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Abstract—We consider the problem of learning an unknown
ReLU network with respect to Gaussian inputs and obtain the
first nontrivial results for networks of depth more than two. We
give an algorithm whose running time is a fixed polynomial in
the ambient dimension and some (exponentially large) function
of only the network’s parameters. Our results provably cannot
be obtained using gradient-based methods and give the first
example of a class of efficiently learnable neural networks that
gradient descent will fail to learn.

Our bounds depend on the number of hidden units, depth,
spectral norm of the weight matrices, and Lipschitz constant
of the overall network (we show that some dependence on the
Lipschitz constant is necessary). We also give a bound that is
doubly exponential in the size of the network but is independent
of spectral norm.

In contrast, prior work for learning networks of depth
three or higher requires exponential time in the ambient
dimension, even when the above parameters are bounded by
a constant. Additionally, all prior work for the depth-two case
requires well-conditioned weights and/or positive coefficients
to obtain efficient run-times. Our algorithm does not require
these assumptions.

Our main technical tool is a type of filtered PCA that can
be used to iteratively recover an approximate basis for the
subspace spanned by the hidden units in the first layer. Our
analysis leverages new structural results on lattice polynomials
from tropical geometry.

Keywords-deep learning; supervised learning; multiple index
models; regression; statistical query; gradient descent

I. INTRODUCTION

We study the problem of learning the following class of
concepts:

Definition I.1 (ReLU Networks). Let Cs denote the concept
class of (feedforward) ReLU networks over R of size S.
Specifically, F' € Cg if there exist weight matrices W €
RkOXd,W1 € RlekO, ... Wy € RkLXkL*I,WLJ,J S
R*z for which

F(2) & Wrio(Wro (- ¢(Woz) ),

where ¢(z) = max(z,0) is the ReLU activation applied
entrywise, and ko + --- + kz, = S. In this case we say that
F' is computed by a ReLU network with depth L + 2. We
will refer to the rank of Wy as k, to emphasize that the
value of F' only depends on a k-dimensional subspace of
R4, We will also let krp+1=1.

When the weight matrices of two ReLU networks F, F’ €
Cs have the same dimensions (at all layers), then we say that
F and F’' have the same architecture.

For example, a depth two ReLU network of size S in
d-dimensions is a function F : R? — R of the form

S
Fla) = Y hol(wi o).

where )\; € R are scalars and w; € R? are arbitrary vectors.

Note that any Boolean function F' : {1} — {£1} can
be computed by an n-layer ReLU network. In particular, if
F' is a junta depending only on k variables, then it can be
computed by a k-layer ReLU network with size that depends
only on k.

Learning ReLU Networks: The problem of PAC learn-
ing an unknown ReLU network from labeled examples is a
central challenge in the theory of machine learning. Given
samples from a distribution of the form (z,y) € R? x R
where y = F(z) with F' an unknown size-S ReLU net-
work,! and z is drawn according to a distribution D, the goal
is to output a function f : R — R with small zest error,
ie., Euyl(y — f(2))?] < eE[y?]. In this work, we focus on
the widely studied case where the input distribution on x is
Gaussian.

Ideally, we would like an algorithm with sample complex-
ity and running time that is polynomial in all the relevant
parameters. Even for learning arbitrary sums of ReLUs, i.e.
depth two ReLU networks where we additionally assume
the W has all positive entries, it remains a major open
question to obtain a polynomial-time algorithm (see [1]
for the strongest-known result). As a first step, one could
ask for an algorithm that at least depends polynomially on
the ambient dimension (it is often easy to obtain brute-
force search algorithms that run in time exponential in
the dimension?). In the absence of additional assumptions
however, even this goal has remained elusive: it was not
known how to achieve a subexponential-time algorithm even
for learning general depth two ReLU networks, let alone
ReLU networks of higher depth.

't should not be difficult to extend our techniques to the setting where
y = F(z) + N(0,02), but we focus on the noiseless case for simplicity
in this work.

2 Although in our specific case even this type of search turns out to be
nontrivial.
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In this work, we address this gap by giving the first
algorithm for learning ReLU networks whose running time
is a fixed polynomial in the dimension, regardless of the
depth of the network. Our algorithm is fixed-parameter
tractable: we show that we can properly learn (i.e., the
output hypothesis is also a ReLU network) ReLLU networks
with sample complexity and running time that is a fixed
polynomial in the dimension and an exponential function of
the network’s parameters.

More precisely, our main result is as follows. We will
also make the (as it turns out necessary) assumption that the
ReLU network has a bounded Lipschitz constant: a function
f:R?Y — R is A-Lipschitz if |f(z) — f(2')] < Aljz — 2'||2
for all z,z’.

Theorem L2 (Main, informal). Let D be the distribution
over pairs (z,y) € R? x R where x ~ N(0,1d) and
y = F(z) for a size-S ReLU network F with depth L + 2,
Lipschitz constant at most A, rank of bottom weight matrix
Wy being k, and whose weight matrices all have spectral
norm at most B.

There is an algorithm that draws
dlog(1/8) exp (poly(k, S, AJe)) BOER)  samples,  runs
in time O(d?log(1/6)) exp (poly(k, S, A/E)lBO(LkSQ),
and outputs a ReLU network F such that E[(y—F(z))?] < ¢
with probability at least 1 — 6.3

Note that the sample complexity is linear while the run-
time is quadratic in the ambient dimension. In particular,
in the well-studied special case where the product of the
spectral norms of the weight matrices is a constant (see e.g.
[2]), in which case the Lipschitz constant of the network
is also constant, we can obtain the following result as an
immediate consequence of the formal version of the above
theorem:

Corollary L.3. Let D be the distribution over pairs (z,y) €
R? x R where © ~ N(0,1d) and y = F(z) for a size-
S ReLU network F' for which the product of the spectral
norms of its weight matrices is a constant.

Then there is an algorithm that draws N
dlog(1/6) exp(O(k*/e* + kS)) samples, runs in time
O(d?1og(1/0)) exp(O(k*S?/e* + kS?)), and outputs a
ReLU network F such that E[(y — F(z))?] < e with
probability at least 1 — 4.

As mentioned earlier, no algorithms that were sub-
exponential in d were known even for S, B,c being con-
stants.

