
Learning Deep ReLU Networks Is Fixed-Parameter Tractable

Sitan Chen

UC Berkeley

sitanc@berkeley.edu

Adam R. Klivans

UT Austin

klivans@cs.utexas.edu

Raghu Meka

UCLA

raghum@cs.ucla.edu

Abstract—We consider the problem of learning an unknown
ReLU network with respect to Gaussian inputs and obtain the
first nontrivial results for networks of depth more than two. We
give an algorithm whose running time is a fixed polynomial in
the ambient dimension and some (exponentially large) function
of only the network’s parameters. Our results provably cannot
be obtained using gradient-based methods and give the first
example of a class of efficiently learnable neural networks that
gradient descent will fail to learn.

Our bounds depend on the number of hidden units, depth,
spectral norm of the weight matrices, and Lipschitz constant
of the overall network (we show that some dependence on the
Lipschitz constant is necessary). We also give a bound that is
doubly exponential in the size of the network but is independent
of spectral norm.

In contrast, prior work for learning networks of depth
three or higher requires exponential time in the ambient
dimension, even when the above parameters are bounded by
a constant. Additionally, all prior work for the depth-two case
requires well-conditioned weights and/or positive coefficients
to obtain efficient run-times. Our algorithm does not require
these assumptions.

Our main technical tool is a type of filtered PCA that can
be used to iteratively recover an approximate basis for the
subspace spanned by the hidden units in the first layer. Our
analysis leverages new structural results on lattice polynomials
from tropical geometry.

Keywords-deep learning; supervised learning; multiple index
models; regression; statistical query; gradient descent

I. INTRODUCTION

We study the problem of learning the following class of

concepts:

Definition I.1 (ReLU Networks). Let CS denote the concept

class of (feedforward) ReLU networks over Rd of size S.

Specifically, F ∈ CS if there exist weight matrices W0 ∈
Rk0×d,W1 ∈ Rk1×k0 , . . . ,WL ∈ RkL×kL−1 ,WL+1 ∈
R1×kL for which

F (x) � WL+1φ (WLφ (· · ·φ(W0x) · · ·)) ,

where φ(z) � max(z, 0) is the ReLU activation applied

entrywise, and k0 + · · ·+ kL = S. In this case we say that

F is computed by a ReLU network with depth L + 2. We

will refer to the rank of W0 as k, to emphasize that the

value of F only depends on a k-dimensional subspace of

Rd. We will also let kL+1 = 1.

When the weight matrices of two ReLU networks F, F ′ ∈
CS have the same dimensions (at all layers), then we say that

F and F ′ have the same architecture.

For example, a depth two ReLU network of size S in

d-dimensions is a function F : Rd → R of the form

F (x) =

S∑

i=1

λiφ(〈wi, x〉),

where λi ∈ R are scalars and wi ∈ Rd are arbitrary vectors.

Note that any Boolean function F : {±1}n → {±1} can

be computed by an n-layer ReLU network. In particular, if

F is a junta depending only on k variables, then it can be

computed by a k-layer ReLU network with size that depends

only on k.

Learning ReLU Networks: The problem of PAC learn-

ing an unknown ReLU network from labeled examples is a

central challenge in the theory of machine learning. Given

samples from a distribution of the form (x, y) ∈ Rd × R

where y = F (x) with F an unknown size-S ReLU net-

work,1 and x is drawn according to a distribution D, the goal

is to output a function f : Rd → R with small test error,

i.e., Ex,y[(y− f(x))2] ≤ εE[y2]. In this work, we focus on

the widely studied case where the input distribution on x is

Gaussian.

Ideally, we would like an algorithm with sample complex-

ity and running time that is polynomial in all the relevant

parameters. Even for learning arbitrary sums of ReLUs, i.e.

depth two ReLU networks where we additionally assume

the W1 has all positive entries, it remains a major open

question to obtain a polynomial-time algorithm (see [1]

for the strongest-known result). As a first step, one could

ask for an algorithm that at least depends polynomially on

the ambient dimension (it is often easy to obtain brute-

force search algorithms that run in time exponential in

the dimension2). In the absence of additional assumptions

however, even this goal has remained elusive: it was not

known how to achieve a subexponential-time algorithm even

for learning general depth two ReLU networks, let alone

ReLU networks of higher depth.

1It should not be difficult to extend our techniques to the setting where
y = F (x) + N (0, σ2), but we focus on the noiseless case for simplicity
in this work.

2Although in our specific case even this type of search turns out to be
nontrivial.

696

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00073

20
21

 IE
EE

 6
2n

d
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

00
73

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

In this work, we address this gap by giving the first

algorithm for learning ReLU networks whose running time

is a fixed polynomial in the dimension, regardless of the

depth of the network. Our algorithm is fixed-parameter

tractable: we show that we can properly learn (i.e., the

output hypothesis is also a ReLU network) ReLU networks

with sample complexity and running time that is a fixed

polynomial in the dimension and an exponential function of

the network’s parameters.

More precisely, our main result is as follows. We will

also make the (as it turns out necessary) assumption that the

ReLU network has a bounded Lipschitz constant: a function

f : Rd → R is Λ-Lipschitz if |f(x)− f(x′)| ≤ Λ‖x− x′‖2
for all x, x′.

Theorem I.2 (Main, informal). Let D be the distribution

over pairs (x, y) ∈ Rd × R where x ∼ N (0, Id) and

y = F (x) for a size-S ReLU network F with depth L+ 2,

Lipschitz constant at most Λ, rank of bottom weight matrix

W0 being k, and whose weight matrices all have spectral

norm at most B.

There is an algorithm that draws

d log(1/δ) exp (poly(k, S,Λ/ε))BO(Lk) samples, runs

in time Õ(d2 log(1/δ)) exp (poly(k, S,Λ/ε))BO(LkS2),

and outputs a ReLU network F̃ such that E[(y−F̃ (x))2] ≤ ε
with probability at least 1− δ.3

Note that the sample complexity is linear while the run-

time is quadratic in the ambient dimension. In particular,

in the well-studied special case where the product of the

spectral norms of the weight matrices is a constant (see e.g.

[2]), in which case the Lipschitz constant of the network

is also constant, we can obtain the following result as an

immediate consequence of the formal version of the above

theorem:

Corollary I.3. Let D be the distribution over pairs (x, y) ∈
Rd × R where x ∼ N (0, Id) and y = F (x) for a size-

S ReLU network F for which the product of the spectral

norms of its weight matrices is a constant.

Then there is an algorithm that draws N =
d log(1/δ) exp(O(k3/ε2 + kS)) samples, runs in time

Õ(d2 log(1/δ)) exp(O(k3S2/ε2 + kS3)), and outputs a

ReLU network F̃ such that E[(y − F̃ (x))2] ≤ ε with

probability at least 1− δ.

As mentioned earlier, no algorithms that were sub-

exponential in d were known even for S,B, ε being con-

stants.

Before going further, we note that a dependence on

the Lipschitz constant of the network is necessary even

for learning depth two ReLU networks with respect to

Gaussians:

3See full version for a discussion of why this guarantee is scale-invariant.

Example I.4. Let Λ > 0. Consider the size-3, depth two

ReLU network F : R2 → R given by

F (x1, x2) = φ(x1+Λx2)+φ(3x1+Λx2)−2φ(−x1+Λx2).

The Lipschitz constant of F is Θ(Λ): F (0, 1/Λ) = 1 and

F (1, 1/Λ) = 2. Furthermore, note that for (x1, x2) ∈ S1,

F (x1, x2) = 0 unless x2 ∈ [−3/Λ, 3/Λ]. By rotational

symmetry, for (x1, x2) ∼ N (0, Id), F (x1, x2) 	= 0 with

probability at most O(1/Λ).

Note that for depth two ReLU networks with positive

weights, no such dependence on the Lipschitz constant is

necessary intuitively because without cancellations between

the hidden units, one cannot devise “spiky” functions F
which simultaneously have small variance but attain a large

value at some bounded-norm x.

Interestingly, our techniques are also general enough to

handle the more general family of all continuous piecewise-

linear functions (see Definition IV.2 for a formal definition):

Theorem I.5. Let D be the distribution over pairs (x, y) ∈
Rd×R where x ∼ N (0, Id) and y = F (x) for a continuous

piecewise-linear function F which only depends on the

projection of x to a k-dimensional subspace V , has at most

M linear pieces, and is Λ-Lipschitz.

