli in the dataset
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[6]. Using these model signals, we can explore the dataset’s clusters to find connections to particular
sequences in the dataset.

The goal of this case study was to use BrainEx’s cluster exploration to investigate which events
and brain regions are associated with the model cognitive control sequences. We identified clusters
that had higher-than-average representation of subsequences from the model cognitive control
sequences. Our hypothesis was that clusters with a larger number of the model subsequences
would contain brain data related to those cognitive states from the AX-CPT task. Therefore, if there
was a different distribution of events or brain regions in these clusters compared to the master
dataset, then we have identified which events and brain regions are most associated with cognitive
control. We expect the cluster results to be different than Howell-Munson et al’s results because
they detected both cognitive control states in the same region, while we are looking for clusters
that indicate a specific region for each cognitive control state [31].

7.1 Dataset Description

The dataset contained the two model cognitive control sequences along with 3,360 sequences
from one participant divided between six brain regions. Each sequence is 157 datapoints long and
spans approximately 18 seconds of neural data for a total of 527,834 points in the dataset. Along
with the brain signal, there is associated metadata for each signal consisting of the subject name,
brain region, event name, start time, and end time. The model sequences have a subject name of
“representative” and a region name of “Channel-0” to designate them as different from the collected
data. The collected data has six possible region names from the prefrontal cortex (PFC): dorsomedial
(DMPFC), left dorsolateral (IDLPFC), right dorsolateral (rDLPFC), ventromedial (VMPFC), left
orbitofrontal (IOFPFC), and right orbitofrontal (rOFPFC). There are six possible events with the
percentage of the dataset they occupy in parentheses: AX cue (30%), AY cue (20%), BX cue (20%),
BY cue (20%), A# cue (5%), and B# cue (5%). These names are associated with the trials in the
task, and the details can be found in [6, 31]. We are most interested in AY cue and BX cue, as
they can be indications of proactive and reactive cognitive control [6]. Start time is the time in
milliseconds when the sequence begins in relation to data collection, and end time is the time in
milliseconds when the sequence ended in relation to data collection. The dataset is available here:
https://wp.wpi.edu/hcilab/brainex/.

We preprocessed the dataset using the Warped Euclidean distance metric, a similarity threshold
of 0.1, and a length of interest of 1-157. In the cluster exploration, we only viewed clusters with a
minimum of 20 sequences and a minimum length of 45 (approximately 5 seconds of brain data).

7.2 Case Study Results

To ensure the clusters we sampled had a large number of the model cognitive control sequences,
we analyzed clusters that were at least 0.15% model sequences, which included 49 clusters. The
cluster with the most model sequences had 0.56% which is 11 times greater than the distribution of
model sequences in the master dataset. While the ratio of model to participant data is small, this is
to be expected as there are 3,780 sequences in the master dataset of participant data and 2 model
sequences, making the master dataset consist of 0.05% model sequences.

We used a Chi-square test to determine if the distribution of events and channels in the 49
clusters differed significantly from the distribution in the master dataset. There were a total of
440,895 sequences in the clustered data; the expected and observed distribution of events are located
in Table 8. Our Chi-square statistic was 10,184, and with 5 degrees of freedom we can reject the
null hypothesis (p < 0.05) and say the distribution of events in the clusters differs significantly
from the master dataset. Notably, all events that start with an A cue appeared less frequently in
the clusters than expected, and all events that started with a B cue appeared more frequently in
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Table 8. Expected and observed distributions of events from 49 clusters that have high inclusion of modeled
cognitive control sequences.

Event AX AY At BX BY B#
Expected | 132,268 | 88,179 | 22,044 | 88,179 | 88,179 | 22,044
Observed | 127,083 | 71,795 | 16,229 | 92,471 | 106,561 | 27,524

Table 9. Expected and observed distributions of channels from 49 clusters that have high inclusion of modeled
cognitive control sequences.