Before going further, we note that a dependence on
the Lipschitz constant of the network is necessary even
for learning depth two ReLU networks with respect to
Gaussians:

3See full version for a discussion of why this guarantee is scale-invariant.
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Example 1.4. Ler A > 0. Consider the size-3, depth two
ReLU network F : R? = R given by

F(.’L’l,$2> = (;5($1 +A$2)+¢(3.’L’1 +AI2)72¢(*I1 +A.’L’2)

The Lipschitz constant of F is O(A): F(0,1/A) = 1 and
F(1,1/A) = 2. Furthermore, note that for (x1,xs) € S,
F(zq,22) 0 unless 2 € [—3/A,3/A). By rotational
symmetry, for (z1,z2) ~ N(0,1d), F(z1,22) # 0 with
probability at most O(1/A).

Note that for depth two ReLU networks with positive
weights, no such dependence on the Lipschitz constant is
necessary intuitively because without cancellations between
the hidden units, one cannot devise “spiky” functions F'
which simultaneously have small variance but attain a large
value at some bounded-norm z.

Interestingly, our techniques are also general enough to
handle the more general family of all continuous piecewise-
linear functions (see Definition IV.2 for a formal definition):

Theorem L5. Let D be the distribution over pairs (z,y) €
R< x R where x ~ N (0,1d) and y = F(x) for a continuous
piecewise-linear function F which only depends on the
projection of x to a k-dimensional subspace V, has at most
M linear pieces, and is A-Lipschitz.

There is an algorithm that draws dlog(1/d) -
poly (exp (k*A?/e?),M")  samples, runs in time
O(dlog(1/5)) - MM* . poly (exp (K1A2/<2) ,M’“Q),
and outputs a piecewise-linear function F such that
E[(y — F(x))?] < e with probability at least 1 — 6.

Note that a size-S ReLU network is a continuous
piecewise-linear function with at most 2° linear pieces.
Specializing Theorem 1.5 to ReLU networks gives a guar-
antee which is incomparable to Theorem 1.2: we obtain an
algorithm that depends doubly exponentially on .S but has
no dependence on the norms of the weight matrices.

A. Prior Work on Provably Learning Neural Networks

Algorithmic Results: Algorithms for learning neural
networks (obtaining small fest error) have been intensely
studied in the literature. In the last few years alone there
have been many papers giving provable results for learning
restricted classes of neural networks under various settings
(31, [4], [5], (6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [1].

The predominant techniques are spectral or tensor-based
dimension reduction [3], [5], [16], [24], kernel methods [4],
[71, [25], [15], [17], and gradient-based methods [13], [14],
[19]. All prior work takes distributional and/or architectural
assumptions, the most common one being that the inputs
come from a standard Gaussian. We will also work in this
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setting.*

As pointed out in [26], [21], all existing algorithmic
results for Gaussian inputs hold only for depth two networks
and make at least one of two assumptions on the unknown
network F' in question:

o Weight matrix Wy, is well-conditioned and, in particu-
lar, full rank.

e The vector at the output layer (W; when L = 0) has
all positive entries.

Assumption (1) allows one to use tensor decomposition to
recover the parameters of the network and hence PAC learn,
an idea that has inspired a long line of works [3], [5], [13],
[14], [16]. However, the assumption is not necessary for
PAC learning or achieving low-prediction error. For instance,
consider a pathological case where W has repeated rows.
Here, while parameter recovery is not possible it is still
possible to PAC learn. To our knowledge, the only work
that can PAC learn depth two networks over Gaussian inputs
without a condition number bound on Wy, is [24]. However,
their work still requires assumption (2) (and only holds
for depth two networks). Our work shows that assumption
(2) is neither information-theoretically nor computationally
necessary.

Limitations of Gradient-Based Methods: Two recent
works [26], [24] showed that a broad family of algorithms,
namely correlational statistical query (CSQ) algorithms,
fail to PAC learn even depth two ReLU networks; that
is, functions of the form F(z) = Zle Aip({v;, x)) with
respect to Gaussian inputs in time polynomial in d where d
is the ambient dimension (in fact, [24] rules out running time
d°(®)). Informally, a CSQ algorithm is limited to using noisy
estimates of statistics of the form E[y - o(x)] for arbitrary
bounded o, where the expectation is over examples (z,y)
and y = F(x) is computed by the network. The point
is that this already rules out a wide range of algorithmic
approaches in theory and practice, including gradient descent
on overparameterized networks (i.e., using neural tangent
kernels [27] or the mean-field approximation for gradient
dynamics [28]). Note that the algorithms of [24] for learning
depth two ReLLU networks with positive coefficients are CSQ
algorithms as well.

Note that as a consequence of Theorem 1.2, for any e
a function of k, our algorithm can learn the lower bound
instances in [26], [24] to error ¢ in time g(k) - poly(d) for
some g (note that the norm bounds and Lipschitz constants
for these instances are upper bounded by functions of k),
which is impossible for any CSQ algorithm. We explain why
our algorithm is not a CSQ algorithm in Section II.

For the classification version of this problem (i.e., tak-
ing a softmax) where we observe Y € {0,1} such that
E[Y|X] o(f(X)) where o is say sigmoid and f(X)

4Other works such as [18] or kernel-based methods [4], [7] require strong
norm-based assumptions on the inputs and weights.
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is a depth two ReLU network, Goel et al. [26] show that
even general SQ algorithms cannot achieve a runtime with
polynomial dependence on the dimension. We also remark
there is an extensive literature of previous work showing
various hardness results for learning certain classes of neural
networks [29], [30], [31], [32], [7], [33], [34], [35], [19],
[36], [37]. We refer the reader to [26] for a discussion of
how these prior works relate to the above CSQ lower bounds.

B. Other Related Work and Discussion

Multi-Index Models: Functions computed by ReLU
networks where Wy has fewer rows than columns are a
special case of a multi-index model, that is, a function
F :R% — R given by F(x) = f(W'z) for some matrix
W € RFX? and some function f : R¥ — R. In the
theoretical computer science literature, these are sometimes
referred to as subspace juntas [38], [39], [40].

One result in this line of work which is close in spirit
to the setting we consider is that of [41], which gives
various conditions on f under which one can recover W
(under Gaussian inputs) in the special case where k = 1,
as well as a vector in the row span of W in the case of
general k (although these results do not hold for ReLU). In
general, the literature on multi-index models is vast, and we
refer to [41] for a comprehensive overview of this body of
work. Many works were inspired by a simple but powerful
connection to Stein’s lemma [42], [43], [44], which was also
a key ingredient in the above algorithms for learning neural
networks using tensor decomposition.