There is an algorithm that draws d log(1/δ) ·
poly

(
exp

(
k3Λ2/ε2

)
,Mk

)
samples, runs in time

Õ(d2 log(1/δ)) · MM2 · poly
(
exp

(
k4Λ2/ε2

)
,Mk2

)
,

and outputs a piecewise-linear function F̃ such that

E[(y − F̃ (x))2] ≤ ε with probability at least 1− δ.

Note that a size-S ReLU network is a continuous

piecewise-linear function with at most 2S linear pieces.

Specializing Theorem I.5 to ReLU networks gives a guar-

antee which is incomparable to Theorem I.2: we obtain an

algorithm that depends doubly exponentially on S but has

no dependence on the norms of the weight matrices.

A. Prior Work on Provably Learning Neural Networks

Algorithmic Results: Algorithms for learning neural

networks (obtaining small test error) have been intensely

studied in the literature. In the last few years alone there

have been many papers giving provable results for learning

restricted classes of neural networks under various settings

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [1].

The predominant techniques are spectral or tensor-based

dimension reduction [3], [5], [16], [24], kernel methods [4],

[7], [25], [15], [17], and gradient-based methods [13], [14],

[19]. All prior work takes distributional and/or architectural

assumptions, the most common one being that the inputs

come from a standard Gaussian. We will also work in this

697

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

setting.4

As pointed out in [26], [21], all existing algorithmic

results for Gaussian inputs hold only for depth two networks

and make at least one of two assumptions on the unknown

network F in question:

• Weight matrix W0 is well-conditioned and, in particu-

lar, full rank.

• The vector at the output layer (W1 when L = 0) has

all positive entries.

Assumption (1) allows one to use tensor decomposition to

recover the parameters of the network and hence PAC learn,

an idea that has inspired a long line of works [3], [5], [13],

[14], [16]. However, the assumption is not necessary for

PAC learning or achieving low-prediction error. For instance,

consider a pathological case where W0 has repeated rows.

Here, while parameter recovery is not possible it is still

possible to PAC learn. To our knowledge, the only work

that can PAC learn depth two networks over Gaussian inputs

without a condition number bound on W0 is [24]. However,

their work still requires assumption (2) (and only holds

for depth two networks). Our work shows that assumption

(2) is neither information-theoretically nor computationally

necessary.

Limitations of Gradient-Based Methods: Two recent

works [26], [24] showed that a broad family of algorithms,

namely correlational statistical query (CSQ) algorithms,

fail to PAC learn even depth two ReLU networks; that

is, functions of the form F (x) =
∑k

i=1 λiφ(〈vi, x〉) with

respect to Gaussian inputs in time polynomial in d where d
is the ambient dimension (in fact, [24] rules out running time

do(k)). Informally, a CSQ algorithm is limited to using noisy

estimates of statistics of the form E[y · σ(x)] for arbitrary

bounded σ, where the expectation is over examples (x, y)
and y = F (x) is computed by the network. The point

is that this already rules out a wide range of algorithmic

approaches in theory and practice, including gradient descent

on overparameterized networks (i.e., using neural tangent

kernels [27] or the mean-field approximation for gradient

dynamics [28]). Note that the algorithms of [24] for learning

depth two ReLU networks with positive coefficients are CSQ

algorithms as well.

Note that as a consequence of Theorem I.2, for any ε
a function of k, our algorithm can learn the lower bound

instances in [26], [24] to error ε in time g(k) · poly(d) for

some g (note that the norm bounds and Lipschitz constants

for these instances are upper bounded by functions of k),

which is impossible for any CSQ algorithm. We explain why

our algorithm is not a CSQ algorithm in Section II.

For the classification version of this problem (i.e., tak-

ing a softmax) where we observe Y ∈ {0, 1} such that

E[Y |X] = σ(f(X)) where σ is say sigmoid and f(X)

4Other works such as [18] or kernel-based methods [4], [7] require strong
norm-based assumptions on the inputs and weights.

is a depth two ReLU network, Goel et al. [26] show that

even general SQ algorithms cannot achieve a runtime with

polynomial dependence on the dimension. We also remark

there is an extensive literature of previous work showing

various hardness results for learning certain classes of neural

networks [29], [30], [31], [32], [7], [33], [34], [35], [19],

[36], [37]. We refer the reader to [26] for a discussion of

how these prior works relate to the above CSQ lower bounds.

B. Other Related Work and Discussion

Multi-Index Models: Functions computed by ReLU

networks where W0 has fewer rows than columns are a

special case of a multi-index model, that is, a function

F : Rd → R given by F (x) = f(W�x) for some matrix

W ∈ Rk×d and some function f : Rk → R. In the

theoretical computer science literature, these are sometimes

referred to as subspace juntas [38], [39], [40].

One result in this line of work which is close in spirit

to the setting we consider is that of [41], which gives

various conditions on f under which one can recover W

(under Gaussian inputs) in the special case where k = 1,

as well as a vector in the row span of W in the case of

general k (although these results do not hold for ReLU). In

general, the literature on multi-index models is vast, and we

refer to [41] for a comprehensive overview of this body of

work. Many works were inspired by a simple but powerful

connection to Stein’s lemma [42], [43], [44], which was also

a key ingredient in the above algorithms for learning neural

networks using tensor decomposition.

Another relevant line of work in this literature is the

series of results on learning intersections of halfspaces (and

indicators of convex sets more generally) over structured

input distributions, see e.g. [45], [46], [47], [48], [49]. For

Gaussian inputs, when the number of halfspaces (or more

generally the dimension of the convex set’s hidden subspace)

is bounded, it was shown in [48] that one can essentially

read off the row span of W from the eigendecomposition

of E[y · (xx� − Id)] where for a given x, y = 0 if x lies

in the convex set and y = 1 otherwise. By the CSQ lower

bounds of [26], [24], such an algorithm provably cannot

learn general ReLU networks.

Alternatively, one could also try generalizing the ap-

proach of [48] to our real-valued setting by restricting to

level sets S of the ReLU network and forming the matrix

E[1[x ∈ S](xx�−Id)]. We remark however that the analysis

in [48] for such an approach crucially uses convexity of

the underlying concept and is therefore not applicable to

our setting. Note that this technique is also known as

sliced inverse regression [50], [51] in the multi-index model

literature, and while it is related to the techniques that we

employ, we explain in Remark II.1 why the state of the art

here also falls short.

Non-Gaussian Component Analysis: As we discuss

in Section II, the general approach we take is to find

698

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

careful reweightings of the distribution over x that will

look non-Gaussian in some important direction, i.e., in the

row span of W0. There have been several works on non-

Gaussian component analysis (see, e.g., [52], [53] and the

references therein), but this line of work is not relevant to

our result. We also remark that the work [38] gives some

moment-based conditions under which it is possible to learn

multi-index models over Gaussian inputs via non-Gaussian

component analysis. However, it seems highly nontrivial to

verify whether such conditions hold for ReLU networks,

and in addition, their results seem tailored to {0, 1}-valued

functions.

Piecewise-Linear Regression: We mention that pre-

vious works on segmented regression (see, e.g., [54] on

the references therein) study regression for piecewise-linear

functions but work with a different notion of piecewise-

linearity that is unrelated to our setting.

Non-Homogeneous ReLU Networks: We leave as

an open question whether our result can be extended

to non-homogeneous networks of the form F (x) �

WL+1φ(WLφ(· · ·φ(W0x + b0) + b1) · · · + bL), where

b0, . . . , bL ∈ R are unknown bias parameters. We stress that,

over Gaussian inputs, we are not aware of any positive re-

sults even for learning non-homogeneous networks of depth

two. As for negative results, the recent work of [55] rules out

polynomial-time algorithms for learning non-homogeneous

ReLU networks, even of depth three, assuming local PRGs

with polynomial stretch and constant distinguishing advan-

tage exist [56]. While this hardness result does not preclude

the existence of a fixed-parameter tractable algorithm for

non-homogeneous ReLU networks, it does give a compelling

explanation for the lack of algorithmic progress in the non-

homogeneous case.

II. PROOF OVERVIEW

The conceptual novelty of our work is that we go beyond

standard CSQ-based algorithms like gradient descent on

square loss to give a fundamentally new algorithm for

learning neural networks. There are a number of technical

novelties to our approach we will describe over the course

of outlining our algorithm and analysis in this section.