Region | DMPFC | IDLPFC | rDLPFC | VMPFC | 10FPFC | rOFPFC
Expected | 82,888 62,166 62,166 | 103,610 | 62,166 62,166
Observed | 80,208 65,808 61,023 | 110,237 | 63,139 59,353

the clusters than expected. The B cue could be indicative of reactive control, one of the modeled
cognitive control sequences. Therefore, we can associate these clusters with reactive control for
future similarity searches.

The observed and expected distribution for each region in the brain can be found in Table 9.
Here we also had 5 degrees of freedom and our Chi-square statistic was 887, showing that we
can reject the null hypothesis (p < 0.05) and say the distribution of brain regions in the clusters
differs significantly from the master dataset. Notably, the left hemisphere and VMPFC had a higher
frequency in the clustered data while the right hemisphere and DMPFC had a lower frequency in
the dataset.

7.3 Case Study Conclusion

Sometimes a researcher may not know which sequences in a dataset are particularly significant, or
which subsequence is a crucial element in their dataset. Through the use of the cluster exploration
feature in BrainEx, researchers can explore the distribution of the dataset and which sequences
are most similar, teasing out meaningful patterns. Through our case study, we demonstrated how
one can discover events and brain regions that are correlated with model sequences. The cluster
exploration can also help identify which parts of the modeled sequence were most informative
by investigating the subsequences that appeared most frequently. For example, in the master
dataset, all of the sequences were 157 datapoints long (18 seconds). However, the average sequence
length of the clusters was only 80 datapoints (9 seconds) with a maximum sequence length of
126 (14.5 seconds) and minimum sequence length of 45 (5 seconds). By using this information, a
researcher can fine-tune their query to be more meaningful to their research questions when using
the similarity search feature of BrainEx.

8 DISCUSSION

Previous research teams have provided basic visual interfaces for DTW based engines to address the
increased for interpretability and accessibility by researchers without expertise in using command-
line interfaces and APIs (e.g. [51]). These basic visual interfaces for data exploration tools mark
a step towards making similarity searches more available [28, 49, 59, 73]; other work focuses
on visualizing the results of clustering [27, 39]. BrainEx fills a gap in this field by providing a
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comparison of results across multiple elastic distances and offering insights through combined
similarity searches and cluster exploration.

Due to the growing popularity of time series data, there are many other time series exploration
tools [25]. TimeSearcher provides an interactive similarity search of time series [28]. This tool allows
analysts to see a line plot depiction of time series in a dataset. Analysts can use a drag and drop
box, known as a SearchBox, to select a part of a time series representing an interesting pattern. This
pattern can then be queried to discover similar patterns in other sequences. It supports exploration
of multivariate data. While it provides a similarity search feature similar to BrainEx, TimeSearcher
does not provide the additional cluster exploration workflow. QueryLines is a similarity search
tool for time series data that allows analysts to specify soft constraints and preferences which
are then used to perform a similarity search on other sequences to discover matching or almost
matching patterns [59]. These constraints are added by drawing lines to show the pattern you
wish to match. Work by Buono and Simeone into extending the SearchBox of TimeSearcher showed
that drawing a query is an increasingly popular approach in time series similarity searches [8].
Like TimeSearcher, QueryLines is a similarity search tool and does not provide cluster exploration.
Similan is a visual similarity search tool for temporal data [73]. It was designed to use a similarity
measure called “match and mismatch” to account for temporally misaligned records. The Similan
researchers propose clustering as a future feature.

Not all time series tools focus on similarity search. Himberg, Hyvarinen, and Espositoc [27]
designed a neuroimaging cluster visualization tool using independent component analysis. Kumar
et al. proposed a time series clustering tool that represents clusters using a bitmap [39]. These
bitmaps can be used for pattern recognition of time series datasets. These tools provide interesting
approaches to exploring time series clusters, but do not allow for exploration via similarity search.

8.1 Future Work

Future work on the BrainEx engine could focus on making the preprocessing step of BrainEx
even more efficient through converting the code into another language, such as Rust. Additionally,
BrainEx could replicate studies with fNIRS curated specifically for validating tools, such as the
n-back dataset from Wang et al. [71]. While we used the original versions of SAX and PAA to do
our benchmark comparison with BrainEx, newer versions of these algorithms exist and can be
tested against BrainEx [65, 78]. These versions were out of the scope of the experiment presented
in Section 5.

