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Abstract

This paper continues Part I (Hagstrom and Kim in Numer Math 141(4):917-966,2019)
of the investigation on the complete radiation boundary condition (CRBC) in waveg-
uides. In this paper, we propose corner compatibility conditions for CRBC applied
to the Helmholtz equation posed in R?. Since CRBC is developed as a high-order
absorbing boundary condition approximating the radiation condition by using ratio-
nal functions via the cross-sectional Fourier analysis, it is well-studied and its accurate
performance is validated on a straight/planar fictitious boundary in waveguides. How-
ever in the presence of corners on artificial absorbing boundaries such as boundaries of
rectangular domains, a special treatment for corner conditions is required. We design
and validate the accurate CRBC with the corner compatibility conditions on rect-
angular domains. We also analyze the existence and uniqueness of solutions to the
Helmbholtz equation coupled with CRBC with the corner compatibility conditions.
Finally, numerical experiments illustrating the accuracy of CRBC will be presented.
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1 Introduction

This paper is concerned with an analysis of the complete radiation boundary condition

(CRBC) applied to the time-harmonic wave propagation problem in a domain with

corners. The CRBC is an efficient high order absorbing boundary condition that can

be easily used for truncating unbounded domains of wave propagation problems to

a finite computational domain so that wave phenomena can be well described in the

computational domain without any noticeable pollution from fictitious reflections.
We consider the Helmholtz equation

Au+ k*u = f in R? (1.1

with the Sommerfeld radiation condition at infinity, where k is a positive wavenumber
and f is a wave source with compact support. The numerical solution of the model
problem (1.1) requires a domain truncation technique for which artificial reflections
can be made as small as desired. To this end many different types of absorbing boundary
conditions, also known as transparent or non-reflecting boundary conditions, have been
developed and analyzed such as Dirichlet-to-Neumann (DtN) conditions [19, 26, 28,
33], approximate far-field expansions [8, 34], pole conditions [24, 25, 41] and perfectly
matched layers (PML) [9, 12, 13, 32].

Rational approximation approaches [3, 15, 20, 38] to the non-local pseudodifferen-
tial operator related with the radiation condition have also been employed to construct
efficient absorbing boundary conditions. Among others CRBC is devised in [21, 30] as
a rational approximation to the exact radiation condition pertaining to the square root
function. The rational approximation of CRBC can be rephrased as a system of dif-
ferential equations of certain auxiliary functions with respect to tangential derivatives
on artificial boundaries and so it is well-suited for a high-order absorbing boundary
condition on a straight/planar boundary. Thus CRBC is successfully used on cross-
sectional boundaries for computation of scattering waves in waveguides, and it is also
found that the optimal minimization of reflection errors and efficient handling of both
propagating and evanescent modes including grazing modes, make CRBC an attrac-
tive technique. In addition, it is shown in [31] that its performance can be improved
by hybridization with PML.

On the other hand, when the wave propagation takes place in the open space, arti-
ficial boundaries for absorbing boundary conditions are required to surround wave
sources or scatterers. As a simplest computational domain with such boundaries, we
can take a rectangular region, and in this case it is demanded to provide certain con-
ditions at corners for two systems of the boundary differential equations employed
for CRBC from each side. These must be constructed so that the resulting problem
coupled with CRBC incorporating the corner compatibility conditions has a unique
solution and produces approximate radiating solutions of high accuracy. As a goal
of this paper, we design and validate such compatibility conditions at corners for
CRBC. The study on corner conditions for absorbing boundary conditions based on
approximations of the pseudodifferential operators of the radiation condition has been
developed for a long time such as [6, 14, 20, 22, 43] in time-domain computations
and [38, 40] in frequency domain problems. However, we will provide an improved
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analysis including the existence and uniqueness of solutions to the Helmholtz equa-
tion supplemented with CRBC satisfying the corner compatibility conditions. To this
end, we carry out a spectral analysis based on [37] to understand the distribution of
eigenvalues associated with CRBC and the completeness of eigenvectors, which is
essential for verifying the existence and uniqueness of solutions. It is worth noting
that there have been approaches to avoid corners of fictitious boundaries by using
regular boundaries [4, 27].

This paper is organized as follows. In Sect. 2 we review CRBC for absorbing bound-
ary conditions in the half space. The initial CRBC is introduced by certain relations
involving the normal derivatives of auxiliary functions defined on a neighborhood of
the boundary and then it is transformed to a system of differential equations of the
auxiliary functions with respect to the tangential derivatives on the boundary. Sec-
tion 3 is devoted to a study of the eigenvalue problem with CRBC as the boundary
condition in the unit interval. Here we study the asymptotic behavior of eigenvalues
and completeness of eigenvectors. In Sect. 4 the model problem on a square domain
in R? is introduced together with CRBC for two radiating directions orthogonal to the
fictitious boundaries. The CRBC is defined in terms of auxiliary functions defined on
a neighborhood of the fictitious boundaries and this will motivate the derivation of
the corner conditions of CRBC imposed only on the artificial boundaries. The exis-
tence of solutions to the problem truncated by CRBC is also established by using the
spectral analysis presented in Sect. 3. We propose the corner compatibility conditions
for CRBC in Sect. 5, and the model problem coupled with CRBC satisfying the cor-
ner conditions is reformulated in a variational form in Sect. 6, which will be utilized
for obtaining finite element approximations. In Sect. 7 we complete the proof of the
existence of unique solutions to the model problem. Finally, numerical experiments
demonstrating the efficiency of the CRBC will be presented in Sect. 8.

We remark that our spectral analysis also applies in three space dimensions and
thus motivates and validates the construction of edge and corner conditions in the
three-dimensional case. However we focus here on the two-dimensional case for ease
of presentation.