Suppose we are given samples (x, y) where y = F (x) is

computed by a size S ReLU network as in Definition I.1.

Let V ⊆ Rd denote the span of the rows of W0 and let

k be its dimension. We will call V the relevant subspace,

because the value of F only depends on the projection of x
to V . In particular, we can write y = F ′(ΠV (x)) for some

function F ′ : V → R that is itself a size S ReLU network

and ΠV denotes the projection operator onto V . The main

focus of our algorithm will be in figuring out the relevant

subspace V given samples (x, y). This is the hardest part of

the algorithm, because once we learn the relevant subspace

to high enough accuracy, we can grid-search over ReLU

networks in this subspace. Even this grid search turns out

to be non-trivial to analyze and entails proving new stability

results for piecewise-linear functions.

Filtered PCA: Our algorithm builds upon the filtered

PCA approach, originally introduced in [57] for the purposes

of learning low-degree polynomials over Gaussian space.5

For any ψ : R → R, let Mψ � E[ψ(Y)(XXT − Id)].
A basic but important observation is that for any choice

of ψ, all vectors orthogonal to the true subspace V are in

the kernel of Mψ . A natural idea for identifying the true

subspace then is to look at the nonzero singular vectors of

Mψ for a suitable ψ. If we could show that Mψ has k
nonzero singular values all bounded away from 0 by some

dimension-independent margin c(ψ), then we could hope

to approximately recover V by empirically estimating Mψ

using O(d/c(ψ)2), invoking standard matrix concentration,

and computing its top-k singular subspace. So the main

hurdle is to identify an appropriate ψ for which this is the

case.

What should the ψ be? For instance if ψ is the identity

function, then the matrix Mψ could be identically zero. This

is an essential difference between our setting and the setting

studied in previous works [24], [13] (in the L = 0 case)

where the output layer’s coefficients are all positive, for

which this choice of ψ would suffice to recover the relevant

subspace.

Note that this is consistent with the CSQ lower bounds of

[26], [24], as any algorithm that just tries to use the spectrum

of Mψ for ψ being the identity function would be a CSQ

algorithm. Indeed, for any of the ‘hard’ functions F from

those works which are ReLU networks with L = 0 we would

have Mψ = 0 if ψ is the identity function.

We will choose ψ not equal to the identity, and in

this way our algorithm will be non-CSQ and evade the

aforementioned CSQ lower bounds.

Threshold Filter.: Motivated by [57], our starting point

in the present work is to consider ψ given by a univariate

threshold, that is, ψ(z) = 1[|z| > τ] for suitable τ . For

brevity, for τ ∈ R define Mτ = Ex,y[1[|y| > τ](xxT − Id)].
Then we have that

〈ΠV ,Mτ 〉 = E
x,y

[
1[|y| > τ] · (‖ΠV x‖2 − k)

]
.

In particular, if one could choose τ for which |F (x)| >
τ only if ‖ΠV x‖2 ≥ 2k 6, then we would conclude that

〈ΠV ,Mτ 〉 ≥ k · P[|y| > τ], so some singular value of Mτ

is at least P[|y| > τ]. If F is Λ-Lipschitz, we can simply

choose τ to be
√
2k·Λ, and provided P[|y| > τ] is reasonably

large, then we conclude that Mτ has some reasonably large

singular value. Finally, to lower bound P[|y| > τ], we prove

5For readers familiar with the approach there, we explain in the full
version why a straightforward application of the algorithm there cannot
work, necessitating a far more involved approach in the present work.

6The choice of 2k here is for exposition; any bound noticeably more
than k, e.g., k + 1 will do.

699

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

an anti-concentration result for piecewise linear functions

over Gaussian space (Lemma V.1).

In other words, if one conditions on the samples (x, y)
whose responses y are sufficiently large in magnitude, then

we show that the resulting distribution is noticeably non-

Gaussian in some direction, and by taking the top singular

vector of the conditional covariance, we can approximately

recover some direction inside the relevant subspace V .

Unfortunately, all that the above analysis tells us is that

the trace of Mτ is non-negligible which in turn helps us

guarantee that we identify at least one direction in V . It is not

at all clear whether the above threshold approach is enough

to identify more than just one vector in the relevant subspace.

Indeed, recovering the full relevant subspace turns out to

be significantly more challenging, and the core technical

contribution of this work is to show how to do this.

Remark II.1 (Relation to Sliced Inverse Regression). The

trick of conditioning only on (x, y) for which |y| is suf-

ficiently large is reminiscent of the technique of slicing

originally introduced by [51] in the context of learning multi-

index models. The high-level idea of slicing is that for any

fixed value of y, the conditional law of x|F (x) = y is

likely to be non-Gaussian in most directions v ∈ V , so in

particular, E[xx� − Id | F (x) = y] should be nonzero, and

its singular vectors will lie in V . This can be thought of as

filtered PCA with the choice of function ψ(z) = 1[z = y].
The first issue with using such an approach to get an

actual learning algorithm is that Px[F (x) = y] = 0 for

any y, and the workaround in non-asymptotic analyses

of sliced inverse regression [50] is to estimate something

like Ey[E[xx
� − Id | F (x) = y]] instead. While finite

sample estimators for such objects are known, the conditions

under which this approach can provably recover the relevant

subspace are quite strong and not applicable to our setting.

Learning the Full Subspace: What Doesn’t Work:

One might hope that a more refined analysis shows that

for a suitable τ , the spectrum of Mτ can identify the

entire subspace V . Given that we can already learn some

w ∈ V with the threshold approach above, a first step

would be to try to find a direction in V orthogonal to

w, by lower bounding the contribution to the Frobenius

norm of Mτ from vectors orthogonal to w. Concretely,

letting ΠV \{w} denote the projector to the orthogonal

complement of w in V , we have that 〈ΠV \{w},Mτ 〉 =

Ex,y

[
1[|y| > τ] · (‖ΠV \{w}x‖2 − (k − 1))

]
. As before, if

one could choose τ for which |F (x)| > τ only if

‖ΠV \{w}x‖2 ≥ k, and if we could lower bound P[|y| > τ],
then we would conclude that 〈ΠV \{w},Mτ 〉 ≥ P[|y| > τ],
so Mτ has some other singular vector, orthogonal to w,

with non-negligible singular value. The issue is that such a τ
typically does not exist! For x satisfying ‖ΠV \{w}x‖2 ≤ k,

F (x) can be arbitrarily large, because ‖Πwx‖ can be arbi-

trarily large.

It may be possible to lower bound the quantity in the ex-

pression for 〈ΠV \{w},Mτ 〉 using a more refined argument,

but for general deep ReLU networks or piecewise linear

functions, this seems very challenging. At the very least,

one must be careful not to prove something too strong, like

showing that v�Mτv is non-negligible for any unit vector

v ∈ V . For instance, even when L = 0, it could be that all

but one of the rows of W0 lie in a proper subspace W � V ,

and for the remaining row u of W0, ‖ΠV \Wu‖/‖u‖ is

arbitrarily small. In this case, for v in the direction of

ΠV \Wu, the quadratic form v�Mτv is arbitrarily small, and

it would be impossible to recover all of V from a reasonable

number of samples.

More generally, any proposed algorithm for learning all of

V had better be consistent with the fact that it is impossible

to recover the full subspace V within a reasonable number

of samples if almost all of the variance of F is explained

by some proper subspace W � V , or equivalently, if the

“leftover variance” Ex[(F (x)−F (ΠWx))2] is negligible. We

emphasize that this is a key subtlety that does not manifest

in previous works that consider full-rank, well-conditioned

weight matrices.

Learning the Full Subspace: Our Approach: We now

explain our approach. At a high level, we try to learn

orthogonal directions inside the relevant subspace in an

iterative fashion. The threshold filter approach above already

gives us a single direction in V . Suppose inductively that

we’ve learned some orthogonal vectors w1, ..., w� ∈ V
spanning a subspace W ⊆ V and want to learn another

(note that technically we can only guarantee w1, ..., w�

are approximately within V , but let us temporarily ignore

this for the sake of exposition). Motivated by the above

consideration regarding “leftover variance,” we proceed by

a win-win argument: either the leftover variance already

satisfies Ex[(F (x) − F (ΠWx))2] ≤ ε in which case we

are already done, or we can learn a new direction via the

following crucial modification of the threshold filter.

