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ABSTRACT

DNAmethylation (DNAm) has been suggested to play a critical role in post-traumatic stress disorder (PTSD),
through mediating the relationship between trauma and PTSD. However, this underlying mechanism of
PTSD for African Americans still remains unknown. To fill this gap, in this article, we investigate how DNAm
mediates the effects of traumatic experiences on PTSD symptoms in the Detroit Neighborhood Health
Study (DNHS) (2008–2013) which involves primarily African Americans adults. To achieve this, we develop
a new mediation analysis approach for high-dimensional potential DNAm mediators. A key novelty of
our method is that we consider heterogeneity in mediation effects across subpopulations. Specifically,
mediators in different subpopulations could have opposite effects on the outcome, and thus could be
difficult to identify under a traditional homogeneous model framework. In contrast, the proposed method
can estimate heterogeneous mediation effects and identifies subpopulations in which individuals share
similar effects. Simulation studies demonstrate that the proposed method outperforms existing methods
for both homogeneous and heterogeneous data.We also present ourmediation analysis results of a dataset
with 125 participants and more than 450,000 CpG sites from the DNHS study. The proposed method finds
three subgroups of subjects and identifies DNAm mediators corresponding to genes such as HSP90AA1
and NFATC1 which have been linked to PTSD symptoms in literature. Our finding could be useful in future
finer-grained investigation of PTSD mechanism and in the development of new treatments for PTSD.
Supplementary materials for this article are available online.
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1. Introduction

Post-traumatic stress disorder (PTSD) is a seriousmental health
disorder that people may develop after they experience or wit-
ness a traumatic event, such as a natural disaster, a serious
accident, a war, or sexual violence. People suffering from PTSD
have symptoms such as disturbing thoughts, nightmares related
to the events, mental or physical distress to trauma-related cues,
attempts to avoid trauma-related cues, and negative alterations
in thinking and feeling (Morrison et al. 2019). As shown in
Roberts et al. (2011) and Himle et al. (2009), the prevalence of
PTSD is higher in African Americans (AAs) than whites. This is
possibly due to that PTSD is an adversity-related mental disor-
der and that AAs are more likely to encounter socially adverse
experiences of discrimination and isolation which have a pro-
found impact on mental health (Hudson et al. 2013; Cacioppo
et al. 2015). However, research for the course of PTSD among
AAs is very limited.

As suggested by Rusiecki et al. (2013) and Morrison et al.
(2019), DNA methylation (DNAm), an epigenetic mechanism
associated with the regulation of gene expression, plays a critical
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role in the pathophysiology of the PTSD. Since DNAm is a
reversible process (Ramchandani et al. 1999), uncovering the
role ofDNAm in the pathophysiology of PTSDmay facilitate the
development of new potential treatments for PTSD (Rusiecki
et al. 2013). For example, the epigenetics literature suggests
that DNAm could mediate the effect of traumatic events on
depression (Zhao et al. 2013; Dempster et al. 2014; Januar et al.
2015; Lei et al. 2015; Vangeel et al. 2015; van der Knaap et al.
2015; Turecki and Meaney 2016; Tyrka et al. 2016; Schuster
et al. 2017; Gao et al. 2019). In particular, Peng et al. (2018)
discover that DNAm levels at two cytosine-phosphate-guanine
(CpG) probes mediate the effects from childhood trauma to
depressive symptoms. Rutten et al. (2018) also observe that
DNAm mediates the relationship between combat trauma and
PTSD symptoms.

Moreover, according to Dickstein et al. (2010), heterogeneity
occurs in the course of PTSD. For example, Kim et al. (2019b)
observe gender differences in risk of PTSD, indicating a poten-
tial mechanism that yields heterogeneity across subjects in the
effects of trauma. This motivates us to develop a heterogeneous
model. In addition, Heinzelmann and Gill (2013) suggest that

© 2022 American Statistical Association
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Figure 1. A heterogeneous mediation example.

epigenetics may play a key role in the heterogeneous responses
to trauma and differential risk of PTSD. Furthermore, Orcutt,
Erickson, and Wolfe (2004) and Dickstein et al. (2010) reveal
distinct trajectories of PTSD symptoms. This is crucial since
finding all the prototypical patterns of adaptation to trauma
could help us identify biomarkers and risk factors for PTSD.
Nevertheless, to the best of our knowledge, heterogeneity in the
mediation effects of the DNAm between traumatic events and
PTSD symptoms has not been investigated so far.

In fact, heterogeneous mediation effects could arise fre-
quently due to factors such as demographic and genetic char-
acteristics, medical history, lifestyle, and unobserved attributes
of subjects. Mediators in different subpopulations could vary
or have different effects on the outcome. For example, as
illustrated in Figure 1, high pressure on subjects could mediate
the effects from the exposure of competitive environments to the
performance of subjects. Yet, high pressure may have positive
effects on performance of subjects in some subpopulation but
negative effects for subjects in another subpopulation. This
heterogeneity among subjects likely comes from stress tolerance
and the ability to turn pressure into power, which may vary
greatly across different groups of people.

In this case, it could be infeasible to identify the truemediator
in a homogeneous model, since opposite effects could be can-
celed out. Recently, several mediation methods have been stud-
ied for heterogeneous mediation effects (Qin and Hong 2017;
Dyachenko and Allenby 2018). However, they either require
prespecified subpopulations or only focus on a single mediator
variable.

In this article, we aim to investigate the high-dimensional
heterogeneousmediation effects ofDNAmvariation on the rela-
tionship between trauma exposures and PTSD symptoms using
the Detroit Neighborhood Health Study (DNHS) data (Uddin
et al. 2010). The DNHS is a representative longitudinal cohort
study involving primarily African Americans. In addition, we
propose a novel mediator selection method which can identify
subgroups of subjects and select mediators in each subgroup
simultaneously for high-dimensional potential mediators. We
refer to this new method as “the proposed method” in the rest
of this article.

Note that the goal of our study is not to compare differences
in PTSD risk by race and thus an interaction between race
and trauma is not needed in our model. Rather, AAs’ higher
prevalence of PTSD is a motivation for us to examine the medi-
ation effects in a sample from this population. Hence, the focus
of this article is to investigate the mediation mechanism in a
predominantly AA sample (theDNHSdata). On the other hand,
in fact, there are few non-AA subjects in the DNHS dataset,
indicating that it is inappropriate to use this dataset to compare
racial differences in PTSD.

Our numerical studies show that the proposed method out-
performs existing homogeneousmethods in terms of mediation
effect estimation and mediator selection. More importantly,
the proposed method identifies meaningful DNAm mediators
which are not selected by the homogeneous mediation methods
on theDHNSdata. Specifically, the selectedDNAmCpGprobes
correspond to genes including HSP90AA1, SMARCA4, and
NFATC1 which are indeed associated with PTSD risk (Raabe
and Spengler 2013; Kuan et al. 2017; Criado-Marrero et al.
2018; Breen et al. 2019; Kim et al. 2019a, 2019b). These DNAm
mediators can be highly informative in future development of
novel interventions for PTSD. In addition, our data analysis
shows the potential heterogeneity inmediation effects ofDNAm
on PTSD risk, which suggests finer-grained comparisons in
future PTSD research.