2 Complete radiation boundary conditions in the half space
We consider the Helmholtz equation in the free space R? of x = (x1, x2)

Au+k*u = f inR?, 2.1
where k is a positive wavenumber and f is a compactly supported source function in
L*(R?) vanishing for x; > —8 with 8 > 0. Let RZ be the left half space of x; < 0 and
let I" denote the boundary of R? . The limiting absorption principle (see e.g. [1, 44])

shows that the problem (2.1) with the Sommerfeld radiation condition has a unique
solution. By taking the Fourier transform u defined by

i(xp, &) = / u(xy, xa)e 25 dx,
R
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778 T. Hagstrom, S. Kim

with respect to x; for appropriately regular functions u, the radiating solution to the
problem (2.1) can be written as

1 . .
u(x) = 2_/ fig (&) MV —EHNE ge for v > 0, (2.2)
T JR

where 1 is the Fourier transform of u|r and the branch of the square root function

is chosen such that \/@ = i/§2 — k2 for |£| > k. The integral representation
(2.2) for the radiating solution u can be seen as a superposition of propagating modes

for |£] < k and evanescent modes for |£| > k. The precise meaning of the integral
(2.2) in terms of weighted Sobolev spaces can be found in [10]. The radiating solution
u satisfies the Dirichlet-to-Neumann (DtN) condition on I,

oiu=Tw)onT,

where d; represents the derivative with respect to x; and 7 is the DtN map defined by

1 . £2 4 ixok
T($) = E/R’k‘/l ~ hE de. 23)

A study on local absorbing boundary conditions by approximating the square root
function involved in the DtN map was initiated by the seminal works [16, 17], and
since then various absorbing boundary conditions have been developed, for instance,
Padé-type approximations [4, 5, 45] and optimized rational approximations [15, 21,
30].

2.1 Formulation of complete radiation boundary conditions

Now we present a brief description of CRBC approximating the radiation condition
based on the DtN map T in the half space. Following the idea in [21, 30], for non-
negative integers n,, n, with P := n, + n., we consider the auxiliary variables ¢;
defined in x; > —§ solving the Helmholtz equation and the recurrence relations,

o = u, 2.4
(01 +aj)p; = (-0 ~|—5lj)¢j+1 forj=0,1,...,P—1 2.5)

with the terminal condition d;¢p = 0 on I'. Here the parameters a, a; are given by
aj =—icjk, aj = —icjkfor j=0,...,n, -1 (2.6)
with 0 < ¢, ¢; < 1 for propagating modes related to |§| < k and
aj=cjk, aj=cjkforj=np,...,np+n.—1 2.7
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Complete radiation boundary conditions for the Helmholtz... 779

with ¢;,¢; > 0 for evanescent modes with |£| > k. The essential idea is that for
some specific values of & the functions qgj (&) associated with the radiating solution
will vanish for j = jo < P in which case the terminal condition is exact. Thus we
have a mechanism for interpolating the exact radiation condition.

The recurrence relations (2.4)—(2.5) with the terminal condition can be reformulated
to an equivalent form suitable for numerical computations cooperating with the finite
element method. To do this we remove the normal derivatives from the recursive
formulas by first multiplying the recursive formulas by the operator d; and second
eliminating the second derivatives using the Helmholtz equation with simple algebraic

manipulations as in [21, 30]. Denoting ® = (¢o, ..., d)p)T, the resulting practical
CRBC is given by

— djueg = —L3r® + (—k’L + M)® onT, (2.8)
wheree; for j =0, ..., Pisthe jth vector of the standard basis in CP*! In addition,

LL and M are the (P + 1) x (P + 1) tridiagonal symmetric (not Hermitian) matrices
defined by

1 1 1 1
Lijoi=————— Lj;= ——t—— Lijn=_——
aj-1+aj-1 aj-1taj-1  aj+aj aj +aj
and
2 ~ ~ ~2
4 aj-1dj-1 ajd; —4j
Mjj-1 = — M;; = - —, Mj 1= =
aj-1+aj-1 aj-1+aj-1 aj+a; aj+aj
for j =0, ..., P with the convention ignoring a; and a, with £ outside of the index

range of the parameters, 0 < ¢ < P — 1.

2.2 Error analysis

We remark that CRBC has been investigated for the waveguide problem in [21, 30],
for which the radiating solution is an infinite series consisting of discrete modes as
opposed to the Fourier integral (2.2) of the half space problem. Noting that the Fourier
transform ¢ ; of the j-th auxiliary variable ¢; with respect to x; can be written as

dsj(X], S) — Aj(%-)eixlx/]ﬁ_gz + Bj(%_)e_,'xl /k2—g2

for x; > —§, it follows from the Fourier transform of the recurrence relation (2.5) and
the terminal condition that the reflection coefficient is given by

Bo(§) ﬁ (aj +iVk2 = E2)(aj + ik — £2)
Ao(®) i (@) —iVIE—ED @) - ik —82)

Z() =
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780 T. Hagstrom, S. Kim

Therefore the solution to the Helmholtz equation satisfying CRBC is written as

1 g, 2@ i k2—$2> N oy
u(x) = f<—1+2(§) e VI ) do@d s

for x; > 0, which allows us to have the DtN map for CRBC,

52 Z@) )
Ternc(@) = / iky[1- k2 : +Z(§) pOEdE.  29)

Here Z can be factored as Z = H ,H, depending on the types of parameters, where

"o "1”—[1 (cj = VI =&k @E; — 1= E2/K%)
T VI E G VIR

o~ "”ﬁ_l (c; ~ VB =@ — JER 1)
jom, (€ +VE R D)@ +VE R -

satisfy [H | < 1, |H.| = 1for|§| < kand |H | =1, |H,.| < 1for|&| > k. Hence we
can see that the purely imaginary parametersa;, a; forO < j < n,—1 are responsible
for attenuating the reflections of propagating modes whereas the real parameters a;, a;
forn, < j < n, + n. — 1 play a role of reducing the errors from slowly decaying
evanescent modes. Denoting P(u) = ]_[5-:01 (aj/k+ip)(a;j/k +in), then CRBCis
related to a (P, P)-type rational approximation to /1 + x of the form

P(—V/THx) - P/TH7)
V1 .
TPV )+ P

Noting that the radiating solution u# generated by a source § away from the absorbing
boundary I' satisfies

frx) = (2.10)

fio(€) = VK E (=5, &),

the error of the Fourier transform of Tcrpc (#|r) for the radiating solution u is given
by

E=iVk? -2 0i(=8,8),
where o := 0102 With

2Z2(8) and 0 = V€ (2.11)

Tz
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Here o is interpreted as the relative error of the (P, P)-type rational function repre-
sentation (2.10) of CRBC approximating the square root function and g reveals the
exponentially small amplitude of evanescent modes on I'.

