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Abstract—When studying the research literature, one comes
to the impression of code search engines as an essential software
development tool that developers use regularly to accomplish
their daily tasks. Driven by this impression, researchers primarily
focus on improving the performance of code search. Nevertheless,
as we argue in this paper, this impression is mostly unfounded. As
a result, developers and researchers hold dissimilar perspectives
on what code search engines are and their most important
characteristics, with developers’ perspectives and the state of
the art often diverging widely.
This paper aims at reconciling these divergent perspectives

by drawing a comprehensive picture of code search engines, as
reflected in developers’ experiences and perspectives as well as
the state of the art. To that end, we first survey more than 100
software developers to ascertain their usages of and preferences
for code search engines. We then review the state of the art on
this topic by analyzing academic papers, industry releases, and
open-source projects. Finally, we juxtapose the results of our two
investigations to synthesize a call-for-action for researchers and
industry practitioners to better meet the demands of software
developers when it comes to searching for code. Our findings
can be used to better align the state of the art and practice of
code search engines, leading to wider adoption and more effective
use of this powerful software development tool.
Index Terms—code search engines, user survey, domain anal-

ysis

I. INTRODUCTION

Most people find the concept of programming
obvious, but the doing impossible.
——————————Alan Perlis (1922–1990)

The realities of the modern software development market-
place require software to be built quickly and reliably. Hence,
it is natural to believe that, to meet both of these objectives,
developers would be eager to take advantage of any software
development tools, especially code search engines, as they
assist developers in finding code snippets that can be either
reused in a project or easily adapted for the project’s needs.
Based on this understanding, code search engines have become
an important focus area of numerous academic research and
industry projects, whose outcomes include various code search
engine prototypes [2], [7], [10], [12], [15], [17]–[20], [22],
[23], [25], [28] and commercial products [4], [6], [14], [16], all
of which differ in their respective search strategies, application
scenarios, and execution performance.
However, upon a closer examination, the impression of

developers relying on code search engines in their daily tasks

turns out to be unfounded. In other words, despite their
potential to drastically improve programmer productivity, code
search engines still have not become an integral part of the
toolset of professional software development. We argue that
this situation is a result of researchers being unaware of what
developers need when it comes to searching for code.
To address this problem, this paper presents the results of
our investigation, whose goal is to draw a comprehensive
picture of code search engines from the perspectives of both
researchers and developers by answering these questions:
RQ1:How is the termcode search enginecurrently

understood by developers and researchers?RQ2:In which
scenarios are code search engines typically used in practice?
How well does the state of the art cover these scenarios?RQ3:
Which characteristics of code search engines do developers
find essential, and which features they would like to see
introduced? How well has the state of the art code addressed
these developers’ perspectives for code search engines?
To answer these questions, we (1) surveyed more than
100 software developers who come from dissimilar technical
backgrounds, with different lengths of experience, and from
several application domains; (2) systematically analyzed a
substantial volume of major code search engines, drawing our
sources from academic papers, industry releases, and open-
source projects. In step (1), we survey developers about their
usage of and preferences for code search engines, extracting
new insights and unexpected opinions. In step (2), we first
extract common characteristics from the investigated products,
generalizing their definition and workflow. We then categorize
and compare the engines’ specific search strategies, typical
application scenarios, and execution performance.
In summary, we discovered that developers’ perspectives
and researchers’ foci tend to diverge. They happen to disagree
even on what constitutes a code search engines, with develop-
ers considering general-purpose search engines (e.g., Google)
or code repositories (e.g., GitHub) as code search engines
rather than the traditional state of the art. Although the state
of the art focuses on the most salient development scenarios,
some important cases remain unaddressed. We identified a
strong preference that is mostly neglected by the state of the
art in supporting code bases in multiple languages and input
code sizes of wider variety.
The contribution of this paper is three-fold:
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(1) A survey of software developers’ perspectives on
using code search engines: we have identified how software

developers define code search engines, how they search for

code, which properties of code search engines they find most

important, and which features they would most like to see.

(2) A study that expands the breadth and depth of
knowledge of the state of the art of code search engines:

we have studied a large representative set of code search

engines not only to extract their common characteristics, but

also to summarize their search strategies, usage scenarios, and

execution performance.

(3) A series of findings and insights that bridge the gap
between the state of the art of code search and developers’
perspectives: we have analyzed both the knowledge gained

from the study and the survey, identifying the mismatches

between them and how they can be bridged.

II. SURVEY OF DEVELOPERS’ PERSPECTIVES

In this section, we describe the survey we conducted to

understand the perspectives of software developers on code

search engines.

A. Survey Methodology

1. Challenges & Solutions. As we strove to draw a com-

prehensive picture of how software developers perceive code

search engines, we faced the following challenges:

Challenge-1: how to obtain a representative population of
developers to survey? We conducted this survey with the goal

of revealing the common perspectives of software developers

when it comes to their experiences with code search engines.

Hence, we had to ensure that our survey takers come from

diverse coding backgrounds and possess dissimilar levels of

programming expertise. However, without explicitly selecting

participants, an online survey may generate a large volume of

useless information.

