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DIRAC SERIES FOR COMPLEX CLASSICAL LIE GROUPS: A
MULTIPLICTY-ONE THEOREM

DAN BARBASCH, CHAO-PING DONG, AND KAYUE DANIEL WONG

ABSTRACT. This paper computes the Dirac cohomology Hp(w) of irreducible unitary
Harish-Chandra modules 7 of complex classical groups viewed as real reductive groups.
More precisely, unitary representations with nonzero Dirac cohomology are shown to be
unitarily induced from unipotent representations. When nonzero, there is a unique, mul-
tiplicity free K —type in 7 contributing to Hp(w). This confirms conjectures formulated
by the first named author and Pandzié¢ in 2011.

1. INTRODUCTION

The Dirac operator was first introduced in the representation theory of real reductive
groups by Parthasarathy [P1, P2] and Schmid in order to give geometric realization of
the discrete series. A byproduct, the Dirac inequality, has proved very useful to provide
necessary conditions for unitarity. In the case of real rank one groups, the work of [BSi] and
[BB], shows that this necessary condition is also sufficient. The Dirac inequality plays a
crucial role in the determination of representations with (g, K )—cohomology in the work of
[E] and [VZ] for complex and real groups, subsequently expanded by [Sa] to find necessary
and sufficient conditions for the unitarity of irreducible representations with regular integral
infinitesimal character.

In order to find sharper estimates for the spectral gap in the case of locally symmetric
spaces, Vogan in [V2] introduced the notion of Dirac cohomology for irreducible repre-
sentations. He formulated a conjecture on its relationship with the infinitesimal character
of the representation.

We recall the construction of Dirac operator and Dirac cohomology. Let G be a connected
real reductive Lie group. Fix a Cartan involution 6, and write K := GY for the maximal
compact subgroup. Denote by gg = £y @ pg the corresponding Cartan decomposition of the
Lie algebra gg, and g = £+ p the corresponding decomposition of the complexification. Let
(,) be an invariant nondegenerate form such that ( , ) |,, is positive definite, and (, ) [¢,
is negative definite. Fix Z1,...,Z, an orthonormal basis of py. Let U(g) be the universal
enveloping algebra of g, and let C'(p) be the Clifford algebra of p with respect to (, ). The
Dirac operator D € U(g) ® C(p) is defined as

n
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The operator D does not depend on the choice of the orthonormal basis Z; and is K-
invariant for the diagonal action of K induced by the adjoint actions on both factors.

Define A : ¢ = U(g) @ C(p) by A(X) = X ® 14+ 1® a(X), where a : € — C(p) is
the composition of ad : € — so(p) with the embedding so(p) = A%(p) — C(p). Write
tA = a(t), and denote by €y (resp. €2) the Casimir operator of g (resp. £). Let ¢, be
the image of Q¢ under A. Then ([P1])
(1) D? = —Qg® 1+ Uy + (locl” = llpgl*)1 © 1,
where py and p. are the corresponding half sums of positive roots of g and &.

Let

K :={(k,s) € K x Spin(pg) : Ad(k) = p(s)},

where p : Spin(pg) — SO(po) is the spin double covering map. If 7 is a (g, K )-module, and
if S¢; denotes a spin module for C(p), then 7 ® S¢ is a (U(g) ® C(p), K) module.

The action of U(g) ® C(p) is the obvious one, and K acts on both factors; on 7 through
K and on Sg through the spin group Spinpg. The Dirac operator acts on m ® Sg. The
Dirac cohomology of 7 is defined as the K-module

(2) Hp(m) = Ker D/(Im D N KerD).

The following foundational result on Dirac cohomology, conjectured by Vogan, was
proven by Huang and Pandzi¢ in 2002. Let §h be a f—stable Cartan subalgebra with
Cartan decomposition h = t+ a and t a Cartan subalgebra of ¢.

Theorem 1.1 ([HP1] Theorem 2.3). Let w be an irreducible (g, K )-module. Assume that

the Dirac cohomology of T is nonzero, and that it contains the K-type with highest weight
v € t* C b*. Then the infinitesimal character of 7 is conjugate to v + p. under W(g,h).

1.1. Dirac Series. Denote by G be the set of equivalence classes of irreducible unitary
(g, K)-modules. If 7 € G, then m ® S acquires a natural inner product, and D is self-
adjoint. As a result, Dirac cohomology simplifies to

(3) Hp(n) = Ker D = Ker D%

For a unitary irreducible representation, (1) is a nonnegative scalar on any K —type. If xx
is the infinitesimal character of 7, and 7 is the highest weight of a K —type in 7 ® S¢, then

(4) el® < 17+ pel
This is Parthasarathy’s Dirac operator inequality. Moreover, by Theorem 3.5.2 of

[HP2], the equality holds precisely when 7 is the highest weight of a K-type in Hp () (see
Section 2.3).

Let GZ be the representations with nonzero Dirac cohomology. This subset forms an
interesting part of G. For convenience, we call these representations Dirac series of G
(terminology suggested by J.-S. Huang).

When G is a complex Lie group viewed as a real Lie group, a necessary condition for
7 € G% is that twice the infinitesimal character \ of 7 must satisfying the regular integral
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condition (12) given in Section 2.3. For this paper we adopt the following setting. We focus
on the cases when the infinitesimal character is regular half-integral — to emphasize, 2\
satisfies (12) but A is not integral. This is because in the case of A regular integral, these are
unitary representations with nontrivial (g, K')—cohomology, and the results in [E] and [VZ]
imply that any representation in G4 is unitarily induced from the trivial representation on
a Levi component. This is not the case for half-integral regular parameter.

We begin by determining the representations with half-integral regular parameter which
are unitary and not unitarily induced from any unitary representation on a proper Levi
component. This can be read off from [B1] and [V1] for the classical groups, i.e. GL(n,C),
SO(n,C) and Sp(2n,C). We give a self contained derivation of the unitary dual at half-
integral regular infinitesimal character for these groups, along with a brief discussion on
the cases of genuine representations of the Spin groups.

For GL(n,C), these representations are just unitary characters. Yet this is not the case
for the other classical groups. In [B1], a larger class of representations is identified which
are called the building blocks of the unitary dual in the sense that

e they are unitary and are not unitarily induced from unitary representations on
proper Levi components,

e any other unitary representation is obtained by unitary induction and continuous
deformations from unitarily induced modules (complementary series)

They turn out to have the additional property that the annihilator in the universal envelop-
ing algebra is maximal. We call these cuspidal unipotent representations. Following [BV],
we consider a larger class of representations which we call unipotent. They have properties
analogous to the representations studied in [BV] which are called special unipotent and
have the properties conjectured by Arthur in relation to the residual spectrum of locally
symmetric spaces.

A general discussion of the notion of unipotent representation is beyond the scope of this
paper. We have included an explicit list for the classical groups and a partial discussion in
Appendix A. It is a paraphrase of [B3] which identifies the representations as iterated ©
lifts from one dimensional representations.

The following conjecture on G was formulated in [BP]:

Conjecture 1.2 ([BP] Conjecture 1.1). Let G be a connected complex simple Lie group
and © € G whose infinitesimal character is regular and half-integral. Then w € G4 if
and only if w is parabolically induced from a unipotent representation with nonzero Dirac
cohomology, tensored with a unitary character.

Conjecture 1.2 generalizes to real reductive Lie groups, where unitary induction is re-
placed by the more general cohomological induction in a range where unitarity is pre-
served. In the complex case, Parthasarathy’s Dirac inequality (4) implies that all = € G
with regular integral infinitesimal character are unitarily induced from unitary characters
of parabolic subgroups, and hence the conjecture follows immediately.
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Here is the list of all nontrivial unipotent representations with half-integral regular in-
finitesimal characters for complex classical groups. In all cases the representations have
maximal primitive ideal. The parameters are explicit, and fit in the parametrization in
Appendix A. Note that the ones in Type B, C' and D are not induced from unitary repre-
sentations on proper Levi components.

Type A,: The infinitesimal character satisfies
(5) 2A=(b-1,06-3,...,a,a—1,...,—a+1,—a,...,—b+3,-b+1),

where we assume b > a. The corresponding unipotent representation is spherical
of the form
Ty = Indgégz;;b)GL(b) (triv ® triv) .
It is also the ©—lift of the trivial representation of GL(2b+ 1) to GL(2a + 2b+ 1).
Type B,: The infinitesimal character A satisfies

(6) 2A=(26—1,2b—3,...,2a+3,2a+1,2a,2a — 1,...,2,1).

with b > a. The nilpotent orbit has columns (2b+ 1, 2a), and the representation is
the ©—lift of the trivial representation of Sp(2a) to SO(2b+ 2a + 1).
Type C,: The infinitesimal character satisfies

(7) 2A=2n—-1,2n—3,...,3,1).

and there are two representations, the components of the Segal-Shale-Weil repre-
sentation. The nilpotent orbit has columns (2n — 1,1) and the representations are
the ©—lifts of the two characters of O(1) to Sp(2n).

Type D,: The infinitesimal character satisfies

(8) 2\ = (2b—2,2b,...,2a+2,2a,2a — 1,2a —2,...,1,0)

with b > a. (When b = a, the parameter is (2a — 1,2a — 2,...,1,0)). There
are two representations with maximal primitive ideal. The nilpotent orbit has
columns (2b,2a — 1,1) and the representations are ©—lifts from the Segal-Shale-
Weil representations which in turn are ©—lifts of the characters of O(1). This is a
case of two iterations of ©—lifts from 1-dimensional representations.

As already mentioned, the unitarily induced representations from the unipotent ones listed
above are generalizations of the representations with nontrivial (g, K')—cohomology. As far
as locally symmetric spaces and the work of [A], it is expected that they would provide
new examples of local factors of automorphic forms.

We follow the same strategy in the case of the Spin groups. Here are the parameters of
unipotent representations with half-integral regular infinitesimal characters:

Spin(2n + 1,C): Apart from the infinitesimal characters in (6),
9) 2 =2n—-1,2n-3,...,3,1)/2.
Spin(2n,C): Apart from the infinitesimal characters in (8), there is also

(10) A= (2n—1,2n—3,...,3,+1)/2
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Unlike the parameters in (6) and (8), these parameters correspond to genuine representa-
tions, i.e. they do not factor through SO(2n + 1,C) or SO(2n,C). Moreover, they have
maximal primitive ideal, and are unitarily induced from a unitary character of a Levi com-
ponent of type A,,_1. Note that half-integral means 2\ is integral, not that the coordinates
are half-integers. Consequently, just like the case of type A, one only needs to consider
unitary characters for the genuine representations of Spin groups.

We are now ready to state the unitarity results in [V1] and [B1] for complex classical G:

Theorem 1.3 (Theorem 3.1). Let G be a classical complex Lie group. Any w € G with
reqular, half-integral infinitesimal character is of the form

7= Ind§y ((Ce ® ™) © 1),

where P = M N is a parabolic subgroup of G with Levi factor M, and C,, is a unitary char-
acter on M. Moreover, m, is either the trivial representation, or a unipotent representation
with infinitesimal character given in (5) — (8).

By the paragraph after Equation (5), 7, is induced from the trivial representation in
Type A. Using induction in stages, we will assume from now on that m, = triv for Type
A.

A self-contained proof of Theorem 1.3 for all classical groups is in Sections 3 to 6. The
case of Theorem 1.3 for Spin groups is also discussed in Section 4.5 and 6.5. When 7 is
not unitary, we will specify precisely on which K —types the Hermitian form is indefinite.
This will be useful in proving the analogous theorem for exceptional groups of Type FE.

Using this, we will prove the following:

Theorem 1.4. Conjecture 1.2 holds for complex connected classical Lie groups and the
Spin groups.

1.2. Spin-lowest K—type. Following [D1], we are interested in studying spin-lowest
K—type (spin-LKT) of an admissible (g, K')—module. See Definition 2.3 for the precise

meaning of spin-lowest K —type in the setting of complex Lie groups. If m € @d, then the
spin-lowest K —types are precisely those contributing to Hp(m). More explicitly, let 7 be
the highest weight of the K —type occurring Hp(m). Then

Ve(r) = Hp(m)]= > W) :a]-[Ve(n) ®Se : Va(r)],
n spin—LKT

where Vg (n) is the irreducible, finite-dimensional a—module with highest weight 7. In view
of this, the following conjecture, formulated in [BP], makes G% and Hp(r) precise.