First, as a thought experiment, consider the following

matrix

M
W
τ � ΠW⊥ E

x,y

[
1[|y − F (ΠWx)| > τ] · (xx� − Id)

]
ΠW⊥ .

Note the critical fact that we threshold on y − F (ΠWx)
as opposed to just on y. As before, it is not hard to show

that if this matrix is nonzero, then its singular vectors with

nonzero singular value must lie in W0 and be orthogonal to

W ; thus giving us a new direction in W0. We claim that if

the leftover variance is non-negligible, then the above matrix

will give us a new direction in W .

The intuition behind the above matrix is as follows. Let

V \W denote the subspace of V orthogonal to W . We can

write F (x) = F (ΠV x) = F (ΠWx + ΠV \Wx). Now, as

F is Lipschitz, we can bound G(x) = y − F (ΠWx) =
F (ΠWx+ΠV \Wx)−F (ΠWx) as |G(x)| ≤ Λ‖ΠV \Wx‖2,

700

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

where Λ is the Lipschitz constant of F . In other words, G(x)
is bounded over x for which ‖ΠV \Wx‖ is bounded. Recall

that the fact that F (x) is not bounded over such x was the

key obstacle to using the original threshold filter approach

to learn the full subspace.

The upshot is that for a suitably large τ , the only

contribution to the matrix M
W
τ should be from inputs x

that have large projection in V \ W . We are now in a

position to adapt the analysis lower bounding 〈ΠV ,Mτ 〉 to

lower bounding 〈ΠV \W ,MW
τ 〉. In particular, we can apply

the aforementioned anti-concentration for piecewise linear

functions to the function G and argue that, provided the

leftover variance Ex[(F (x) − F (ΠWx))2] = Ex[G(x)2] is

non-negligible, the top singular vector of MW
τ will give us

a new vector in V \W .

That being said, an obvious obstacle in implementing the

above is that along with not knowing the true subspace W0,

we also don’t know the true function F . This precludes us

from forming the matrix M
W
τ as defined above.

To get around this, we will enumerate over a suffi-

ciently fine net of ReLU networks F̃ with relevant subspace

W , one of which will be close to the ReLU network

F (ΠWx). For each F̃ , we will form the matrix M̃
W
τ �

ΠW⊥ Ex,y

[
1[|y − F̃ (ΠWx)| > τ] · (xx� − Id)

]
ΠW⊥ . and

output the top singular vector as our new direction only if

it has non-negligible singular value.

Arguing soundness, i.e. that this procedure doesn’t yield

a “false positive” in the form of an erroneous direction

lying far from V , is not too hard. However, analyzing

completeness, i.e. that this procedure will find some new

direction, is surprisingly subtle (see Lemma V.7). Formally,

we need to argue that if we have an approximation F̃ to the

true F (under some suitable metric), then the corresponding

matrix M̃
W
τ is close to the matrix M

W
τ . This is further

complicated by the fact that ultimately, we will only have

access to a subspace W which is approximately in V , as

every direction we find in our iterative procedure is only

guaranteed to mostly lie within V .

Our key step in proving this is showing a new stability

property of affine thresholds of piecewise linear functions

and makes an intriguing connection to lattice polynomials

in tropical geometry.

Stability of Piecewise Linear Functions: Following the

above discussions, to complete our analysis we need to

show stability of affine thresholds of ReLU networks in

the following sense: if F, F̃ : Rd → R are two RELU

networks that are close in some structural sense (i.e., under

some parametrization), then E[1[|F (x)| > τ](xxT − Id)] ≈
E[1[|F̃ (x)| > τ](xxT −Id)]. A natural way to approach the

above is to upper bound P[|F (x)| > τ ∧ |F̃ (x)| ≤ τ]. That

is, affine thresholds of ReLU networks that are structurally

close disagree with low probability.

A natural way to parametrize closeness is to require the

weight matrices of the two networks F, F̃ to be close to

each other. While such a statement is not too difficult to

show for depth two networks (by a union bound over pairs

of ReLUs), proving such a statement for general ReLU

networks using a direct approach seems quite challenging.

We instead look at proving such a statement for a more

general class of functions - continuous piecewise-linear

functions which allows us to do a certain kind of hybrid

argument more naturally.

Concretely, we show that affine thresholds of piecewise-

linear functions that are close in some appropriate structural

sense disagree with low probability over Gaussian space.

We will elaborate upon the notion of structural closeness

we consider momentarily, but for now it is helpful to keep

in mind that it specializes to L2 distance for linear functions.

Lemma II.2 (Informal, see Lemma V.3). Let F, F̃ : Rd →
R be piecewise-linear functions, both consisting of at most

m linear pieces, which are “(m, η)-structurally-close” (see

Definition IV.9). For any τ > 0,

P
x∼N (0,Id)

[
|F (x)| > τ ∧ |F̃ (x)| ≤ τ

]
≤ O(ηm2/τ). (1)

To get a sense for this, suppose F, F̃ were even close in

the sense that the polyhedral regions over which F is linear

are identical to those over which F̃ is linear, and furthermore

Ex[(F (x)−F̃ (x))2]1/2 ≤ η. Then if we take for granted that

Lemma II.2 holds when m = 1, i.e. when F, F̃ are linear, it

is not hard to show an O((ηm/τ)c) upper bound in (1) under

this very strong notion of closeness for some c < 1. Because

F and F̃ are L2-close as functions, for any t > 0 we have

that with probability 1 − O(η2/t2) the input x ∼ N (0, Id)
lies in a polyhedral region for which the corresponding linear

functions for F and F̃ are t-close. By the m = 1 case of

Lemma II.2, over any one of these at most m regions, the

affine thresholds 1[|F (x)| > τ] and 1[|F (x)| > τ] disagree

with probability O(t/τ). Union bounding over these regions

as well as the event of probability η2/t2 that x does not

fall in such a polyhedral region, we can upper-bound the

left-hand side of (1) by O(η2/t2 + mt/τ), and by taking

t = (η2τ/m)1/3, we get a bound of (ηm2/τ)2/3.

The issues with this are twofold. First, recall the function

F̃ that we want to apply Lemma V.3 to is obtained from

some enumeration over a fine net of ReLU networks. As

such there is no way to guarantee that the polyhedral regions

defining F and F̃ are exactly the same, making adapting

the above argument far more difficult, especially for general

ReLU networks.

Second, we stress that the linear scaling in O(η) in (II.2)

is essential. If one suffered any polynomial loss in this bound

as in the above argument, then upon applying Lemma II.2

k times over the course of our iterative algorithm for

recovering V , we would incur time and sample complexity

doubly exponential in k. The reason is as follows.

701

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

Recall that in the final argument we can only ensure

that the directions w1, . . . , w� we have found so far are

approximately within V , and the parameter η will end up

scaling with an appropriate notion of subspace distance

between W and the true space V . On the other hand, the

bound we can show on how far M̃W
τ deviates from MW

τ

in spectral norm will essentially scale with the right-hand

side of (II.2). So if we could only ensure M̃W
τ and MW

τ

are O(ηc)-close in spectral norm for c < 1, then if we

append the top eigenvector of M̃W
τ to the list of directions

w1, ..., w� we have found so far, the resulting span will only

be O(ηc)-close in subspace distance. Iterating, we would

conclude that for the final output of the algorithm to be

sufficiently accurate, we would need the error incurred by

the very first direction w1 found to be doubly exponentially

small in k!

Lattice Polynomials: It turns out that there is a clean

workaround to both issues: passing to the lattice polynomial

representation for piecewise-linear functions. Specifically,

we exploit the following powerful tool:

Theorem II.3 ([58], Theorem 4.1; see Theorem IV.8 be-

low). If F is continuous piecewise-linear, there exist linear

functions {gi}i∈[M] and subsets I1, ..., Im ⊆ [M] for which

F (x) = max
j∈[m]

min
i∈Ij

gi(x). (2)

In fact, our notion of “structural closeness” will be built

around this structural result. Roughly speaking, we say

two piecewise linear functions are structurally close if they

have lattice polynomial representations of the form (2) with

the same set of clauses and whose corresponding linear

functions are pairwise close in L2 (see Definition IV.9).