The remainder of this article is organized as follows.
In Section 2, we describe details of the DNHS data which we

analyze in this article. In Section 3, we propose the heteroge-
neous mediation method and illustrate the implementation of
the proposed method.

Section 4 provides numerical studies through simulations.
In Section 5, we apply the proposed method to the DNHS
dataset. Finally, we conclude this study with discussion in
Section 6.

2. DNHS Data

Our work is motivated by the Detroit Neighborhood Health
Study (DNHS) where samples are collected between 2008 and
2013 from predominantly African American (AA) adults living
in Detroit, Michigan. Studies suggest that DNA methylation
(DNAm) could play a crucial role asmediators in the underlying
relationship between traumatic events and PTSD (Dempster
et al. 2014; Vangeel et al. 2015; Tyrka et al. 2016; Gao et al.
2019). Our work was further inspired by initial joint analysis
of expression and EWAS data in GRRN genes (Vukojevic et al.
2014; Palma-Gudiel et al. 2015; Kim et al. 2019a; Wani et al.
2021), to find potential functional significance, and the DNHS
is one of the few available datasets with both of these data types
(Uddin et al. 2010).

In this article, in order to understand the underlying mecha-
nism of PTSD in AAs, we conduct mediation analysis of DNAm
on the relationship between trauma exposures and PTSD symp-
toms. One significant impact of identifying true mediators
is that the occurrence of PTSD can be potentially intervened
through the DNAm mediators. This is especially important for
PTSD patients in the DNHS since the independent variables
such as the previous trauma experience and adverse events
cannot be altered after.
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The DNHS is comprised of five survey waves where a total of
2081 participants have completed a 40-minute telephone survey.
The survey includes questions on participants’ neighborhoods,
mental and physical health status, social support, exposure to
traumatic events, PTSD symptoms, and various demographics
characteristics. All participants have been offered an opportu-
nity to provide a blood specimen for genetic testing of DNA. In
particular, the DNHS measures the PTSD symptom severity of
participants through the widely used self-report PTSD Check-
list, Civilian Version (PCL-C) (Blanchard et al. 1996; Grubaugh
et al. 2007). The PCL-C set contains 17 items corresponding to
key symptoms of PTSD. Participants indicate how much they
have been bothered by each symptomusing a 5-point (1–5) scale
in reference to their worst traumatic experience. To access the
overall severity, we calculate the average of the 17 items and
treat the average PCL-C score as a representative of the PTSD
symptom severity for each participant.

The DNHS also records the types of traumatic or stressful
events that each participant has experienced. In our survey, we
have specific questions such as “Have you experienced exposure
to a war zone in the military or as a civilian?” to understand
the exact nature of trauma exposures. Thus, a trauma exposure
of a subject provides information of a certain type of trauma.
We calculate the total number of trauma exposures (i.e., how
many different types of traumas a subject experienced) and use
it as a trauma feature characterizing overall trauma severity for
each subject. Here we use the total number of experienced
event types since many studies have used it as a measure of
severity of trauma, for example, Lee and Park (2018), Irish et al.
(2013),Harte, Vujanovic, andPotter (2015), Farley,Minkoff, and
Barkan (2001), and Kessler et al. (2017).

The blood specimens in the DNHS are processed according
to Weckle et al. (2015), and the DNA Mini Kit (Qiagen, Ger-
mantown,MD) is used to extract genomicDNA fromperipheral
blood. The extractedDNA samples are bisulfite-converted using
the Zymo EZ-96 DNA methylation kit (Zymo Research, Irvine,
CA). The converted samples are then profiled through the Illu-
mina Infinium 450 K DNA methylation array (Illumina, San
Diego, CA) according to manufacturer protocols. Specifically,
we assess the methylation levels of more than 450,000 CpG sites
which cover 99% of reference sequence (RefSeq) genes. More
detailed explanation of the processing procedures are provided
in Kim et al. (2019b), Ward-Caviness et al. (2020), Wolf et al.
(2018), Ratanatharathorn et al. (2017), and Uddin et al. (2018).

There are several existing studies on the DNHS data from
various aspects. Uddin et al. (2010) find that Detroit residents
have PTSD prevalence more than twice of the corresponding
prevalence in the entire United States, and that a person’s
immune-related functions are related to genes with relatively
lower levels of methylation. McClure et al. (2018) assess the
association between environmental stressors and the Great
Recession, while Horesh et al. (2015) and Kim et al. (2019b)
reveal gender differences in PTSD. Moreover, Chang et al.
(2012), Ratanatharathorn et al. (2017), Uddin et al. (2018),
and Nevell et al. (2014) study genetic factors associated with
the risk of PTSD in the DNHS. However, none of them
have conducted mediation analysis for relationship between
traumatic exposures and PTSD symptoms on the DNHS
data.

Table 1. Key demographic characteristics.

Gender Race
Female Male AA EA Other

81 44 111 13 1
Median age (range) Current smoking

No Yes Missing
53 (20–89) 70 54 1

NOTE: “AA” represents African American. “EA” represents European American. “Cur-
rent smoking” refers to any cigarette smoking in the past 30 days.

In this article, we use the baseline wave in DNHS for our
mediation analysis. In total, there are 125 subjects in the DNHS
who have available PTSDmeasurements, trauma type numbers,
and DNAm data. This sample size is relatively small. In fact,
many existing studies on PTSD-related mediation analysis
have around one hundred participants (Kearney et al. 2013;
Ruhlmann et al. 2019; Kelly et al. 2019;Demir et al. 2020; van der
Vleugel et al. 2020; Kwon, Lee, and Lee 2021). A relatively
small sample size could be a challenge for existing statistical
methods, which motivates us to develop more powerful
statistical methods to identify mediators. The demographic
characteristics of these DNHS participants are summarized
in Table 1. The study participants are predominantly (88.8%)
African-American (AA). In addition, of the 125 participants,
64.8% are female, and 43.2% are current smoking, referring to
any cigarette smoking in the past 30 days. The age of DNHS
participants has a wide range from 20 to 89 years with a median
of 53 years.

Studies show that the pathophysiology of PTSD is associ-
ated with DNAm in glucocorticoid receptor regulatory net-
work (GRRN) genes (Rusiecki et al. 2013). Therefore, we screen
DNAmCpGprobes via an expression quantitative traitmethyla-
tion (eQTM) analysis on GRRN-annotated DNAmCpG probes
and 53 expressed GRRN genes. Here these 53 genes correspond
to 1680 GRRN-annotated probes. For each probe, we examine
whether the probe is significantly correlated with expression
levels of the corresponding gene at a significance level of 0.05. If
it is significant, we select that probe; otherwise, the probe is not
selected. That is, we choose the CpG probes in probe-gene pairs
with significant p-values. Through this, we identify 144 CpG
probes significantly correlated with the GRRN genes. For medi-
ation analysis, we treat the PCL-C score as a dependent variable,
the total number of trauma exposures as an independent vari-
able, and the 144 DNAm CpG probes as potential mediators.
Our aim is to select key mediators between the independent
and dependent variables from the 144 DNAm CpG probes. We
introduce our proposed method in the following section and
provide the analysis results of the DNHS data in Section 5.