Conjecture 1.5 ([BP] Conjecture 4.1 and J.-S. Huang). Let G be a connected complex

stmple Lie group, and ™ € G4, Then m has a unique spin-lowest K —type Vi(n) which occurs
with multiplicity one.

Here is the second main result of this paper:
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Theorem 1.6. Conjecture 1.5 holds for complex connected classical Lie groups and the
Spin groups.

We believe that Theorems 1.4 and 1.6 should hold for all complex reductive groups.
Indeed, based on the results in [DD, D2, DW], these theorems are shown to be true for
exceptional groups of type Ga, Fy, Eg and E7. We give full details on the case of complex
FEs in a forthcoming work.

The manuscript is organized as follows. Section 2 includes some preliminary results
on complex simple Lie groups, Dirac cohomology and spin-lowest K —types. Sections 3—6
state the classification of the unitary dual for complex classical Lie groups with half integral
regular infinitesimal character (cf. [B1], [V1]) and gives complete proofs. Section 7 proves
a stronger version of Conjecture 1.5 for unipotent representations, which is essential for
the determination of Hp() in Section 8. In Appendix A, we give an overview of unipotent
representations for complex classical Lie groups. Finally, in Appendix B, we present some
calculations on atlas ([ALTV], [At]) for the modules appearing in Sections 4-6, offering
examples for the results in these sections.

2. PRELIMINARIES

Let G be a connected complex simple Lie group viewed as a real Lie group. Fix a
maximal compact subgroup K and a Borel subgroup B. Then T := K N B is a maximal
torus in K.

Denote by ty the Lie algebra of T. Then ag := /—1ty is a maximally split Cartan
subalgebra of go. Let A := exp(ap). Then H = T'A is a Cartan subgroup of G with Lie
algebra hg = tg + ap.

The realization of the complexification of go in (2.1.3) — (2.1.7) of [B1] gives

(11) g=go®go, H=ho@ho, t={(v,—z):x€ho}, a={(r,r):z¢€ho}

(we drop the subscripts of the Lie algebras to denote their complexifications).
Let p be the half sum of positive roots in AZ’;. A choice of positive roots of g is

AT(g.h) = {ax 0} U{0x (—a)},ens-

Denote by W the Weyl group W (go, ho), which has identity element e and longest element
wp. Then W(g,h) ~ W x W.

2.1. Classification of irreducible modules. The classification of irreducible (g, K)-
modules for complex Lie groups was first obtained by Parthasarathy-Rao-Varadarajan

[PRV] and Zhelobenko [Zh]. Let (Ar, Ar) € b x b be such that A\;, — Ar is a weight of a
finite dimensional holomorphic representation of G. Using (11), we can view (AL, Ar) as a

real-linear functional on h (we will also sometimes denote it as ), and write Cx, \p)

AL
AR
as the character of H with differential (A, Ar) (which exists) with

(C(/\L,AR)|T = (C/—L = (C/\L_AR,’ C(}\L,AR)LA = CV = C)\L"r)\R'
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Put X (A, Ar) := K-finite part of Indg(C(AL,AR) ®1).

Theorem 2.1. ([PRV], [Zh]) The K—type with extremal weight p = A, — Ar occurs
with multiplicity one in X (Ar, Ar). Let J(AL, Ar) be the unique subquotient of X (AL, Ar)
containing this K—type.
a) FEwvery irreducible admissible (g, K )-module is of the form J(Ap, AR).
b) Two such modules J(Ar, Ar) and J(N;, Ny) are equivalent if and only if there exists
w € W such that whp, = X} and wAgp = Nj.
c) J(AL, AR) admits a nondegenerate Hermitian form if and only if there exists w € W
such that w(AL — Ar) = Ap, — Ar, w(AL + Ar) = —(AL + AR).

The W x W—orbit of (Ar, Ag) is the infinitesimal character of J(Ar, Ar).

In general we normalize hermitian forms on irreducible modules to be positive on the
lowest K —type. Occasionally we will say that the form is indefinite on a set of K—types,
with the understanding that if one of them is a lowest K —type, then the form is normalized
as stated above.

2.2. PRV-component. In this subsection, we summarize Corollaries 1 and 2 to Theorem
2.1 of [PRV] on the decomposition of the tensor product Vi(o1)® Vi(o2) for highest weights
o1 and o9.

Theorem 2.2. ([PRV]) The component Vi({o1 + woo2}) occurs exactly once in Ve(o1) @
Ve(o2), where {o1 +wpoa} is the unique dominant element to which o1 4+ wgoy is conjugate
under the action of W. Moreover, any other component Ve(n') occurring in Ve(o1) @ Ve(o2)
must be of the form

l
n' = {o1 +woo2} + Zniai, where n; € N.
i=1
In particular,
[{o1 + woo2} + pll < [In" + pl|.

The factor V({01 + wpoz}) is usually called the PRV-component of Vi(01) @ Vi(o2).

2.3. Hermitian modules with Dirac cohomology. Let 7 be an irreducible (g, K')—module
for a complex Lie group G. By Theorem 1.1 and (11), 7 has Dirac cohomology if and only
if its Zhelobenko parameter (wyAr, weAR) satisfies

AL — W2AR =
(12) WIAL — W2AR =T +p
wiAL + waAp =0,
where V(1) is a [N(—type in Hp(m). The second equation implies Agp = —w;lwl)\L. Since

T + p is regular integral, the first equation implies that 2wy Ap, is regular integral.

Write A = wiAr. The module can be written as m = J(\, —sA) with 2\ regular integral,
and the first equation of (12) implies that the only K —type that can appear in Hp(m) is
Ve(2X — p). Furthermore, if J(A, —s\) is Hermitian (e.g. if J(\, —sA) is unitary), it follows
as in [BP] that s is an involution.
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Assume further that 7 = J(\, —s\) € G ,i.e. it is unitary. To relate the above arguments
in terms of Parthasarathy’s Dirac inequality, note that Vi(7) is in Hp(7) if and only if

2A=T1+p,

which is precisely when the equality holds in (4). Moreover, if the K—type Vi(n) in «
contributes to Hp (), then by Theorem 2.2 it must come from the PRV component of

Ve(n) ® Se = 2[2] V() @ Va(p),

where the equality comes from Lemma 2.2 of [BP]. This leads to the following definition
given in [D1].

Definition 2.3. The spin norm of the K—type Vi(n) is defined as
(13) [7llspin == [{n = o} + £l

For any irreducible admissible (g, K)—module w, we define

(14) |77 {|spin = min [|7]|spin,

where 1 runs over all the K—types occurring in w. A module Vi(n) is called a spin-lowest
K—type of 7 if it occurs in m and ||n]|spin = ||7||spin-

Using the terminology in Definition 2.3, the results of this section can be summarized
as follows.

Proposition 2.4. Let 7 = J(\,—s)\) € G with 2X reqular integral, and s € W an involu-
tion. Then ||7||spin > |2\, and the equality holds if and only if J(\, —s\) € G<.
In such cases, Hp(m) consists of a single K—type Ve(2)\ — p) with multiplicity

Ve(2A—p) : Hp(m)] = > [Ve(n) : 7] - [Ve(n) @ Sc : Va(2X — p)]
n spin—LKT
=2l N W) 7l [Valn) @ Valp)  Ve(2A — p)]
n spin—LKT
=2 ST W) : A,
n spin—LKT

Conjecture 1.5 can be rephrased in the following sharper form. This is the main result
of the paper in the case of groups of classical type.

Conjecture 2.5. Let m = J(\, —s)\) € G. Then

1 ifme G4
0 otherwise

[r@Vilp) = Ve@A=p)] =) [Va(r) : 7] [Ve(r) @ Vilp) : Ve(%—p)]—{

K

Consequently, if m € @d, then Hp(m) = 2[%]%(2)\ — p) by Proposition 2.4.



DIRAC SERIES FOR COMPLEX CLASSICAL LIE GROUPS 9

3. UNITARY DuAL

We use the notation and terminology in the previous section. We determine the unitary
representations J(A, —sA) with 2 regular and integral; as already mentioned, s must be
an involution. The results were first proved in [B1] and [V1], and can be summarized as
follows.

Theorem 3.1 ([B1], [V1]). Let G be a classical complex Lie group. Any irreducible unitary
representation m := J(\, —s\) of G with 2\ reqular and integral must be of the form

= Inng((Cu ® mu) ® 1),

where P = LU 1s a parabolic subgroup of G with Levi factor L, C,, is a unitary character
of L, and m, is either the trivial representation, or one of the unipotent representations

listed in (6) — (8) for Type B, C or D:

Type B,: The spherical unipotent representations

_ —b+1/2,...,—-1/2;—a,...,—1 , _
W“_J(—b—|—1/2,...,—1/2;—a,...,—1 , 0<a<bintegers and a +b =n.
It has K—spectrum

Ve(an, a1, ... Qg 00,0,...,0), a1 >+ >a, >0.
——

Type C,: The Oscillator representations

cwen o (—n+1/2, ..., —1/2 wid o [—n+1/2, . —1/2
u _J<—n—|—l/2, —1/2) and m = =T\ y1pe L 1)2 )

Their K—spectra are given by
Ve(2k,0,...,0) and Ve(2k+1,0,...,0), k>0

Type D,: The unipotent representations

wen o (—a+1/2, ..., =3/2, —1/2, ;=b+1, ..., 0
T _J<—a—|—1/2, L., =3/2, —=1/2, ;—b+1, ..., 0 and
i _ (a2 o =3/20 <12 s-btl ., 0
wo T\ —a41/2, ..., =3/2, 1/2, ;-b+1, ..., 0

with 0 < a < b integers and a + b = n. Their K—spectra are

Ve(a, ..oy @2q,0,...,0), a1 >+ >ag >0, Zai is even/odd.
i
b—a



10 DAN BARBASCH, CHAO-PING DONG, AND KAYUE DANIEL WONG

3.1. Bottom Layer K—types. We use the standard realizations of the classical groups
and Lie algebras. As in [B2]|, we will use the notion of relevant K—types to detect non-
unitarity of 7.

Definition 3.2. The K—types Ve(1,...,1,0,...,0,—1,..., —1) with equal number of 1 and
—1 for type A, and Vi(1,...,1,0,...,0) and Vi(2,1,...,1,0,...,0) in types B, C, D will
be called cx-relevant. The ones with coordinates +1 only, will be called fundamental
czx-relevant.

We will make heavy use of bottom layer K —types as detailed in [KnV]. The special case
of complex groups is in Section 2.7 of [B1]. For the classical groups of Type B, C or D,
the results in coordinates are as follows. Write the lowest K —type of J(\, —s\) as

w=(.ooryoyrco oo 1,0,.0.0.,0) = (Lo et o TR0,
~—— —— —
Hr H1 HOo

Let
My =[] GL(pr) x Gl1o) J1 = Q) Jor ) (A AR) © Ja(u) (AL AR)

r>1 r>1
My =[] GL(r) x Glpa + p0) T2 = Q) Ta1.(u) (Ao M) @ TGy 4100) AL U AL, Al U AR)

r>2 r>2

be Levi components of real parabolic subalgebras containing the centralizer of u, and
irreducible modules. Let

(15) L i=nd§), (1), I :=Ind§ (J)

be induced modules containing J(A, —sA). We only specify the information on the Levi
subgroup for parabolic induction when there is no danger of confusion. Bottom layer
K —types are of the form p; = p + pp, where ppy, are K N M;—types in J; so that g
is dominant. They possess the crucial property that the multiplicities and signatures of
par, on the J; and p; in the induced modules in (15) and the lowest K—type factor J
coincide. By Section 2.7 of [B1], some of the bottom layer K —types for I; are obtained by
adding (1,...,1,0,...,0,—1,...,—1) (equal number of 1 and —1) to the coordinates equal
tor > 1in p. In addition one can add (1,...,1,0,...,0) to the coordinates of u equal to 0;
an even number in cases C, D. For Iy, there are extra bottom layer K —types obtained by
replacing the coordinates (1#1,040) with (2#2,1#1,0/0) which also denote a K N My—type
coming from Jg (4 u0)-
3.2. Necessary Conditions for Unitarity.