At a high level, Theorem II.3 will then allow us to

implement a hybrid argument in the proof of Lemma II.2

and carefully track how the affine threshold computed by a

piecewise-linear function changes as we interpolate between

F and F̃ . In this way, we end up with the desired linear

dependence on η in (II.2).

With Lemma II.2 in hand, we can argue that even with

only access to a subspace W approximately within V and

with only a function F̃ that approximates F (ΠWx), the top

singular vector of M̃
W
τ mostly lies within V , and we can

make progress.

Finally, we remark that as an added bonus, Theorem II.3

also gives us a way to enumerate over general continuous

piecewise-linear functions! In this way, we can adapt our

algorithm for learning ReLU networks to learning arbitrary

piecewise-linear functions, with some additional computa-

tional overhead.

Enumerating Over Piecewise-Linear Functions and

ReLU Networks: There is in fact one more subtlety to

implementing the above approach for ReLU networks and

getting singly exponential dependence on k.

First note that whereas one can always enumerate over

functions computed by lattice polynomials of the form (2)

in time exp(poly(M)), for ReLU networks of size S this

can be as large as doubly exponential in S. Instead, we

enumerate over ReLU networks in the naive way, that

is, enumerating over the exp(O(S)) many possible archi-

tectures and netting over weight matrices with respect to

spectral norm, giving us only singly exponential dependence

on S.

Here is the subtlety. Obviously two ReLU networks

with the same architecture and whose weight matrices are

pairwise close in spectral norm will be close in L2. But

how do we ensure that the corresponding lattice polynomials

guaranteed by Theorem II.3 are structurally close? In par-

ticular, getting anything quantitative would be a nightmare

if the clause structure of these lattice polynomials depended

in some sophisticated, possibly discontinuous fashion on the

precise entries of the weight matrices.

Our workaround is to open up the black box of Theo-

rem II.3 and give a proof for the special case of ReLU net-

works from scratch. In doing so, we will find out that there

are lattice polynomial representations for ReLU networks

which only depend on the architecture and the signs of the

entries of the weight matrices (see full version). In this way,

we can guarantee that a moderately fine net will contain a

network which is structurally close to the true network.

III. TECHNICAL PRELIMINARIES

In this section we collect notation and technical tools that

will be useful in the sequel.

A. Miscellaneous Notation and Definitions

We will use ∨ and ∧ to denote max and min respectively.

We will use ‖·‖p to denote the Lp norm of a vector or of

a random variable. When the random variable is given by a

function over Gaussian space, e.g. F (x) for x ∼ N (0, Id)
and F : Rd → R, we use the short-hand ‖F‖p to denote

Ex∼N (0,Id)[F (x)p]1/p. When p = 2, we will omit the

subscript. We use ‖·‖op and ‖·‖F to denote operator and

Frobenius norms respectively. When we refer to a function

as Λ-Lipschitz, unless stated otherwise we mean with respect

to L2.

Given a subspace V ⊂ Rd, let ΠV denote the orthogonal

projector to that subspace. Let SV ⊂ Rd denote the set

of vectors in V of unit norm. When the ambient space

Rd is clear from context, we let V ⊥ denote the orthogonal

complement of V . For a subspace W ⊆ V , we will denote

the orthogonal complement of W inside V by V \W .

Given x ∈ R, let N (0, 1, x) denote the standard Gaussian

density’s value at x. Let erfc(z) � Pg∼N (0,1)[|g| > z] (note

that we eschew the usual normalization). Let χ2
m denote the

chi-squared distribution with m degrees of freedom.

Recall that we denote the ReLU activation function by

φ(z) � max(z, 0).

702

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

The following class of functions will be useful for us.

Definition III.1. The set of lattice polynomials over the

reals is the set of real-valued functions defined inductively

as follows: for any d ≥ 1, any constant real-valued function

Rd → R is a lattice polynomial, and any function h : Rd →
R which can be written as h(x) = f(x) ∨ g(x) or h(x) =
f(x) ∧ g(x) for two lattice polynomials f, g : Rd → R is

also a lattice polynomial.

Fact III.2 (Elementary anticoncentration). If Z is a random

variable for which |Z| ≤ M almost surely, and E[Z2] ≥ σ2,

then P[|Z| ≥ t] ≥ 1
M2 (σ

2 − t2).

Definition III.3 (Frames). A set of orthonormal vectors

w̃1, ..., w̃� is a frame. Given subspace V ⊂ Rd, we say that

this frame is ν-nearly within V if ‖ΠV w̃i‖ ≥ 1− ν for all

i. We will sometimes refer to their span W̃ as a frame ν-

nearly within to V , when the choice of orthonormal basis

for W̃ is clear from context.

IV. CONTINUOUS PIECEWISE-LINEAR FUNCTIONS AND

LATTICE POLYNOMIALS

In this section, we introduce tools for reasoning about con-

tinuous piecewise-linear functions, culminating in a struc-

tural result (Theorem IV.8) giving an explicit representation

of arbitrary ReLU networks as lattice polynomials (see

Definition III.1).

A. Basic Notions

We will work with functions which only depend on some

low-dimensional projection of the input.

Definition IV.1 (Subspace juntas). A function F : Rd →
R is a subspace junta if there exist v1, ..., vk ∈ Sd−1

and a function h : Rk → R for which F (x) =
h(〈v1, x〉, ..., 〈vk, x〉) for all x ∈ Rd. We will refer to

V � span(v1, ..., vk) as the relevant subspace of F , to

v1, ..., vk as the relevant directions of F , and to h as the

link function of F .

Definition IV.2 (Piecewise Linear Functions). Given vector

space W , a function h : W → R is said to be piecewise-

linear (resp. piecewise-affine-linear) if there exist finitely

many linear (resp. affine linear) functions {gi : W →
R}i∈[M] and a partition of W into finitely many polyhedral

cones {Si}i∈I such that G(x) =
∑

i 1[x ∈ Si]gi(x). We

will say that h is realized by M pieces {(gi, Si)} (note that

h can have infinitely many realizations). If each gi is given

by gi(x) = 〈ui, x〉 + bi for some ui ∈ W, bi ∈ R, then we

will also refer to the pieces of h by {(〈ui, ·〉+ bi, Si)}.

We are now ready to define the concept class we will

work with in this paper.

Definition IV.3 (“Kickers”). We call a subspace junta F
with link function h a kicker if h is continuous piecewise-

linear. Note that a kicker is itself a continuous piecewise-

linear function, and for any realization of its link function

by M pieces, there is a realization of F by M pieces.

Henceforth, fix a subspace junta F : Rd → R with

link function h and relevant directions v1, ..., vk spanning

relevant subspace V ⊂ Rd.

Example IV.4 (ReLU Networks). Feedforward ReLU net-

works as defined in Definition I.1 are kickers with relevant

subspace of dimension at most k, where k is the row span

of the weight matrix W0, the link function is defined by

h(z) = WL+1φ(WLφ(· · ·W1φ(z) · · ·)),
and the pieces in one possible realization of h correspond to

the different possible sign patterns that the activations could

take on, that is the different possible values of the vector

{Waφ(Wa−1φ(· · ·W1φ(z) · · ·))}0≤a≤L ∈ ∏L
a=0{±1}ka

as z ranges over Rk.

Lemma IV.5. If F is a Λ-Lipschitz kicker, then for any

realization of its link function h by pieces {(〈wi, ·〉, Si)},

there is a realization by pieces {(〈w′
i, ·〉, Si)} for which

maxi‖gi‖ ≤ L..

Definition IV.6 (Restrictions). Given any nonzero linear

subspace W ⊆ V , let F |W : W → R denote the restriction

of F to the subspace W . By abuse of notation, we will

sometimes also regard F |W as a function over Rd given by

F |W (x) = F (ΠWx).

The following property of restrictions of Lipschitz func-

tions will be important.

Lemma IV.7. For any nonzero linear subspace W ⊆
V , and Λ-Lipschitz function F : Rd → R,

supx:‖ΠV \W x‖≤1|F (x)− F (ΠWx)| ≤ Λ.

B. A Generic Lattice Polynomial Representation

Essential to our analysis is the following structural result

from [58] which says that, perhaps surprisingly, any piece-

wise linear function can be expressed as a relatively simple

lattice polynomial.