2.3 Parameter selection

Itis crucial for the accuracy of the absorbing boundary condition to reduce the maximal
value of o. One approach is to take a sufficiently small € > 0 and a sufficiently large
M > 1 such that the Fourier integral for grazing modes satisfying |k — ||| < €k and
evanescent modes for || > Mk are ignorable, and then to minimize o; on the set
G = {lk — |&€]| = €k and |§] < Mk}. Since |Z| < 1for&é € Rand Z — 1 as |§]
approaches infinity, it holds that

—ksv/M2=1 )

max |o| < C max{max |o1|, e
[k—|&11>€ teG

for some positive constant C independent of CRBC parameters. From here on, the
constants C and ¢ represent generic positive numbers which have different values at
different places but do not depend on CRBC parameters and functions to be estimated.
We can nearly minimize the maximal value of ¢; by minimizing H, in [0, (1 — €)k]
and H, in [(1 + €)k, Mk]. Denoting z = /1 — £2/k?, the min-max problem of H,

can be rephrased as finding the parameters c; and ¢; for j =0, ...,n, — 1 solving
" e - 96— 2)
pp = min  max 1_[ AP BASY B s (2.12)

¢j.¢jely, 1] zely.1] (cj+2)(c;+2)

j=0

with y = /€(2 —€). It is related with the third Zolotarev problem about the least
deviation from zero, seee.g.,[36,46]. Asshownin[15, 30], it can be solved analytically

by using elliptic functions [2]: ¢; = s2j and ¢; = 5241 for j =0, ...,n, — 1 with
2j+1 o~ )
si=dn( (1~ K(y),y ) forj=0,...,2n, — 1, (2.13)
4np

where dn is the delta amplitude of the Jacobi elliptic functions and K () represents the
complete elliptic integral with = /1 — 2, and it turns out that the minimal value
pp decays exponentially with respect to the number of the imaginary parameters, 1,

pp < Ce~cmr/MA/Y), (2.14)

The min-max problem (2.12) can also be solved numerically by using the Remez
exchange algorithm [39] based on the equioscillation theorem.
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782 T. Hagstrom, S. Kim

By solving the min-max problem for d; = ¢;/~/M? — 1 andd; = &;/~/M? — 1,

np+ne—1

Pe'= Mmin  max l_[
d;.djely,112€ly:1] —n

dj — Z)(Cij -2) (2.15)
(dj +Z)(dj +2)

with y = /e(2 + €)/+/M? — 1, the analogous result for H, holds as well.

For the actual implementation of CRBC, it is of importance to determine appropriate
€ and M for efficient performance of CRBC, however it is not clear to understand how
to determine desired € and M. For general data we develop worst-case estimates below
which guarantee accuracy.

Representing u using the fundamental solution of the Helmholtz equation we have

ux) = —%/ H (klx — yD) f()dy,
yi<—§8

which motivates the estimation of € and M for the Hankel function,

| 1 E(a—y )e—«/éz—kzm—yll
R

0 7 Jr Ji2—¢g2
Theorem 2.1 There exists a constant C independent of P and k such that for any

Tt > 0 and separation § > 0 from the support of f and the radiation boundary x; = 0
there exist P CRBC parameters,

dk. (2.16)

1 1\?2
P<C(ln—+In—), (2.17)
T ké

such that the error ug satisfies

lur()l < Tl flip- (2.18)
If kS > 1 the second term in the estimate is absent.
Proof The error due to the artificial boundary can be represented by the perturbation
to the fundamental solution H (x, y) = _T’H(} (k|x — y|) to the Helmholtz equation.

More precisely, we begin by noticing that the fundamental solution G to the Helmholtz
equation satisfying the CRBC on I" can be written as

G(x,y)=H(x,y) + Hr(x,y),

where Hp to be determined represents a reflection term due to the artificial boundary.
First of all, from (2.16) we see that the Fourier transform of H is given by, for y; <
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x1 <0,

2 /k2 — g2

By applying the Helmholtz operator in x to G it can be shown that

R e —ify /5271{2 1 — _
A((x1.8).y) = ( e TReY )e«/s K0 Ae, y)eVE R

—(Ax + k*)Hg(x,y) =0
so that the Fourier transform of Hg can be written in the form
Ar((x1.6). y) = B, y)eV ™8 forxy < 0.

Then, by applying the CRBC on I" to G we get B(§,y) = Z(§)A(£, y), from which

it follows
() ev§2 —k2(x1+y1)
Hi(x.y) = ——/ 26—t (2.19)
Vk? —£2
Therefore the error function is written as
uR(x) = / Hr(x, y) f (7)dy. (2.20)
yi<—4

We estimate Hg using the symmetry with respect to & = 0 and the inequalities
xi+y =4, |12Z@) =1t

1
|Hg(x, y)| S — (11 +h+5L+1y)
1 € |Z(77k)|

0 \/1—17

b /1* 2|
1—e |y/1—n? |

MZk —/ =1k
]32/ 2kl .,
1

+e€ N "

00 /P 1kS
S
M 1 —n?

For I, we use (2.14) with y = O( /€) and

1—e
1
| =<3
0 1—n? 2

L =

Iy =
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784 T. Hagstrom, S. Kim

we get
1| < Cecnp/Ine™" 2.21)

For I, due to the fact that | Z] < 1 and /1 +1n > 1for |1 — n| <€,

1+4€ 1
| < ———dn < 4 /€ 2.22
|2|_/1_6 Wm'n_f (222)

For I3, we use a bound for (2.15) analogous to (2.14) with y = O(,/€/M) and with
np replaced by n, to see

12| < Ce—Cne/(n e '4+In M)

Since by a change of variables /1% — 1 = ¢

2 — k5 M2=1  ,—k8¢ e 1
————d{ < e "%d < —, (223)
I+e /1% — N Vero it +1 0 ko
we have c
3] < Ee—cne/ln(e_l—FlnM). (2.24)

Lastly, for 14 using the same change of variable as in (2.23) we have
o
1
|l < f g = VMR (225)
M2—1 k(S
Combining (2.21)—(2.25), we deduce

|Hr(x, y)| < C (ecnp/]ne1 + «/E-F %efcng/(lne’lﬂn M) + iefchS

ks
(2.26)
To meet some error tolerance T we must ChOOSGZ

€= 0(1t?), (2.27)

11 5 1
np=0(ln=-m-)=0(m*=-), (2.28)

T € T

Inl + In-L
M=0|———H8]), (2.29)
ks

1 1 1 1 1
ne=0[n—+In—)In-+InM))=0((n—-+1n —)2 (2.30)
T ké € T ké

where we have assumed k§ < 1. For larger values of k6 the terms involving k§ in the
estimates are absent. Using (2.27)—(2.30), (2.26) and (2.20) we establish the bound
(2.17)on P. O
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As noticed in the proof of the above theorem, we can choose parameters by following
the procedure to make the maximal value of the reflection less than 7 relative to || f || .1:
for given t

i. set € = /T for a frequency range of grazing modes,
ii. determine n, and choose 2n , imaginary parameters such that [p,| < T by solving
(2.12),
iii. determine M such that (k§)~le *vM *~1 < ¢ for the upper bound of evanescent
modes,
iv. determine n, and choose 2n, real parameters such that | p.| < t by solving (2.15).