Proposition 3.3. Assume that X is half-integral reqular. The parameter (X}, ) in (15)
for r > 1 consists of at most two strings,

(A, %fl’ g; 5;1, a>7
—a, cey —§+1, — 3 —5—1, ey —A
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r+1 r—1

B, e ey Tl, T{ ceey b
r— r+

~b, ..., -t _oHo _pB

only (a+A=r, and B+b=r).

and/or

Proof. The irreducible module Jgr,,,) (A7, A) in (15) has 1—dimensional lowest K —type
Virgi(u) (75 - - -7).  The condition that 2XA be regular integral implies that J(A},\3) is
unitarily induced irreducible from a finite dimensional J. x J, of a Levi component G L, x
GL, C GL(u,), where the parameters of J. and .J, come from the Z and Z+% coordinates
of J(A}, \) respectively.

Note that by Theorem 2.1(c), and the assumption that J(Az, Ar) has an invariant Her-
mitian form, both J. and J, have invariant Hermitian forms. Using Casimir’s inequality
[V1, Lemma 12.6], unless J. and J, are unitary characters, otherwise J(A},\j) have in-
definite form on K—types Ving(y,)(r +1,7,...,7,7 — 1) and Virg(y,) (7, ., 7). Since these
K —types are bottom layer in the induced modules (15), J is unitary only if J(A}, ) is

T
unitary and induced from unitary characters. So (;TL
as in the statement of the Proposition. 5 O

) must consist of at most two strings

Remark 3.4. Since all Levi subgroups of G = GL(n,C) consist only of GL—factors, one
can apply the above Proposition for all r € Z to conclude that Theorem 3.1 holds for Type
A. Hence we focus on the classical groups of Type B, C and D from now on.

Corollary 3.5. Assume puy # 0. Then
in types B, C

(-1
AL )T 1
R 2 or (

Proof. The statement is a direct consequence of the fact that 2 is assumed regular integral.
O

1,0

’ in type D.
Y

We consider Jg(u1+u0)()\}l, A9, AL, AL) appearing in J of (15). A consequence of Propo-
sition 3.3 and Corollary 3.5 is that we can write the parameter as

16 Mty —Sreidret) = (ALY, =X A0 with Al =(1,...,1 =0,1,2.
(16) (Arel 1Aret) == ( ) ( )
ph
Specifically, Aoy = (A1, A%) and s, is an involution so that s, (A!, A\Y) = (=A1 A?). Sec-

tions 4-6 is devoted to proving the following:

Theorem 3.6. Assume that the parameter is half-integral reqular, and p, =0 forr > 2 so
that A = Aper. Then J(N\, —Spe\) is unitary if and only if it is of the form given in Theorem
3.1; i.e. unipotent tensored with a unitary character. When it is not unitary, the form is
indefinite on cz-relevant K—types.
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Corollary 3.7. Let J(\, —sA) be an irreducible module with half integral regular infinites-
imal character. Then Theorem 3.1 holds.

Proof. The Corollary (and therefore Theorem 3.1) follows immediately from properties of
bottom layer K —types. Suppose J(Arer, —SreiArer) is not of the form given in Theorem 3.1.
Then by Proposition 3.6 it must be non-unitary, which has indefinite form on cx-relevant
K —types. Since all cx-relevant K —types are bottom layer in I, this implies that J(\, —s\)
is not unitary.

On the other hand, if J(Ae;, —SretArer) is of the form given in Theorem 3.1, then by
induction in stages Is is of the form given by Theorem 3.1, with J(\, —s\) being its lowest
K —type subquotient. Since it is a subquotient of the unitary module I, J is unitary. A
sharper result holds — by Theorem 14.1 of [B1], Iy = J(\, —sA). O

3.3. General Strategy. By the corollary above, it suffices to prove Theorem 3.6. In
particular, when the parameter is not as in Theorem 3.1, the form is indefinite on a cx-
relevant K —type. These give rise to bottom layer K —type in the general case.

To treat the case J((AL, A%), (=A1, A\?)) given in Theorem 3.6, the spherical case J(A?, \Y)
plays an important role. Write A = A" from now on. We define a parabolic subgroup P(\)
and a representation 7y (y) on its Levi component so that the induced module Ip(y) :=
IndIGD(/\) (mr(y)) is Hermitian, and the cx-relevant K —types occur with full multiplicity in
the spherical subquotient J(A, A). The induction step proceeds as follows. Deform A and
the induced module Ip(y) to A + tv where v is central for L()), so that the norm of the
parameter becomes larger, and the multiplicities of the cx-relevant K —types do not change
for small ¢. Let g > 0 be the nearest where the multiplicities change; P(\+tov) changes as
well. If the condition in Theorem 3.1 are not satisfied, the induction hypothesis holds, so
the form is indefinite on cx-relevant K —types, that is, the form has different signatures on
the lowest K —type and at least one of the cx-relevant K —types, and the semi-continuity
of the signature implies that the form was indefinite on cx-relevant K —types at t = 0. The
exceptions are when J(A + tov, A + tor) is unitary, or the deformation goes on to “c0”. In
the first case we find a non-spherical factor in the deformed induced module with a pair
of indefinite cx-relevant K —types. In the second case, the Casimir inequality implies that
the form is indefinite on the trivial and adjoint K —types.

We will henceforth concentrate on the cases when X is NOT regular integral. The cases
when X is reqular integral, are covered by [E]; the unipotent representations occurring are
Ty = T'riv.

4. PROOF OF THEOREM 3.6 — TYPE B

Let G = SO(2m+1,C) and K = SO(2m+1). The K —types have highest weights n with
coordinates integers only. Since p = (m —1/2,...,1/2), 2\ = {n — p} + p, 2\ must have
integer coordinates only; so A has integer and half-integer coordinates. Since we assume

that A is regular half-integral but not integral, the integral system determined by A is type
CxC.
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4.1. Spherical Representations. In the next few subsections, we will prove the following
Proposition.

Proposition 4.1. Let A\ be regular half-integral. The spherical irreducible module J(\, \)
1s unitary if and only it is unipotent, i.e. the parameter is
1 1
A=|-Ko+=,...,—=;—Np,...,—1
< o+ 9’ Ty 0 ) >

with Nog < Kgo. This is a unipotent representation attached to the nilpotent orbit [22N012K0_2N0+1].

When not unitary, the form is indefinite on the set of cx-relevant K —types with highest
weights
cXB:={0,...,0), (1,...,1,0,...,0), (2,0,...,0)}.

The unipotent representation in Proposition 4.1 is unitary because it can be realized via
the dual pair correspondence as O(trivg,), from the pair Sp(2Ny, C) x SO(2Ky+2Ny+1,C)
in the stable range.

In order to prove the non-unitarity of other parameters, we use the strategy in Section
3.3. We construct an induced module Ip(y) having J(A,\) as a quotient. Let A be half-
integral and dominant for the standard positive system, i.e.

)\:(..-)\Z’Z)\iJrlZ"‘ZO), 2\; € N.

If X is further assumed to be regular, then the above inequalities are strict. We construct
a parabolic subgroup P()\) = L(A\)U(A) and an induced module Ip(y) so that J(A, A) is the
spherical irreducible factor in Ip(y), and the multiplicities of the cx-relevant K —types are
the same.

(i) If 1/2 is a coordinate of A, form the longest string
ko= (—Ko+1/2,...,—-1/2)
such that all the half-integers starting from 1/2 to Ky — 1/2 are coordinates of A,
but Ko+ 1/2 is not. If the coordinate 1 occurs, form the longest string
gg = (—No, ey —1)

where Nj is the largest integer coordinate that occurs in A, but Ny + 1 does not.
Add a factor to L(\) of type G(Ko + No) = SO(2Ky + 2Ny + 1) and the spherical
irreducible representation with parameter

-Ko+1/2 ,..., =1/2 ; =Ny ,..., —1

-Ko+1/2 ,..., =1/2 ; =Ny ,..., —1
If 1/2 is not a coordinate, let k&1 —1/2 > 0 be the smallest half-integer coordinate,
and form the string k1 = (k1 — 1/2,...,K; — 1/2) with increasing coordinates
differing by 1 as before. Add a factor GL(K; — k1 + 1), and the 1-dimensional
representation of GL(K; — ki + 1) with parameter

ki—1/2 ..., Ki—1/2
ki—1/2 ..., Ki—1/2
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to L(A). Similarly if 1 does not occur as a coordinate, form o1 = (ny,...,Ni),
add a factor GL(N; —ny + 1) to the Levi component L(\), and the 1-dimensional
representation of GL(Ny — ny + 1) with parameter

ny ..., N1
nt ..., N1

(ii) Remove the coordinates in Step (i) from A, and repeat on the remainder until there
are no half-integer coordinates left. Since the assumption was that at most one
coordinate was equal to 1/2, only GL—factors are created.

(iii) Repeat Steps (i) and (ii) on the integer coordinates until there are none left.

The process produces a parabolic subgroup, and an induced module on its Levi component.
The Levi component is

(17) L(\) = [[ GL(0j) x [ [ GL(r:) x G(Ko + No).
i>0 >0

If A is assumed to be regular, its corresponding strings «;, o; satisfy

(18) {kz > 2 if 1/2is a coordinate, and {nj > 2 if 1is a coordinate,

k; > 2 otherwise n; > 2 otherwise

In the proof of Proposition 4.1 below, we begin with J(\, A\) where X is regular and
half-integral. Then we deform some GL-strings &;, 0}, 4,j > 0 upward and analyze the
new parameter A, and its corresponding induced module I(Aey). Here ey is half-
integral but is not necessarily regular (see Example 4.4 below). Nevertheless, by the above
construction of k and o—strings, it is easy to see that the more general parameters satisfy

(19) kiJrl — Kz Z 2, or and nj+1 — Nj Z 2, or
ki <kiy1 < K1 < K,

We say the strings ks, kit1 (or oj, 0j4+1) nested if its parameters satisfy (19) for all
1,7 > 0. The parabolic subgroup is determined by the order of the factors, and the integer
and half-integer strings are interchangeable.

The main property of the cx-relevant K —types is the following Lemma.

Lemma 4.2. Let A be dominant whose coordinates are half-integers. Assume that the
strings of A satisfy (18) and (19). The multiplicities of the ca-relevant K —types in Ip(y)
coincide with those in J(\, X).

Proof. This kind of result can be found in [B2]. The main difference is that (2,0,...,0) is
not petite/single petaled. The condition that the value of & for « a long root on the highest
weight of the K —type be < 3 is satisfied except for the case of (2,0, ...,0) and a long root.
The crucial property needed is that SL(2)—intertwining operators be isomorphisms on
these K—types. Condition (18) insures that this property is still valid for the larger class
of K—types. We sketch the steps.
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Recall that A was assumed dominant. Then J(A, \) is the image of the long intertwin-
ing operator from Ig(\,\) to Ip(—A, —A). The module Ip(y) is a homomorphic image of
Ig(A,A). The long intertwining operator A,,, factors into

I5(AA) — Ipny — Ip(=A, —).

We only need to show that the intertwining operator on the right is an injection on the cx-
relevant K—types. We need to “flip” the coordinates of the x; and o; into their negatives.
This is done by embedding into a larger induced module where it is possible to factor the
operator further into ones induced from SL(2),s. Condition (18) insures that they are
isomorphisms on the restrictions of the cx-relevant K —types. This is also the reason that
we have put k¢ and og into the Levi component. O

We finish this subsection by giving a necessary condition on the spherical parameter:

Lemma 4.3. If J(A\,\) is unitary, then the string ko = (—Ko+1/2,...,1/2) must appear
in (A A).