Solution: we created an invited survey sent to hundreds

of developers, including employees of several renowned IT

companies (i.e., to cover senior developers) as well as CS stu-

dents, both undergraduate and graduate (i.e., to cover novices

and intermediate). Since these participants come from diverse

backgrounds, have different lengths of coding experience, and

use dissimilar primary programming languages, we believe

the population of developers that participated in our survey

is representative to a large extent.

Challenge-2: how to ascertain what comes to the mind
of developers when they encounter the term “a code search
engine”? As explained in § I, one of our research questions is

whether researchers and developers mean the same thing when

referring to “a code search engine.” We could have asked the

surveyed developers to define “a code search engine.” How-

ever, this strategy would be ineffective for those developers

who understand code search engines only vaguely or are even

unaware of their existence.

Solution: we are inspired by the Theory of Natural Lan-

guage Construction posited by Ludwig Wittgenstein. That is,

“the meaning of a word is its use in the language [30].”

Put differently, a word is not only defined by its textual

representation but also by the set of usages of this word in

the language. Similarly, “a code search engine” can also be

defined by its usage in developers’ daily activities. Thus, in

our survey questions, we use the term “a code search engine”

without defining it and ask participants to describe their typical

scenarios of using a code search engine. Then, we examine the

described scenarios to understand what developers mean by “a

code search engine.”

2. Data collection. We invited about 1500 developers to

take the survey, and about 114 of them accepted our invitation.

The survey takers came from two main groups: IT companies

and CS students, while three channels served as venues for

disseminating the invitation: mailing lists for companies and

students (about 1400 people), company managers requesting

their subordinates to participate (the number of subordinates is

unknown); and direct contacts with company employees who

were personal acquaintances (about 100 developers). Note that,

due to our survey being anonymous, the response rates of

participants are hard to ascertain. Based on the participant-

reported lengths of coding experience, only 6.14% of them

had 0-2 years experience, 22.81% more than 10 years, 38.60%

5-10 years, and 32.46% 2-5 years. Based on these responses,

we inferred that the majority of the survey takers must have

been employed by technology companies, so their coding

experience was substantially more extensive than that of a

typical CS student.

TABLE I: Survey questions.
Q1 - How long have you been writing code?
Q2 - What is your primary programming language?
Q3 - Do you use a code search engine in your programming pursuits?
Q3-1 - If yes, then which one?
Q3-2 - If no, why not?
Q4 - Which of the following scenarios best describes
how you typically use a code search engine
For Q5-Q8, How much do you agree with the following statement:
Q5 - when using a code search engine,
how fast it returns its results is the most important criteria
Q6 - Only a highly accurate search engine would be helpful
in my software development activities
Q7 - It is important for a search engine
to support multiple programming languages
Q8 - It is important for a search engine to
be able to work with input of all sizes
(from extra short code snippets to large program portions)

3. Survey questions and their purpose. Table I shows eight

questions we sent out for our survey takers. The rationale

behind this survey design is as follows:

Q1 and Q2 collect a developer’s technical background and
programming expertise. Specifically, for Q1, we provide four

options for the length (i.e., “l”) of a developer’s programming

experience: 0 to 2 (i.e., 0 < l ≤ 2), 2 to 5 (i.e., 2 < l ≤ 5),

5 to 10 (i.e., 5 < l ≤ 10), and more than 10 years (i.e.,

l > 10). For Q2, we provide seven options, six for popular

programming languages and one for user-customized input.

We select these six languages based on their typical application

domains and developers: Python for AI developers, JavaScript

for Web developers, C/C++ for system developers, Scratch

for CS education developers and programming novices, and

Java for the rest of the developers (because of its enormous

application domain). Mandatory for all participants, these two
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questions make it possible to reveal the information if the

surveyed developers are representative.

Q3 and Q4 collect a developer’s practices of using code
search engines. Specifically, for Q3, we investigate if code

search engines are widely used in a developer’s programming

pursuits (Q3), and which engines are they used (Q3-1). For

those developers who claim not to use any code search

engine, we aim at understanding why they find search engines

unnecessary (Q3-2). For Q3, we provided three predefined

reasons and 1 option for customized input. The predefined

reasons include: “I am unaware of search engine existence;”

“The ones that I tried were not returning useful results;” “I

am too busy to learn how to use a search engine.” For Q3-1

and Q3-2, we provided customized input only.

For Q4, our target is to unveil scenarios of using code search

engines from the end user’s perspective. Hence, we ask our

survey takers to specify how they typically use a code search

engine or select from four pre-defined scenarios: “I have a

piece of code that I don’t know how to use or am experiencing

problems with, so I’d like to search for usage examples;” “I

want to implement a certain functionality but do not know how,

so I’d like to search for code that matches my needs;” “I use

code search engines for both of the two scenarios above;” “I

never use code search engines in my programming practices.”

Q5 to Q8 collect a developer’s preferences for code search
engines. By analyzing the research literature, we found that

prior works usually focus on improving code search engines’

performance in terms of execution time and accuracy. In

addition, obtaining an acceptable performance with a small

amount of input and supporting different languages are also

popular research directions for code search engines. Hence,

we designed four survey questions that focus specifically on

these four characteristics of code search engines (i.e., execu-

tion speed, accuracy, multi-language support, and input size.)