Another relevant line of work in this literature is the
series of results on learning intersections of halfspaces (and
indicators of convex sets more generally) over structured
input distributions, see e.g. [45], [46], [47], [48], [49]. For
Gaussian inputs, when the number of halfspaces (or more
generally the dimension of the convex set’s hidden subspace)
is bounded, it was shown in [48] that one can essentially
read off the row span of W from the eigendecomposition
of E[y - (zz " — 1d)] where for a given =, y = 0 if = lies
in the convex set and y = 1 otherwise. By the CSQ lower
bounds of [26], [24], such an algorithm provably cannot
learn general ReLU networks.

Alternatively, one could also try generalizing the ap-
proach of [48] to our real-valued setting by restricting to
level sets S of the ReLU network and forming the matrix
E[L[z € S](xx " —Id)]. We remark however that the analysis
in [48] for such an approach crucially uses convexity of
the underlying concept and is therefore not applicable to
our setting. Note that this technique is also known as
sliced inverse regression [50], [51] in the multi-index model
literature, and while it is related to the techniques that we
employ, we explain in Remark II.1 why the state of the art
here also falls short.

Non-Gaussian Component Analysis: As we discuss
in Section II, the general approach we take is to find
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careful reweightings of the distribution over z that will
look non-Gaussian in some important direction, i.e., in the
row span of Wy. There have been several works on non-
Gaussian component analysis (see, e.g., [52], [53] and the
references therein), but this line of work is not relevant to
our result. We also remark that the work [38] gives some
moment-based conditions under which it is possible to learn
multi-index models over Gaussian inputs via non-Gaussian
component analysis. However, it seems highly nontrivial to
verify whether such conditions hold for ReLU networks,
and in addition, their results seem tailored to {0, 1}-valued
functions.

Piecewise-Linear Regression: We mention that pre-
vious works on segmented regression (see, e.g., [54] on
the references therein) study regression for piecewise-linear
functions but work with a different notion of piecewise-
linearity that is unrelated to our setting.

Non-Homogeneous ReLU Networks: We leave as
an open question whether our result can be extended
to non-homogeneous networks of the form F'(z)
WL+1¢(WL¢("'¢)(WOIE + bo) + bl) s bL), where
b, - ..,br € R are unknown bias parameters. We stress that,
over Gaussian inputs, we are not aware of any positive re-
sults even for learning non-homogeneous networks of depth
two. As for negative results, the recent work of [55] rules out
polynomial-time algorithms for learning non-homogeneous
ReLU networks, even of depth three, assuming local PRGs
with polynomial stretch and constant distinguishing advan-
tage exist [56]. While this hardness result does not preclude
the existence of a fixed-parameter tractable algorithm for
non-homogeneous ReLLU networks, it does give a compelling
explanation for the lack of algorithmic progress in the non-
homogeneous case.

II. PROOF OVERVIEW

The conceptual novelty of our work is that we go beyond
standard CSQ-based algorithms like gradient descent on
square loss to give a fundamentally new algorithm for
learning neural networks. There are a number of technical
novelties to our approach we will describe over the course
of outlining our algorithm and analysis in this section.

Suppose we are given samples (z,y) where y = F(x) is
computed by a size S ReLU network as in Definition I.1.
Let V C R? denote the span of the rows of W and let
k be its dimension. We will call V' the relevant subspace,
because the value of F' only depends on the projection of x
to V. In particular, we can write y = F'(IIy (z)) for some
function F/ : V' — R that is itself a size S ReLU network
and IIy denotes the projection operator onto V. The main
focus of our algorithm will be in figuring out the relevant
subspace V' given samples (z,y). This is the hardest part of
the algorithm, because once we learn the relevant subspace
to high enough accuracy, we can grid-search over ReLU
networks in this subspace. Even this grid search turns out
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to be non-trivial to analyze and entails proving new stability
results for piecewise-linear functions.

Filtered PCA: Our algorithm builds upon the filtered
PCA approach, originally introduced in [57] for the purposes
of learning low-degree polynomials over Gaussian space.’
For any ¢ : R — R, let M, = E[(Y)(XXT — 1d)].
A basic but important observation is that for any choice
of 1), all vectors orthogonal to the true subspace V' are in
the kernel of M,,. A natural idea for identifying the true
subspace then is to look at the nonzero singular vectors of
M, for a suitable 1. If we could show that M, has k
nonzero singular values all bounded away from 0 by some
dimension-independent margin ¢(v), then we could hope
to approximately recover V' by empirically estimating M,
using O(d/c(+)?), invoking standard matrix concentration,
and computing its top-k singular subspace. So the main
hurdle is to identify an appropriate ¢) for which this is the
case.

What should the ¢ be? For instance if v is the identity
function, then the matrix M, could be identically zero. This
is an essential difference between our setting and the setting
studied in previous works [24], [13] (in the L = 0 case)
where the output layer’s coefficients are all positive, for
which this choice of 1) would suffice to recover the relevant
subspace.

Note that this is consistent with the CSQ lower bounds of
[26], [24], as any algorithm that just tries to use the spectrum
of M,, for v being the identity function would be a CSQ
algorithm. Indeed, for any of the ‘hard’ functions F' from
those works which are ReLU networks with L = 0 we would
have M, = 0 if ¢ is the identity function.

We will choose i not equal to the identity, and in
this way our algorithm will be non-CSQ and evade the
aforementioned CSQ lower bounds.

Threshold Filter.: Motivated by [57], our starting point
in the present work is to consider ¢ given by a univariate
threshold, that is, ¢(z) = 1[|z| > 7] for suitable 7. For
brevity, for 7 € R define M, = E, ,[1[|y| > 7](zzT —1d)].
Then we have that

(v, M-) = E [yl > 7] - (vl — k)]
In particular, if one could choose 7 for which |F(x)| >
7 only if ||[IIyz||? > 2k ©, then we would conclude that
(ITy, M) > k - P[|ly| > 7], so some singular value of M,
is at least P[ly| > 7]. If F is A-Lipschitz, we can simply
choose 7 to be v/2k-A, and provided P[|y| > 7] is reasonably
large, then we conclude that M. has some reasonably large
singular value. Finally, to lower bound P[|y| > 7], we prove

SFor readers familiar with the approach there, we explain in the full
version why a straightforward application of the algorithm there cannot
work, necessitating a far more involved approach in the present work.

5The choice of 2k here is for exposition; any bound noticeably more
than k, e.g., kK + 1 will do.
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an anti-concentration result for piecewise linear functions
over Gaussian space (Lemma V.1).