Although this result for the half space is not applicable directly to domains with
corners, it can be used as a useful guide to select parameters of CRBC with high
accuracy. In doing so, T represents an error bound of reflected waves in the maximal
norm relative to the source term in the half space but it does not mean that it can make
actual relative L?-errors of approximate solutions in domains with corners less than
7. However we can expect smaller relative L2-errors by taking smaller t since smaller
T gives CRBC of higher order accuracy.

On the other hand, as will be seen in the numerical experiments in Sect.§, for
special data one can achieve much better results, that is obtain the desired accuracy for
smaller values of P, with different choices. Developing a solution-adaptive strategy for
choosing the parameters would be of interest, but we argue that the general procedure
described above leads to choices of P which are far more efficient than the use of
simple approximate conditions if one takes into account the fact that the artificial
boundary can be located very close to the sources.

We remark that Theorem 2.1 also holds in three space dimensions. The estimate
is slightly worse than what is proven in [23] for CRBC in the time domain. Roughly
speaking, purely glancing waves do not propagate to the boundary in finite time. We
note that a discussion of optimal rational approximants for the Helmholtz equation is
given in [15] with glancing modes excluded. The implementation there uses optimal
grids - although the authors choose to call this a PML, in fact the method is more
closely related to CRBC. For applications of the usual PML method in the half space,
which can also provide the exponential convergence of high-frequency propagating
modes, it is shown in [11] that PML also suffers from slow convergence of grazing
modes only reciprocally proportional to PML strength and PML width whereas [35]
avoids the grazing modes in solutions by taking imaginary wavenumber in the model
problem.

3 Eigenvalue problem with CRBC on the interval D1 = (0, 1)

In this section, we analyze an eigenvalue problem with the CRBC in the unit open
interval D1 C R. The eigenvalue problem to be investigated is supplemented with the
homogeneous Dirichlet condition at x = 0 and CRBC at x = 1. The result in this
section will be used for the existence and uniqueness of solutions to the Helmholtz
equation posed in the square domain (0, 1)> C R? supplemented with CRBC on
boundaries later.
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786 T. Hagstrom, S. Kim

3.1 Eigenvalues of CRBC

For a given set of parameters a; and a; we consider the eigenvalue problem to find
2 € C and non-zero solutions u € L?(D) satisfying

2

d
—u—i—AZM =0in Dy,

dx? 3.1

u(0) =0 and CRBCatx = 1.

The above eigenvalue Rroblem (3.1) can be written in a system of differential
equations as follows: find ® = (@, ..., ¢p) | € (L*(D1))"*! such that

d> ~ ~
3 +12® =0in Dy, (3.2)
X
subject to the conditions
@0(0) =0, (3.3)
d . d _\. . .
E+aj ;= _E-’_aj @j+1in Dy for j =0,,..., P —1, (3.4)
do
(=0, (3.5)

where the 0-th component ¢y of ® is an eigenvector to the problem (3.1).
By taking the negative real axis branch cut for the square root we assume that

—m/2 <arg(h) <m/2 (3.6)

and hence R(1) > 0. Also, we note thataj, a; # iA for j =0,..., P — 1 due to the
conditions (2.6)—~(2.7) for a;, a; and (3.6).

Lemma 3.1 The eigenparameters A are neither real nor purely imaginary. In addition,
the eigenvalues 1? satisfy I(A\?) < 0.

Proof If A = 0, then it is easy to show that non-zero ® can not fulfill (3.4)—(3.5) since
all ¢; are polynomials of degree 1. Therefore, A # 0 and the components ¢; of the
eigenvectors are of the form

§j = Aje™ + Bjem . (3.7)

and (3.4) gives
(@aj +iMAj =(a; —iM)Ajy1 and (aj —iA)Bj = (a; +iA)Bjy1. (3.8)
We first claim that if A2 is an eigenvalue, then aj,aj # —irfor j =0,...,P - 1.
Indeed, suppose that ap = —i A for some ¢ as the other case ag = —iA for some ¢ can
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Complete radiation boundary conditions for the Helmholtz... 787

be treated similarly. From (3.8), it can be shown thatthat A; = Ofor j = £+1, ..., P.
Since Ap = 0, the terminal condition (3.5) implies Bp = 0. Thus the second equation
of (3.8) gives Bj = 0for j =0,..., P. Due to (3.3), we have Ap = 0 and hence it
follows from the first equation of (3.8) that A; = O for j =0, ..., P, which means
that ® = 0 and A2 cannot be an eigenvalue. Once we normalize @ such that Ag = 1,
By = —1 by (3.3), a simple computation from (3.8) and (3.5) leads to

P—1 . ~ .
2%(—T) _ (aj —ir)(a; —ikr)
“ s ]1:!) (aj +i0@; +in) 39

Now, suppose that A is a positive real number. Due to the conditions (2.6)—(2.7)
for the parameters a; and a;, the magnitude of the right-hand side of (3.9) is less
than 1 whereas the left-hand side has magnitude 1, which implies that A> with A > 0
cannot be an eigenvalue. The similar argument can be used to verify that there is no
eigenvalue with purely imaginary A such that (1) > 0.

Since A is neither real nor purely imaginary, J(A?) is non-zero. Finally, in order to
prove that 3(12) < 0, we suppose that 3(12) > 0and so J(A) > 0. Then the left-hand
side of (3.9) has magnitude less than 1 while that of the right-hand side is larger than
1, which contradicts and the proof is completed. O

Since eigenvalues are related with an eigenvalue problem of a holomorphic Fred-
holm operator valued function (see (3.17) below), the eigenvalues are discrete and
all eigenvalues have finite algebraic multiplicity (see [37, Theorem 1.3.1, Corollary
3.1.3]), which allows to order eigenvalues in magnitude with )»% being the n-th eigen-
value.