Specifically, Q5 surveys a developer’s opinion on code search

engines’ execution speed, Q6 on accuracy, Q7 on supporting

multiple programming languages, and Q8 on input size. For

each question, the given five agreement levels “strongly dis-

agree,” “disagree,” “neutral,” “agree,”and “strongly agree.”

B. Survey Results and Findings

Recall that the survey collected 114 responses, which con-

tained information about developers’ technical background,

usage of, and preferences for code search engines. Note that

some survey takers may have chosen not to answer all eight

questions. Hence, for each question, the response may be <=
114. We discuss our survey results in turn next.

1. Technical background: Q1 and Q2 received 114 valid
responses, whose analysis revealed that indeed the survey
takers came from a wide spectrum of technical back-
grounds. For the length of programming experience, 22.81%

of our participants have more than 10 years, 38.60% 5-10

years, 32.46% 2-5 years, and 6.14% 0-2 years. For their

primary programming language, Python is the most popular

language, with 34.21% of our participants, 20.18% for Java,

5.26% for JavaScript, 19.30% for C, 10.53% for C++, 0 for

Scratch, and 12% for other languages (i.e., C#, MATLAB,

GO, GOlang, Smalltalk, Rust, and Scala.)

2. Usage of code search engines: We obtained 113 responses

for Q3. Our results and findings are discussed as follows:

Results of Q3: To our surprise, a considerable amount of

participants (44.25%) do NOT use code search engines in their

programming practices.

Results of Q3-2: When asked as to why they do not use

code search engines, 60% of them pointed out that they were

unaware of code search engine existence, 8% complained that

the engines fail to return useful results, 2% explained that

their business prevented them from learning how to use a code

search engine, 4% said they exclusively use Google or Github

to search for code, and 20% did not provide a reason.

Finding-1 Code search engines are neither widely
known nor used: 44.25% of surveyed developers

claimed NOT to use code search engines at all. More-

over, 60% of them did NOT even know that search

engines existed.

Results of Q3-1: More interestingly, among the participants

who do use code search engines (55.75%), 15.87% of them

selected Google1, 31.75% Github, 20.63% Stack Overflow,

12.70% OpenGrok/Grok, 11.11% for others (e.g., Gerrit,

Eclipse, Intellij), and 19.04% left unspecified.

Finding-2 When it comes to searching for code,
developers use a variety of tools rather than spe-
cialized code search engines: although claiming to

“to use code search engines,” the survey takers ended

up using general-purpose search engines (i.e., Google),

code repositories (i.e., GitHub), IDEs (e.g., Eclipse),

Q&A websites (i.e., Stack Overflow), rather than spe-

cialized code search engines (i.e., OpenGrok/Grok).

Results of Q4: We obtained 90 responses for Q4, and

learned that 10% participants use code search engines because

they experience problems with a code snippet or do not

know how to use it; 23.33% because they want to find code

that matches their needs to implement a certain functionality;

36.67% select both of these two reasons, 27.78% say they

never use code search engines. Besides that, 2.22% (two

participants) specify two other scenarios: one said they use

engines during the code review process to understand the

implementation of methods that need to be reviewed, and the

other said they use engines just for checking where things are.

Finding-3 Code search engines can be tailored for
these usage scenarios: (a) having an unfamiliar code

snippet whose usage is unclear or problematic, (b)

needing to implement an unfamiliar functionality, (c)

1There are some overlaps: someone may input both Google and Github.
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understanding the implementation for code review, and

(d) locating the file that contains a given code snippet.

Among them, (a) and (b) are common scenarios (70%,

10%+23.33%+36.67%), (c) and (d) are corner cases

(2.22%, 1.11% for each.)

Fig. 1: Agreement Levels of Q5-Q8

3. Preferences for properties of a code search engine:
Figure 1 shows the agreement levels of Q5-Q8, for which we

obtained 91 responses for Q5 and 90 responses for Q6,7,8,

respectively. Most of the participants agree or strongly agree

that execution speed (58.24% of our participants), accuracy

(65.56%), multiple programming languages support (86.67%),

and input of all sizes (62.22%) are crucial criteria for code

search engines. In contrast, few participants disagree or

strongly disagree with these statements: 25.27% for execution

speed, 17.78% for accuracy, 5.55% for multi-language support,

and 15.55% for input sizes. Among these four criteria, multi-

language support is the most important (86.67% of participants

agree or strongly agree, only 5.55% disagree or strongly

disagree) and execution speed the least (58.24% agree or

strongly agree, 25.27% disagree or strongly disagree.)

Finding-4 The participants found all four charac-
teristics of code search engines important (more

than a half of participants agree/strongly agree), with
the support for multiple languages being the most
important (86.67% of participants agree/strongly

agree).

C. Threats to Validity

The internal validity is threatened by the different response

rate for each question. That is, except for the mandatory

questions (i.e., Q1 and Q2), participants could pick and choose

which questions they wanted to answer (e.g., answer Q4

but skip Q3). Hence, our findings for these questions may

have been derived from the responses whose number is fewer

than the total number of participants (i.e., 114). The relative

independence of our survey questions might have mitigated

this validity threat.