3. HeterogeneousMediation Analysis Method

In this section, we propose a heterogeneous mediator selection
approach inspired by Tang, Xue, and Qu (2020) to achieve
subpopulation identification, mediator selection in each sub-
population, and mediation effect estimation for heterogeneous
data simultaneously. Statistically, to the best of our knowledge,
this is the first work which considers heterogeneous media-
tion effects for high-dimensional potential mediators without
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pre-specifying subgroups. In addition, we do not assume the
subgroup membership depending on observed covariates.

Moreover, to select mediators instead of variables in each
subpopulation, we propose a new mediation penalty which
jointly penalizes the effect from the independent variable to
a mediator (independent-mediator effect) and the effect from
the mediator to the outcome (mediator-outcome effect). Essen-
tially, the proposed mediation penalty encourages selection of
mediators with large mediation effects. Before introducing the
details of the proposed method, we first discuss related existing
methods in the following section.

3.1. ExistingMediation Analysis methods

Traditional mediation analysis has been conducted via linear
regression models (Baron and Kenny 1986). As an extension,
causal mediation analysis imposes “no unmeasured confound-
ing” assumptions and defines direct and indirect effects under
a counterfactual framework with potential outcomes (Rubin
1974; Robins and Greenland 1992; Pearl 2001; Imai, Keele, and
Tingley 2010a).

Methods of multiple mediators have been developed in
recent years (Imai, Keele, and Yamamoto 2010b; Boca et al.
2013; Serang et al. 2017; Jirolon et al. 2020). To account for
high-dimensional mediators, Zhao and Luo (2016) consider
mediation pathway selection for a large number of causally
dependent mediators, and present a sparse mediation model
using a regularized structural equation model (SEM). In addi-
tion, Van Kesteren and Oberski (2018) develop an exploratory
coordinate-wise mediation filter approach, and Zhang et al.
(2016) propose a high-dimensional mediation analysis (HIMA)
approach for DNA methylation. Moreover, Zhou, Wang, and
Zhao (2020) develop estimation and inference procedures for
mediation effects under a high-dimensional linear mediation
model. However, these methods are all under the homogeneous
model framework.

To investigate heterogeneous mediation effects, Qin and
Hong (2017) develop a weighting method to identify and
estimate site-specific mediation effects, using an inverse-
probability-of-treatment weight (Rosenbaum 1987) and ratio-
of-mediator-probability weighting (Hong, Deutsch, and Hill
2015). This method assumes the heterogeneity caused by
the variation of sites. However, the method is not applicable
in general, since the potential mechanism resulting in sub-
populations is usually unknown.Dyachenko andAllenby (2018)
propose a Bayesian mixture model which combines likelihood
functions based on two different outcomemodels to incorporate
heterogeneity. Nevertheless, only a single mediator variable
is considered and the mixture model requires a prespecified
number of subgroups.

3.2. Notations and Assumptions

In this section, we introduce notations and assumptions for
the proposed method. Let Xi be an independent variable (e.g.,
treatment or exposure), Zi be a r × 1 vector of pretreatment
confounders (e.g., race or gender), Mi = (Mi1, . . . ,Mip)

T be
potential mediators, and Yi be the outcome for the ith subject

Figure 2. Mediation structure.

(1 ≤ i ≤ N). Throughout the article, we make the stable
unit treatment value assumption (SUTVA) (Rubin 1980); that
is, the potential outcomes of one subject are unaffected by the
assignment of treatments to other subjects, which is a standard
assumption for causal inference. Without loss of generality, we
also assume that the outcome and all the covariates are centered.
We suppose that the entire population can be partitioned into
H nonempty subgroups, where mediators andmediation effects
within each subgroup are homogeneous. Denote the index set
for subjects in the hth subgroup by S(h) for h = 1, . . . ,H.

3.3. Proposed Subgroup Linear Structural Equations

Modeling Framework

We consider the heterogeneous mediation problem under
the following subgroup linear structural equations modeling
(LSEM) with p potential mediators and r pretreatment con-
founders:

Mi = bhXi + �Zi + δi, (1)

Yi = βhXi + θThMi + γ T
Zi + εi, (2)

for subject i ∈ S(h), where bh, δi, θh ∈ R
p, � ∈ R

p×r , and
γ ∈ R

r . Here, βh represents the direct effect from the indepen-
dent variable Xi (e.g., trauma) to the outcome variable Yi (e.g.,
PTSD) in the hth subgroup, θTh bh represents the joint mediation
(indirect) effect of the treatment, bh is the parameter relating
the treatment to the potential mediators, and δi ∼ N(0,�) and
εi ∼ N(0, σ 2) are random errors, where δi is independent of Xi

and Zi, and εi is independent ofXi, Zi, andMi. We acknowledge
that the LSEM imposes strong assumptions about the linearity
and distribution of variables, indicating the results based on
the proposed subgroup LSEM should be considered exploratory
and instructive for generation of potential hypotheses.

We illustrate the relationship of variables in the LSEM for
the hth subgroup without the pretreatment confounders Zi in
Figure 2. The arrow with βh represents the direct effects from
the independent variable Xi to the response Yi, while the arrow
with θh represents effects from mediatorsMi to the response Yi

inmodel (2). The direct effect βh and indirect effects θTh bh could
vary across different subgroups.

In this article, we assume that the potential mediators are
uncausally correlated (Jirolon et al. 2020). That is, themediators
could be conditionally dependent given the independent vari-
able and observed pretreatment confounders, but are not in any
prespecified causal order. For instance, it is possible that there
exist an unmeasured covariate U affecting multiple mediators
like two mediatorsM1 andM2 in Figure 3(a), where X denotes
the independent variable and Y denotes the outcome. SinceM1

andM2 are not causally ordered, they are defined as “uncausally
correlated.” In contrast, M1 and M2 in Figure 3(b) are causally
ordered, that is, a change inM2 causes a change inM1.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1673

Figure 3. Different situations with two mediators.

In addition, we assume that P(Xi = x|Zi = z) > 0 for all x
and z if Xi is discrete, and that fX(x|Zi = z) > 0 for all x and z if
Xi is continuous, where fX is the conditional density function of
Xi. We also suppose that the effects of pretreatment confounders
Zi on each mediator and the outcome are homogeneous across
all the subgroups in (1) and (2). Moreover, we assume that the
mediator models and the outcome model in (1) and (2) are
sparse; that is, most true values in bh and θh are zero for each h.

Under the proposedmodel and the assumptions, the sequen-
tial ignorability assumption in Jirolon et al. (2020) holds for each
subgroup in the parametric model in (1) and (2). Moreover, the
natural indirect effects δj(t) on the eighth page of Jirolon et al.
(2020) for the jth mediator is identical to bh,jθh,j for subjects
from the hth subpopulation, where bh,j and θh,j are the jth
element in bh and θh in Equations (1) and (2), respectively. In
the following proposition, we have shown that parameters in (1)
and (2) are identifiable, which implies that the indirect effects
are identifiable under the parametric model. Thus, we aim to
estimate the causal quantity bh,jθh,j under the proposed model.

To state the proposition, we introduce some notations. Let
C = (C1, . . . ,Cn)

T be a vector consisting of all subgroup
labels, and � be a vector collecting all elements in �, γ and
bh,βh, θh for h = 1, . . .H. Since the group-specific parameters,
bh,βh and θh, are different across subgroups, we consider the
identifiability problem on the setA = {(�,C) : bh �= bh′ ,βh �=

βh′ , and bh �= bh′ for any h �= h′}.