Lemma 3.2 For |n| > 1, the eigenvalue )»ﬁ has the asymptotic formula

P—-1
Qn + 1)2x? - _
15=T+2Z(a,+aj)+0(n h. (3.10)
Jj=0

Proof To motivate this, note that if |A,| > 1 then the right-hand side of (3.9) is
approximately 1. Therefore

2n + Dm
_ @t

. 5 o(1).

Then we have

idp —aj  142iaj/((2n+ D)

—1
i+ a; - 1=2ia;/(@n+ Doy O
L B
= on .
n + x
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Substituting it and the analogous formula for a; into (3.9), we find

P—1
o 4i
2i(n=%) — LG, -1
e 2 _1+mjzo(a]+aj)+o(n ).
Taking the logarithm gives
P—1
_ @n+Drn 2 - 1
O A E R S AL LA
and (3.10) follows. ]

3.2 Eigenvector expansion

Now, we shall establish that the set of eigenvectors is complete in (L (D1))?+!, which
allows the eigenvector expansion for functions in (L2 (D ))P *1 To this end, we look at
the system of equations of the auxiliary variables with the modified recursions serving
as boundary conditions: to find 22 € C and non-trivial solutions ® = (@0, ..., ¢ P)T
in (L2(Dy))P*! satisfying (3.2) with the boundary conditions (3.3), (3.5) and with
(3.4) replaced by

d - d 2\ - .
<E+aj>(pj:<_a+aj>(pj+l atx =0,1 forj=0,...,P—1. (3.11)

The only difference between the two eigenvalue problems is that the recursive formulas
of (3.4) hold in the whole domain D whereas the modified recursions of the conditions
(3.11) are imposed only at the two boundary points x = 0 and 1.

Obviously, eigenvalues of the problem (3.2) with the conditions (3.3)—(3.5) are
eigenvalues of the expanded eigenvalue problem with (3.11) instead of (3.4). We
note that the expanded eigenvalue problem has additional eigenvalues. However,
eigenvectors associated with the additional eigenvalues do not contribute to eigen-
vector expansions for functions satisfying (3.4). Indeed, let A2 be an eigenvalue of the
expanded eigenvalue problem for an eigenvector ® such that

d _ o d . ~
§j = 2Pt 4P+ + ax P taj¢; #0.

Then it solves the problem

d2
ﬁsj +228; =0 and 8;(0) =8;(1) = 0.
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This is satisfied for A> = n?72, §; = C; sin(nmx). Here we claim that for each n the
eigenspace associated with A is of P-dimension. To prove it, we see that

¢; = Ajsin(nwx) + Bj cos(nmx) (3.12)

for some constants A ; and B}, and the boundary conditions (3.3),(3.5) and (3.11) are
satisfied if

By=Ap =0, (3.13)
nTAj+ajBj =—nmwAj —i—flij_H, j=0,...,P—1. (3.14)

These represent P + 2 linearly independent linear equations in 2P + 2 unknowns
and so the null space has dimension P. If the full extended system has a complete
set of eigenvectors then we can expand any vector function ® for which all §; = 0.
These will only involve the eigenvectors corresponding to the original problem (see
Theorem 3.7).

From now on, we shall prove the completeness of eigenvectors of the expanded
eigenvalue problem (3.2) with (3.3), (3.5) and (3.11). To do this, we use the spectral
theory in [37] investigating a general class of non-self-adjoint boundary eigenvalue
problems in L2(D1 ), in particular, of the form

d
—Y =2AYin D, (3.15)
dx

with the boundary condition given by

WOy + WP onya) =o, (3.16)

where ) € (L?(D;))N and A is an N x N invertible matrix for N € N. Also,
W )(A) are N x N matrices. The theory deals with boundary eigenvalue problems
for which eigenparameters are involved non-linearly in boundary conditions and gives
sufficient conditions for the norm convergence of the eigenvector expansions. The
eigenvalue problem (3.15)—(3.16) is related to the holomorphic Fredholm operator-
valued function of A € C from (L%(D1))N to (L*>(D1))N x CV defined by

d D
_ oY — LAY _(T°Y
TR = (Vv@(mfnm 4 W“M)y(l)) = (TR(A)y)’ B.17

and (u, )) is an eigenpair of the problem if and only if 7T(u)Y = 0.

The eigenvector expansion under consideration is defined as an infinite sum of
certain eigenvectors and associated vectors of (3.17), (precisely they are called the
canonical system of eigenvectors and associated vectors), where eigenvectors and
associated vectors for an eigenvalue p are defined as a set {JJO, v, Y'"} satisfying
T(A)Y has a zero at A = p of multiplicity > m 4+ 1 with a root function ) =
W4+ =Y+ (A — p)™Y™ (see [37, Definition 1.6.1]).
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The desired series expansion in terms of eigenvectors and associated vectors of
(3.17) is guaranteed if the boundary eigenvalue problem (3.15) with the boundary
condition (3.16) satisfies the so-called Birkhoff regular condition, whose definition is
given as follows. For an eigenvalue A, of Aforv = 1,2, ..., N, let ¢, denote arg(1,,).
For A € C\ {0} we set

if Ne'?) <0,
if Mne'?) > 0,
if M(e'?) =0and J(re'?) > 0,
if M(re!?) =0and J(re'?) < 0.

i) =

- o = O

Finally, we define the N x N diagonal matrix

A() = diag(y1(A), ..., yn(A)).

Definition 3.3 The boundary eigenvalue problem (3.15)—(3.16) is said to be Birkhoff
regular if there exist N x N matrices W) independent of A satisfying

WD) =W =00 as A — oo. (3.18)
and
WOy — AR + WD AR

is invertible for A € C \ {0}, where Iy represents the N x N identity matrix.

The definition of the Birkhoff regular condition is a special case of the general
definition given in [37, Definition 4.1.2]. The following theorem quoted from [37]
provides a sufficient condition for the existence of a series expansion of functions in
(Lz(D OV in terms of eigenvectors and associated vectors.