The external validity is threatened by the number of sur-

veyed software developers. We obtained about 100 responses

in total. Although we sent out thousands of surveys, the

number of responses is not particularly large. Fortunately,

these responses cover participants with various technical back-

grounds, which can mitigate this validity threat. It is worth

mentioning that our survey remains available online, continu-

ously obtaining new responses, which we plan to use in our

future research endeavors.

III. CODE SEARCH ENGINES IN THE WILD

This section discusses the study we conducted to understand

the characteristics of code search engines.

A. Study Methodology

1. Challenges & Solutions. To understand the state of the

art of code search engines, we had to overcome the following

challenges:

Challenge-1: how to determine which keywords can be used
to retrieve the relevant work? The meaning of the term “code

search engine” is somewhat vague, as the research community

thus far has not agreed upon a standard definition. In this study,

one of our goals is to explore how the research community

uses the term “code search engine.” Hence, when searching the

literature, we avoided the usage of the keywords that pertain

to any particular code search engines. Also, general-purpose

search engines (e.g., Google), code repositories (e.g., GitHub),

Q& A website (e.g., StackOverflow) can be used to search for

source code as well. At this time, our intent was not to decide

whether or not to exclude these general tools from our study.

Solution: In essence, a code search engine is a tool that

searches for computer source code. Therefore, to identify the

relevant literature, we used simple search keywords, such as

“code search,” “code detection,” “code matching,” and “code

search engine.” With this specific focus, the results of our

study can help counteract some preconceived but overly broad

definitions of code search engines.

Challenge-2: how to obtain a manageable yet representative
sampling of related work? Parameterized with the aforemen-

tioned keywords, literature searches return a massive volume

of related work. In an ideal world, we would include all the

returned results into our analysis dataset. However, our aim is

to study the state of the art both as described in the literature

and by interacting with their reproduction packages as end-

users to truly understand the operation and inner workings of

the studied engines. Hence, digging into all the related work,

setting up and running their released solutions would lead to

burdensome workloads.

Solution: We follow a strategy that we call “look back and

taxonomize.” That is, not only do we focus our analysis on the

latest research papers, but we also “look back” to understand

how these latest examples developed from the historical per-

spective. To that end, we also analyze some older but classic

papers. By reproducing the historical development of code

search engines, our goal is to deepen our understanding of

how researchers have improved on the state of the art over

time. Further, we create a taxonomy of different code search

engines by including only the typical and classical ones for
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each type. This strategy has helped us significantly reduce the

amount of rote work, without sacrificing the relevance of our

analysis’ findings.

B. Data Collection

As mentioned above, we mainly used the keywords “code

search,” “code detection,” “code matching,” and “code search

engine”, respectively, in Google scholar (for research papers)

and GitHub (for industry releases and open-source projects).

Finally, we analyzed and reported on 17 code search
engines (13 reproduction packages from research papers and

4 industry releases), with two different types of in/outputs,

three distinct search strategies, and two typical usage sce-

narios. Moreover, to understand these engines’ functionality

and implementation, we interacted with them as end-users and

analyzed their inner workings.

C. Taxonomy
We classify the considered code search engines based on

their usage scenarios, input/output formats, and search strate-

gies, as discussed next.

1. Usage Scenarios. As described in the studied works, the

following scenarios exemplify the typical usage scenarios of

code search engines:

Type I: Developers have an existing piece of code, but are

unsure how to use or are experiencing problems with the code.

The ability to consult some usage examples could remediate

the situation.

Type II: Developers want to implement a certain function-

ality, but are unsure how. So they would like to search for

suitable code matches. Notice that developers might not have

a clear idea of what code to search for.

2. Type of Inputs and Outputs.
(1) Code-to-code Engines take source code as input and

return a set of matched code fragments. Typically, a code-to-

code search engine would be applied to Type I scenario, with

its exact or close matches of the given input code. As a specific

example, consider a novice developer needing to learn how to

use the numpy function numpy.vectorize() in a programming

assignment. A code-to-code engine will allow the novice to

paste the “numpy.vectorize()” string into the search box, with

the engine returning a set of occurrences of that function in

other projects/repositories.

(2) Natural language-to-code Engines make it possible to

discover code based on textual description, thus accommodat-

ing those use cases in which the programmer is unaware what

code they need for a particular programming task. Typically,

a natural language-to-code search engine would be applied to

Type II scenario, with its input format in which developers

describe the desired functionality in natural language, with

the engine returning the code snippets that best match the

description. As a specific example, consider an introductory

CS student who is assigned to implement a Python project

that needs to detect faces. Unfortunately, the student is quite

clueless and not even sure what would be a reasonable starting

point for implementing this project. A Natural language-to-

code engine would make it possible to type in phrases like

“how to face detection in python” into the search box, with the

engine returning a set of sample face detection code snippets

implemented in Python.
3. Search Strategies. In summary, code search engines lever-

age these major search strategies:
(1) Information Retrieval (IR) Strategies distill the important

information from the user input. Before any search can take

place, these strategies ensure that the given input provides

informative key points that can be effectively searched for in

a codebase. These strategies often reformulate or expand the

given input with the goal of making the subsequent search

process more accurate and effective.
(2) Natural Language Processing-based strategies work

with the semantic information of a given text or code snippet.