In addition, further refinement and evaluation of the interactive visual interface could improve
the user experience. Future user studies could aim to provide the participants with a larger fNIRS
dataset to explore with the interface. In addition, a larger cohort of participants could be recruited
from a more diverse set of expertise to be able to investigate the differences in the usability of the
tool between experts in data visualization and neuroscience compared to researchers who are just
starting their scientific careers.

To promote collaborative research and accessibility, we created a website (https://wp.wpi.edu/
hcilab/brainex/ to make the BrainEx code available to researchers. In addition, the results from the
performance experiment and the clusters from the case study can be found there.

9 CONCLUSION

We present BrainEx as a tool for visual exploration of brain signals. By combining cluster exploration,
feature distribution exploration, and similarity search we provide a powerful and novel exploration
workflow that existing fNIRS and time series analysis tools do not provide. In our performance
experiment, we demonstrated how BrainEx is lightning fast compared to state of the art competitors
as well as highly accurate. We developed five functional user requirements, and based on the results
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of a preliminary user study with HCI and neuroscience researchers, we determined BrainEx meets
these requirements. Finally, we used a case study to demonstrate how a researcher could use BrainEx
to make inferences about real-world fNIRS brain data. Overall, we have shown that BrainEx could
be an effective tool for fNIRS or other neuroscience researchers.
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A UCR ARCHIVE TIME-SERIES DATASETS

Name Size Bin Completed (Y/N)
ACSF1 146,000 | Medium Y
Adiac 60,853 | Medium Y
AllGestureWiimoteX 37,473 Small Y
AllGestureWiimoteY 37,473 Small Y
AllGestureWiimoteZ 37,473 Small Y
ArrowHead 9,036 Small Y
Beef 14,100 Small Y
BeetleFly 10,240 Small Y
BirdChicken 10,240 Small Y
BME 3,840 Small Y
Car 34,620 Small Y
CBF 3,840 Small Y
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Chinatown 480 Small Y
ChlorineConcentration 77,522 | Medium Y
CinCECGTorso 65,562 | Medium Y
Coffee 8,008 Small Y
Computers 180,000 | Medium Y
CricketX 117,000 | Medium Y
CricketY 117,000 | Medium Y
CricketZ 117,000 | Medium Y

Crop 331,200 | Medium N
DiatomSizeReduction 5,520 Small Y
DistalPhalanxOutlineAgeGroup 32,000 Small Y
DistalPhalanxOutlineCorrect 48,000 Small Y
DistalPhalanxTW 32,000 Small Y
DodgerLoopDay 22,228 Small Y
DodgerLoopGame 5,695 Small Y
DodgerLoopWeekend 5,722 Small Y
Earthquakes 164,864 | Medium Y
ECG200 9,600 Small Y
ECG5000 70,000 Medium Y
ECGFiveDays 3,128 Small Y
ElectricDevices 856,896 | Medium N
EOGHorizontalSignal 452,500 | Medium N
EOGVerticalSignal 452,500 | Medium N
EthanolLevel 882,504 | Medium N
FaceAll 73,360 | Medium Y
FaceFour 8,400 Small Y
FacesUCR 26,200 Small Y
FiftyWords 121,500 | Medium Y

Fish 81,025 Medium Y

FordA 1,800,500 | Large N

FordB 1,818,500 | Large N
FreezerRegularTrain 45,150 Small Y
FreezerSmallTrain 8,428 Small Y
Fungi 3,618 Small Y
GestureMidAirD1 34,623 Small Y
GestureMidAirD2 34,623 Small Y
GestureMidAirD3 34,623 Small Y
GesturePebbleZ1 30,850 Small Y
GesturePebbleZ2 32,630 Small Y
GunPoint 7,500 Small Y
GunPointAgeSpan 20,250 Small Y
GunPointMaleVersusFemale 20,250 Small Y
GunPointOldVersusYoung 20,400 Small Y
Ham 46,979 Small Y
HandOutlines 2,709,000 | Large N

Proc. ACM Hum.-Comput. Interact., Vol. 6, No. EICS, Article 162. Publication date: June 2022.