Theorem 3.4 ([37, Theorem 5.3.2]) If the boundary eigenvalue problem (3.15) with
the boundary condition (3.16) is Birkhoff regular, then every function F € (L*(Dy))N
has a series expansion

oo my—1
F=2_ 2 i,
n=0 ¢g=0
where ¢l are complex coefficients and (! }Zzal is the canonical system of eigenvec-
tors and associated vectors for the eigenvalue A, of (3.15), (3.16).

To follow the theory in [37], we convert the second order eigenvalue problem to a
first order boundary eigenvalue problem by introducing ; such that

d . ~ d - -
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Then we seek eigenvalues A € C such that there is a non-zero function

y = ({0‘07 (51? ""¢P7 1/;07 I/;1$ LR ‘&P)T € (Lz(Dl))2P+2

satisfying (3.15) and the boundary condition (3.16) with N = 2P + 2, where A is a
(2P +2) x (2P + 2) matrix defined by

[0 —1pn] _[0-1
A—[1P+1 0 }—[10]®1P+1, (3.19)

and W© and WO are (2P 4 2) x (2P + 2) matrices given by

~ v O _T0 ~ 0 0
Oy =Y J @ _ [ 9p+1 Opp1
w ()\.) = |:Op+1 0p+1 i| and W = |: V(]) _J(])i| (320)

with (P 4+ 1) x (P + 1) matrices

ag —do AA
ay —a A A
7O _ , 70 _ ’
ap_1 —ap_1 AA
|1 0 -~ 0 0 | | 00--- 0 0]
[ ag —ao T A A ]
ar —a A A
Fo _ L L gm_ .
ap_1 —ap_1 oA
|0 0 -~ 0 0 | | 00--- 0 1|

Here Op41 denotes the (P + 1) x (P + 1) zero matrix. By the change of basis using
the transition matrix

il
Sz[l l.i|®1P+1,

A can be diagonalized and by abuse of notation we continue to write A for S —1AS.
Similarly, we continue to use W(© and W for 28~ 'W @S and 25! W 'S, respec-
tively. Thus, we can assume that A is a diagonal matrix

A= I:é)_oi]®1p+1 (3.21
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and W© and WO are given by
(3.22)

Before we go further to study the Birkhoff regularity of the eigenvalue problem,
we investigate the algebraic multiplicity m, of eigenvalues of the problem (3.21)
and (3.22) by analyzing the determinant of the characteristic matrix function (see
[37, Section 1.11, Section 3.2]). To do this, we shall recall the characteristic matrix
function of (3.17) in a decomposition of 7'(}1): let

eikx 0
Y(x,1) = |: 0 e‘”"‘] ®1Ipii,

which is a generator of solutions of the form Y = Y (x, X)cg for cg € C?P+2 to the
homogeneous equation 72 (1)) = 0 and is called the fundamental matrix function
of (3.17). We define Z(A) : C2P+2 — (H'(0,1))?P*2 by Z(1) = Y(x, A)cg for
co € C?P+2 We can also find the right inverse of T2 (1) for the zero initial condition,
which is denoted by U (1), for g € (L*(0, 1))2/+2

UMg =Y(x,A) /x Y(t, ) g(r)dt.
0

The maps defined up to now come together in the following short exact sequence.

u®)
RN
0 y (CZP+2 Z()‘)} ([{l(o7 1))2P+2 T ()‘}) (L2(0, 1))2P+2 s 0
RN R
M@®) ">~y lT @
(CZP+2

In particular, since 7P (%) has the right inverse U (1), the exact sequence is split-
ting, i.e., (H'(0, 1))?P+2 ~ C?P*2 @ (L%(0, 1))?>P*2, and the map (Z(A), U(X)) :
C2P+2 % (L%2(0, 1)2P*+2 — (HY(0,1))2P*2 defined by (Z(1), U(V))(co, g) =
Z(A)co + U ())g is invertible. By introducing

Mo = TRO)Z(O)co, (3.23)

which is called the characteristic matrix function of (3.17), we can decompose 7' (1)
into

_ TD(A.) _ 0 id(LZ(()’l))ZPJrZ M(}n) 0 -1
T(k)_(TR()»)>_<idC2p+2 TROHU (1) 0 idg2(4 py2P+2 (ZM, UG

@ Springer



Complete radiation boundary conditions for the Helmholtz... 793

Since the first and last matrix functions in the decomposition are invertible, the spec-
trum of 7'(}) is determined by the characteristic matrix function M (1). From the
definition (3.23) of the characteristic matrix function, we see that

My Mz
M@A) = ,
@) [le Mzz}

where

My = —i(VO 17Oy i (VD 170,

My = —i(‘7(0) _ if(o)) + e—il(‘7(1) _ ij(l)),

My = —i(VO +iJO) 4+ 4VD +iJW),

My = —i(VO —iJO) —jemit (D ;M)
Denoting

of =aj ik, and & =a; i, (3.24)

a=1+ie", b=—i+e ™, c=i+e* and d=1—ie ™, (3.25)

M ()\) can be written as

S [ -4 |
of —ay | o —af
a b
- | - =+
UUUTST f’fP,,Jj‘?‘z;,—,l, ,,,,,,,,,,,,,,,,,,,,,, '?‘B,,l,,,f,ofl’,}l,,,
_,l . . P
MGy = | &M O O ¢/t Loifb 0 oo 0. Zie0/h | (3.26)
¥ —Y% 1 ¥ —9%
o —ap o =@
c d
5 ! 5t
P T “p-1.. 7%
| Life © 0 ie*/c 1/d 0 0 —ei*/d
Lemma 3.5 The determinant of M()\) is
P—1 pP—1
—2=20P et =M (e [] @ —in@j —in) + e [] @ +in@; +in | .
j=0 j=0

(3.4)
Thus an eigenvalue > with I(A) < 0 has algebraic multiplicity I whereas an eigenvalue
A with A = nxt has algebraic multiplicity P.
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Proof Since eigenvalues A with J(A) < O are solutions to the equation (3.9), the
determinant must have the factor

P—1 P—1
w’ = e [Tl —in@; —ir)+e* [J(aj +in@; +in).
j=0 j=0
=wo =wt

Using (3.24), w™ and w are simply written as
P—1 pP-1
- _ —ix -~ + _ ixl—[ +~+
wo =e najozj and w" =e ajag.
=0 j=0

+

Taking the number of linear factors o G

and &f with respect to A into account, we note
that det(M (1)) is of the form

det(M (L)) = z(eMw’ = z(eMHw™ + 2w,

where z(e'*) is a function of e’*, and it does not include any terms with mixed signs
such as a;ra;, ozj*ozj, a}&; and a;&[. We will find the common factor z(e'*) by
examining w~ and w™ in computing det(M (1)).