They extract and model information based on its lexical and

semantic meanings. These strategies work well for searches

that involve natural language input.
(3) Deep Learning Strategies make use of deep learning

models, such as Recurrent Neural Network (RNN), Con-

volutional Neural Network (CNN), etc. Deep learning has

been applied successfully to extract code features from large

codebases. In particular, deep learning strategies excel at

automatically capturing relevant code snippets in scenarios

that involve vague input or the need to generalize output for

unanticipated options. We will expand the discussion of these

search strategies in the following sections.

D. History of Code Search Engines
1. Code Search Engine vs. Code Clone. Although it would be

hard to pinpoint the exact origin of code search engines, this

research topic is inextricably linked to that of detecting code

clones. The related work retrieved given the aforementioned

keywords contains numerous studies of code clones and source

code similarity detection. Indeed, the scope of “code search

engines” overlaps with that of “detecting code clone:”
(1) Both code search engines (especially the code-to-code

engines) and code clone detectors focus on detecting code

similarity. However, unlike code clone techniques, code search

engines also cover the scenarios of “natural language to code.”
(2) The purpose of a code search engine is searching for

code, while that of a code clone detector is searching for code

cloned from others. At any rate, both of them search code to

accomplish their objectives.
(3) Some approaches employed by code search engines

and code clone detectors can be used interchangeably. For

example, code clone detection approaches can be applied to

a code search engine to search for similar code snippets.

Also, some approaches in code search engines are adapted

for detecting code clones.
2. Development of Code Search Engines To capture the

development of code search engines, we summarized our

surveyed code search engines as based on their techniques and

publish/release date. We excluded those engines that lacked

clear setup and usage instructions, so we ended up with

17 engines. Although a relatively small sample size, it is

representative of the main developments (we discuss it as an

external validity threat in § III-H.)
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Fig. 2: Historical Development of Code Search Engines

As is shown in Figure 2, not surprisingly, the oldest tech-

nique for searching for similar code was string-based IR, intro-

duced before 2000. However, after 2005, NLP and DL-based

works started emerging to assist in code search. In the last

five years, DL-based techniques tended to become prevalent,

but IR-based approaches were still developing. For example,

the latest IR-based approach, Yogo, applied a programming

analysis approach to search for code. In the future, we believe

that NLP and DL will become increasingly widespread, while

program analysis will continue to be combined with the IR,

NLP, and DL-based approaches.

E. Standard Workflow

We found that a typical code search engine is structured

around three major components: (1) user, (2) search data

warehousing, and (3) search machinery. Figure 3 shows the

general process followed by major code search engines in our

study. We will explain each of the components in turn.

(1) User Component: represents engine users and how they

interact with the search engine. Users provide search input,

which typically comes in the form of either code snippets

or natural language. The engine first converts the provided

input into search directives. The conversion process involves

parsing the input strings and extracting their semantics. Search

input can be mapped into complex semantic graphs for use by

various machine learning approaches, increasingly common in

modern engines.

(2) Search Data Warehousing Component: represents

transforming raw codebase(s) into searchable artifacts, de-

scribed by relevant metadata. In essence, the search process

maps the received user input to the parts of the data matching

it. To that end, search engines need the ability to access and

iterate through massive amounts of data quickly, so the original

codebase(s) need to be preprocessed and summarized if a

search engine is to provide a responsive user experience.

(3) Search Machinery Component: performs the actual

searching operations. It is parameterized by the user and

data warehousing components to form the search queries and

execute them to return the expected search results. To provide a

more meaningful user experience, modern search code engines

often also provide additional filtering.

Standard Searching Process:
The operation of a modern code search engine involves the

following 6 processes:

1) Convert source code into easily searchable metadata.

2) Transform user input into search directives.

Fig. 3: General Process of Code Search Engines

3) Parameterize the searching machinery with the metadata

and search directives, as described above.

4) Find the code snippets that most closely match the input

parameters.

5) Filter the found snippets to present more relevant results

to the user.

6) Display the final search results to the user.

Typically, processes 2 to 5 are performed interactively, while

process 1 can be performed as a pre-processing procedure.

F. Summary & Comparison of Code Search Engines

Based on the three different search strategies, we summarize

and compare with the studied code search engines as follows:

1. Information Retrieval (IR) Code Search
IR engines work best for Type I usage scenario and employ

one of the following four code retrieval strategies: string-
based, token-based, tree-based, and semantics-based. We

describe these strategies in turn next, while Table II shows a

summary of existing works.

String-based strategies treat the source code as a series of

string arrays and consider two code fragments similar if all (or

part of) their string sequences match ( [4] in TableII). However,

due to this strategy’s computational cost and inflexibility, it has

become less popular recently.