Proposition 1. Under the nondegeneracy Condition 1, for any
(�,C), (�′,C′) ∈ A, under the proposed model in Equations
(1) and (2), if the distribution of the observable variables satisfies
f (Xi,Mi,Yi,Zi;�,C) = f (Xi,Mi,Yi,Zi; �

′,C′) for 1 ≤ i ≤ N,
then (�,C) and (�′,C′) are the same up to a permutation of
subgroups.

This proposition states that ourmodel is parametrically iden-
tifiable up to a permutation of subgroups. The proof of the
Proposition is provided in Section S.1 of supplementary mate-
rials. Due to page limit, the nondegeneracy Condition 1 is also
in Section S.1 of supplementary materials.

To determine the subgroup membership of each subject, we
evaluate how well each subject fits each subpopulation by the
loss function

Li,h(�1h,�2) = tr{(Mi − bhXi − �Zi)(Mi − bhXi − �Zi)
T}

+ (Yi − βhXi − θThMi − γ T
Zi)

2

for the ith subject and the hth subpopulation, where �1h =

(βh, b
T
h , θ

T
h )T and �2 = (γ ,�T). We propose to group subjects

and identify the subgroup label of each subject through finding
a smallest Li,h for the ith subject among all subgroups (h =

1, . . . ,H), since a smaller loss function indicates better fitness
and greater likelihood of the sample. Let�1 = (�11, . . . ,�1H).
Then, the loss function for all the subjects is

L1(�1,�2) =
∑

1≤i≤N

min
1≤h≤H

{Li,h(�1h,�2)}, (3)

which is a sum of all within-cluster loss.
In the proposed method, we do not prespecify or assume

which variables determine the subgroup membership. Instead,
these classes are identified in a completely data-driven manner,
which is one of the key advantages of our method. We do not
impose assumptions on which variables cause or determine the
heterogeneity, since the heterogeneity ofmediation effects could
have complicated reasons. Essentially, analogous to a cluster-
ing algorithm, our model aggregates individuals into several
classes where the individuals share similar mediation effects
within each class but have different effects across classes. In
addition, our proposed subgroup identification is different from
that in the individualized-multi-directional method (IMDM)
(Tang, Xue, and Qu 2021). We provide a comparison of the two
methods in Section S.5.1 of the supplementary materials.

3.4. Mediation Regularization for Sparsity

In this section, we propose a new mediation penalty. As men-
tioned in Section 3.3, under the proposed subgroup LSEM in
(1) and (2), the mediation effect of the jth mediator in the hth
subgroup is bh,jθh,j. To identify mediators with large mediation
effects in each subgroup, we consider bh,j and θh,j jointly for each
1 ≤ j ≤ p, and propose a two-dimensional joint mediation
penalty

pm(bh, θh) =

p∑

j=1

(
1 −

1

(1 + c0|bh,j|)(1 + c0|θh,j|)

)
, (4)

where c0 is a constant to adjust the shrinkage. We plot the
mediation penalty with p = 1 and c0 = 0.5 in Figure 4. As
shown in Figure 4, the penalty tends to shrink small values
toward zero, and the shrinkage gradually levels off as |θh,1| or
|bh,1| increases.

The high-dimensional mediation analysis proposed by
Zhang et al. (2016) adopts the minimax concave penalty
(MCP) (Zhang 2010) for variable selection in the outcome
model. Compared with the traditional Lasso (Tibshirani
1996), MCP, and smoothly clipped absolute deviation (SCAD)
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Figure 4. Mediation penalty with p = 1 and c0 = 0.5.

penalties (Fan and Li 2001), the proposed mediation penalty
selects mediators instead of covariates in the sense that the
pm(bh, θh) penalizes bh and θh jointly rather than separately.
Schaid and Sinnwell (2020) also jointly consider each pair
of coefficients in the mediator and outcome model for each
mediator using a group Lasso penalty. Compared to the group
Lasso penalty, the proposed joint mediation penalty tends to
be flat, and the corresponding shrinkage gradually levels off as
the coefficients in each pair increase; which can relax the rate
of penalization for large coefficients and large mediation effects.
Thus, the proposed penalty could reduce the bias due to joint
shrinkages.

Intuitively, we need a relatively small shrinkage for bh,j when
θh,j is large; otherwise it is hard to select the jth mediator when
bh,j is small but θh,j and the mediation effect bh,jθh,j are large.
However, this property does not hold for penalty functions such
as |θh,j| + |bh,j| and the pathway Lasso penalty in Zhao and Luo
(2016) penalizing bh and θh jointly via |θh,jbh,j| (1 ≤ j ≤ p).
Specifically, with a penalty of |θh,j| + |bh,j|, the shrinkage of
bh,j does not depend on θh,j; and with a penalty of |θh,jbh,j|,
the shrinkage on bh,j increases as θh,j increases. In contrast, our
joint mediation penalty in (4) has the desired property since
the shrinkage on bh,j in pm(bh, θh) gradually levels off as θh,j
increases and vice versa, as shown in Figure 4. On the other
hand, the proposed mediation penalty will not induce a strong
shrinkage for θh,j if bh,j = 0. In Figure 4, even if bh,1 = 0,
the rate of penalization on θh,1 will still decrease as θh,1 itself
increases, which is analog to the SCAD penalty imposed on a
single coefficient θh,1.

3.5. Fusion Penalty for Cross-Group Information

In general, it is possible that not every mediator has differ-
ent mediation effects across subgroups. We use the following
between-group fused Lasso penalty (Tibshirani et al. 2005)

pb(�1) = λ0
∑

1≤h1,h2≤H

⎡
⎣|βh1 − βh2 | +

p∑

j=1

{
|θh1,j − θh2,j|

+ |bh1,j − bh2,j|
}
⎤
⎦ (5)

to shrink similar between-group effects together, where λ0 is
a tuning parameter. Specifically, the between-group penalty
pb(�1) encourages mediators to share the same parameter
across different subgroups when the corresponding effects
are similar. In this way, we can borrow information across
subgroups in estimating the mediation effects.

Consequently, the objective function of the proposedmethod
is

f (�1,�2) = L1(�1,�2)

+ N

⎧
⎨
⎩

∑

1≤h≤H

pw(�1h) + pb(�1) + pc(�2)

⎫
⎬
⎭ ,

(6)

where

pw(�1h) = pSCAD,λ1,a(βh) + λ1pm(bh, θh) (7)

is awithin-group penalty, pSCAD,λ1,a(·) is the SCADpenaltywith

tuning parameters λ1 and a, pc(�2) = λ2{‖γ ‖1 +
∑p

j=1 ‖�j‖1}

is a l1 penalty with tuning parameter λ2 for pretreatment con-
founders to avoid over-fitting, and �j denotes the jth row of �.
Through minimizing f (�1,�2) in (6), we not only incorpo-
rate the heterogeneity of mediation effects in subjects, but also
combine cross-group information for similar effects. Moreover,
in the objective function f (�1,�2), we penalize not only θh
but also the direct effect βh in the outcome model in Equation
(2) since otherwise the estimation obtained by minimizing the
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objective function could falsely transfer the effects of mediators
Mi to the effect of Xi. In the following section, we provide an
algorithm to obtain the minimizer of the objective function.