We begin by denoting the multipliers of w™ in det M (1) by z* (¢*), respectively,
and we will show that

) = 7 () = —2(=2i)P (e~ * — )P,

In order to examine the term z+(e'*)w™ of det(M (X)), we note that the first P rows
of My1, M12, M>1 and M>; have the common factors a, b, ¢ and d defined by (3.25),
respectively. Since w is determined by how many oz;.Ir are selected in M1 and how
many remaining ocj+ are selected in My (or equivalently how many &f are selected in

M1, and M>)), it suffices to find the determinant of the matrix M obtained by replacing

~— . + ~+ .
o, a; WlthOandaj X3 with 1,

a0 ro —b 7
ao : 0 —b
a 0 0 —b
~ 100 = ]il—=i 0 -~ 0 e | < (P+nm
M) = | g T - (P+Dibrrow
c 0 |0 —d (3.28)
BSR4 0
LLio- 0ie*]ill1 0 -+ 0 =] 1< @P+2)throw
T

(P+1)th column
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Then we add the (P + 1)-th row multiplied by i to the (2 P 4 2)-th row to eliminate
the (2P +2, P + 1) entry ie* and use the cofactor expansion along the (P + 1)-th
column, which includes only one non-zero entry —e'* at (P + 1, P 4 1). We conduct
the cofactor expansion along the (P + 1)-th column and then do it once again along
the (P + 1)-th column (which also has only one non-zero entry 2 at (P + 1,2P + 1))
in computing the (P + 1, P + 1) minor to see that det(ll?) is given by

det(M) = (—1)PH126 det(M)),

where ]l7[1 is a 2P x 2P matrix of the form

~ a —b
Ml—I:C _di|®lp.

Using the fact that the determinant of M is (bc — ad)? = (2i)F (e='* — ¢'*)P yields
that

P-1
ZHeMwt =det ) ] afaf
j=0
P—1
= —2(=2)F (e — NP [] ofa}.
j=0
Similarly, one can show that
P—1
Z—(el)\)w— — _2(_2i)P(e—l)» _ elA.)Pe_lA. 1_[ a;&;’
j=0

and so it is shown that (3.4) is the determinant of M. Thus, it turns out that eigenvalues
A are the zeros of e?* = 1 or w® = 0 (the equation (3.9)).

Now, we are left to show that the zeros of ¢2* = 1 and w® = 0 are all simple. It is
easy to see that the zeros of e?* = 1 are simple and hence their algebraic multiplicity
is P due to the P-th power of (e~'* — ¢!*)P . For the case of (3.9), we shall show that
the derivative of the function

POy = o ’ﬁ (aj +iM)@; +ir)
b aj—inG; - in)

does not have a zero in the fourth quadrant of C. To do this we find the derivative of
the function

2P—1 .
. bj + i

Foy = T 25 +1
i=0 bj—l)\.
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Withbjzaj andbp+j:&jforjzo,...,P—lz

2P—1 2P—1 .

bj —l—lk : 2iby bi+i)
F )\’ 21)\ 2iA J .
» = Hb —a e g(bg—ik)ngj—ik

If A is a zero of F (L) = 0, then we have
2P—1 . . 2P—1
2iby by — i)
F'(\) = —2i — +
W) =2 %(bz—i)»)zbe+i)» ( Zb%ﬂ)

Therefore, it suffices to show that 1 + f(A) + g(A) = 0 has no zero A with —/2 <
arg(A) < 0, where

np—1

_ —iCjk —igjk

f) = Z A2 — 2k2 + 22 — &2k2°
j=0 J J
np+ne—1 -

cik cik
1) = J + J

o) ,Z,; Wk A2+ R
=np

Now we observe that linear fractional transformations of the form

@)= — and ¢(z) = —2
nz_z—cz Z_z+02

with ¢ > 0 and o > 0 have the following mapping properties

n,¢:{zeC: —n/2 <arg(z) <0} = {ze€C : Nz > 0}
n,¢:{zeC: —mw <arg(z) < —n/2} > {z € C : J(z) > 0}.

Then the required result follows from the fact that R(f(x)) > 0, NR(g(r)) > O for
—m/4 < arg(A) < 0 and J(f(A)) > 0, J(g(r)) > O for —m/2 < A < —m /4, which
completes the proof. O

We further transform the boundary condition (3.16) by multiplying it by an invert-
ible diagonal matrix I» ® A with A = diag(“_l, o 1), which results in the
equivalent boundary condition of the form (3.16) with

~ - ~ il
WG = [i 1’] QAVO® —[ 1’ l}@ﬂo), (3.4)
Ty | 1] =) 1 M

WOwW =] [eav®—| e (3.5)

vaiph abuse of notations for W@ and W(l), wbere JU) are Lhe matrices obtained from
J) by replacing A with 1. It is clear that W© (1) and W (%) are asymptotically
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constant for large A, i.e. there exist (2P 4 2) x (2P + 2) matrices WO and WD such
that

WO =w® o0 and WP0) =wD +onh,

where
1 —i —il
0 _ _ 0)
W _[i 1:|®EP,0 [1 i]®J ,

sz—[yi]®ﬂv
—1

(3.6)

Here Ey jisa (P + 1) x (P + 1) matrix whose only non-zero element is one at the
(€, j) component with0 < ¢, j < P.

On the other hand, we recall that A has the eigenvalues i and —i of multiplicity
P + 1 and see that if y,(A) = 1 for the first P + 1 eigenvalues i counting their
multiplicity for A € C\ {0}, then y, (1) = O for the remaining P + 1 eigenvalues, —i,
and vice versa. It implies that

10 00
A\ = |:00i| ® Ip41 or [0 1i| & Ipt.

Consequently, according to Definition 3.3 it follows that the boundary eigenvalue
problem (3.15) with the boundary condition (3.16) (and hence (3.2) with (3.3), (3.5)
and (3.11)) is Birkhoff regular, once it is established that

10 00
Wo := w© ([00:|®[P+]>+W(1)<|:01:|®1P+1> 3.7)

00 10
Wi = WO ([0 1] ® 1P+1) Lw ([O 0} ® 1p+1> (3.8)

are invertible.

and

Lemma 3.6 The matrices Wy and W defined as above are invertible.