Token-based strategies treat the source code as a sequence

of tokens, and detect source code similarity via matching

duplicated token sequences (or subsequences). Token-based

systems are easy to deploy for different programming lan-

guages, but they could potentially be more computationally

expensive than the text-based methods, as a single line of code

typically contains multiple tokens. CCFinder [12] is an earlier

token-based systems for detecting code similarities (and code

clones); it applies optimization techniques (e.g., aligning token

sequence, concatenating tokens) to increase search efficiency

and scalability for larger codebases. SourcererCC [25], another
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TABLE II: Summary of IR-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

Dup [4]
text-based matching, exact match,

parameterized match
/ 1.1M LOC / 7.2 min min 15 LOC

CCFinder [12]
token-based representation,

transformation rules
23% more clones compared

to line-by-line method
2600k LOC / 250 sec

min 50 tokens,
min 12 token types

SourcererCC [25]
Bag-of-tokens, sub-block overlap

filtering, partial index
91% precision, 100% recall

1M LOC / 90 sec;
100M LOC / 1d 12h 54m 5s

min 6 LOC

Sourcerer [2]
Relational model, text-based ranking,

Lucene, structure-based search
67% recall for top 10 results,
74% recall for top 20 results

/ 2-3 words queries

Datrix [18]
tree-based representation, AST,

Intermediate Representation Language (IRL)
/ 992256 LOC / 15 min

∼50k LOC for
case studies tested

Aroma [16]
Structural code search, similarity score,
parse tree, static scoping, light-weight

search

retrieved the original method
as top-rank for 99.1% of
contiguous and 98.3% of
non-contiguous queries

1.3s median response time,
95% queries complete in 4s

min 3 tokens,
less than 20 LOC

Yogo [22]
Program Expression Graph, equality

saturation, equivalence graph,
DeMorgan’s law

All found matches are correct
in the selected codebases

/ 2-3 wordds queries

TABLE III: Summary of NLP-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

Portfolio [20]
Keyword matching, identifier

splitting, PageRank, random surfer, TF-IDF,
Spreading Activation Network (SAN)

76% precision /
1-2 sentences,

roughly 10-20 words

CodeHow [17]
Extended Boolean Model, text similarity,
text normalization, stop word, removal

79.4% precision /
single short sentence,

2-11 words

Exemplar [19]
Program analysis, query overlap,

S3 architecture
45% mean precision /

sequence of
keywords, exact

length unspecified

SNIFF [7]
Free-form query search,

bag-of-words
88% correct top

ranked result

40% faster than
Prospector and Google

Code Search

sequence of
keywords, exact

length unspecified

Query Expansion [15] Query expansion, identifier expansion

66 %, 83%, 74% min,
max, mean precision;
56% 76%, 67% min,

max, mean recall

/
sentence-long
query, exact

length unspecified

token-based code clone detector, enables fast searching of

large codebases via its bag-of-tokens strategy.

Although token-based approaches usually exhibit lower ex-

ecution speed due to their high computational cost, combining

the bag-of-tokens approach with SourcererCC’s sub-block

overlap filtering [25] enables token-based strategies to reach

high accuracy and execution speed.

Tree-based strategies treat the source code as a tree,

especially, the abstract syntax tree (AST) and detect code

matches by comparing subtrees. Sourcerer [2] represents the

source code with its entities table and the entity relations table

to increase query efficiency. Similar to the token-based strate-

gies, one can easily deploy tree-based strategies for multiple

languages: Datrix [18] translates a source code’s AST into

an Intermediate Representation Language (IRL) for multiple

languages support. Alternatively, Aroma’s simplified parse tree

can be used uniformly across various programming languages

[16]. Tree-based approaches show outstanding performance for

all types of code clones; approximate searches with inexact

matches show the best performance.

Semantics-based strategies find semantically similar code

rather than lexically similar one. To that end, Komondoor

and Horwitz [13] introduced the program dependence graphs

(PDGs) [8] and program slicing [29], and YOGO [22] applied

program expression graph (PEG). All these program graphs

represent a program’s semantics to some extent. However, due

to their high computational costs, semantics-based strategies

are generally considered inapplicable to large codebases.

2. Natural Language Processing-based Engines
Unlike IR strategies, NLP strategies work particularly well

for Type II usage scenario. To match the user input and

the searched codebase, NLP-based engines usually model

source code’s structure and semantics. Table III summarizes

representative NLP-based engines.

NLP applied to topic models. Based on statistics, topic

models help unlabeled documents’ indexation, search, cluster,

and structuration [27]. Hence, NLP-based engines can leverage

these topic models on searching source code: Exemplar [19]

used Vector Space Model (VSM) model, a kind of topic

model, to help search, select, and synthesize (S3) during

the code search. Portfolio incorporated a variation of VSM

to enhance its preprocessing [20]. CodeHow combined the

standard Boolean model and VSM to improve accuracy [17].

NLP with lexical database. Besides the topic models,
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TABLE IV: Summary of DL-related works.
: YES; : Partially YES (have the link to source code, but it is inaccessible); : NO

Related work Techniques Accuracy Execution speed
Multi-language

support? Input size Open source?