Theorem IV.8 ([58], Theorem 4.1). If h : Rn → R is a

continuous piecewise-linear function which has a realization

by pieces {(gi, Si)}i∈[M], there exists a collection of clauses

I1, ..., Im ⊆ [M] for which

h(x) = max
j∈[m]

min
i∈Ij

gi(x) (3)

Technically we will need to use this theorem in a white-

box fashion as the specific construction exhibited in this

theorem will be important in the proof of our main result

for learning ReLU networks. We defer these details to the

full version.

We will work with the following notion of approximation

for such lattice polynomials:

703

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

Definition IV.9. Two continuous piecewise-linear func-

tions G, G̃ : Rd → R are (M,η)-structurally-close

if there exist linear functions g1, ..., gM and g̃1, ..., g̃M
and subsets I1, ..., Im ⊆ [M] for which G(x) =
maxj∈[m] mini∈Ii

gi(x), G̃(x) = maxj∈[m] mini∈Ii
g̃i(x),

and ‖gi − g̃i‖ ≤ η for all i.

Structural closeness of continuous piecewise-linear func-

tions in the above sense is stronger than L2-closeness.

Lemma IV.10. Take continuous piecewise-linear functions

G, G̃ : Rm → R which are (M,η)-structurally-close. Then

‖G − G̃‖ ≤ η
√
m. In particular, if G is a piecewise-linear

function which is realized by pieces {(〈ui, ·〉, Si)} satisfying

‖ui‖ ≤ η, then ‖G‖ ≤ η
√
m.

As discussed in Section II, for our application to learning

general kickers, we will leverage the lattice polynomial

representation in Theorem IV.8 to grid over piecewise-linear

functions. Note that a priori, even if we knew exactly the set

of linear functions {gi}i∈[M] in a realization of a piecewise-

linear function, enumerating over all lattice polynomials of

the form (3) would require time doubly exponential in M ,

as there are 2M possible clauses Ij and 22
M

possible sets

of clauses {Ij}.

By being slightly more careful, we can enumerate in time

exp(poly(M)), see full version.

V. FILTERED PCA

In this section we prove our main results on learning

kickers and ReLU networks. Throughout, we will make the

following base assumption about the function F .

Assumption 1. F is a kicker which is Λ-Lipschitz for some

Λ ≥ 1 and has at most M pieces.

While our techniques are general enough to work under

just this assumption, for our main application to learning

ReLU networks (Definition I.1), we can obtain improved

runtime guarantees by making the following additional as-

sumption on F .

Assumption 2. F is computed by a size-S ReLU net-

work7 with depth L + 2 and weight matrices W0 ∈
Rk0×d, . . .WL ∈ RkL×kL−1 ,WL+1 ∈ R1×kL satisfying

‖Wi‖op ≤ B for all 0 ≤ i ≤ L+ 1, for some B ≥ 1.8

In this section, unless stated otherwise, we will only

assume F satisfies Assumption 1, but in certain parts of

the proof, we will get better bounds by additionally making

Assumption 2. Under these assumptions, we will prove

Theorems I.2 and I.5.

In Section V-A, we prove an anti-concentration result for

piecewise-linear functions. We use this to prove that in an

7Note that this implies M ≤ 2S .
8Recall from Definition I.1 that we will refer to the rank of W0 as k

to emphasize that F is a kicker with relevant subspace V of dimension k.

idealized scenario where we had exact access to some �-
dimensional W ⊂ V as well as exact query access to F |W ,

we would be able to approximately recover a vector in V \W
by running one iteration of the main loop of FILTEREDPCA.

In the remaining sections, we show how to pass from this

idealized scenario to the setting we actually care about,

in which we only samples (x, F (x)). In Section V-B we

show that affine thresholds of piecewise-linear functions

are stable under small perturbations of the function. Then

in Section V-C, we show how to grid over the set of

kickers/ReLU networks and formally state our algorithm.

In Section V-D we combine these ingredients to argue that

as long as we have sufficiently good approximate access

to W and F |W , a single iteration of the main loop of

FILTEREDPCA will approximately recover a vector from

V \W , from which our main theorems will follow.

A. Anti-Concentration of Piecewise Linear Functions

An important technical tool is the following result show-

ing that for any continuous piecewise-linear function with

some variance, the probability that it exceeds any given

threshold is non-negligible.

Lemma V.1. If G : Rm → R is continuous piecewise-

linear and Λ-Lipschitz and E[G2] ≥ σ2, then for any s ≥ 0,

P[|G| > s] ≥ Ω(exp(−3ms2/σ2)) · sσ√
mΛ2

.

Now suppose we had access to an orthonormal collection

of vectors w1, . . . , w� that are exactly in V . Let W denote

their span. Suppose further that we had access to the matrix

M
W
τ � ΠW⊥ E

x,y

[
1[|y − F (ΠWx)| > τ] · (xx� − Id)

]
ΠW⊥ .

When the threshold τ is clear from context, we will just

refer to this matrix as M
W .

As we will see, if this matrix is nonzero, then its singular

vectors with nonzero singular value must lie in V and be

orthogonal to w1, . . . , w�. The main challenge will be to

show that this matrix is nonzero. The following proof also

applies to the case of � = 0, in which case F (ΠWx)
specializes to the zero function and (4) specializes to

M
∅
τ � E

x,y

[
1[|y| > τ] · (xx� − Id)

]
. (4)

In particular, (4) is a matrix we actually have access to at

the beginning of the algorithm, and one consequence of the

warmup argument below is an algorithm for finding a single

vector in V .

It is not hard to show that for appropriately chosen τ ,

either the top singular value of M
W
τ is non-negligible,

or E[(F (x) − F (ΠWx)2] is small, that is, F is already

sufficiently well-approximated by the function F |W :

Lemma V.2. Suppose Ex∼N (0,Id)[(F (x)−F (ΠWx))2] ≥ ρ2

for some ρ > 0. For any τ > 0, if a vector is not in the kernel

of MW
τ , then it must lie in V \W . For τ ≥

√
2(k − �) · Λ,

704

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

〈
M

W
τ ,ΠV \W

〉
≥ Ω

(
e−3kτ2/ρ2

)
· (k−�)τρ√

kΛ2
. In particular, for

this choice of τ , the top singular vector of MW
τ lies in V \W

and has singular value at least λ
(�)
τ � Ω

(
e−3kτ2/ρ2

)
· τρ√

kΛ2
.

If ε is the target L2 error to which we want to learn F ,

we will only ever work with ρ ≥ Ω(ε). In the sequel, we

will take τ = c
√
k ·Λ for sufficiently large absolute constant

c > 0. As a result, we have that λ
(�)
τ ≥ Ω

(
e−O(k2Λ2/ε2)

)
·

(ε/Λ) � λ.

B. Stability of Piecewise Linear Threshold Functions

To get an iterative algorithm for finding all relevant

directions of F , we need to show an analogue of Lemma V.2

in the setting when we only have access to directions

w̃1, . . . , w̃� which are close to the span of V , and when

we only have access to an approximation of the function

F |W .

To this end, another important tool we show in the full

version is the following stability result for affine thresholds

of piecewise-linear functions:

Lemma V.3. Let f, g, g′ : Rd → R be piecewise-linear

functions. For any τ > 0, if g, g′ are (m, η)-structurally-

close and f has a realization with at most m pieces, then

Px[|g(x)− f(x)| > τ ∧ |g′(x)− f(x)| ≤ τ] ≤ 9ηm2/τ .

C. Netting Over Piecewise Linear Functions

Suppose we have recovered an �-dimensional subspace W̃
that approximately lies within V . In this section we show

how to produce a finite list of candidate kickers with relevant

subspace W̃ , one of which is guaranteed to approximate F
restricted to some �-dimensional subspace W . Ignoring the

finiteness of this list for now, we first show that as long as

W̃ is sufficiently close to lying within V , there exists some

kicker close to some restriction F |W .

Lemma V.4. Let w̃1, . . . , w̃� be a frame ν-nearly within

V , with span W̃ . There exist an �-dimensional subspace

W ⊂ V and a Λ-Lipschitz kicker F̃ ∗ with relevant subspace

W̃ which is (M, 2
√
ν · �Λ)-structurally-close to F |W .

We can show that if we enumerate over a fine enough

net of kickers, then we can recover an approximation to F̃ ∗

from Lemma V.4 in time singly exponential in poly(M).