In other words, if one conditions on the samples (x,y)
whose responses y are sufficiently large in magnitude, then
we show that the resulting distribution is noticeably non-
Gaussian in some direction, and by taking the top singular
vector of the conditional covariance, we can approximately
recover some direction inside the relevant subspace V.

Unfortunately, all that the above analysis tells us is that
the trace of M, is non-negligible which in turn helps us
guarantee that we identify at least one direction in V. It is not
at all clear whether the above threshold approach is enough
to identify more than just one vector in the relevant subspace.
Indeed, recovering the full relevant subspace turns out to
be significantly more challenging, and the core technical
contribution of this work is to show how to do this.

Remark 11.1 (Relation to Sliced Inverse Regression). The
trick of conditioning only on (z,y) for which |y| is suf-
ficiently large is reminiscent of the technique of slicing
originally introduced by [51] in the context of learning multi-
index models. The high-level idea of slicing is that for any
fixed value of y, the conditional law of z|F(z) = y is
likely to be non-Gaussian in most directions v € V, so in
particular, E[zz " — Id | F(x) = y] should be nonzero, and
its singular vectors will lie in V. This can be thought of as
filtered PCA with the choice of function ¥(z) = 1[z = y].
The first issue with using such an approach to get an
actual learning algorithm is that P,[F(z) = y] = 0 for
any y, and the workaround in non-asymptotic analyses
of sliced inverse regression [50] is to estimate something
like Ey[Elzz" — 1d | F(x) y]] instead. While finite
sample estimators for such objects are known, the conditions
under which this approach can provably recover the relevant
subspace are quite strong and not applicable to our setting.

Learning the Full Subspace: What Doesn’t Work:
One might hope that a more refined analysis shows that
for a suitable 7, the spectrum of M, can identify the
entire subspace V. Given that we can already learn some
w € V with the threshold approach above, a first step
would be to try to find a direction in V orthogonal to
w, by lower bounding the contribution to the Frobenius
norm of M, from vectors orthogonal to w. Concretely,
letting IIy\(,) denote the projector to the orthogonal
complement of w in V, we have that (ITy\ (.}, M;) =
Eay 1yl > 7] - (I fwyz]|* = (k = 1))]. As before, if
one could choose 7 for which |F(z)] > 7 only if
[Ty fwy||* > K, and if we could lower bound P[|y| > 7],
then we would conclude that (IIy\ (v}, M7) > P[y| > 7],
so M, has some other singular vector, orthogonal to w,
with non-negligible singular value. The issue is that such a 7
typically does not exist! For x satisfying ||\ (3 2(|* < k,
F(z) can be arbitrarily large, because ||IL,,z|| can be arbi-
trarily large.
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It may be possible to lower bound the quantity in the ex-
pression for <Hv\{w}, M) using a more refined argument,
but for general deep ReLU networks or piecewise linear
functions, this seems very challenging. At the very least,
one must be careful not to prove something too strong, like
showing that v "M, v is non-negligible for any unit vector
v € V. For instance, even when L = 0, it could be that all
but one of the rows of Wy, lie in a proper subspace W C V,
and for the remaining row u of Wy, [[ILy\wull/|ul is
arbitrarily small. In this case, for v in the direction of
Iy wu, the quadratic form v M, v is arbitrarily small, and
it would be impossible to recover all of V' from a reasonable
number of samples.

More generally, any proposed algorithm for learning all of
V' had better be consistent with the fact that it is impossible
to recover the full subspace V' within a reasonable number
of samples if almost all of the variance of F' is explained
by some proper subspace W C V, or equivalently, if the
“leftover variance” E.[(F(z)—F(Ilyx))?] is negligible. We
emphasize that this is a key subtlety that does not manifest
in previous works that consider full-rank, well-conditioned
weight matrices.

Learning the Full Subspace: Our Approach: We now
explain our approach. At a high level, we try to learn
orthogonal directions inside the relevant subspace in an
iterative fashion. The threshold filter approach above already
gives us a single direction in V. Suppose inductively that
we’ve learned some orthogonal vectors wi,..,wy, € V
spanning a subspace W C V and want to learn another
(note that technically we can only guarantee wy, ..., wy
are approximately within V', but let us temporarily ignore
this for the sake of exposition). Motivated by the above
consideration regarding “leftover variance,” we proceed by
a win-win argument: either the leftover variance already
satisfies E.[(F () — F(Ilwx))?] < e in which case we
are already done, or we can learn a new direction via the
following crucial modification of the threshold filter.

First, as a thought experiment, consider the following
matrix

MY £ Ty. E [1ly — F(Mwa)| > 7] - (w2 —1d) |y
T,y

Note the critical fact that we threshold on y — F (Il z)
as opposed to just on y. As before, it is not hard to show
that if this matrix is nonzero, then its singular vectors with
nonzero singular value must lie in W and be orthogonal to
W thus giving us a new direction in Wy. We claim that if
the leftover variance is non-negligible, then the above matrix
will give us a new direction in W.

The intuition behind the above matrix is as follows. Let
VAW denote the subspace of V orthogonal to W. We can
write F(z) = F(llyz) = F(Ilwz + y\wx). Now, as
F' is Lipschitz, we can bound G(z) = y — F(llyz) =
F(yx + My \we) — F(Mwz) as |G(z)] < A|Tyyw||?,
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where A is the Lipschitz constant of F'. In other words, G(z)
is bounded over x for which ||TIy\ || is bounded. Recall
that the fact that F'(z) is not bounded over such z was the
key obstacle to using the original threshold filter approach
to learn the full subspace.

The upshot is that for a suitably large 7, the only
contribution to the matrix M should be from inputs z
that have large projection in V \ W. We are now in a
position to adapt the analysis lower bounding (IIy,, M) to
lower bounding (ITy\yy, MW). In particular, we can apply
the aforementioned anti-concentration for piecewise linear
functions fo the function G and argue that, provided the
leftover variance E.[(F(z) — F(Ilwz))?] = E.[G(x)?] is
non-negligible, the top singular vector of MY will give us
a new vector in V' \ W.

That being said, an obvious obstacle in implementing the
above is that along with not knowing the true subspace Wy,
we also don’t know the true function F'. This precludes us
from forming the matrix MY as defined above.

To get around this, we will enumerate over a suffi-
ciently fine net of ReL.U networks F' with relevant subspace
W, one of which will be close to the ReLU network
F(Ilyy ). For each F, we will form the matrix MW £
Myt Eay [1[|y ~ F(Iyz)| > 7] - (zzT — Id)] My .. and
output the top singular vector as our new direction only if
it has non-negligible singular value.