Proof. The coordinates on the spherical part of I; in Equation (15) are all > 1. The Casimir
inequality implies that the form is indefinite on the adjoint V¢(1,1,0,...,0) K—type and
the trivial K —type V4(0,...,0) . These give rise to bottom layer K —types of I;, and hence
the irreducible J(A, \) is not unitary. O

4.2. Proof of Proposition 4.1 — XA = kg U o0g. If only oy occurs in A, then it is not
unitary by Lemma 4.3. Furthermore, the case when A = kg U o9 with Ky > Ny is unitary.
So assume
(20) A=koUop satisfying Ny> Ky > 1.
Let

Ind(\) == IndgL(Uo)XG(Ko)((l +t,...,No+1t) @ triv),
The signatures and multiplicities of the fundamental cx-relevant K —types of the form
Ve(1,...,1,0,...,0) coincide on Ind(N\g) and J(A,A). Indeed, Ind(\) is a homomorphic
image of Ind%(\, \), and the intertwining operator changing (1,..., Ny) to (—=Np, ..., —1)
involves only (&, wA) which are integers > 2:

() ()

The kernel of the intertwining operator has lowest K —type of highest weight (2i) for
1 <7 < Ny. So the intertwining operator is an isomorphism on the cx-relevant K —types
Ve(1,...,1,0,...,0) (but not necessarily for V4(2,0...,0)). These values remain unchanged
for all Ind()\;) with ¢ € [0,1/2) because the multiplicities do not change. At ¢t =1/2,

)\1/2 = (3/2,5/2,...,N0+1/2; —K0—|-1/2,...,—1/2)
=(—No—1/2,...,—-1/2)U(3/2,..., Ko —1/2).
So the induced module Ip(y, /2) defined in Section 4.1 is given by

Tp(s, ) = IndgL(Ko_l)xG(No)((?)/Q, o Ko —1/2) @ triv),
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and differs from Ind();/2). More precisely, apart from J(A1/2, A1/2), Ind()A;/2) has a non-
spherical irreducible factor whose parameter is given by

1/2,...,Ko—1/2; 3/2,....Ko+1/2; Ko+3/2,...,No+1/2
3/2,... Ko+1/2 1/2,... Ko—1/2: Ko+3/2,...,No+1/2

This module has indefinite form on the K —types V¢(1,...,1,0,...,0) and
~———

2K
%(1,...,1,1) if Ng = Ko+ 1;
——
(21) 20 :
Ve(1,...,1,1,1,0,...,0) otherwise
——
2Ky

Indeed, the second K —type is bottom layer for the parabolic subgroup with Levi component
GL(Ky) x G(Nyg — Ky). The spherical part of the parameter (gg i g?g: : %2 i i?;) is
a finite dimensional representation of G(Ny — Kj), so the form is indefinite on the trivial
and adjoint K —types of G(Ny — Kj).

Consequently, by semicontinuity of signatures, Ind(Ag) and J(A, \) also have indefinite
form on the K —types given in (21).

4.3. Proof of Proposition 4.1 — Other Strings. Assume A contains strings other than
ko and og. We do an induction upward on the length of the parameter, downward on the
number of strings.

Assume there is a k; = (k; —1/2,...,K; — 1/2) with ¢ > 0 or 0; = (nj,...,N;) with
j > 0. Replace it by (k; —1/2+¢,...,K;—1/2+t) (or (nj+t,...,N;+t)), and denote the
new parameter by A¢. At t =0, Ip) = Ip(),), and the signatures of cx-relevant K—types
do not change for 0 <t < 1/2. At t = 1/2, if the induction hypothesis (condition for the
form to be indefinite on the cx-relevant K —types) holds for J(A;/2, A1 /2) we conclude that
J(A, A) is not unitary, with form indefinite on the cx-relevant K —types. It may happen that
Ipea, /2) is unchanged, and we can continue to deform ¢ upward. Ip(y) may be unchanged
as t —» oo. In this case the form is indefinite on the adjoint K—type V¢(1,1,0,...,0).
We call this an initial case. The other case is when the spherical module J(A; /2, A1/2) is
unitary. This is the case o9 U kg with Ky > Ny. Note that it includes the case when the
spherical module is the trivial representation.

In summary, these cases, which we call initial cases are

(a) There is a string x; or o; with ¢,j > 0 such that P()\;) does not change as t — oo,
(b) The strings are

(—Ko—l-1/2,...,—1/2;—N0,...,—1), with Ko < Ny

as in the previous section.
(c) The strings are (=Ko +1/2,...,—1/2; =Ny, ..., —1) U¢ satisfying

gz(KOM"aKl) or (N0+1/277N1_1/2)>
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so that the deformation of £ to ¢t = 1/2 yields a unitary spherical module. This means that
K7 > Ny in one case, Ky > Np in the other case. See Example 4.4 for more details. In
Case (a), as already mentioned, the Casimir inequality implies that the spherical irreducible
module at ¢ = 1/2 has indefinite form on the trivial and adjoint K —types V¢(0,...,0) and
Ve(1,1,0,...,0).

Case (b) was discussed in the previous section.

For Case (c), we give details for { = (Ko). The other { are similar. Ip(y, ,) has another

A1/2
irreducible factor with parameter containing

—Ko+1/2 —Ko—1/2 Ko—3/2 ... 1/2
~Ko—1/2 —Ko+1/2 Ko—3/2 ... 1/2

with the rest of the spherical part formed of integer coordinates coming from oy.

The lowest K —type is V¢(1,1,0,...,0) and V4(2,0,...,0) is bottom layer. Since for such
a parameter the form on the GL(2)—factor is indefinite on (1,1) and (2,0) = (1,1)+(1, 1),
semicontinuity of the signature implies the same for the parameter at \.

The proof of Proposition 4.1 is now complete. ]
Example 4.4. Let A = (—11/2,-9/2,-7/2,-5/2,-3/2,—-1/2; —1)U(3,4)U(6). Note that
ko 1s longer than og. Deform all o; into k; for i > 0:

A= (-11/2,-9/2,-7/2,-5/2,-3/2,—1/2; —1) U (3,4) U (6)
— (=11/2,-9/2,-7/2,-5/2,-3/2,—-1/2; —1) U (7/2,9/2) U (13/2)
= (-13/2,-11/2,-9/2,-7/2,-5/2,-3/2,—1/2; —1) U (7/2,9/2)
Deform the new k; for i >0 and get
(—=13/2,-11/2,-9/2,-7/2,-5/2,-3/2,—-1/2; -1) U (7/2,9/2)
— (=13/2,-11/2,-9/2,-7/2,-5/2,-3/2,—1/2; —1) U (13/2,15/2)
= (—-15/2,-13/2,-11/2,-9/2,—-7/2,—-5/2,-3/2,—1/2; —1) U (13/2)
— (=17/2,-15/2,-13/2,—-11/2,-9/2,—-7/2,-5/2,—-3/2,—-1/2; —1) U (9)
and we are in Case (c) above.
4.4. Non-spherical Case. Now we study the case when pu; > 0. Then the parameter
(Arel, —SArer) does not have a kg, or else the regularity condition is violated. Consider the
spherical part of the parameter. It only contains «; for ¢ > 0 and o, for j > 0. By Lemma
4.3 this spherical parameter yields indefinite form on V¢(1, 1,0,...,0) and V¢(0,...,0), both

are bottom layer in J(Ape;, —SArer). Therefore there cannot be any spherical parameter,
and the only unitary case is (Aper, —SArer) = (1/2, —1/2).

4.5. Spin Groups. In this section, we give a brief idea on how our results can be extended
to Spin groups G = Spin(2n + 1,C). We only consider genuine representations of G, i.e.
representations whose K —types have highest weights with coordinates of the form N 4 %
only. As p=(m—1/2,...,1/2), so 2\ = {n — p} + p must have coordinates of the form
N+ % only. The integral system for A is type A.
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We study the case when the lowest K —type of J(Ar, Ar) is

spm:vg(%,...,%).
The parameter is
A= (1/4,...,1/4) + (Vs ey Uy —Vgy e ooy — 1)
A= (=1/4,...,-1/4) 4+ (v1,...,Vk,—Vk,...,—V1)
(22) or
A= (1/4,...,1/4) + (v1y ey Vg, 0, =gy ooy —1)
Ar= (—1/4,...,-1/4) + (v, .., vk, 0, =V, ..., —11)

The symmetry v; «— —v; follows from the assumption that the parameter must be Hermit-
ian. Since 2\p = (% +2v1,. .., % — 211) must be regular integral consisting of half-integers,
it follows that

(23) 2u; € Z for all 1,

satisfying v; = v; # 0, and v; # 0.

Separate the v; into integers v, and half-integers 1. The Hermitian property implies
that v, must be conjugate to —v, by the symmetric group, and similarly for v.

There are two finite dimensional Hermitian representations Fy and Fj of Type A (with
lowest K —types Vi(3,...,3)) so that

(24) JAL,Ag) = ndS; . o (Fa ® Fy).
The restriction of Vg(%, %, el %) to GL contains
31 1 1 1
Vil=,=,...,—=)=Vu(=,..., = V.(1,0,...,0,—1).
u(2727 I 2) u<27 72)® u<7 ’ Yy )

Therefore, as in Proposition 3.3, the Hermitian form of J(Az, Ag) on the K —types Vi(2, 4

and Ve(%, el %) is indefinite unless Fy, F}, are unitary characters. In the case when there
is only F, or Fy in (24), we obtain the genuine unipotent representation with infinitesimal
character given in (9).

5. PROOF OF THEOREM 3.6 — TYPE C

Let G = Sp(2m,C) and K = Sp(2m). The K—types have highest weights 7 formed of
integers only. Since p = (m,...,1), 2\ = {n— p}+ p must have positive integer coordinates
only. So A must have integers and half integer coordinates only. Since A is regular half-
integral but not integral, the integral system determined by A is type B x D.

5757...

Sl

N =



DIRAC SERIES FOR COMPLEX CLASSICAL LIE GROUPS 19

5.1. Spherical Representations.

Proposition 5.1. Let A be reqular half-integral. The spherical irreducible module J (X, \)
is unitary if and only it is unipotent, i.e. the parameter is

1 1
A= <—K0+2,...,—2> or A= (=Ny,...,—1)

The first representation is the spherical component of the Oscillator representation attached
to the nilpotent orbit [2112N0=2] and the second case is the trivial representation attached
to [12No],

When not unitary, the form is indefinite on the set of cx-relevant K —types with highest
weights

CXC:={(0,...,0), (1,1,0,...,0), (2,0,...,0)}.

Unlike Types B or D, only (1,1,0,...,0), rather than (1,...,1, 0,...,0) suffices. The proof
will be given in the next subsection. The unipotent representation is unitary because, when
not the trivial module, it is the spherical component of the Oscillator representation.

As in the case of Type B, we construct a parabolic subgroup P(A\) = L(A\)U(\) and an
induced module Ip(y) so that J(A,\) is the spherical irreducible factor in I P(\), and the
multiplicities of the cx-relevant K —types coincide in the two modules. Write A dominant
for the standard positive system, i.e.

Since the parameters we are going to study are obtained by deforming a regular parameter
upward, we can further assume that all \; are positive.
(i) If 1/2 is a coordinate of A, form the longest string
ko= (—Ko+1/2,...,-1/2)
such that all the half-integers starting from 1/2 to Ky — 1/2 are coordinates of A,
but Ky + 1/2 is not. If the coordinate 1 occurs, form the longest string
oo = (—Nop,...,—1)
where 1,. .., Ny occur as coordinates in A, but Ny+1 does not. Add a factor of L(\)
of type G(Koy + No) = Sp(2Kp + 2Ny) and the spherical irreducible representation
with parameter
-Ko+1/2 ,..., —1/2 ; —Ny, ..., —1
-Ko+1/2 ,..., —1/2 ; —No, ..., —1
If 1/2 is not a coordinate, let k1 —1/2 > 0 be the smallest half-integer coordinate,
and form the longest string k1 = (k1 —1/2,..., K1 —1/2) increasing by 1, as before.
Add a factor GL(K1—k1+1), and the 1-dimensional representation with parameter
ki—1/2 ..., K —1/2
ki—1/2 ..., K —1/2
to M (). Similarly if 1 does not occur as a coordinate, form o1 = (nq,..., N7) and
add a factor GL(N; — n1 + 1) to the Levi component M (\).
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(ii) Remove the coordinates in Step (i) from A, and repeat on the remainder until there
are no half-integer coordinates left. Since the assumption was that at most one
coordinate was equal to 1/2, only GL—factors are created.

(iii) Repeat Steps (i) and (ii) on the integer coordinates until there are none left.