3.6. Implementation

In this section, we propose an effective algorithm to minimize
the objective function in Equation (6). Note that our objective
function is nonconvex, since the within-group penalty pw in (7)
is not convex and the loss function in (3) involvesminimization.
To tackle this challenge, we decompose our objective function as
a difference of two convex functions and solve the optimization
problem based on the difference of convex (DC) algorithm
(Le Thi Hoai and Tao 1997; Shen, Pan, and Zhu 2012), which
is shown to converge to a stationary point under regularity
conditions (Abbaszadehpeivasti, de Klerk, and Zamani 2021).
Also, we use a smooth approximation of the between-group
fused Lasso penalty.

Specifically, we rewrite the objective function as a difference
of two functions

f (ν) = f1(ν) − f2(ν), (8)

where ν is a vector consisting of all parameters bh,βh, θh, γ ,�
(for h = 1, . . . ,H) in models (1) and (2),

f1(ν) =

N∑

i=1

H∑

h=1

Li,h(�1h,�2) + N

⎧
⎨
⎩

H∑

h=1

{
pd(�1h) + pw(�1h)

}

+ pb(�1) + pc(�2)

⎫
⎬
⎭ ,

f2(ν) =

N∑

i=1

max
1≤k≤H

⎧
⎨
⎩

∑

1≤h≤H,h �=k

Li,h(�1h,�2)

⎫
⎬
⎭ + N

H∑

h=1

pd(�1h),

(9)

and pd(�1h) = β2
h/(a − 1) + 2c20λ1(‖θh‖

2
2 + ‖bh‖

2
2). It can be

shown that pd(�1h) + pw(�1h) is convex for each 1 ≤ h ≤ H,
since the corresponding Hessian matrix is block-diagonal and
each diagonal block is positive-definite. This implies that f1(ν)

is a convex function. In addition, since the maximum of convex
functions is still convex, f2(ν) is also a convex function.

Based on this DC decomposition on f , we iteratively con-
struct a sequence of convex approximations for f (ν). We first
calculate the subdifferential of f2(ν) in the following:

∂f2(ν) =

N∑

i=1

∂

{
max
1≤k≤H

Fik(ν)

}
+ N

H∑

h=1

∂pd(�1h)

=

N∑

i=1

co
{
∪k∈J(ν)∂Fik(ν)

}
+ N

H∑

h=1

∂pd(�1h),

where Fik(ν) =
∑

1≤h≤H,h �=k Li,h(�1h,�2), J(ν) = {1 ≤ k ≤

H : Fik(ν) = max1≤k≤H Fik(ν)}, and “co” stands for the convex
hull. At the mth iteration, given the previous estimate ν(m−1),

we replace f2(ν) in (8) by its affine minorization: f
(m)
2 (ν) =

f2(ν
(m−1))+

〈
ν − ν(m−1),μ(m−1)

〉
, whereμ(m−1) ∈ ∂f2(ν

(m−1)).

Then, f1(ν)−f
(m)
2 (ν) is an upper convex approximating function

for f (ν) at the mth iteration. Through this, we convert the
nonconvex objective function into a convex relaxation via a
tangent approximation of f2(ν).

In addition, since the between-group fused Lasso pb(�1) in
f1(ν) is non-smooth and non-separable, we approximate it by a
smooth function. Specifically, we reformulate the fused Lasso as
pb(�1) = λ0‖Dν‖1 = λ0 max

‖η‖∞≤1
ηTDν, where D is a difference

operator corresponding to the differences in pb(�1). That is,
the pb(�1) is equivalent to the maximum of the maximization
problem for ηTDν. Hence, we let p̃b(ν; ρ) = λ0 max

‖η‖∞≤1
(ηTDν −

ρ
2 ‖η‖22), where ρ is a positive smoothing parameter. This func-
tion p̃b(ν; ρ) approximates pb(ν) as ρ → 0 (Nesterov 2005). Let
η∗ = S(Dν/ρ), where

S(x) =

⎧
⎨
⎩

x, −1 ≤ x ≤ 1,
1, x > 1,
−1, x < −1.

Then we have p̃b(ν; ρ) = λ0
{
(η∗)TDν −

ρ
2 ‖η∗‖22

}
, which is

convex and differentiable in ν (Chen et al. 2012). In our imple-
mentation, we choose ρ = 10−4 following Chen et al. (2012).

Consequently, at the mth iteration, we replace the f2(ν) and

pb(ν) in (8) by f
(m)
2 (ν) and p̃b(ν; ρ), respectively, and obtain

ν(m) = argmin
ν

f̃ (m)(ν), (10)

where

f̃ (m)(ν) =

N∑

i=1

H∑

h=1

Li,h(�1h,�2) + N

H∑

h=1

{
pd(�1h) + pw(�1h)

}

+ N
{̃
pb(ν; ρ) + pc(�2)

}
− f

(m)
2 (ν).

We solve the minimization problem in Equation (10) through
the gradient descent algorithm (Curry 1944) with the back-
tracking line search (Shi 2004; Stanimirović and Miladinović
2010) for the step size. The above algorithm can be summarized
in Algorithm 1. We also provide an expanded version of this
algorithm in Section S.2 of the supplementary materials.

Algorithm 1:

1. Set the number of subgroups H, tolerance ε, and the
tuning parameters.

2. Obtain initial subgroup labels C
(0)
i for i = 1, . . . ,N, via

the k-means clustering method (MacQueen 1967) on
all the variables.

3. Calculate ν(0) based on C
(0)
i for each subgroup

separately.
4. At themth iteration, given ν(m−1) from the (m − 1)th

iteration:

(a) Calculate μ(m−1) ∈ ∂f2(ν
(m−1)).

(b) Solve ν(m) in (10) through the gradient descent.

(c) Update subgroup labels C
(m)
i based on the loss

function in (3) for i = 1, . . . ,N.

5. Iterate Step 4 until ‖ν(m) − ν(m−1)‖1 < ε.
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To determine the tuning parameters and the number of
subgroups H, we propose the following Bayesian information
criterion (BIC) type criterion:

BIC(λ,H) = N · log {RSSM(λ,H)/N} + dfM(λ,H) · log(N)

+
[
N · log {RSSY(λ,H)/N} + dfY(λ,H) · log(N)

]
,

(11)

where dfM(λ,H) and dfY(λ,H) are numbers of nonzero
estimated coefficients in mediator models and the outcome
model, respectively, λ = (λ0, λ1, λ2), RSSY(λ,H) =

∑
1≤h≤H∑

{i: Ĉi,λ=h} (Yi− β̂h,λXi− θ̂
T
h,λMi− γ̂ T

λZi)
2, and RSSM (λ,H) =∑

1≤h≤H

∑
{i: Ĉi,λ=h}(Mi−b̂h,λXi−�̂λZi)

T(Mi−b̂h,λXi−�̂λZi).

Here, b̂h,λ, �̂λ, β̂h,λ, θ̂h,λ, γ̂ λ, and Ĉi,λ are the estimates of bh,
�, βh, θh, γ , and Ci, respectively, based on H subgroups and
tuning parameters λ. Recall that the between-group fused Lasso
penalty pb(�1) in (5) encourages shared parameters for similar
effects across different subgroups. In dfM and dfY , the shared
parameters are counted without multiplicity.