NCS [23]
distributional

hypothesis, FastText, FAISS, TF-IDF
68.9% accuracy for top 1 result;

94.6% accuracy within top 9 results
/

1 short sentence,
under 20 words

NQE [14]
query expansion, attention,

parts-of-speach (POS), beam search
0.284 MRR for query length 1;
0.543 MRR for query length 2

/ 1-3 words

UNIF [6]
bag-of-words based
network, attention

60.8% precision for top 1 result
1:11.72 time inference for code;

1:103.83 time inference for query,
compared to CODEnn

1 short sentence,
under 20 words

CODEnn [10]
sequence-based network,

code embedding, description embedding

46% accuracy for top 1;
76% accuracy for top 5;
86% accuracy for top 10

/ under 15 words

COSEA [28] CNN, attentive pooling model 65.7% precision for top 1 result / average 9 words

NLP-based code search engines can use a lexical database

to help search for code. Query expansion [15] extended user

input terms through a lexical database of English words (i.e.,

WordNet [21]), which can help match similar code. SNIFF

[7] used a free-form query search to generate a set of small,

highly relevant, and reusable code snippets to increase the

performance and reliability of searching code.

In general, NLP-based engines are similar to IR-based

engines, with an extra NLP layer enabling better matching to

extract crucial information. Easier to implement, NLP-based

engines show high accuracy results.

3. Applying Deep Learning to Search Code
Increasingly common as building blocks of code search

engines, deep learning techniques work particularly well for

Type II usage scenarios. Table IV summarizes representative

deep learning engines.

In general, training on source code requires a vector as the

input. Hence, DL-based code search engines need to convert

the source code into a series of vectors, i.e., code embedding.

Finally, DL-based engines search code by comparing similar-

ities across the converted vectors. In fact, DL-based engines’

core process is their code embedding process.

Specifically, NCS [23] combined a code embedding model

(FastText [5]) with a similarity search algorithm (FAISS [11])

to improve search accuracy. NQE [14] used Recurrent Neural

Network (RNN) to compute the output’s probability distribu-

tion and adopted a beam search and an attention mechanism

to maximize search accuracy. CODEnn [10] embedded both

the source code and their corresponding natural language

description into a vector space, which can further improve

the accuracy but decrease training speed, and lead to semantic

inaccuracy when the natural language description is inaccurate

[6], [28]. To improve the training speed, UNIF used a bag-of-

words-based network that can significantly lower complexity

[6], and COSEA introduced the layer-wise attention to the

convolutional neural network (CNN) that can enhance the

convergence speed [28].

As compared with IR and NLP-based engines, DL-based

engines show better performance as they match input by

accurately modeling query dependencies. However, the quality

and quantity of training data for DL models can greatly

impact the search results of DL-based engines [26]. Existing

DL-based engines often train their models on a self-cloned

code corpus obtained from open-source code repositories like

GitHub, but the quality of their obtained training datasets

remains hard to evaluate systematically. We observed that

some models that claim to have higher performance in theory

fail to demonstrate a significant performance bump in reality,

while the high accuracy of engines like NCS can be explained

by their combining of a good conceptual foundation and high

quality training data.

G. Discussion and Findings
Based on the coverage of the code search engines in above

Sections, we next discuss our findings.

Finding-5 Need More Performance Metrics: We no-

tice that some aspects of engine performance have not

been covered adequately. With a universal focus on ac-
curacy, execution speed has become de-emphasized

in recent years. Execution speed had been the most

crucial evaluation metric for IR-based engines, but

the evaluations of many recent NLP and DL-based

engines never considered it. Input length, ranging

from small (a few words) to large (multiple lines of

code/sentences), can also affect an engine’s search per-

formance. Out of all the engines we studied, only NQE

[14] tested its performance specifically against small

inputs, and no other engines tested against different

ranges of input length. Multi-Language support is

also neglected—less than 30% of our studied engines

provided such support.

Finding-6 Studying State-of-the-Art Code Search
Engines is Hard: Many of them are either outdated

or unavailable. We tested over 30 open-source engines,

but only 5 of them would actually execute without

errors (Aroma [16], SourcererCC [25], Yogo [22],

CCFinder [12], CODEnn [10]), and 2 of them (Aroma

and Yogo) would return any search results. The reasons

that prevented the engines under test from executing

included outdated package environments, evolving li-

braries, and operating system differences. The engines

that executed but would not return results had missing

or incomplete codebases to search.

226

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 04,2023 at 23:09:35 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V: Comparison between developer’s perspectives and existing code search engines

Usage Scenarios Importance in daily work Preferences for properties

Developers’
perspectives

(a) having an code snippet with unclear/problematic usage;
(b) needing to implement an unfamiliar functionality;
(c) understanding the implementation for code review ;
(d) locating a given code snippet (c and d are corner cases.)

neither widely known nor used;
use other tools

1st: Multi-lang support;
2nd: Accuracy;
3rd: Input size;
4th: Exec. speed

Existing code
search engines

Have an existing piece of code:
(a) being unsure how to use
(b) experiencing problems with the code.
Have no existing code:
(c)trying to implement a certain functionality, but are unsure how.

motivate the research:
programmers heavily rely on it.

Focus on: Accuracy;
De-emphasized: Exec. speed;
Neglect:
Multi-lang support, Input size

H. Threats to Validity

The internal validity is threatened by our experimental

environment. In Tables II, III, and IV, we collected the

accuracy, execution speed, and input size of different code

search engines. However, these measurement results come

from dissimilar experimental environments. That is, our sur-

veyed code engines were evaluated on different code bases,

test cases, experimental machines, etc. This threat could have

been mitigated if our surveyed code engines run without errors.