Lemma V.5. Take any ε′ > 0. Given a frame w̃1, . . . , w̃�

with span W̃ , for any Λ-Lipschitz kicker F̃ ∗ with relevant

subspace W̃ , there exists a kicker F̃ with relevant subspace

W̃ in the output L of ENUMERATEKICKERS(W̃ , ε′) which is

(M, ε′Λ)-structurally-close to F̃ . Furthermore, |L| ≤ MM2 ·
(1 + 2/ε′)�.

In particular, if w̃1, . . . , w̃� is a frame ν-nearly within

V , then for ε′ = 2
√
ν · �, L contains a kicker F̃ which

is (M,Cpiecewise

√
ν)-structurally-close to F |W for some �-

dimensional subspace W ⊆ V , where Cpiecewise � 4kΛ.

Furthermore, |L| ≤ MM2

O(1/
√
ν)� in this case.

Enumerating over arbitrary kickers with M pieces re-

quires runtime scaling exponentially in poly(M). For ReLU

networks of size S, M could be as large as exp(S), so

naively using ENUMERATEKICKERS in our application to

learning ReLU networks would incur doubly exponential

dependence on k in the runtime. In the full version we

describe how to net more efficiently for ReLU networks.

With subroutines for enumerating over ReLU networks

and kickers in hand, we can now formally state our al-

gorithm, FILTEREDPCA (see Algorithm 1 below). The

algorithm as stated applies to the case where F is a neural

network satisfying Assumptions 1 and 2, but we can easily

modify the algorithm to work in the case where F is only

a kicker satisfying Assumption 1 by an appropriate change

of parameters.

Algorithm 1: FILTEREDPCA(D, ε, δ)

1 W ← ∅.

2 for 0 ≤ � ≤ k − 1 do

3 Draw samples (x1, y1), . . . , (xN , yN) ∼ D.

4 W̃ ← span of vectors in W .

5 L ← net of networks over W̃ .

6 for F̃ ∈ L do

7 Define M̃
W̃
emp to be the matrix given by

∑N
i=1 1

[
|yi − F̃ (Π

W̃
x)| > τ

]
· (xix

�
i − Id).

8 M̃
W̃
emp ← Π

W̃⊥M̃
W̃
empΠW̃⊥ .

9 Get top singular vector w̃�+1 of M̃W̃
emp.

10 if ‖M̃W̃
emp‖ sufficiently large then

11 Append w̃�+1 to W , exit out of this inner

loop, and increment �.

12 if no w̃�+1 was appended to W then

13 Break.

14 W̃ ← span of vectors in W .

15 L ← net of networks over W̃ .

16 for F̃ ∈ L do

17 Form an empirical estimate ε̂ for ‖F̃ − F‖.

18 if ε̂ ≤ 3ε then

19 return F̃ .

D. Perturbation Bounds

We now show how to leverage Lemma V.3 to show

that even with access to a subspace W̃ which is only

approximately within V as well as the restriction of F to

that subspace, we can recover another vector orthogonal to

W̃ which mostly lies within V .

The first step is to show that in this approximate setting,

the analogue of M
W from Lemma V.2 is spectrally close

705

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

to M
W . It is in showing this perturbation bound that we

invoke the stability result of Section V-B.

Lemma V.6. Suppose F only satisfies Assumption 1

(resp. both Assumptions 1 and 2). Let w̃1, . . . , w̃� ∈
Sd−1 be a frame ν-nearly within V , with span

W̃ . For ∗ ∈ {piecewise, network}, define ξ∗(ν) �

O

(
k
(

C∗
√
νM2

c
√
kΛ

)1−1/k

∨
√
νk

)
. and suppose N ≥ Ω({d∨

log(1/δ)}/ξ2∗). Given subspace W ⊆ V and F̃ for

which F |W and F̃ are (M,Cpiecewise

√
ν)-structurally-close

(resp. (M,Cnetwork

√
ν)-structurally close), then we have that

‖M̃W̃
emp −M

W ‖op ≤ 3ξ(ν) with probability at least 1− δ.

Finally, we use the above perturbation bound to show that

in a single iteration of the main outer loop of FILTERED-

PCA, if there is some variance unexplained by the subspace

W̃ found so far, then we will find another “good” direction

orthogonal to W̃ which is also approximately within the

span of V . Note that this claim has two components:

completeness, i.e. in the list of candidate functions we

have enumerated, there is some function for which the top

singular vector of M̃W̃
emp is a good direction, and soundness,

i.e. whatever direction is ultimately chosen in Step 11 of

FILTEREDPCA is a good direction.

Lemma V.7. Suppose F only satisfies Assumption 1 (resp.

both Assumptions 1 and 2). Suppose ν ≤ ε2/(4kC2
piecewise)

(resp. ν ≤ ε2/(4kC2
network)). For 0 ≤ � < k, let w̃1, . . . , w̃�

be a frame ν-nearly within V , with span W̃ . Define ξ =
ξpiecewise(ν) (resp. ξ = ξnetwork(ν)) according to Lemma V.6,

and suppose N ≥ Ω({d ∨ log(1/δ)}/ξ2) and τ = c
√
k · Λ.

Suppose ξ ≤ λ/6, and suppose Ex∼N (0,Id)[(F (x) −
F (Π

W̃
x))2] ≥ ε2. Let L be the output

of ENUMERATEKICKERS(W̃ , 2
√
ν · �) (resp.

ENUMERATENETWORKS(W̃ , 2
√
ν · �

√
k · B)). With

probability at least 1 − |L| · δ over the randomness of the

N samples, the following hold:

1) Completeness: There exists some F̃ ∈ L such that the

top singula value of M̃W̃
emp is at least λ− 3ξ.

2) Soundness: For any F̃ ∈ L for which ‖M̃W̃
emp‖op ≥

λ− 3ξ, the top singular vector w satisfies ‖ΠV w‖ ≥
1− c′ξ2/λ2

for some absolute constant c′ > 0 and is

orthogonal to W̃ .

By putting the above ingredients together, we can con-

clude the proof of Theorems I.2 and I.5, see full version.

REFERENCES

[1] I. Diakonikolas and D. M. Kane, “Small covers for near-
zero sets of polynomials and learning latent variable models,”
in 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), 2020, pp. 184–195.

[2] N. Golowich, A. Rakhlin, and O. Shamir, “Size-independent
sample complexity of neural networks,” in Conference On
Learning Theory. PMLR, 2018, pp. 297–299.

[3] M. Janzamin, H. Sedghi, and A. Anandkumar, “Beating
the perils of non-convexity: Guaranteed training of neural
networks using tensor methods,” arXiv, pp. arXiv–1506, 2015.

[4] Y. Zhang, J. D. Lee, and M. I. Jordan, “L1-regularized neural
networks are improperly learnable in polynomial time,” in
33rd International Conference on Machine Learning, ICML
2016, 2016, pp. 1555–1563.

[5] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon,
“Recovery guarantees for one-hidden-layer neural networks,”
in Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 2017, pp. 4140–4149.

[6] A. Brutzkus and A. Globerson, “Globally optimal gradient
descent for a convnet with gaussian inputs,” in Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2017, pp. 605–614.

[7] S. Goel, V. Kanade, A. Klivans, and J. Thaler, “Reliably
learning the relu in polynomial time,” in Conference on
Learning Theory. PMLR, 2017, pp. 1004–1042.

[8] Y. Li and Y. Yuan, “Convergence analysis of two-layer
neural networks with relu activation,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 597–607.

[9] Q. Zhang, R. Panigrahy, and S. Sachdeva, “Electron-proton
dynamics in deep learning,” CoRR, vol. abs/1702.00458,
2017. [Online]. Available: http://arxiv.org/abs/1702.00458

[10] Y. Tian, “An analytical formula of population gradient for
two-layered relu network and its applications in convergence
and critical point analysis,” in Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML 2017,
vol. 70. PMLR, 2017, pp. 3404–3413.

[11] S. Goel, A. R. Klivans, and R. Meka, “Learning one convo-
lutional layer with overlapping patches,” in ICML, vol. 80.
PMLR, 2018, pp. 1778–1786.

[12] S. S. Du, J. D. Lee, and Y. Tian, “When is a convolutional
filter easy to learn?” in 6th International Conference on
Learning Representations, 2018.

[13] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer
neural networks with landscape design,” in 6th International
Conference on Learning Representations, ICLR 2018, 2018.