Arguing soundness, i.e. that this procedure doesn’t yield
a “false positive” in the form of an erroneous direction
lying far from V, is not too hard. However, analyzing
completeness, i.e. that this procedure will find some new
direction, is surprisingly subtle (see Lemma V.7). Formally,
we need to argue that if we have an approximation F' to the
true F' (under some suitable metric), then the corresponding
matrix MY is close to the matrix M. This is further
complicated by the fact that ultimately, we will only have
access to a subspace W which is approximately in V, as
every direction we find in our iterative procedure is only
guaranteed to mostly lie within V.

Our key step in proving this is showing a new stability
property of affine thresholds of piecewise linear functions
and makes an intriguing connection to lattice polynomials
in tropical geometry.

Stability of Piecewise Linear Functions: Following the
above discussions, to complete our analysis we need to
show stability of affine thresholds of ReLU networks in
the following sense: if F,F : RY - R are two RELU
networks that are close in some structural sense (i.e., under
some parametrization), then E[1[|F(z)| > 7](za” — Id)] ~
E[1[|F(z)| > 7](z2T — Id)]. A natural way to approach the
above is to upper bound P[|F(z)| > 7 A |F(x)| < 7]. That
is, affine thresholds of ReL.U networks that are structurally
close disagree with low probability.

A natural way to parametrize closeness is to require the
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weight matrices of the two networks F) F to be close to
each other. While such a statement is not too difficult to
show for depth two networks (by a union bound over pairs
of ReLUs), proving such a statement for general ReLU
networks using a direct approach seems quite challenging.
We instead look at proving such a statement for a more
general class of functions - continuous piecewise-linear
functions which allows us to do a certain kind of hybrid
argument more naturally.

Concretely, we show that affine thresholds of piecewise-
linear functions that are close in some appropriate structural
sense disagree with low probability over Gaussian space.
We will elaborate upon the notion of structural closeness
we consider momentarily, but for now it is helpful to keep
in mind that it specializes to L distance for linear functions.

Lemma IL.2 (Informal, see Lemma V.3). Let F, F:RI
R be piecewise-linear functions, both consisting of at most
m linear pieces, which are “(m,n)-structurally-close” (see
Definition 1V.9). For any T > 0,

P ||F(z)|>7A|F(x) < 7| <Omm?/7).

z~N(0,1d)

)]

To get a sense for this, suppose F) F were even close in

the sense that the polyhedral regions over which F'is linear
are identical to those over which F' is linear, and furthermore
E.[(F(z)—F(2))?]'/? < n. Then if we take for granted that
Lemma II.2 holds when m = 1, i.e. when F, I are linear, it
is not hard to show an O((nm/7)¢) upper bound in (1) under
this very strong notion of closeness for some ¢ < 1. Because
F and F are Lo-close as functions, for any ¢ > 0 we have
that with probability 1 — O(n?/t?) the input z ~ N(0,1d)
lies in a polyhedral region for which the corresponding linear
functions for F' and F' are t-close. By the m = 1 case of
Lemma II.2, over any one of these at most m regions, the
affine thresholds 1[|F(x)| > 7] and 1[|F(x)| > 7] disagree
with probability O(t/7). Union bounding over these regions
as well as the event of probability n2/t> that = does not
fall in such a polyhedral region, we can upper-bound the
left-hand side of (1) by O(n?/t> + mt/7), and by taking
t = (n?7/m)"/3, we get a bound of (nm?/7)%/3.
__The issues with this are twofold. First, recall the function
F' that we want to apply Lemma V.3 to is obtained from
some enumeration over a fine net of ReLU networks. As
such there is no way to guarantee that the polyhedral regions
defining F' and F' are exactly the same, making adapting
the above argument far more difficult, especially for general
ReLU networks.

Second, we stress that the linear scaling in O(n) in (I1.2)
is essential. If one suffered any polynomial loss in this bound
as in the above argument, then upon applying Lemma II.2
k times over the course of our iterative algorithm for
recovering V', we would incur time and sample complexity
doubly exponential in k. The reason is as follows.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.



Recall that in the final argument we can only ensure
that the directions wq,...,w, we have found so far are
approximately within V, and the parameter n will end up
scaling with an appropriate notion of subspace distance
between W and the true space V. On the other hand, the
bound we can show on how far M deviates from MY
in spectral norm will essentially scale with the right-hand
side of (I.2). So if we could only ensure M and MW
are O(n°)-close in spectral norm for ¢ < 1, then if we
append the top eigenvector of M to the list of directions
wy, ..., wy we have found so far, the resulting span will only
be O(n°)-close in subspace distance. Iterating, we would
conclude that for the final output of the algorithm to be
sufficiently accurate, we would need the error incurred by
the very first direction w; found to be doubly exponentially
small in &!

Lattice Polynomials: Tt turns out that there is a clean
workaround to both issues: passing to the lattice polynomial
representation for piecewise-linear functions. Specifically,
we exploit the following powerful tool:

Theorem IL.3 ([58], Theorem 4.1; see Theorem IV.8 be-
low). If F' is continuous piecewise-linear, there exist linear
functions {g;}ic[nr) and subsets Iy, ..., L, C [M] for which

F(z) = max min 9i(x).

2)

In fact, our notion of “structural closeness” will be built
around this structural result. Roughly speaking, we say
two piecewise linear functions are structurally close if they
have lattice polynomial representations of the form (2) with
the same set of clauses and whose corresponding linear
functions are pairwise close in Lo (see Definition 1V.9).

At a high level, Theorem II.3 will then allow us to
implement a hybrid argument in the proof of Lemma II.2
and carefully track how the affine threshold computed by a
piecewise-linear function changes as we interpolate between
F and F. In this way, we end up with the desired linear
dependence on 7 in (IL.2).

With Lemma II.2 in hand, we can argue that even with
only access to a subspace W approximately within V' and
with only a function F' that approximates F'(Ily ), the top
singular vector of MY mostly lies within V, and we can
make progress.

Finally, we remark that as an added bonus, Theorem I1.3
also gives us a way to enumerate over general continuous
piecewise-linear functions! In this way, we can adapt our
algorithm for learning ReLU networks to learning arbitrary
piecewise-linear functions, with some additional computa-
tional overhead.