We select the optimal tuning parameters and the optimal
number of subgroups through minimizing BIC(λ,H), incor-
porating information from both the mediator models and the
outcome model. In the implementation for the following sec-
tions, we mainly tune λ0, λ1, and H using a grid search to
minimize the BIC. We do not tune λ2 since it is for penalization
of the pretreatment confounders, which are not involved in our
simulations and real data application.

4. Simulated Data Experiments

In this section, we investigate the performance of the pro-
posed method compared with existing homogeneous medi-
ation methods via simulation studies. We simulate data
following models in (1) and (2) with r = 0. The pro-
posed method is implemented based on Algorithm 1 with
c0 = 10 and a = 3.7. We apply the “HIMA” package
(https://cran.r-project.org/web/packages/HIMA/index.html) in R to
implement the high-dimensional mediation analysis (HIMA)
method (Zhang et al. 2016) for comparison, which is a
homogeneousmediation approach. Our results are summarized
based on 100 replications.

To evaluate the performance of eachmethod, we calculate the
average of all individuals’ mediator false negative rates (FN) and
the average of all individuals’ mediator false positive rates (FP)
for mediator selection as follows:

FN =
1

N

N∑

i=1

∑p
j=1 I(θ̂Ĉi ĵ

bĈij
= 0, θCijbCij �= 0)

∑p
j=1 I(θCijbCij �= 0)

,

FP =
1

N

N∑

i=1

∑p
j=1 I(θ̂Ĉi ĵ

bĈij
�= 0, θCijbCij = 0)

∑p
j=1 I(θCijbCij = 0)

,

where θ̂hj, b̂hj, and Ĉi are estimators of θhj, bhj, and Ci,
respectively. Specifically, the FN and FP represent proportions
of unselected true mediators and selected noises, respectively. A
method with smaller FN+FP selects more accurate mediators.
In practice, the FP andFNmayhave different costs. For example,
in scenarios such as a pregnancy test or a COVID-19 test, FN
costs much more than FP. However, in other scenarios such

Figure 5. True coefficients for the homogeneous Setting 1. The “X” denotes the
independent variable, “Mi” denotes the ith mediator, and “Y” denotes the depen-
dent variable. The value above each arrow represents the true coefficient for the
corresponding effect.

as criminal conviction or identifying spam emails, FP costs
much more than FN. Given specific application context and
background information, we may assign different weights to FP
and FN, respectively. Since simulation studies do not involve
any real situations, we treat them equally and just use FN+FP
as an evaluation criterion.

We also evaluate each method via the mean-squared-errors
(MSE) of mediation effects in an average of all individuals as∑N

i=1

∑p
j=1(θ̂Ĉi ĵ

bĈij
− θCijbCij)

2/N. For the proposed method,

we also report the proportion of replications where the number
of subgroups is correctly selected via the BIC(λ,H) in (11),
which we refer to as the correct rate of subgroup number selec-
tion.Moreover, we compute themisclassification rate of subjects
based on the proposedmethod for evaluation of subgroup iden-
tification.

We consider the following three settings, where the nonzero
coefficients in bh and θh share the same signal strengths bhs
and θhs, respectively, for 1 ≤ h ≤ H. For the sensitivity of
the proposed approach to misspecification, we investigate situ-
ations without heterogeneity in the first setting, which involves
a homogeneous underlying true model with only one subpopu-
lation. In contrast, Settings 2 and 3 assume heterogeneous true
models with two subpopulations. In addition, we consider high-
dimensional situations in Setting 3.

Setting 1. Let N = 200, H = 1, n1 = 200, and p = 30. True
coefficients in the model are illustrated in Figure 5 with β1 =

0.5, b1s = 1, andθ1s = 0.2, 0.3, or 0.4. As shown in Figure 5, we
have four true mediators with mediation effects θ1s. In addition,
we generate Xi and εi from a standard normal distribution and
δi ∼ N(0, Ip×p) for each i = 1, . . . ,N.

Setting 2. We proceed similarly as in Setting 1 except that H =

2, n1 = 50, and n2 = 150. True coefficients in the model are
illustrated in Figure 6 with β1 = 0.5, b1s = 1, β2 = −0.5, b2s =

−1, θ1s = 0.5, 1, or 4 and θ2s = −0.5,−1, or − 4. As shown in
Figure 6, we have three true mediators in each subgroup.

Setting 3. We investigate a high-dimensional case proceeding
similarly as in Setting 2 except that N = 100, n1 = 30, n2 =

70, p = 150, β1 = 1, β2 = −1, θ1s = 0.5, 0.8, 1, or 4 and
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Figure 6. True coefficients for the heterogeneous Settings 2 and 3 with two subpopulations (left and right). The p is 30 and 150 under Settings 2 and 3, respectively. The
“X”denotes the independent variable, “Mi”denotes the ith mediator, and “Y”denotes the dependent variable. The value above each arrow represents the true coefficient
for the corresponding effect.

Table 2. FN, FP, FN+FP, and MSE under Setting 1.

θ1s Method FN FP FN+FP MSE

0.2 Proposed 0.046 0.002 0.048 0.002
HIMA 0.570 0.000 0.570 0.003

0.3 Proposed 0.000 0.000 0.000 0.002
HIMA 0.100 0.000 0.100 0.002

0.4 Proposed 0.000 0.000 0.000 0.002
HIMA 0.005 0.000 0.005 0.001

NOTE: “HIMA”stands for thehigh-dimensionalmediation analysismethod. The “θ1s”
represents the signal strength in θ1 .

θ2s = −0.5,−0.8,−1, or −4. The covariancematrix of δi has an
autoregressive structure of order 1, that is, AR(1), with diagonal
1 and off-diagonal parameter ρ.

Tables 2–4 provide the results of the proposed method
and the HIMA method, and show that the proposed method
produces smaller overall FN+FP totals than the HIMAmethod
across all the settings, indicating that the proposed method
selects mediators more accurately. Moreover, the proposed
method produces smaller MSE of mediation effects, implying
that the proposed method is also more effective in estimation of
mediation effects.

In particular, under the homogeneous Setting 1, the
proposed method still outperforms the homogeneous HIMA
method. For example, when θ1s = 0.2, the FN+FP of the
proposed is only 8.8% of that of the HIMA as shown in Table 2.
This is likely due to the advantage of the proposed mediation
penalty, and that the proposed method correctly identifies the
number of subgroups in most situations as shown in Table 5.
Moreover, the proposed method falsely un-selects 4.6% of true
mediators and falsely selects just 0.2% of noises (variables that
are not mediators), even when the mediation effect of each true
mediator is as small as 0.2. In addition, under this situation,
the MSE of mediation effects is only 0.002, indicating that the
proposed method performs consistently well even when there
is no heterogeneity and the effect size is small.

In addition, the proposedmethod also performsmuch better
than the HIMA when there are two subgroups with opposite

Table 3. FN, FP, FN+FP, and MSE under Setting 2.