The process produces a parabolic subgroup, and an induced module on its Levi component.
The Levi component is

(25) [[GL(e;) x [] GL(5:) x G(Ko + No).

i>0 §>0
As in the case of Type B, we are interested in the cases when the strings satisfy the
properties:

(26) {kz > 2 if 1/2is a coordinate, and {nj > 2 if 1 is a coordinate,

k; > 2 otherwise n; > 2 otherwise

along with the nested condition:

{ki+1_KiZ27 or and {Nj+1—Nj 22, or

(27)
ki <kiy1 < Kip1 < K, n; < niy1 < Nigp < N;

The main property of the cx-relevant K —types is the following Lemma.

Lemma 5.2. Let A be such that (26) and (27) are satisfied. The multiplicities of the
cz-relevant K —types is the same in Ip(yy and J(\,A).

Proof. The proof follows the one for the analogous result in Type B. We have to show that
certain SL(2),—operators are isomorphisms. For the cx-relevant K —types this follows
from conditions (26) and (27) and the fact that the coordinates of the highest weights of
the K—types are < 2. O

5.2. Proof of Proposition 5.1 — A = 09 U K; or kg U oj. If A contains only o =
(=No,...,—1) or kg = (=Ko + 1/2,...,—1/2), the parameter is unitary. So consider
A=o0gUKk; or kg Uo; for i =0 or 1, and the induced module

A&, ke yxavg) (5 ® (=No, .., =1))  or IndG, vy xagy (00 ® (=Ko +1/2,...,-1/2)).

Ifi =1,ie. k >3/20r N; > 2, then the above induced modules admit deformations where
the multiplicities of all cx-relevant K —types coincide with that of J(A,\) for 0 <t < 1/2.
If ¢ = 0, the deformations still preserve multiplicities of the cx-relevant K—types of the
form Vi(1,...,1,0,...,0). There are two cases:

(a) Suppose If k; — Np > 1 or n; — Ky > 1 (so that ¢« = 1), or equivalently one has
|n — k| > 3/2 for all n € 0; and k € k;, the deformations on k; or o1 does not produce
new P(A) for all t > 0. So by Casimir inequality the form is indefinite on the trivial and
the adjoint K—type V¢(2,0,...,0).

(b) Otherwise, At ¢t = 1/2, the spherical parameter acquires a new o1 or k1. As in Type
B, we can apply induction hypothesis and reduce to the initial cases when the spheri-
cal parameter at t = 1/2 is either the trivial representation, or the spherical Oscillator
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representation. These are

(No+1/2,...,Ny +1/2) U(=Ng,...,—1) or (Ko,...,K1)U(=Kp+1/2,...,—1/2)
The argument for type B applies. At ¢ = 1/2 there is another factor

Ko+1/2 —-Ko+1/2 Ki+1/2 ... Ky+3/2 Koy—3/2 ... 1/2

Ky—1/2 -Ko—1/2 Ki+1/2 ... Ky+3/2 Koy—3/2 ... 1/2
(28) respectively

No+1 —Ny N+1 ... No+2 Nog—1 ... 1

No—1 —Nog—1 Ni+1 ... Nog+2 No—1 ... 1

The K—types V;(2,0,...,0) and V4(1,1,0,...,0) are bottom layer for the parameter in
(28), and the form is indefinite. In this case one can in fact show that at ¢ = 0 the form
is indefinite on V4(1,1,0,...,0) and V¢(0,...,0). The reason is that one can deform the
string k1 or o; all the way to a place where the module is unitarily induced irreducible,
and V¢(2,0,...,0) occurs with full multiplicity in the spherical irreducible module. So its
sign must be the same as that of V4(0,...,0). Therefore, J(A, A) has indefinite forms on
Ve(1,1,0,...,0) and V4(0,...,0).

Remark 5.3. More generally, if A\ = 0; U kj satisfies kj < N; +1 < Kj orn; < Kj; < N;,
i.e. there are n € o; and k € k;j such that |n — k| = 1/2, then one can deform both strings
0;, kj downwards simultaneously

O'iUIinO'iUK,j—(t,...,t),

until it reaches Case (b) above. Then one can conclude that J(\,\) has indefinite forms
on Ve(1,1,0,...,0) and V(0,...,0).

5.3. Proof of Proposition 5.1 — Other Strings. We do an induction, downward on
the number of strings, upward on the length of the parameter, as in type B. The claim is
that if there is a string k1 or o1, the spherical module cannot be unitary.

Fori >0, let £ = (k; —1/2,...,K; —1/2) or (n;,...,N;) be a string. Deform upward
&= (ki—1/2+t,...,K;—1/2+t) or (n;+t,...,N;+t). The signatures and multiplicities
of the all cx-relevant K —types do not change for 0 < t < 1/2. At t = 1/2, one of several
cases may occur:

(a) There is no &, that is, A = ko Uop. We have dealt with this in the previous section.

(b) P(A12) = P(Ao). Continue deforming upwards. If no change occurs as t — oo
(this includes Case (a) in Section 5.2), the form is indefinite on V(0,...,0) and the
adjoint K —type V¢(2,0,...,0).

(c) P(Aij2) # P(Xo). Then we are in the setting of Remark 5.3, and the form is
indefinite on V4(0,...,0) and V4(1,1,...,0).

The cases when indefiniteness is first detected on the K—type V;(2,0,...,0) rather than
Ve(1,1,0,...,0) is when the entries of two different strings in A differ by at least 1. For
example, this holds for the strings A = (21/2,23/2) U (8,9) U (7/2,9/2,11/2).
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5.4. Non-spherical Case. Consider the case 1 = 1 and the parameter contains <_11//22> .

As before, there cannot be a kg present. The fundamental cx-relevant K —types for the
spherical parameter produce bottom layer K—types. We are reduced to the cases when
these bottom layer K —types do not detect non-unitarity. By the last paragraph in the
previous section, this is the case when there is a ;,0; with 4,7 > 0 in the spherical pa-
rameter deforming to co. The case when there is only k1 = (3/2,...,K; — 1/2) in the
spherical parameter gives a unitary representation. We are reduced to the case when there
is another string x; > 5/2 and/or n; > 2 deforming to co. The K—types

Ve(1,0,...,0) Vk(2,1,0,...,0)
occur with the same multiplicities in the unitarily induced module from GL(1) x G(po) with

J(A2, X% on the G(juo)—factor, and in J(\, —s\). The form is indefinite on these K —types,
since they restrict to K N M—types for which the form on J(A°, \°) is indefinite.

6. PROOF OF THEOREM 3.6 — TYPE D

Let G = SO(2m,C) and K = SO(2m). The K—types have highest weight with integer
coordinates only. Since p = (m —1,...,1,0), it follows that 2\ = { — p} + p has integer
coordinates only. So 2\ is regular integral it has integer coordinates only. Since A is not
assumed integral, its coordinates are integers and half integers, and the integral system is
of type D x D.
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6.1. Spherical Representations.

Proposition 6.1. Let A be reqular half-integral. The spherical irreducible module J(\, \)
is unitary if and only it is unipotent, i.e.

1 1
A= (K(] + 30 75; —No+1,..., 1,0) satisfying Ny > K.

When Ko > 0, the representation is attached to the nilpotent orbit [31225012No=2Ko=1],
When Ko = 0, the nilpotent orbit is the trivial one.
When not unitary, the form is indefinite on the set of cax-relevant K—types with highest

weights
CXD:={(,...,0), (1,...,1,0,...,0), (2,0,...,0)}.

The proof will take up most of the next few subsections. The unipotent representa-
tions are unitary because they can be realized via the dual pair correspondence in the
stable range, as O(trivg,), with the pair Sp(2Ky,C) x SO(2Ky + 2Ny, C) and one of the
components of the the Oscillator representation on the Sp—factor.

As in Type B and C, we construct a parabolic subgroup P(A) = L(A)U(A) and an
induced module Ip(y) for each A dominant for the standard positive system, i.e.

)\:()\ZZ)\ZJrl,Z)\m,12|>\m|20), 2\; € 7.
(i) If 1/2 is a coordinate of A, form the longest string
ko= (—Ko+1/2,...,-1/2)

such that all the half-integers staring from 1/2 to Ky — 1/2 are coordinates of A,
but Ko+ 1/2 is not. If the coordinate 0 occurs, form the longest string

00:(—N0+1,...,—1,0)

where Ny — 1 is the largest integer coordinate that occurs in A, but Ny does not.
Add a factor of type G(Kop + No) = SO(2Kp + 2Ny) to L(\), and the spherical
irreducible representation with parameter

~Ko+1/2 ..., —=1/2 ; —Ng+1, ..., -1 0
~Ko+1/2 ,..., —=1/2 ; —No+1, ..., -1 0)°

If 1/2 is not a coordinate, let k1 —1/2 > 0 be the smallest half-integer coordinate,
and form the longest string k1 = (k1 —1/2,..., K1 —1/2) going up by one as before.
Add a factor GL(K1 — k1 + 1), to L()\), and the 1-dimensional representation with

parameter
ki—1/2 ..., K —1/2
k1—1/2 e K1—1/2 )
Similarly if 0 does not occur as a coordinate, form o; = (ng,...,N;) and add a

factor GL(N7 — ny + 1) to the Levi component L(\).
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(ii) Remove the coordinates in Step (i) from A, and repeat on the remainder of half
integer coordinates until there are no half-integer coordinates left. Similarly for the
integer coordinates. Since the regularity assumption implies that at most one coor-
dinate can be equal to 1/2, and at most one coordinate equal to 0, only G L—factors
are created.

The process produces a parabolic subgroup, and an irreducible module on its Levi compo-
nent. The Levi component is
(29) [1G6L(o)) x [ GL(x:) x G(EKo + No).
i>0 7>0
The parameters A we are going to study satisfy:
(30) {k:l > 2 if 1/2is a coordinate, and {nj > 1 if 0is a coordinate,

k; > 2 otherwise n; > 1 otherwise

and the nested condition

{ki+1_Ki22, or and {nj+1—Nj 22, or

31
(1) ki <kiq1 < Kiy1 < K, n; < niy1 < Nigp < N;

The main property of the cx-relevant K —types is the following Lemma.

Lemma 6.2. Assume that the strings of \ satisfy (30) and (31). The multiplicities of the
cz-relevant K—types in Ip(yy coincide with those in J(A, A).

Proof. The proof follows the analogous result for Type B. In this case all cx-relevant
K —types are petite/single petaled. This is because (&, A) < 3 for all roots. O

As in Type B, we have a necessary condition on the spherical parameter:

Lemma 6.3. If J(\,\) is unitary, then the string o9 = (—No + 1,...,1,0) must appear
in (A A).

Proof. The coordinates on the spherical part of I; in Equation (15) are all > 1/2. As
in Lemma 4.3, the irreducible representation J(A,A) has indefinite form on the adjoint
K—type V¢(1,1,0,...,0) and the trivial K —type. O

6.2. Proof of Proposition 6.1 — A\ = kg U og. The case when Ny > Ky is unitary. So
assume

(32) A=roUog satisfying Ko > Np.
By Lemma 6.3, we assume Ny > 0, and let

Ind(Ar) == IndG Loy wame (/246 Ko =12+ 1) @ (=No+ 1,...,-1,0)).

KO

The multiplicities of all cx-relevant K —types in Ind(\;) and J(\, A) still coincide for small
t. This is as before: Ind()) is a homomorphic image of Indg()\, ), and the intertwining
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operator changing (1/2,..., Ko—1/2) to (—Kp+1/2,...,—1/2) involves only (¢, wA) which
are half-integers or > 2:

(o)~ () o ()~ (T2ad”)

depending whether K is even or odd. In the first case, the SL(2)—intertwining operator is
an isomorphism, in the other case the kernel of the intertwining operator has lowest K —type
(2,2). So the intertwining operator is an isomorphism on the cx-relevant K —types.

The signatures (and multiplicities) of the fundamental cx-relevant K —types of Ind(\;)
do not change for 0 <t < 1/2. At t = 1/2, the parameter is

)\1/2:(1,...,K0;—N0+1,...,—1,0):(—Ko,...,—l,O)U(l,...,Ng—1).

As in the case in Type B, J(A/2, A1/2) and Ind(); ;) are different on the level of funda-
mental K —types, and Ind(A\; /2) has another factor with parameter

(33) —No+1 ... Ny ;. =Ky ... —Np-—1
—Np ... No+1 ; —-Kg ... —Ng-—-1
and lowest K —type po = (1,...,1,0,...0).
N——
2No

If Ko — Ny is odd, the factor is not Hermitian, and there are two of them which are
Hermitian dual to each other; one of the coordinates —Kj, ..., —Ny — 1 is changed to its
negative in both Ay, and Ag. When Ky — Ny > 0 is even, the signature is indefinite on pg
and 1 = (1,...,1,0,...0).