162:40 Alicia Howell-Munson et al.

Haptics 169,200 | Medium Y
Herring 32,768 Small Y
HouseTwenty 80,000 | Medium Y
InlineSkate 188,200 | Medium Y*
InsectEPGRegularTrain 37,262 Small
InsectEPGSmallTrain 10,217 Small
InsectWingbeatSound 56,320 | Medium
ItalyPowerDemand 1,608 Small
LargeKitchenAppliances 270,000 | Medium
Lightning?2 38,220 Small
Lightning7 22,330 Small
Mallat 56,320 | Medium
Meat 26,880 Small
Medicallmages 37,719 Small
MelbournePedestrian 28,574 Small

MiddlePhalanxOutlineAgeGroup 32,000 Small
MiddlePhalanxOutlineCorrect 48,000 Small

MiddlePhalanxTW 31,920 Small
MixedShapesRegularTrain 512,000 | Medium
MixedShapesSmallTrain 102,400 | Medium

MoteStrain 1,680 Small

NonlInvasiveFetalECGThorax1 1,350,000 | Medium
NonlnvasiveFetalECGThorax2 1,350,000 | Meidum

R | Z Z] = =] Z] ] ] ] ] ] ] ] ] 2Z] ] ]

OliveOil 17,100 Small

OSULeaf 85,400 | Medium

PhalangesOutlinesCorrect 144,000 | Medium
Phoneme 219,136 | Medium Y
PickupGestureWiimoteZ 7,294 Small Y
PigAirwayPressure 208,000 | Medium Y*
PigArtPressure 208,000 | Medium N
PigCVP 208,000 | Medium Y*
PLAID 173,858 | Medium Y
Plane 15,120 Small Y
PowerCons 25,920 Small Y
ProximalPhalanxOutlineAgeGroup | 32,000 Small Y
ProximalPhalanxOutlineCorrect 48,000 Small Y
ProximalPhalanxTW 32,000 Small Y
RefrigerationDevices 270,000 | Medium N
Rock 56,880 | Medium Y
ScreenType 270,000 | Medium N
SemgHandGenderCh2 450,000 | Medium N
SemgHandMovementCh2 675,000 | Medium N
SemgHandSubjectCh2 675,000 | Medium N
ShakeGestureWiimoteZ 8,594 Small Y
ShapeletSim 10,000 Small Y
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ShapesAll 307,200 | Medium N
SmallKitchenAppliances 270,000 | Medium N
SmoothSubspace 2,250 Small Y
SonyAIBORobotSurfacel 1,400 Small Y
SonyAIBORobotSurface2 1,755 Small Y
StarLightCurves 1,024,000 | Medium N
Strawberry 144,055 | Medium Y
SwedishLeaf 64,000 | Medium Y
Symbols 9,950 Small Y
SyntheticControl 18,000 Small Y
ToeSegmentationl 11,080 Small Y
ToeSegmentation2 12,348 Small Y
Trace 27,500 Small Y
TwoLeadECG 1,886 Small Y
TwoPatterns 128,000 | Medium Y
UMD 5,400 Small Y
UWaveGestureLibraryAll 846,720 | Medium N
UWaveGestureLibraryX 282,240 | Medium N
UWaveGestureLibraryY 282,240 | Medium N
UWaveGestureLibraryZ 282,240 | Medium N
Wafer 152,000 | Medium Y

Wine 13,338 Small Y
WordSynonyms 72,090 | Medium Y
Worms 162,900 | Medium Y
WormsTwoClass 162,900 | Medium Y
Yoga 127,000 | Medium Y

*These datasets were completed with the warped Euclidean and warped Manhattan distances
but not the warped Chebyshev.
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