Enumerating Over Piecewise-Linear Functions and
ReLU Networks: There is in fact one more subtlety to
implementing the above approach for ReLU networks and
getting singly exponential dependence on k.
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First note that whereas one can always enumerate over
functions computed by lattice polynomials of the form (2)
in time exp(poly(M)), for ReLU networks of size S this
can be as large as doubly exponential in S. Instead, we
enumerate over ReLU networks in the naive way, that
is, enumerating over the exp(O(S)) many possible archi-
tectures and netting over weight matrices with respect to
spectral norm, giving us only singly exponential dependence
on S.

Here is the subtlety. Obviously two ReLU networks
with the same architecture and whose weight matrices are
pairwise close in spectral norm will be close in Ly. But
how do we ensure that the corresponding lattice polynomials
guaranteed by Theorem II.3 are structurally close? In par-
ticular, getting anything quantitative would be a nightmare
if the clause structure of these lattice polynomials depended
in some sophisticated, possibly discontinuous fashion on the
precise entries of the weight matrices.

Our workaround is to open up the black box of Theo-
rem II.3 and give a proof for the special case of ReLU net-
works from scratch. In doing so, we will find out that there
are lattice polynomial representations for ReLU networks
which only depend on the architecture and the signs of the
entries of the weight matrices (see full version). In this way,
we can guarantee that a moderately fine net will contain a
network which is structurally close to the true network.

III. TECHNICAL PRELIMINARIES

In this section we collect notation and technical tools that
will be useful in the sequel.

A. Miscellaneous Notation and Definitions

We will use V and A to denote max and min respectively.
We will use ||-||, to denote the L, norm of a vector or of
a random variable. When the random variable is given by a
function over Gaussian space, e.g. F(z) for z ~ N(0,1d)
and F : RY — R, we use the short-hand ||F||, to denote
Eenn (0,10 [F(2)P]V/P. When p = 2, we will omit the
subscript. We use ||-|lop and ||-||r to denote operator and
Frobenius norms respectively. When we refer to a function
as A-Lipschitz, unless stated otherwise we mean with respect
to Lo.

Given a subspace V' C R, let IIy, denote the orthogonal
projector to that subspace. Let Sy C R? denote the set
of vectors in V' of unit norm. When the ambient space
R is clear from context, we let V1 denote the orthogonal
complement of V. For a subspace W C V, we will denote
the orthogonal complement of W inside V' by V\W.

Given z € R, let M(0, 1, ) denote the standard Gaussian
density’s value at x. Let erfc(z) = Pynr0,1)[|g] > 2] (note
that we eschew the usual normalization). Let x2, denote the
chi-squared distribution with m degrees of freedom.

Recall that we denote the ReLU activation function by
#(2) & max(z,0).
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The following class of functions will be useful for us.

Definition III.1. The set of lattice polynomials over the
reals is the set of real-valued functions defined inductively
as follows: for any d > 1, any constant real-valued function
R? — R is a lattice polynomial, and any function A : R? —
R which can be written as h(z) = f(z) V g(z) or h(z) =
f(z) A g(x) for two lattice polynomials f,g : RY — R is
also a lattice polynomial.

Fact I11.2 (Elementary anticoncentration). If Z is a random
variable for which | Z| < M almost surely, and E[Z?] > o2,
then P|Z] > t] > 5z (c% — t2).

Definition IIL.3 (Frames). A set of orthonormal vectors
W1, ..., Wy is a frame. Given subspace V C R?, we say that
this frame is v-nearly within V' if ||Ily-w;|| > 1 — v for all
1. We will sometimes refer to their span W as a frame v-
nearly within to V, when the choice of orthonormal basis
for W is clear from context.

IV. CONTINUOUS PIECEWISE-LINEAR FUNCTIONS AND
LATTICE POLYNOMIALS

In this section, we introduce tools for reasoning about con-
tinuous piecewise-linear functions, culminating in a struc-
tural result (Theorem IV.8) giving an explicit representation
of arbitrary ReLU networks as lattice polynomials (see
Definition III.1).

A. Basic Notions

We will work with functions which only depend on some
low-dimensional projection of the input.

Definition IV.1 (Subspace juntas). A function F : R? —
R is a subspace junta if there exist vi,...,vy € S9!
and a function h R¥ — R for which F(z)
h({v1,2), ..., (v, x)) for all z € RL We will refer to
V £ span(vy,...,v;) as the relevant subspace of F, to
v1, ...,V as the relevant directions of F, and to h as the
link function of F.

Definition IV.2 (Piecewise Linear Functions). Given vector
space W, a function h : W — R is said to be piecewise-
linear (resp. piecewise-affine-linear) if there exist finitely
many linear (resp. affine linear) functions {g; : W —
R}ie(ar) and a partition of W into finitely many polyhedral
cones {S;}icz such that G(z) = >, 1[x € Si]gi(x). We
will say that h is realized by M pieces {(g;,Si)} (note that
h can have infinitely many realizations). If each g; is given
by gi(x) = {u;,x) + b; for some u; € W, b; € R, then we
will also refer to the pieces of h by {({u;,-) + b;,S;)}.

We are now ready to define the concept class we will
work with in this paper.

Definition IV.3 (“Kickers”). We call a subspace junta F
with link function h a kicker if h is continuous piecewise-
linear. Note that a kicker is itself a continuous piecewise-
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linear function, and for any realization of its link function
by M pieces, there is a realization of F' by M pieces.

Henceforth, fix a subspace junta F' : R? — R with
link function h and relevant directions vy, ..., vy spanning
relevant subspace V C R,

Example IV.4 (ReLU Networks). Feedforward ReLU net-
works as defined in Definition 1.1 are kickers with relevant
subspace of dimension at most k, where k is the row span
of the weight matrix W, the link function is defined by

hz) = Wrip(Wre(--- Wig(z) - -+)),

and the pieces in one possible realization of h correspond to
the different possible sign patterns that the activations could
take on, that is the different possible values of the vector
L
{Wap(Wa16(- - Wi (2) ) }ocacy € [Taof1H

as z ranges over Rk

Lemma IV.5. If F is a A-Lipschitz kicker, then for any
realization of its link function h by pieces {((w;,-),S:)},
there is a realization by pieces {({(w},-),S;)} for which

Definition IV.6 (Restrictions). Given any nonzero linear
subspace W C V, let F|y : W — R denote the restriction
of F' to the subspace W. By abuse of notation, we will
sometimes also regard F'|y as a function over R? given by

The following property of restrictions of Lipschitz func-

tions will be important.