——
2No+2

In both cases, Ind(A;/2), and hence Ind()) and J(A, A), has indefinite signature on the
fundamental cx-relevant K —types.

6.3. Proof of Proposition 6.1 — Other Strings. We follow the reasoning for type B.
We do a downward induction on the length of A, and the number of strings. The case when
there are no strings other than kg, g, was dealt with in the previous section. As in Type
B, there are three initial cases:

a ere 1s a string x; or o; with 7,7 > 0 such that +) does not change as t — oo,
(a) There i ing ; with 4,5 > 0 such that P(\) d hang
(b) The strings are
(—K0+1/2,...,—1/2;—N0—‘r1,...,1,0), with Ko > Ny

as in the previous section.

(c) The strings are A = ko U 09 U &, where
fZ(Ko,...,Kl—l) or (N0—1/2,...,N1—3/2),
so that the deformation of £ to ¢ = 1/2 yields a unitary spherical module. This
means that Ny > K7 in one case, N; > K in the other case.

Asin Type B, Case (a) and (b) yield indefinite signatures on the trivial and adjoint K —type
Ve(1,1,0,...,0). And Case (c) yields indefinite form on V¢(1,1,0,...,0) and V¢(2,0,...,0).
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6.4. Non-spherical case. If 1 > 0, the parameter contains

() o (1)

0 _01 occurs. If the parameter has no spherical part, there is nothing to be
done; the parameter is unitary. If the parameter has a spherical part, there cannot be a o
or else the regularity of the parameter is violated. Lemma 6.3 implies that the Hermitian
form is indefinite on the trivial and adjoint K —types. Both are bottom layer if the lowest
K —type has coordinates greater than one.

The proof of the claim is reduced to the case when the non-spherical parameter is exactly

Suppose (1

(_1 1//22>7 and the spherical parameter contains a og.

The only case when the bottom layer K —type does not detect non-unitarity is in Case
(¢) in Section 6.3, which occurs when there is no kg (due to regularity of \), and a string x;
(¢ > 0) in the spherical parameter such that it is deformed to { = (Nop—1/2,...,N; —3/2).
The case when the spherical part is exactly op U k1 with k1 = (3/2,...,K; — 1/2) and
Ny > K is unitary. Otherwise, we have k; = (3/2,..., K1 — 1/2) and Ny < K; which is
not unitary on the level of bottom layer K —types by Case (b) above, or there is a string &;
in the spherical parameter satisfying k; — 1/2 > 5/2. The fact that k; — 1/2 > 5/2 implies
that the K—types

V4(2,1,0,...,0) and V4(1,1,1,0,...,0)

occur with the same multiplicity in J(\, —sA) and in the unitarily induced module from
the spherical part. Since their restrictions to the Levi component contain K —types with
indefinite form, the conclusion follows.

6.5. Spin Groups. As in Section 4.5, we study genuine representations of G = Spin(2n, C)
in this section. The K —types have highest weights with coordinates in N U +% only, ex-
cept the last coordinate can be —%. As already mentioned, p = (m — 1,...,1,0), so
2X = {n — p} + p must have coordinates of the form N+  only (the last coordinate can be
—%) The integral system for A is type A.

We consider the case wen the lowest K —type of J(Az,Ag) is Spin® = Ve(3,...3,£3).
Using the same arguments as in Section 4.5, all such irreducible modules must be of the
form

(34) JALAR) = IndSy o (Fo ® Fy).
Unless Fy, Fy, are one dimensional, the form is indefinite on the lowest K —type %(%, ceey %)
and ‘adjoint’ K—type W(%, %, el %,$%). In the case when there is only Fj, in (34), and

the GL corresponds to either one of the two subroot system of D,,, one obtains the genuine
unipotent representations with infinitesimal character given in (10).
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7. A POSITIVITY RESULT

In this section, we sharpen the results in Section 5.4-5.6 in [BP]. We investigate the
PRV-components of 7, ® Vi(p) when 7, is a unipotent representation with half-integral
regular infinitesimal character for a classical group.

By [BP, Section 5.4-5.6], all 7, € G4 for Type B, while for Type C,, and D,, miven/Odd €

G4 if and only if n is even/odd. Moreover, the spin-lowest K —type is unique for all such
my’s (this will be verified in Proposition 7.1 below).

Since the K—types of m, are multiplicity free, Theorem 1.6 holds for all 7, € G4 In
order to prove Theorems 1.4 and 1.6 for general 7 € G¢, we need the following refinement
of the results in [BP]:

Proposition 7.1. Let G be a connected complex classical simple Lie group and m, =
J(A, —sA) be a unipotent representation given in Theorem 1.3. If m, € G, then there is
a unique K—type Ve(n) in m, such that § := {n — p} = 2\ — p realizes the minimum of
{0 — p} over the K—spectrum of m,. Furthermore,

(35) mu ® Vi(p) = Vi(8) & P maVA(8"),
816

where mg are positive integers and

!
(36) =0+ Z mia, satisfying m; € Z>o.
i=1
If m, ¢ G4, then all K—types of my ® Ve(p) have extremal weights of the form (36) for §
with norm strictly greater than |2\ — p)|.

Proof. The statement is obvious when m, = triv is the trivial representation. So we assume
Ty is not trivial from now on. Let " be any K —type of m, other than a spin-lowest K —type
n. Put &' := {n' — p}. In view of Theorem 2.2, it suffices to prove that (36) holds for § and
5.
Type By: Let V(') = Vi(a1,a1,. .., 04, 04,0,...,0) be a K—type in m,. Since p =
——

b—a
(n—1/2,n—3/2,...,1/2), the PRV-component ¢’ is, up to the action of W(B,,),

(37) 28’ =(n—2a—1/2,n—2a—3/2,...,1/2,B1,..., Ba,)

The minimum is attained when all B; = 1/2, and this can only be achieved from
n=Mm-1n—-1n-3,....n—2a—1,n—2a—1,0,...,0).

It follows that

(38) §=(n-2a—1,...,1/2,1/2,...,1/2).

Any other K—type must give rise to a ¢’ with at least By > 3/2, and B; > 1/2. The
difference x¢’ — 4, from (37) and (38), is a sum of short positive roots; on each nonzero
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coordinate it is B; — 1/2 times the corresponding short root. The difference zd’ — §’, as in
(37), is clearly a sum of positive roots since the two are conjugate, and ¢’ is dominant.

Type Cy: Here Vi(1) = Ve(2k,0,...,0) or Ve(2k+1,0,...,0) and p = (n,n—1,...,1).
The PRV-component is, up to W(C,),

(39) §=Mm—-1,n-2,....1,|n—-2k]) or (n—1,...,|n—2k—1]).
The minimum is attained at k = 5 if n is even, k = "Til if n is odd. Thus
(40) d=n-1,n-2,...,1,0) or (n—1,n—2,...,1,1).

The argument for Type B applies to derive the conclusion in the statement of the Propo-
sition.

Also, since 0+p is equal to 2\ = (2n—1,...,3,1) ifand only if § = (n—1,n—2,...,1,0),
it also follows that Hp(m®"*") # 0 and Hp(7°%) = 0 if n is even, and the reverse is true if
n is odd.

Type Dy: We only consider b > a > 0 and omit the easier case when b = a. Here

%(77/) = W(ah . e .,0620“0, s 70)7
b

even/odd
u

where ). o is even/odd if m is being considered, and p = (n — 1,...,1,0). Then
the PRV-component, up to the action of W(D,,), is

(41) =Mm—-2a—-1,...,1,0,]n—1—aq|,...,|n — 2a — as,|)

Even though W (D,,) only allows an even number of sign changes, in the case b > a there
is a coordinate equal to 0, so we can change all coordinates to > 0. As in type C,

b=n—-2a-1,...,1,0,...,0) or (n—2a-1,...,1,1,0,...,0),
and Hp(mg'") # 0 if and only if 0 take the first value. We omit further details which are

u

as in Types B and C. g

The above proposition demonstrates a strong positivity result on the K -types appearing
in the tensor product decomposition of m, ® V¢(p) for unipotent representations 7. In fact,
similar calculations have been carried out for other irreducible unitary representations, and
so far there are no counter-examples to the following conjecture, which sharpens Conjecture
1.5 in view of Proposition 2.4:

Conjecture 7.2. Proposition 7.1 holds for any w € Ge.

8. PROOF OF THEOREMS 1.4 AND 1.6

We prove Theorems 1.4 and 1.6 by sharpening the results in Section 2.2 of [BP]. To con-
form to the notation in that section, write my = J(Am, —SAm) for a unitary representation
such that the center of M acts trivially. In particular, when 7y, is 1-dimensional, it is the
trivial representation. This case occurs in all classical types, and is the only case for type
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A and Spin groups. We assume that A, is regular integral dominant for a positive system
Ajpr, and A is regular half-integral. The relations

Am + $Am = fim, 2 Am = pn + Vi,

Am — SAm = Vm, 25 Am = fm — Vm,

)\26/2—'_)\1117 /~L:£+Mm7

SA =&/2 + sAm, V= Uy.

(42)

hold, with s € Wj; € W. The unitary character £ can be assumed dominant for a choice
of A(n). We denote A = Ay UA(n). However A may not be dominant for A, so let A’ be
the positive system for which A is dominant. Since A is dominant for Ay,

Ay C A'NA.

For 7y, we assume in addition that
(i) 7 is unitary,
(ii) A is regular half-integral,
(iii) 7w @ Verm(pm) contains only K N M —types of the form

Sy = 0m + mefy, m, €N, with dy =2\ —
YEA M

By Proposition 7.1, this covers all 7, in Theorem 3.1 with Hp(m,) # 0 for classical types,
and the case of m, = triv for Spin groups.

By Proposition 2.4, the only K -type that can appear in the Dirac cohomology of m must
have extremal weight 7/ := 2\ — p/, where 2p’ is the sum of all positive roots in A’. By
abuse of notations, we write V¢(7') as the K -type with extremal weight 7/. The relation

T =20 —p =t v —p =22 —p =+ pu—p =

(43)

E+0n — wap + po— p' = 0 + (€4 pu) — (wmp + 9),
because wyp = —pm + pn. Furthermore,
(44) wap+p'= Y, B

BEANA(n)
Continuing with the proof of [BP, Theorem 2.4] in Section 2.2,
[ @ Vi(p) : Ve(r)] = [ : Va(7') @ Vi)
Tm @ Cg : Ve(T') v @ Va(p)|m]
mm @ Ce @ Vi(p)las 2 Ve(r') ]
® Ce ® (Virm(pm) ® Cp @ \0) 2 i(7) ]

= [Wm & Vkﬁm(/)m) ® (C§+Pn ® /\ n’ V?(T )|M]

[
= |
= |
= [Tm
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The penultimate step above uses [BP, Lemma 2.3], and that A°*n* consists of weights of
the form — Za, where S is a subset of the roots in A(n).
aEesS

Proposition 8.1. Let 7 = Ind%(Cg ® mm) be an irreducible, unitary representation with
Tm satisfying (i)-(iii). Then

(46) [Tm @ Verm (pm) @ Ceyp, @ /\ 0" Ve(7) ] = [T @ Verm (pm) = Ve (1))
(Recall that Hp(mw) is either zero or a multiple of Virm(0ar))-

Proof. We use (iii); the fact that mm ® Vim(pm) is a sum of KNM —types of the form

(%\/[ =0y + Z myy.
YEANM

Tensoring with Cey,, ® A*n*, the K N M-types that appear must have highest weights
of the form
Sp+E+pm—) a
a€cs
for some S C A(n).