[14] R. Ge, R. Kuditipudi, Z. Li, and X. Wang, “Learning two-
layer neural networks with symmetric inputs,” in Interna-
tional Conference on Learning Representations, 2018.

[15] P. Manurangsi and D. Reichman, “The computational com-
plexity of training relu (s),” arXiv preprint arXiv:1810.04207,
2018.

[16] A. Bakshi, R. Jayaram, and D. P. Woodruff, “Learning
two layer rectified neural networks in polynomial time,” in
Conference on Learning Theory. PMLR, 2019, pp. 195–
268.

[17] S. Goel and A. R. Klivans, “Learning neural networks with
two nonlinear layers in polynomial time,” in Conference on
Learning Theory, 2019, pp. 1470–1499.

[18] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and general-
ization in overparameterized neural networks, going beyond
two layers,” in Advances in neural information processing
systems, 2019, pp. 6158–6169.

[19] S. Vempala and J. Wilmes, “Gradient descent for one-hidden-
layer neural networks: Polynomial convergence and sq lower
bounds,” in COLT, vol. 99, 2019.

[20] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-
hidden-layer relu networks via gradient descent,” in The
22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 1524–1534.

[21] I. Diakonikolas, S. Goel, S. Karmalkar, A. R. Klivans, and
M. Soltanolkotabi, “Approximation schemes for relu regres-
sion,” in Conference on Learning Theory, 2020.

[22] W. Gao, A. V. Makkuva, S. Oh, and P. Viswanath, “Learning

706

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

one-hidden-layer neural networks under general input distri-
butions,” CoRR, vol. abs/1810.04133, 2018.

[23] Y. Li, T. Ma, and H. R. Zhang, “Learning over-parametrized
two-layer neural networks beyond ntk,” in Conference on
Learning Theory 2020, vol. 125. PMLR, 2020, pp. 2613–
2682.

[24] I. Diakonikolas, D. M. Kane, V. Kontonis, and N. Zarifis, “Al-
gorithms and sq lower bounds for pac learning one-hidden-
layer relu networks,” in Conference on Learning Theory,
2020, pp. 1514–1539.

[25] A. Daniely, “Sgd learns the conjugate kernel class of the
network,” CoRR, vol. abs/1702.08503, 2017.

[26] S. Goel, A. Gollakota, Z. Jin, S. Karmalkar, and A. Kli-
vans, “Superpolynomial lower bounds for learning one-
layer neural networks using gradient descent,” arXiv preprint
arXiv:2006.12011, 2020.

[27] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel:
Convergence and generalization in neural networks,” in Ad-
vances in neural information processing systems, 2018, pp.
8571–8580.

[28] S. Mei, A. Montanari, and P.-M. Nguyen, “A mean field view
of the landscape of two-layer neural networks,” Proceedings
of the National Academy of Sciences, vol. 115, no. 33, pp.
E7665–E7671, 2018.

[29] A. Blum and R. L. Rivest, “Training a 3-node neural network
is np-complete,” in Advances in neural information process-
ing systems, 1989, pp. 494–501.

[30] V. Vu, “On the infeasibility of training neural networks with
small mean-squared error,” IEEE Transactions on Information
Theory, vol. 44, no. 7, pp. 2892–2900, 2006.

[31] A. R. Klivans and A. A. Sherstov, “Cryptographic hardness
for learning intersections of halfspaces,” Journal of Computer
and System Sciences, vol. 75, no. 1, pp. 2–12, 2009.

[32] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the compu-
tational efficiency of training neural networks,” in Advances
in neural information processing systems, 2014, pp. 855–863.

[33] L. Song, S. Vempala, J. Wilmes, and B. Xie, “On the
complexity of learning neural networks,” in Proceedings of
the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 5520–5528.

[34] S. Shalev-Shwartz, O. Shamir, and S. Shammah, “Failures
of gradient-based deep learning,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
2017, pp. 3067–3075.

[35] O. Shamir, “Distribution-specific hardness of learning neural
networks,” Journal of Machine Learning Research, vol. 19,
no. 32, pp. 1–29, 2018.

[36] S. Goel, S. Karmalkar, and A. Klivans, “Time/accuracy trade-
offs for learning a relu with respect to gaussian marginals,”
in Advances in Neural Information Processing Systems, 2019,
pp. 8584–8593.

[37] A. Daniely and G. Vardi, “Hardness of learning
neural networks with natural weights,” arXiv preprint
arXiv:2006.03177, 2020.

[38] S. S. Vempala and Y. Xiao, “Structure from local optima:
Learning subspace juntas via higher order pca,” arXiv preprint
arXiv:1108.3329, 2011.

[39] A. De, E. Mossel, and J. Neeman, “Is your function low
dimensional?” in Conference on Learning Theory, 2019, pp.
979–993.

[40] ——, “Robust testing of low-dimensional functions,” arXiv
preprint arXiv:2004.11642, 2020.

[41] R. Dudeja and D. Hsu, “Learning single-index models in
gaussian space,” in Conference On Learning Theory, 2018,
pp. 1887–1930.

[42] K.-C. Li, “On principal hessian directions for data visualiza-
tion and dimension reduction: Another application of stein’s

lemma,” Journal of the American Statistical Association,
vol. 87, no. 420, pp. 1025–1039, 1992.

[43] D. R. Brillinger, “A generalized linear model with “gaussian”
regressor variables,” in Selected Works of David Brillinger.
Springer, 2012, pp. 589–606.

[44] Y. Plan and R. Vershynin, “The generalized lasso with non-
linear observations,” IEEE Transactions on information the-
ory, vol. 62, no. 3, pp. 1528–1537, 2016.

[45] A. R. Klivans, P. M. Long, and A. K. Tang, “Baum’s
algorithm learns intersections of halfspaces with respect to
log-concave distributions,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques.
Springer, 2009, pp. 588–600.

[46] A. R. Klivans, R. O’Donnell, and R. A. Servedio, “Learning
geometric concepts via gaussian surface area,” in 49th An-
nual IEEE Symposium on Foundations of Computer Science.
IEEE, 2008, pp. 541–550.

[47] A. Blum and R. Kannan, “Learning an intersection of k half-
spaces over a uniform distribution,” in Theoretical Advances
in Neural Computation and Learning. Springer, 1994, pp.
337–356.

[48] S. S. Vempala, “Learning convex concepts from gaussian
distributions with pca,” in 2010 IEEE 51st Symposium on
Foundations of Computer Science, 2010, pp. 124–130.

[49] ——, “A random-sampling-based algorithm for learning inter-
sections of halfspaces,” Journal of the ACM (JACM), vol. 57,
no. 6, pp. 1–14, 2010.

[50] D. Babichev, F. Bach et al., “Slice inverse regression with
score functions,” Electronic Journal of Statistics, vol. 12,
no. 1, pp. 1507–1543, 2018.

[51] K.-C. Li, “Sliced inverse regression for dimension reduction,”
Journal of the American Statistical Association, vol. 86, no.
414, pp. 316–327, 1991.

[52] Y. S. Tan and R. Vershynin, “Polynomial time and sample
complexity for non-gaussian component analysis: Spectral
methods,” in Conference On Learning Theory, 2018, pp. 498–
534.

[53] N. Goyal and A. Shetty, “Non-gaussian component analysis
using entropy methods,” in Proceedings of 51st ACM SIGACT
Symposium on Theory of Computing, 2019, pp. 840–851.

[54] J. Acharya, I. Diakonikolas, J. Li, and L. Schmidt, “Fast algo-
rithms for segmented regression,” in International Conference
on Machine Learning, 2016, pp. 2878–2886.

[55] A. Daniely and G. Vardi, “From local pseudoran-
dom generators to hardness of learning,” arXiv preprint
arXiv:2101.08303, 2021.

[56] B. Applebaum, “Pseudorandom generators with long stretch
and low locality from random local one-way functions,” in
Proceedings of the Forty-Fourth Annual ACM Symposium on
Theory of Computing, 2012, p. 805–816.

[57] S. Chen and R. Meka, “Learning polynomials of few relevant
dimensions,” arXiv preprint arXiv:2004.13748, 2020.

[58] S. Ovchinnikov, “Max-min representation of piecewise linear
functions,” Contributions to Algebra and Geometry, vol. 43,
no. 1, pp. 297–302, 2002.

707

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 04,2023 at 23:21:44 UTC from IEEE Xplore. Restrictions apply.