Lemma IV.7. For any nonzero linear subspace W
V, and A-Lipschitz function F R —
SUD |11, o <1 [ F' (@) — F(Ilwa)| < A

c
R,

B. A Generic Lattice Polynomial Representation

Essential to our analysis is the following structural result
from [58] which says that, perhaps surprisingly, any piece-
wise linear function can be expressed as a relatively simple
lattice polynomial.

Theorem IV.8 ([58], Theorem 4.1). If h : R® — R is a
continuous piecewise-linear function which has a realization
by pieces {(gi, Si) }ic|ar), there exists a collection of clauses
Ty, ... Ty C [M] for which

3

h(z) = max min gi(x)
Technically we will need to use this theorem in a white-
box fashion as the specific construction exhibited in this
theorem will be important in the proof of our main result
for learning ReLU networks. We defer these details to the
full version.
We will work with the following notion of approximation
for such lattice polynomials:
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Definition_ IV.9. Two continuous piecewise-linear func-
tions G,G R — R are (M,n)-structurally-close
if there exist linear functions g¢i,...,gps and g1, ..., gnr
and subsets Zi,....Z,, C [M] for which G(z)

maxXe(m) miniezi gi(ﬂc), é(m) = MaX;¢[m] miniezi @(
and ||g; — g;|| < n for all 4.

),

Structural closeness of continuous piecewise-linear func-
tions in the above sense is stronger than Lo-closeness.

Lemma IV.10. Take continuous piecewise-linear functions
G,G : R™ — R which are (M,n)-structurally-close. Then
|G — G|| < nv/m. In particular, if G is a piecewise-linear
Sfunction which is realized by pieces {({u;, ), S;)} satisfying
lusl) < 7, then |G| < ny/im.

As discussed in Section II, for our application to learning
general kickers, we will leverage the lattice polynomial
representation in Theorem IV.8 to grid over piecewise-linear
functions. Note that a priori, even if we knew exactly the set
of linear functions {gi},;e[ M) in a realization of a piecewise-
linear function, enumerating over all lattice polynomials of
the form (3) would require time doubly exponential in M,
as there are 2M possible clauses Z; and 22" possible sets
of clauses {Z;}.

By being slightly more careful, we can enumerate in time
exp(poly(M)), see full version.

V. FILTERED PCA

In this section we prove our main results on learning
kickers and ReLU networks. Throughout, we will make the
following base assumption about the function F'.

Assumption 1. F' is a kicker which is A-Lipschitz for some
A > 1 and has at most M pieces.

While our techniques are general enough to work under
just this assumption, for our main application to learning
ReLU networks (Definition I.1), we can obtain improved
runtime guarantees by making the following additional as-
sumption on F'.

Assumption 2. F' is computed by a size-S ReLU net-
work” with depth L + 2 and weight matrices Wy €
Rkoxd W, € RFexki-v Wy | € R L satisfying
|[Willop < B forall 0 <i< L+ 1, for some B > 1.8

In this section, unless stated otherwise, we will only
assume F' satisfies Assumption 1, but in certain parts of
the proof, we will get better bounds by additionally making
Assumption 2. Under these assumptions, we will prove
Theorems 1.2 and L.5.

In Section V-A, we prove an anti-concentration result for
piecewise-linear functions. We use this to prove that in an

"Note that this implies M < 25.
8Recall from Definition I.1 that we will refer to the rank of W as k
to emphasize that F' is a kicker with relevant subspace V' of dimension k.
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idealized scenario where we had exact access to some /-
dimensional W C V as well as exact query access to F'|y,
we would be able to approximately recover a vector in V\W
by running one iteration of the main loop of FILTEREDPCA.
In the remaining sections, we show how to pass from this
idealized scenario to the setting we actually care about,
in which we only samples (z, F(z)). In Section V-B we
show that affine thresholds of piecewise-linear functions
are stable under small perturbations of the function. Then
in Section V-C, we show how to grid over the set of
kickers/ReLU networks and formally state our algorithm.
In Section V-D we combine these ingredients to argue that
as long as we have sufficiently good approximate access
to W and Flw, a single iteration of the main loop of
FILTEREDPCA will approximately recover a vector from
VAW, from which our main theorems will follow.

A. Anti-Concentration of Piecewise Linear Functions

An important technical tool is the following result show-
ing that for any continuous piecewise-linear function with
some variance, the probability that it exceeds any given
threshold is non-negligible.

Lemma V.1. If G : R™ — R is continuous piecewise-
linear and A-Lipschitz and E[G?] > o2, then for any s > 0,
P[|G| > s] > Q(exp(—3ms?/a?)) - 22

mA2*

Now suppose we had access to an orthonormal collection
of vectors wi,...,w, that are exactly in V. Let W denote
their span. Suppose further that we had access to the matrix

MY 210, E [ILHy — F(Ilyz)| > 7] - (zz" — Id)]HwL.
Ty

When the threshold 7 is clear from context, we will just
refer to this matrix as M"W .

As we will see, if this matrix is nonzero, then its singular
vectors with nonzero singular value must lie in V' and be
orthogonal to wy,...,wp. The main challenge will be to
show that this matrix is nonzero. The following proof also
applies to the case of £ = 0, in which case F(IIyyx)
specializes to the zero function and (4) specializes to

M? 2 E[1]ly| > 7] - (z2" —1d)].

z,y

“4)

In particular, (4) is a matrix we actually have access to at
the beginning of the algorithm, and one consequence of the
warmup argument below is an algorithm for finding a single
vector in V.

It is not hard to show that for appropriately chosen T,
either the top singular value of MY is non-negligible,
or E[(F(z) — F(Ilyx)?] is small, that is, F is already
sufficiently well-approximated by the function F'|y:

Lemma V.2. Suppose Eq~nr(0,1d) [(F(z)—F(Iyx))? > p?
for some p > 0. For any 7 > 0, if a vector is not in the kernel
of MY, then it must lie in V\W. For 7 > \/2(k — () - A,
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C3kr2/2\ | (k=07
(MY Ty\w) EQ<6 3k /”) VTR

this choice of T, the top singular vector of MY lies in V\W

; 0 o —3k72/p?\ . _71p
and has singular value at least \y”’ = () (e P ) NICR

If € is the target Lo error to which we want to learn F',
we will only ever work with p > Q(e). In the sequel, we
will take 7 = ¢k - A for sufficiently large absolute constant
¢ > 0. As a result, we have that )\(Te) >0 (e‘o(szz/Ez)) .