Combining the arguments above, any m -type appearing on the left module in (46)
must have highest weights of the form

(47)
5§\4+§+pn—2a
aesS
=+ > my|HEam—| D at > B
YEA N, My>0 aeSNA/ BeSN(=AY)
S CTED V SR D DEE TR DI S D
YEAM, My 20 a€A(n)NA’ Bre(Am)\S)NA’ BeSN(—AY)
SR INE ST WED
YEA M, m»YZO B'€Sy BES2

where S7 := (A(n) \ S)N A" and Sy := SN (-A").
Consider the squared norm of the weight in (47):
(48)

2
T+ Y my+ Y 8= 8 = 1P+

YEAN, M0 Bes B€Sq

2<T’, > mw+zﬂ'—zﬁ>+ 2 ijLZB'_ZB?

YEA N, my2>0 B'esS BES YEA N, my2>0 B'esS BES
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By construction, 7’ is a dominant weight in A’. On the other hand, we have seen from
above that

yelAycAy, pged; —peA.
Thus (7/,7), (', 8), (', —B) are all non-negative. Therefore,
2
T Y mey > A=Y 8 =
YEAN, m~y2>0 B'est BES2

Equality occurs exactly when 0}, = dps, and Sy, Sp are both empty. The latter condition
further implies that S = A(n) N A"

Since Vi(7')[as has KNM —types of norm less than or equal to 7/, the left module in
(46) contains Vinm(7') with multiplicity equal to [Tm ® Vinm(pm) @ Veam (0ar)]- O

We now present the proof of Theorem 1.4 and Theorem 1.6 for all 7 = Ind§;(Ce ® 7,,)
in Theorem 3.1. The same argument holds for Spin groups with m, = triv. It suffices to
prove

1 ifm, € M?

(49) [n@%(p):%(%—p)]:{o ity ¢ T4

The special case when M = G and m = 7, is the content of Section 7.
By applying mn = 7, € M? to (45) and (46),

(7@ Ve(p) : V()] = [mu ® Verm(pm) : Verm (a1)] -

When w, € M 4 the proof in Proposition 7.1 implies that 7, has a unique spin-lowest
K —type and hence the right hand side of the above equation is equal to 1.

The case Hp(m,) = 0 occurs in Types C and D only. By the proof of Proposition 8.1,

in particular Equation (47), the K N M-types appearing in the left module on the last line
of (45) has highest weights

(50) T+ > myy+ Y B =) Be,

YEANM, my20 p'es BES2

where e; is the unit vector corresponding to the bolded 1 in the proof of Proposition 7.1.
Consider the sum of coordinates of the expression in (50): since all the roots are of the form
2e; and/or e; = €; in Type C' and D, the sum of coordinates in (50) must be of opposite
parity with that of 7/. Therefore, the multiplicity [r ® Vi(p) : Ve(7')] in (45) is zero.
Hence (49) holds, and this completes the proofs of Theorems 1.4 and 1.6. O
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APPENDIX A. THE NOTION OF UNIPOTENT REPRESENTATION

James Arthur made conjectures in the 1980’s which state (roughly) that automorphic
representations occurring in the residual spectrum of a locally symmetric space associated
to a number field F', should be associated to ¥ G—equivalence classes of homomorphisms

®: Wp x SL(2) — VG

where Wr is the Weil group. There are additional conditions such as the image not
contained in any proper Levi component, and ®(Wr) be bounded. We refer to [A] for
a very detailed analysis. For F' a local field, one expects such representations to be the
building blocks of the unitary dual. The homomorphism ® |cx determines a semisimple
orbit and, in the case of ' = C (which is the case in this paper) should correspond to
unitary induction. The infinitesimal character conjectured by Arthur is

aw(1(" D))

When @ |y, = Triv, the infinitesimal character is Vh/2 where {Ve, Vh, ¥ f} is a Lie triple
associated to ®(SL(2)). In the general case, the data for ® correspond to a ¥G—orbit,
semisimple times unipotent.

In [BV], for the above reason, the special case ®|cx = T'riv is studied. These correspond
to unipotent conjugacy classes. A set of representations m associated to ® are assumed to
satisfy

e Ann(7w) C U(g) is maximal subject to the prescribed infinitesimal character.

These representations are called special unipotent Arthur packets associated to the nilpotent
orbit in Vg determined by ®. The main result is that these packets satisfy the properties
conjectured by Arthur.

The building blocks of the unitary dual is conjectured to be the packets associated to
P satisfying ® |yy,= Triv and such that the orbit of Ve does not meet any proper Levi
component. It is clear that this cannot be the case; the best known example is G =
Sp(2n, C) and the Segal-Shale-Weil (also called oscillator) representation. It is unitary, not
unitarily induced from any representation on a proper Levi component, and its infinitesimal
character is not of the form Vh/2.

For GL(n,C), the unitary dual is determined in [V1], and for the other classical groups
in [B1]. The building blocks for GL(n, C) are 1-dimensional unitary representations of Levi
components. For the other groups, a set of building blocks is identified explicitly in [B1].
They can be characterized as irreducible representations which are

e unitary with half-integral infinitesimal character,
e their annihilator in the universal algebra is maximal for the given infinitesimal
character.

They have properties analogous to the Arthur packets of special unipotent representations.
A minimal set of building blocks requires that the representations not be unitarliy induced
irreducible from proper Levi components. In [B1] the class of unipotent representations is
extended to include some unitarily induced representations from proper Levi factors (and
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even some representations in complementary series which fall under the category of special
unipotent). This is in line with the parameters introduced by Arthur where the image of
® meet a proper Levi component. A parametrization in terms of the homomorphism ®
is given in [BV, Chapter 11]; the infinitesimal character is modified according to certain
elements in the centralizer of the Lie triple.

A different parametrization, motivated by the orbit philosophy is in [B3]. It is in terms of
nilpotent orbits O C g. It is shown there that they can be obtained by iterating ©—lifts and
tensoring with unitary characters starting with a 1-dimensional representation on O(n, C)
or the trivial of Sp(2n,C).

Another definition of unipotent representations is given and studied in [LMM]. It is our
understanding that the representations listed below match those in [LMM].

The packets associated to Vh/2 are called special unipotent. For the more general infin-
itesimal characters, they are called unipotent. To be completely clear what we mean by
unipotent representation, the list of infinitesimal characters is in the next section.

A.1. Parameters of Unipotent Representations. We rely on [BV] and [B3]. For each
O C g we will give an infinitesimal character (Ao, A\o), and a set of (Ao, wAp) such that
{L(Ao,wAp)} are the unipotent representations with asymptotic support O. In all cases
Ao and —\p are in the same W —orbit.

Main Properties of Ap. Suppose II is an irreducible representation with infinitesimal
character (Ao, Ao). Then \p and IT must satisfy:
(1) Ann(IT) C U(g) is the maximal primitive ideal 7, with infinitesimal character
(Ao, Ao), -
(2) {II : Ann(Il) = Z,,}| =| A(O) |, where A(O) is the component group of the
centralizer of an e € O,
(3) II is unitary.
We call such representations unipotent. The list of Ao is given below. The choices satisfying
(3) rely on the determination of the unitary dual for classical groups in [B1]. The parameter
will always have integer and half-integer coordinates, and the corresponding system of
integral co-roots is maximal.

Definition A.1. A special orbit O (in the sense of Lusztig) is called stably trivial if
Lusztig’s quotient A(O) equals the full component group A(O).

For a definition and discussion of A(Q), see [L], chapter 13.

The set of unipotent representations as defined above contains the building blocks of
the unitary dual. They are attached to O which are not induced (in the sense of Lusztig-
Spaltenstein) from any proper Levi component. For O special (in the sense of Lusztig)
and not induced from a nilpotent orbit on a proper Levi component, Ao = h(¥0)/2 where
VO is the Barbasch-Spaltenstein-Vogan dual of O. For other special @ which are induced
from proper Levi components, condition (2) may not be satisfied if they are not stably
trivial. See the example below. The component group A(Q) depends on the isogeny class
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of G. To make a definition that includes all cases, one would have to take the isogeny
class into account. We leave this for future considerations. It is our understanding that a
definition of unipotent closely related to the one above is considered in [LMM] addresses
this problem.

The partitions in the next examples denote rows.

Example A.2.

o O = (2222) C sp(8) is stably trivial, A(O) = A(O) = Zs, \o = (2,1,1,0). In this case
VO corresponds to the partition (531), and Ao = h(¥O)/2.

o O = (222) C sp(6) has dual orbit VO corresponding to (331) but is not stably trivial;
A(O) = Zy, while A(O) 2 1. In this case h(VO)/2 = (1,1,0), and for this infinitesimal
character, conditions (1) and (3) are satisfied, but (2) is not satisfied. The choice of
infinitesimal character in this case will be Ao = (3/2,1/2,1/2). There are two parameters,

A\ (3/2 172 1/2 ; 3/2 1/2 1/2

Ar) T \3/2 1/2 1/2 an 1/2 3/2 —1/2
Note that (1,1,0) is in the root lattice and drops down to the adjoint group, (3/2,1/2,1/2)
while is not, so genuine for Sp(2n,C).

e O = (211) in sp(4,C) is not special in the sense of Lusztig. The parameter is \op =
(3/2,1/2) and the representations are the two components of the oscillator representation:

A\ _ (3/2 1/2 d 3/2 1/2

Ar) T \3/2 1/2 an 3/2 —1/2
A.2. Type A. The group G is GL(n). Nilpotent orbits are determined by their Jordan
canonical form. An orbit is given by a partition, i.e. a sequence of numbers in decreasing
order O +— (nq,...,ng) that add up to n. Let (mq,...,m;) be the dual partition. The
component group of O is trivial. The infinitesimal character is

Aoy — m1—1 m1—1 ml—l ml—l
0= 5 sy 5 s 5 5 .

The orbit is induced from the trivial orbit on the Levi component m of a parabolic subalge-
bra p = m+n with m = gl(my) x - - - x gl(m;). The corresponding unipotent representation
is spherical and induced irreducible from the trivial representation on the same Levi com-
ponent. All orbits are special and stably trivial.

A.3. Type B. We describe the case SO(2m + 1). For O(2m + 1) there are twice the
parameters, the parameters for SO are tensored with sgn.

A nilpotent orbit is determined by its Jordan canonical form (in the standard represen-
tation). Then O is parametrized by a partition O <— (n,...,n) of 2m + 1 such that
every even entry occurs an even number of times. Let (my, ... 7m’2p,) be the transpose
partition (add an m’Qp, = 0 if necessary, in order to have an odd number of terms). If O is
represented by a tableau, these are the sizes of the columns in decreasing order. If there
are any m’2j = m’Qj 41, then pair them together and remove them from the partition. Then
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relabel and pair up the remaining columns (mg)(m1,ms) ... (map—1mgp). The members of
each pair have the same parity and mg is odd. Ao is given by the coordinates

m0—2 1
(mp) +— ( 5 ,...,5),
/ /
My; — 1 Mo — 1
(51) (m,2] :m/2j+1) — (JTv---a—JT)
mMo;— mo; — 2
(in_lin) <—>( 222 1,...,—227).

P - .
In case my; = my; 4, O is induced from an orbit

m/ . 4 m/ .
Om Cm =s50(%) x g[(w)
where m is the Levi component of a parabolic subalgebra p = m+n. Oy, is the trivial nilpo-
tent on the gl—factor. The component groups satisfy Ag(O) = Ap(On). Each unipotent
representation is unitarily induced from a unipotent representation attached to Oy,.
Similarly if some mo;_1 = mg;, then O is induced from a

moj—1 + 1M2;
2

Here Ag(O) % Ap(Ow), but each unipotent representation is (not necessarily unitarily)

induced irreducible from a representation on the Levi component m, unipotent on so(x),

and a character on the gl-factor.

Om Cm = s0(x) % gl( ), (0) on the gl — factor.

The stably trivial orbits are the ones such that every odd sized part appears an even
number of times, except for the largest size. An orbit is called triangular if it has partition
O+—(2m+1,2m—-1,2m—1,...,3,3,1,1).

We give the explicit Langlands parameters of the unipotent representations. There are
| Ac(O)| distinct representations. Let
(ky..oyky.ooy1,..01)
——
Tk 1
be the rows of the Jordan form of the nilpotent orbit. The numbers r9; are even. The
reductive part of the centralizer (when G is the orthogonal group) of the nilpotent element
is a product of O(rg;41), and Sp(r2;).
The columns are paired as in (51). The pairs (my; = my;, ) contribute to the spherical
part of the parameter,

mbh.—1 mbh.—1
AL — ——=2
52 my: = mhiiq) < = 2 ’ ’ 2 .
( ) ( 2j 2]—|—1) AR mh,—1 _méj—l
—5— e —5—

The singleton (mg) contributes to the spherical part,

mo—2

(5) o) (na 0 1)),

3 g e N
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Let (m1,...,mp) with n; = %1, one for each (mg;—1,m2;). An n; = 1 contributes to the

spherical part of the parameter, with coordinates as in (52) and (53). An n; = —1 con-
tributes
m2i-1 mait2  mg; _mgi=2
=L . . s e 5

If mg, = 0, 0, = 1 only for SO.