However, as mentioned above, most of them proved hard to

deploy and operate, the root cause of this threat.

The external validity is threatened by the number of sur-

veyed code search engines. In this paper, we summarized and

compared 17 code search engines, a representative sample but

not sufficiently large to draw definitive conclusions. To ensure

further progress, we plan to open-source our experimental data

collection, thus allowing other researchers to expand on it.

IV. COMPARING APPLES AND ORANGES

Based on the results and findings presented in § II and § III,

developers’ perspectives and the state of the art exhibit both

commonalities and distinctions, which we discuss in turn next.

A. Commonalities

As shown in Column “Usage Scenarios” (Table V), devel-

opers expect the same usage scenarios as the existing code

search engines provide. Hence, we extract our definition of

code search engines from these scenarios.

1. Clarifications: Based on the usage scenarios, we differen-

tiate code search engines from other related tools as follows:

(a) We do not consider general-purpose search engines as
code search engines. Based on their usage scenarios, the goal

of a code search engine is searching code, rather than all

possible resources on the web, as is the case of general-

purpose search engines (e.g., Google).

(b) We do not consider code repositories as code search
engines. Code repositories provide source control and man-

agement services; they might provide simple search facilities,

but it is not their raison d’être. In contrast, a code search engine

is specifically designed to search any collection of codebases.

(c) We do not consider Question & Answer forums as code
search engines. A developers can post a question on a Q &

A forum (e.g., stack overflow), with some other developers

answering that question, with the answer preserved for future

referencing. In contrast, a code search engine interactively

returns a set of code snippets given a search input, without

a human actor behind the process.

2. Definition: Consider a code repository R and user search

input I; R contains a finite set of codebases (each includes the

source code, metadata, config files, etc.); I can be either code

snippets or natural language tokens. E, a code search engine,

processes and transforms R and I to make them searchable

and matchable, respectively, and then outputs the results as a

set of code snippets S. Thus, E matches I to S ⊂ R.

B. Distinctions
As shown in Table V, developers and researchers (i.e.,

designers of existing code search engines) tend hold different

opinions on how important code search engines are in the

performance of daily development tasks and which properties

developers prioritize, as we discuss in turn next.

1. Code search engines have not yet become a standard
software development tool: Despite the claims made in the

research literature about being motivated by the significance

of code search engines role in the development process and

day-to-day programming activities, a considerable amount of

surveyed developers never used or were even unaware of code

search engines (Findings 1,2). Even worse, among the survey

takers who claim to use “code search engines”, the majority

end up using general-purpose engines, code repositories, and

Q&A websites rather than “real” code search engines.

The possible reasons of this phenomenon could be: (a)

existing tools (e.g., general-purpose search engines, code

repositories, and Q&A websites) perform largely the same role

as code search engines. So developers are not compelled to

spend time on learning how to use a new tool. (b) existing code

search engines are unavailable (Finding-6) or return useless

results (Results of Q3-2 in § II-B).

2. Researchers often leave unaddressed what developers
find important in the functioning of code search engines:
Although accuracy is ranked highly in both developers’ per-

spectives and the state of the art, existing engines tend to

under-emphasize the support for multiple languages (ranked

first by developers) and input size (ranked higher than execu-

tion speed by developers).

This phenomenon implies that researchers may be unaware

of what their end-users (i.e., developers) expect from code

search engines. Our findings suggest that researchers may

benefit from focusing more on multi-language support and

input size as a way to better meet developer expectations.

V. RELATED WORK

As depicted in Table VI, several prior research efforts have

also studied state-of-the-art code search engines and what

developers expect when searching for code. Garcia et al.
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summarized a series of usage requirements from the research

literature that describes existing code search engines [9].

Sadowski et al. surveyed developers to understand how they

search for code and which search patterns they deploy [24]. By

analyzing frequency/difficulty when it comes to searching for

code online, Xia et al. studied developers’ behaviors of web

code search [31]. By tracking an online code search engine’s

logs, Bajracharya et al. mined the search topics used by

developers [1], [3]. Despite uncovering numerous interesting

insights, these prior works have not specifically focused on

systematically studying existing code search engines in terms

of their common characteristics and unique functionalities.

Furthermore, to the best of our knowledge, no prior user

studies have set the goal of identifying the perspectives of

software developers with respect to their current usage patterns

of and future preferences for code search engines (Table VI).

TABLE VI: Summary of related surveys.
: Fully Covered; :Partially Covered; : NOT Covered

Related
Survey

Classify?
User
Perspective?

Requirements? Comparison?

Garcia et al. [9]

Sadowski et al. [24]

Xia et al. [31]

Bajracharya et al. [1], [3]

This Paper

VI. CONCLUSION

In this paper, we conducted (1) a study of state-of-the-art

code search engines and (2) a developer survey of more than

a 100 developers. We found that a considerable percentage

of developers never use code search engines and are even

unaware of their existence. We hope that the results of this

research will help developers to benefit from using search

engines in their professional practices, and researchers to

uncover future directions that would have the most potential

for practical impact.
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