(/M) 2 A

B. Stability of Piecewise Linear Threshold Functions

In particular, for

To get an iterative algorithm for finding all relevant
directions of F', we need to show an analogue of Lemma V.2
in the setting when we only have access to directions
Wy, ..., wy which are close to the span of V, and when
we only have access to an approximation of the function
Flw.

To this end, another important tool we show in the full
version is the following stability result for affine thresholds
of piecewise-linear functions:

Lemma V3. Let f,g,9' : R — R be piecewise-linear
Sfunctions. For any 7 > 0, if g,g" are (m,n)-structurally-
close and f has a realization with at most m pieces, then
Pallg(@) — f(2)] > 7 A lg'(2) — f(2)] < 7] < 9nm? /7.

C. Netting Over Piecewise Linear Functions

Suppose we have recovered an ¢-dimensional subspace W
that approximately lies within V. In this section we show
how to produce a finite list of candidate kickers with relevant
subspace W, one of which is guaranteed to approximate F'
restricted to some ¢-dimensional subspace W. Ignoring the
finiteness of this list for now, we first show that as long as
W is sufficiently close to lying within V, there exists some
kicker close to some restriction F |y .

Lemma V4. Let wy,...,wy be a frame v-nearly within
V, with span W. There exist an_{-dimensional subspace
W C V and a A-Lipschitz kicker F* with relevant subspace
W which is (M, 2+/v - £A)-structurally-close to F|w.

We can show that if we enumerate over a fine enough
net of kickers, then we can recover an approximation to F'*
from Lemma V.4 in time singly exponential in poly(M).

Lemma V5. Take any €' > 0. Given a frame w1, ..., Wy
with span W W for any A-Lipschitz kicker F'* with relevant
subspace W, there exists a kicker F with relevant subspace
W in the output L of ENUMERATEKICKERS( W ') which i is
(M, e A)
(1+2/¢)

In particular, if wy,...,we is a frame v-nearly within
V, then for & = 2\/v - {, L contains a kicker F which
is (M, Cpiecewise V/V)-structurally-close to F|w for some (-
dimensional subspace W C 'V, where Cpiecewise £ 4EkA.
L] < MM O(1/yv)t in this case.
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Enumerating over arbitrary kickers with M pieces re-
quires runtime scaling exponentially in poly (M ). For ReLU
networks of size S, M could be as large as exp(S), so
naively using ENUMERATEKICKERS in our application to
learning ReLU networks would incur doubly exponential
dependence on k in the runtime. In the full version we
describe how to net more efficiently for ReLU networks.

With subroutines for enumerating over ReLU networks
and kickers in hand, we can now formally state our al-
gorithm, FILTEREDPCA (see Algorithm 1 below). The
algorithm as stated applies to the case where F' is a neural
network satisfying Assumptions 1 and 2, but we can easily
modify the algorithm to work in the case where F' is only
a kicker satisfying Assumption 1 by an appropriate change
of parameters.

Algorithm 1: FILTEREDPCA(D, ¢, §)

1 W« 0.

2for0</<k-—1do

Draw samples (z1,41),---, (TN, YN)
W« span of vectors in W.

L + net of networks over V.

for F € £ do

Define ngnp to be the matrix given by

St |l — F(llga)| > 7
MZE{,p — Mempnwi
Get top smgular vector wtt!

~ D.

N S B W

—1d).

(Iz

of MW

emp*
10
11

if HMempH sufficiently large then
Append w'*t! to W, exit out of this inner
loop, and increment /.
if no w'*!

L Break.

12
13

was appended to VV then

W« span of vectors in W.
L + net of networks over IW.
for F € £ do
Form an empirical estimate ¢ for ||F — F||.
if £ < 3¢ then
L return F.

D. Perturbation Bounds

We now show how to leverage Lemma V.3 to show
that even with access to a subspace W which is only
approximately within V' as well as the restriction of F' to
that subspace, we can recover another vector orthogonal to
W which mostly lies within V.

The first step is to show that in this approximate setting,
the analogue of M"W from Lemma V.2 is spectrally close
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to MW . It is in showing this perturbation bound that we
invoke the stability result of Section V-B.

Lemma V.6. Suppose F only satisfies Assumption 1
(resp. both Assumptions 1 and 2). Let wi,...,w; €
S\‘f‘l be a frame v-nearly within V, with span
W. For x € {piecewise, network}, define &.(v)

1-1/k
0 (k (M) V; M) and suppose N > Q({dV

eVEkA

log(1/0)}/&2). Given subspace W C 'V and F for
which Flw and F are (M, Cpiecewise\/V)-structurally-close
(resp. (M, Cretwork\/V)-structurally close), then we have that
MY — MW ||,, < 3&(v) with probability at least 1 — 6.

emp

Finally, we use the above perturbation bound to show that
in a single iteration of the main outer loop of FILTERED-
PCA, if there is some variance unexplained by the subspace
W found so far, then we will find another “good” direction
orthogonal to W which is also approximately within the
span of V. Note that this claim has two components:
completeness, i.e. in the list of candidate functions we
have enumerated, geg is some function for which the top
singular vector of MeVan is a good direction, and soundness,
i.e. whatever direction is ultimately chosen in Step 11 of
FILTEREDPCA is a good direction.

Lemma V.7. Suppose F' only satisfies Assumption 1 (resp.
both Assumptions I and 2). Suppose v < &*/(4kC3 . ise)
(resp. v < €2/ (4kClyon))- For 0 < € <k, let wy,..., 0
be a frame v-nearly within V, with span W. Define £ =
Epiecewise (V) (resp. & = Enetwork (V) according to Lemma V.6,
and suppose N > Q({d Vv 1og(1/6)}/€?) and 7 = ¢k - A.

Suppose & < A/6, and suppose By n010)[(F(z) —

, Wy

F(Ilzx))?] > €2 Let L be the output
of ENUMERATEKICKERS(W, 23/v l) (resp.
ENUMERATENETWORKS(W,2y/v - (/k - B)). With

probability at least 1 — |L| - § over the randomness of the
N samples, the following hold:

1) Completeness: There exists some F € L such that the
top singula value of MY is at least \ — 3€.

emp

2) Soundness: For any F € L for which ||MZKP||0,, >
A — 3¢, the top singular vector w satisfies ||y w| >
1-c¢) 22 Jfor some absolute constant c >0andis

orthogonal to W.

By putting the above ingredients together, we can con-
clude the proof of Theorems 1.2 and 1.5, see full version.
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