Explanation.

(1) Odd sized rows contribute a Zs to A(O), even sized rows a 1.
(2) When there are no m’zj = méj 11, every row size occurs. The inequalities

oo (maoi—1 > ma;) > (Maoig1 > maiye) ...

imply that there are mg; — mo;+1 rows of size 2i + 1. Each pair (mo;—1 > may;)
contributes exactly 2 parameters corresponding to the Zgy in A(O).

(3) The pairs (my; = mj; ) lengthen the sizes of the rows without changing their
parity. The component group does not change, they do not affect the number of
parameters.

As already mentioned, when G = O(2m + 1, C) the unipotent representations are obtained
from those of SO(2m,C) by lifting them to O(2m, C), and also tensoring with sgn.

In case mo;_1 = my; even, there is another choice of parameter:

mo;—1 — 1 me; — 1
(55) (Magi—1 = ma;) 4 (2121 —27)

The representations are unitarily induced irreducible from representations of the same type
on Levi components GL(2mg;—1) x SO(2n + 1 — 2mg;_1). The number of parameters no
longer matches |A(O)|, but special unipotent representations are included.

A.4. Type C. A nilpotent orbit is determined by its Jordan canonical form (in the stan-
dard representation). It is parametrized by a partition O «— (nq,...,ng) of 2n such that
every odd part occurs an even number of times. Let (cf,... 7c’2p,) be the dual partition
(add a c’2p, = 0 if necessary in order to have an odd number of terms). As in type B,
these are the sizes of the columns of the tableau corresponding to O. If there are any
chj_1 = Cp; pair them up and set aside. Then relabel and pair up the remaining columns
(coc1) ... (cap—2c2p—1)(c2p). The members of each pair have the same parity. The last one,
Cop, is always even. Then form a parameter

Coi — 1 Co5 — 1
(56) (0/2]'71 = C/2j) ( J2 IR ]2 )s

€2 Coia1 — 2
(57) (02i02i+1) — (%, ey —2%),
(58) Cop (221,

77.--
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The nilpotent orbits and the unipotent representations have the same properties with
respect to these pairs as the corresponding ones in type B.

The stably trivial orbits are the ones such that every even sized part appears an even
number of times.

An orbit is called triangular if it corresponds to the partition (2m,2m,...,4,4,2,2).

We give a parametrization of the unipotent representations in terms of their Langlands
parameters. There are | Ag(QO) | representations.
Let

be the rows of the Jordan form of the nilpotent orbit. The numbers rg;41 are even. The
reductive part of the centralizer of the nilpotent element is a product of Sp(rg;11), and
O(ng).

The elements (C’Qj_1 = c’Qj) and cg, contribute to the spherical part of the parameter as
in (52) and (53). Let (m1,...,7np) be such that n; = £1, one for each (cz;, c2i+1). Ann; =1

contributes to the spherical part, according to the infinitesimal character. An 7; = —1
contributes

C2i C2i4+1+2 C2i41 _ c2ip1—2

2 i e ’ 2 2 “ e 5 72
(59) cai Cc2i41+2  c2i41—2 _ C2i41

R 5 5 cee =5

The explanation is similar to type B.

In case c9; = c9;11 odd, there is another choice of parameter:

coi—1 — 1 coi — 1
(60) (c2i = coit1) +— (%a"-a_ 222

).

The representations are unitarily induced irreducible from representations of the same type
on Levi components

GL(2cg; + 1) x Sp(2n — 2¢y;). The number of parameters no longer matches |A(O)|, but
special unipotent representations are included.

A5. Type D. We treat the case G = SO(2m). A nilpotent orbit is determined by its
Jordan canonical form (in the standard representation). It is parametrized by a par-
tition O <— (ny,...,nk) of 2m such that every even part occurs an even number of
times. Let (mg,...,mj, ;) be the dual partition (add a msj, ; = 0 if necessary), the
sizes of the columns of the tableau corresponding to O. If there are any my; = mj;
pair them up and remove from the partition. Then pair up the remaining columns
(mo, map—1)(m1, ma) ... (map—3,map—2). The members of each pair have the same parity
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and mg, mg,—1 are both even. The infinitesimal character is

/ !/
(m/2j = m/2j+1) A (]T ceey _]T
-2 _
(61> (momzp_l) — (m02 ey —%)’
mo;_ mMo; — 2
(mai—1ma2;) ( 2; S - 212 )

The nilpotent orbits and the unipotent representations have the same properties with
respect to these pairs as the corresponding ones in type B. An exception occurs for G =
SO(2m) when the partition is formed of pairs (mj; = mj; ;) only. In this case there are
two nilpotent orbits corresponding to the partition. There are also two nonconjugate Levi
components of the form gl(mg) x gl(m5) x ... gl(my, ,) of parabolic subalgebras. There
are two unipotent representations each induced irreducible from the trivial representation
on the corresponding Levi component.

The stably trivial orbits are the ones such that every even sized part appears an even
number of times.

A nilpotent orbit is triangular if it corresponds to the partition (2m—1,2m—1,...,3,3,1,1).

The parametrization of the unipotent representations follows from types B,C, with the
pairs (m’QJ = m’2j +1) and (mo, map—1) contributing to the spherical part of the parameter
only. Similarly for (mg;—1,mg;) with ¢; = 1 spherical only, while ¢, = —1 contributes
analogous to (54) and (59).

The explanation parallels that for types B, C.

When G = O(2m, C) the unipotent representations are obtained from those of SO(2m, C)
by lifting them to O(2m, C), and also tensoring with sgn. In the case when all mj; = mj; 4
the representations associated to the two nilpotent orbits have the same lift, and it is invari-
ant under tensoring with sgn. Otherwise tensoring with sgn gives inequivalent unipotent
representations.

As in types B,C, when meo;_1 = meo; is even, there is another choice of infinitesimal
character:
mo;—1 — 1 mo; — 1
(62) (mai—1 = may) +— (— > 7---7—17)'

The representations are unitarily induced irreducible from representations of the same type
on Levi components GL(2mg;) x SO(2n — 2mg;—1). The number of parameters no longer
matches |A(O)], but special unipotent representations are included.

APPENDIX B. SOME ATLAS CALCULATIONS

In this section, we illustrate some of the results on signatures on cx-relevant K—types
considered in Sections 4-6 using the software atlas [ALTV, At]. The calculations are
carried out using the function print_sig irr_long, which is available at

http://klein.mit.edu/~dav/atlassem/.
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B.1. Section 4.2, Equation (21). Let G = SO(7,C), and A = (—1/2;—-2,—1). The
atlas is

atlas> set G = complexification(S0(7))

atlas> set all = all_parameters_gamma(G, [4,2,1,4,2,1]1/2)

atlas> all[0]

Value: final parameter(x=47,lambda=[5,3,1,5,3,1]1/2,nu=[(4,2,1,4,2,11/2)

The signature of some of the K—types are given by:

atlas> print_sig_irr_long(all[0],KGB(G,0),15)

sig x lambda hw dim
s o [ 1, 1, 1,-1,-1,-11/2 [-2, -1, 0, 2, 1, 01 1
s o [ 1, 1, 1, 1, 1,-11/2 [-2, -1, 0, 3, 2, 01 21
1 o0 [1,1,1,1,1,11/2 [ -2, -1, 0, 3, 2, 1] 35

The K—types of J(\, —sA) are in the column labelled hw. More precisely, by adding the
ith-coordinate and the (i + rank(G))"*-coordinate of the vector in the hw column, one can
get the highest weight of a K —type in usual coordinates. For example, [-2,—1,0,3,2,0]
corresponds to the highest weight (—2+3, —1+2,0+0) = (1, 1,0) in the usual coordinates.

The sig column represents the signature of the Hermitian form of J(A.e;, —sAqe;). The
form is definite if and only if the entries of the sig column are all scalars or all scalar
multiples of s. In particular, the above output shows that the form is indefinite on the
K—types V¢(1,1,0) and V4(1,1,1), which matches Equation (21).

B.2. Section 4.3, Case (c). Let G = SO(9,C) and A\ = (—5/2,-3/2,—1/2) U (2). We
are in the setting of Case (c). Its K —type signatures are given by

sig x lambda hw dim

1 o [1,1,1,1,-1,-1,-1,-11/2 [-3,-2,-1, 0, 3, 2, 1, 0] 1

1 o [1, 1,1, 1,1, 1,-1,-11/2 [-3,-2,-1, O, 4, 3, 1, 0] 36

s o [3,1, 1,1, 1,-1,-1,-1]1/2 [-2,-2,-1, 0, 4, 2, 1, 0] 44

1 o [3,3,1,1,1, 1,-1,-11/2 [-2,-1,-1, 0, 4, 3, 1, O] 495

s o (3,1, 1,1, 3, 1,-1,-11/2 [-2,-2,-1, O, 5, 3, 1, 0] 910
In this case, the K—types V¢(1,1,0,0) and V(2,0,0,0) have different signatures.

B.3. Section 5.4, non-spherical Type C. Let G = Sp(8,C) and parameter (_11//22> U

(—2,-1)U(3/2). The atlas code for this parameter is

atlas> set G = Sp(8,C)

atlas> set all = all_parameters_gamma(G, [4,3,2,1,4,3,2,1]1/2)
atlas> LKT(all[1])

Value: (KGB element #0,[ 1, O, 0, 0, 0, O, O, 0 1/1)

The signatures of the K —types are:
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sig x lambda hw dim
1 o [1,0,0,0,0,0,0,01/10 [ -3,-3,-2,-1, 4, 3, 2, 1] 8

s o [1,1,1,0,0,0,0,01/1 [ -3,-2,-1,-1, 4, 3, 2, 1] 48
The K —types V¢(1,0,0,0) and V¢(1,1,1,0) have different signatures.

B.4. Section 6.2, Equation (33). This is an example where the Hermitian form is indefi-
nite on a single K —type. Let G = SO(6, C) and the parameter be given by (—3/2,—-1/2;0).
Then the signatures are given by:

sig x lambda hw dim

1 o [0, 0, 0,0,0,01/1 [ -2, -1, 0, 2, 1, 01 1

i+s 0 [ 1, 1, 0, 0, 0, 0 1/1 [ -1, 0, O, 2, 1, 0] 15

1 o [1, 0, 0,1, 0, 01/1 [ -1, -1, O, 3, 1, 0] 20

s o [1,1, 1,1, 0, 01/1 [ -1, O, 1, 3, 1, 0] 45

The K—type Vi(1,1,0) has indefinite signature as in Equation (33) with an odd number

of spherical coordinates.

_11//22>u(—2, ~1,0)U

(5/2) be the parameter, where the spherical part satisfies Case (c) of Section 6.3. Then
the signatures of the K —types are given by:

B.5. Section 6.4, non-spherical Type D. Let G = SO(10,C). Let (

sig x lambda hw dim

s o [1,0,0,0,0,0,0,0,0,0 1/1 [-3,-3,-2,-1,0,4,3,2,1,0 1 10

s o [1,1,1,0,0,0,0,0,0,0 1/1 [-3,-2,-1,-1,0,4,3,2,1,0 1 120

i+2s o0 [1,1,0,0,0,1,0,0,0,0 1/t [-3,-2,-2,-1,0,5,3,2,1,0 1 320

i+s 0 [2,0,0,0,0,1,0,0,0,0 1/1 [-2,-3,-2,-1,0,5,3,2,1,0 ] 210

s o [1,1,1,1,0,1,0,0,0,01/0 [-3,-2,-1,0,0,5,3,2,1,0 ] 1728

The K—types V¢(1,1,1,0,0) and V4(2,1,0,0,0) have opposite signatures. Moreover, this

is the only place where the signatures are dlfferent on the level of cx-relevant K —types.
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