(θ1s , θ2s) Method FN FP FN+FP MSE

(0.5, -0.5) Proposed 0.031 0.007 0.038 0.004
HIMA 0.963 0.004 0.968 0.025

(1, -1) Proposed 0.002 0.000 0.002 0.006
HIMA 0.943 0.003 0.946 0.099

(4, -4) Proposed 0.001 0.000 0.001 0.058
HIMA 0.790 0.002 0.792 1.514

NOTE: “HIMA”stands for thehigh-dimensionalmediation analysismethod. The “θ1s”
and “θ2s” represent the signal strength in θ1 and θ2 , respectively.

mediation effects in Settings 2 and 3, that is, with positive medi-
ation effects in one subgroup and negative mediation effects in
the other. In this case, the homogeneous HIMAmethod usually
fails to identify true mediators. For instance, the FN of the
HIMA is as high as 0.957 when (θ1s, θ2s) = (0.5,−0.5) as shown
in Table 3, while the corresponding FN of the proposed method
is only 0.031.

Moreover, we explore high-dimensional scenarios in Set-
ting 3 to mimic the case of the DNHS data. In this setting,
we also consider the situations where the error terms in the
mediator models in (1) are correlated, that is, the correlations
amongmediatorsmay not just come from the independent vari-
able. In all the high-dimensional cases, the proposed method
produces smaller FN+FP and smaller MSE than the HIMA
method illustrated in Table 4. For example, when (θ1s, θ2s) =

(4,−4) and ρ = 0.2, the FN+FP of the proposed method is
only 16.7% of that of the HIMA method, and the MSE is only
29.8% of that of the HIMA.

In Table 5, we provide the correct rates of subgroup number
selection and the misclassification rates under various settings.
We observe that the proposed method correctly determines the
number of subgroups in most situations, especially in Settings 1
and 2 where there are more samples. In addition, the proposed
method groups most subjects correctly across different settings
due to the low misclassification rates.

In summary, our simulation studies show that the pro-
posed method achieves higher mediator selection accuracy
and mediation effect estimation accuracy than the existing
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Table 4. FN, FP, FN+FP, and MSE under Setting 3.

(θ1s , θ2s) Method FN FP FN+FP MSE

ρ = 0 (0.5, -0.5) Proposed 0.530 0.001 0.531 0.004
HIMA 0.890 0.001 0.891 0.006

(0.8, -0.8) Proposed 0.220 0.000 0.220 0.005
HIMA 0.967 0.001 0.967 0.013

(1, -1) Proposed 0.143 0.001 0.144 0.007
HIMA 0.977 0.001 0.977 0.021

(4, -4) Proposed 0.092 0.001 0.093 0.068
HIMA 0.963 0.000 0.964 0.314

ρ = 0.2 (0.5, -0.5) Proposed 0.554 0.001 0.555 0.003
HIMA 0.917 0.001 0.917 0.006

(0.8, -0.8) Proposed 0.269 0.001 0.270 0.006
HIMA 0.983 0.001 0.984 0.013

(1, -1) Proposed 0.259 0.001 0.260 0.009
HIMA 0.977 0.000 0.977 0.021

(4, -4) Proposed 0.161 0.001 0.162 0.093
HIMA 0.957 0.000 0.957 0.312

NOTE: “HIMA”stands for thehigh-dimensionalmediation analysismethod. The “θ1s”
and “θ2s” represent the signal strength in θ1 and θ2 , respectively, and “ρ” is a
correlation parameter.

Table 5. Correct rate of subgroup number selection and misclassification rate for
different settings.

Correct rate of Misclassification
(θ1s , θ2s) subgroup number selection rate

Setting 1 (0.2, –) 0.76 –
(0.3, –) 1.00 –
(0.4, –) 1.00 –

Setting 2 (0.5, -0.5) 0.99 0.13
(1, -1) 1.00 0.11
(4, -4) 0.92 0.10

(0.5, -0.5) 0.66 0.17
Setting 3 (0.8, -0.8) 0.68 0.14
ρ = 0 (1, -1) 0.72 0.13

(4, -4) 0.62 0.12
(0.5, -0.5) 0.59 0.17

Setting 3 (0.8, -0.8) 0.69 0.15
ρ = 0.2 (1, -1) 0.62 0.15

(4, -4) 0.66 0.14

NOTE: “Correct rate of subgroup number selection” represents the proportion of
replicationswhere thenumberof subgroups is correctly selectedvia theproposed
method. “Misclassification rate” is the average proportion of subjects who are
misclassified by the proposed method.

homogeneous mediation method across all the settings. One
reason is that the proposed method adopts the mediation
penalty in (4) which considers effects in mediator models and
outcome models jointly, and encourages selection of mediators
with large mediation effects. In addition, the proposed method
allows heterogeneity among subjects, and thus can identify
mediators with heterogeneous mediation effects, which is
especially powerful for mediators with opposite effects in
different subgroups.We investigate more simulations for larger-
scale cases, with different initial values, various coefficients,
moderators, and under non-normality of the independent
variable in Sections S.3.1, S.3.2, S.3.4–S.3.6 of supplementary
materials, respectively.

5. DNHS Case Study

In this section, we investigate how DNA methylation mediates
the effects of traumatic experiences on development of PTSD
based on the DNHS data. Specifically, we apply the proposed
method to study the mediation effects of DNAm variation of

Table 6. TheDNHSdata results by the proposedmethod and the high-dimensional
mediation analysis (HIMA) method.

Method NS Mediator Outcome

Proposed 6 0.455 1.235
HIMA 0 4.309 2.774

NOTE: Here “NS”represents themeannumber of selectedmediators. The “Mediator”
represents average prediction error for mediators, and “Outcome” represents
average prediction error for the outcome variable based on 100 replications.

GRRN genes on PTSD symptom severity. In this study, we
use the baseline wave of the DNHS data for our mediation
analysis. We treat the total number of trauma exposures as an
independent variable, DNAm CpG probes that are significantly
correlated with the GRRN genes as potential mediators, and the
average PCL-C score as the outcome variable. There are 125
subjects and 144 selected DNAm CpG probes after screening.
Our main objective is to identify key DNAm CpG probes from
all the potential mediators.

To evaluate the performance of the proposed method
compared with existing methods, we randomly split the
data into a training set (90% of all samples) and a testing
set (10% of all samples) for 100 times. The training sets
in the 100 replications are repeated random subsamples
(90%) of the complete data. For the proposed method, to
identify the subgroup label of the ith subject in the testing
set, we calculate the average prediction error of mediators
(M̂i(̂bh)−Mi)

T(M̂i(̂bh)−Mi)/p, where M̂i(̂bh) is the predicted
value for Mi based on estimated parameters β̂h and θ̂h in
the hth subgroup. Then the ith subject is labeled with a
specific subgroup that minimizes (M̂i(̂bh) − Mi)

T(M̂i(̂bh) −

Mi)/p. For each method, we train the model on the training
data, and calculate the prediction root-mean-squared errors
(PRMSEs) for the mediators and the outcome variable in the

testing set; that is,
√∑

i∈T (M̂i − Mi)T(M̂i − Mi)/(p|T |) and√∑
i∈T (̂yi − yi)2/|T |, respectively, where T denotes the index

set of subjects in the testing set and |T | is the testing sample
size.

We provide mean PRMSE for each method based on 100
replications in Table 6. The proposed method produces much
smaller prediction errors for both the mediators and the out-
come variable compared to the existing high-dimensionalmedi-
ation analysis (HIMA) method, indicating that the proposed
method is more accurate in terms of prediction. Note that, in
bothmethods, we use all the potential mediators to calculate the
prediction errors of mediators, and then take an average of the
errors over the mediators.

For the subgroup identification in the DNHS data, we apply
the proposed method to all the samples. The proposed method
selects four DNAm probes, and identifies three subgroups con-
sisting of 60, 26, 39 subjects, respectively. We provide the esti-
mated coefficients of the four DNAm probes in the three sub-
groups in Figure 7. Although the size of some estimated coef-
ficients are small, the estimated mediation effect size here is
comparable to the findings from other studies for DNA methy-
lation (Tobi et al. 2018), and thus the mediation effects are still
non-ignorable. For example, the mediation effect from trauma
to PCL score through cg01277438 is 0.02 × 0.94 ≈ 0.02 for
the subgroup in Figure 7(c). Note that the range of the trauma
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Figure 7. Estimated coefficients for the selected four mediators in the three subgroups identified by the proposed method based on all samples.

measurement is from 0 to 14 with mean 4.0. If the trauma
variable takes its average value 4.0, the influence of this trauma
value on PCL score through the mediator cg01277438 is about
0.08. Moreover, if the trauma variable takes its maximum value
14, the influence of this trauma value on the PCL score through
the mediator cg01277438 is about 0.28, which is 25% of the
standard deviation 1.1 of the PCL score.

Specifically, the four DNAm probes identified by the pro-
posed method correspond toNFATC1,HSP90AA1, SMARCA4,
and CREBBP genes, among which HSP90AA1, SMARCA4,
and NFATC1 are indeed related to PTSD based on existing
literature (Raabe and Spengler 2013; Kuan et al. 2017; Criado-
Marrero et al. 2018; Breen et al. 2019; Kim et al. 2019a,
2019b). In addition, we apply the HIMAmethod to each of the
three subgroups on the four mediators. At a 0.05 significance
level, the HIMA method shows that three (“cg11789371,”
“cg03738979,” and “cg01277438”) of the four selected mediators
are significant, after controlling the false discovery rate (FDR)
via the Benjamini–Hochberg procedure (Benjamini and
Hochberg 1995). However, the HIMA method cannot identify
anymediatorwhen all potentialmediators and samples are used.
This confirms that the subgroups and mediators selected by the
proposed method are useful in scientific findings.

Furthermore, we find common patterns in subgroup iden-
tification across the analyses of the 100 random split datasets
and the whole dataset, which are provided in Section S.4.1 of
supplementary materials. Also, we investigate the racial make-
up of the three identified subgroups. The results are provided in
Table 13 in Section S.4.2 of supplementary materials, showing
that the subjects are not grouped based on race since each
subgroup contains both AAs and European Americans.

In summary, the proposed method produces smaller
prediction errors than the homogeneous mediation method.
Moreover, the proposed method identifies important mediators
which cannot be detected by existing methods. In addition, our
method shows heterogeneous mediation among subjects in the
DNHS data.

6. Discussion

Our main contribution is to advance the understanding of the
underlying mechanism of PTSD using the DNHS data. Specifi-
cally, we conduct a mediation analysis for DNA methylation on
the relationship between traumatic events and PTSD symptoms
based on the DNHS data. The identification of DNAm medi-
ators presents new statistical challenges due to the heteroge-
neous nature of PTSDamongpatients and the high-dimensional
structure of the DNAm data. To address these challenges, we
develop a heterogeneous mediation model with multiple medi-
ators, incorporating heterogeneity among subjects. Moreover,
we propose a novel mediation penalty to incorporate effects
in the mediator models and the outcome model jointly for
high-dimensional data. Our numerical studies show that the
proposed method selects true mediators more accurately than
the existing homogeneous high-dimensionalmediation analysis
method.

In the DNHS case study, we identify meaningful DNAm
mediators using the proposed method, which has important
impact in practice since it would advance development of new
personalized treatments for PTSD. In fact, recent studies have
shown that successful PTSD treatments are reflected by signif-
icant DNAm changes (Yehuda et al. 2013; Vinkers et al. 2019).
Our finding could also suggest future biomedical research on
the selected mediators and corresponding genes for further
biological verification. In particular, the selected DNAm CpG
probes correspond to genes such asHSP90AA1, SMARCA4, and
NFATC1 , which have been reported in literature that they are
associated with the PTSD (Raabe and Spengler 2013; Kuan et al.
2017; Criado-Marrero et al. 2018; Breen et al. 2019; Kim et al.
2019a, 2019b).

In addition, the subgroup identification by the proposed
method for the DNHS dataset with predominantly African-
American subjects indicates potential heterogeneity in the
underlyingDNAmprofiles whichmediate risk for PTSD. This is
an important discovery, as it could help us to uncover important
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genetic complexities which have been ignored for treatment and
prevention of this debilitating mental disorder.

In this article, we mainly consider the detection of hetero-
geneous mediators and estimation of corresponding mediation
effects. We have not developed statistical inference for the
heterogeneous mediation effects, which is a limitation of this
article. It would be of great interest to investigate the statistical
inference on these mediation effects in the future; for example,
constructing de-biased estimators of subpopulation mediation
effects for confidence intervals or hypothesis testing. A de-
biasing procedure can also reduce the bias for mediation effects
incurred from regularization. One possible way is to control the
bias of estimators for parameters in both mediator and outcome
models, and then use multiplication of each pair of de-biased
estimates to estimate the mediation effects of the corresponding
mediator.

Moreover, the proposed model in Equations (1) and (2)
implies that there is no unmeasured confounders. However, to
our best knowledge, it is unclear whether there are any common
factors impacting bothmethylation and PTSD symptoms, as the
exact biological processes underlying the development of PTSD
remain elusive, which is a study limitation given the current state
of science. We provide more discussion on the proposed model
regarding exposure–mediator interactions, latent subpopula-
tions, and moderated mediation and mediated moderation in
Sections S.5.2–S.5.4 of supplementary materials, respectively.

Furthermore, our use of cross-sectional rather than longi-
tudinal methylation measurements in the DNHS data applica-
tion can be considered a study limitation, since the mediation
assumption cannot be verified in cross-sectional data. However,
it is consistent with the majority of existing epigenetic work
relevant to PTSD published to date. In fact, many methylation
studies are actually cross-sectional (King et al. 2014; Young et al.
2016; Joehanes et al. 2016; Alghanim et al. 2017; Nakatochi et al.
2017; Christiansen et al. 2021), and the majority of epigenetic
PTSD studies to date have used a similar study design (Kuan
et al. 2017; Hossack et al. 2020; Sheerin et al. 2021; Young et al.
2021; Qi et al. 2021). As a future work, we expect the proposed
method can be extended to longitudinal data when such data
become available.

In addition, the number of subject in the DNHS study is rel-
atively small, and thus readers should be cautious when directly
using the results that the DNHS dataset provides. In the future,
with more date collected, we will apply the proposed method to
a larger dataset.More discussion on the limitations of theDNHS
data is provided in Section S.5.5 of supplementary materials.

Supplementary Materials

The supplementary materials provide an expanded version of Algorithm 1,
proofs, and additional results for simulations, real data analyses, and dis-
cussion.
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