Proof A simple computation using (3.6), (3.7) and (3.8) shows that

Wo—[io]@)EP,o—[l O}®J —[0]}8] .

Writing the matrix Wy in 2 x 2 block form gives

| Wi Wi
Wo = |:W21 sz]

with
Wii=Eppo +iJO, W =—ig®
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Wa =iEpo—JO, Wy=-J0,
and so we have
iWi =Wy and iWip = —Wps.
Here we note that
det(W1) = (=i)¥ and det(Wp) = (—1)F*.

Multiplying Wy by an invertible matrix

Ipy1 O
—ilpt1 Ip+1

gives

IP—H 0 WO _ Wl,l W1,2
—ilpy1 Ipyq 0 2Wz2 |’
from which it then follows that det(Wp) = —2(2i)" # 0.

A similar computation leads to det(W;) = —2(—2i )P # 0. Therefore, both Wy
and W are invertible. O

The eigenvector expansion of f € L?(D;) can be established from Theorem 3.4.

Theorem 3.7 Let A and W) be given as in (3.19) and (3.20), respectively, for the
boundary eigenvalue problem (3.15)~(3.16). Then every function f € L*(Dy) has
a series expansion f = Y " a0, Where @o, is the zero-th component of an
eigenvector Y, = y,? = (Qo.ny---»PPns IZ()J,, - &p,,,)—r for the eigenvalue X\,
with I(X,) < 0 of (3.15)—(3.16), satisfying (3.4).

Proof For f smooth and compactly supported in (0, 1 — §) we define f; by fo = f
and

fir1(x) = = f;(x) = (@j + @j)e" /1 5f,~(t>e—‘”‘f’dr 3.9)

for j =0,..., P — 1. Indeed, the sequence of the functions f; is constructed in such
a way that they solve the recurrence relations

d - d .
—Efj+1+ajfj+1 IEfj +ajf; forj=0,...,P—1

and vanishfor 1 —§ < x < 1.
We define F = (fo,..., fp—1,0,...,0)T € (L*(D1))*’*2. By Theorem 3.4
there exist constants ¢ such that

F=Y % . (3.10)
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Due to Lemma 3.5 the geometric multiplicity is equal to the algebraic multiplicity,
that is, m,, = 1 for J(A) < 0 and m,, = P for A = nm. Furthermore, it can be shown
that the series (3.10) involves only eigenvectors )V = (¢o, ..., ¢p, 1}0, A 1}1:)—r for
eigenvalues A with J(A) < 0, by examining

d . - . d . -
§; () = TR T A i+ ajg).

Indeed, it is enough to show that Y, := Z;D;Ol cIYT in the series (3.10), where

V! q=0,..., P —1are the P linearly independent eigenvectors corresponding to
A = nmr, must vanish. If so, CZ = (O since y,‘f are linearly independent. We recall that the
components qﬂ ofy,‘f are of the form (3.12) with coefficients Ag, el A{fg, Bg, e, Bg,
satisfying (3.13)—(3.14). By simple computation using (3.14), we get

8 = (ajA‘JI. - Esz‘]I.H - nnqu - nnB;’H) sin (n7rx) ;= C}’ sin(nmx)

and so

P-1 P-1
8; V) =8;Y_eivih =D cict | sinrmx).

q=0 9=0

Since §;(F) = 0 and §;()) = 0 for eigenvectors ) associated with eigenvalues A
with J(1) < 0, we have

P—1
0=28;(F) = Z 8; (V) = Z Zc,‘{cj sin(nmx).

A=nm A=nm \ g=0

Thus it follows that > 5;0] cn C;{ = 0 due to the linear independence of the sine func-

tions, which means § (j)%,) =0.If 37,! was non-zero, then 5)” would be an eigenvector
for A = nm since it is the linear combination of eigenvectors for A = nm, and so we
would conclude that nrr is an eigenvalue with the eigenvector satisfying (3.4) saying
8;(Yn) = 0. This possibility is excluded by Lemma 3.1. We thus conclude that the
eigenvectors corresponding to the eigenvalue n7r do not contribute to the expansion of
f. The final result follows from the density of smooth compactly supported functions
in L2(Dy). o

Remark 3.8 The analysis of the eigenvalue problem in this section allows us to have a
series expansion of functions in L%(D) in terms of eigenvectors satisfying CRBC at
one boundary. It is also possible with minor modifications to extend it to the eigenvalue
problem equipped with CRBC at both boundaries of the unit interval.
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4 Model problems in a domain with corners

In this section, we consider an application of CRBC to a time-harmonic wave propa-
gation problem posed in a domain with corners. Let = (0, 1)? be the square domain
in R? with north, west, south and east boundaries denoted by 'y, 'w, 's and T'g,
respectively. In order to focus on a corner condition of CRBC at one corner, CRBC is
imposed on 'y and I'r while a homogeneous Dirichlet boundary condition is given
on I's and I'y, so that we will analyze a corner condition for CRBC at the north-
east corner denoted by NE. In the model problem, we assume that wave sources are
supported away from the boundaries I'y U I'g. We consider the problem to find u in
H(Q) satisfying
Au+ku=f ing,
u=0 onl'yUTyg, “.1)
CRBC onl'g UTly.

for a source function f compactly supported in (0, 1 — 8)> C Q with0 < § < 1.

We notice that solutions to the above problem satisfy the Helmholtz equation on a
neighborhood of ' U Ty, say Q5 = Q\ (0, 1 — 8]%. The CRBC on I'g is defined by
a sequence of auxiliary variables ¢jE satisfying

A¢f+k2¢f:0 in(1=26,1)x(0,1), forj=0,..., P,
o =u in(1—2,1) x (0, 1),
(a]+aj)¢>f=(—al+a~j)</>j5+1 in(1—6,1)x(0,1), forj=0,..., P—1,
81¢£ =0 onlg.
“4.2)
Similarly, the CRBC on I'y is defined by the auxiliary variables ¢>év satisfying
ApY + K2l =0 in@,1)x (1—=6,1), fork=0,...,P,
o) =u in(0,1) x (1=34,1),
O +app) = (=0 +apgp,, in(0,1)x (1-81), fort =0,....P—1,
ol =0 onTy.
“4.3)

Now, we establish the existence of the solution u to the problem (4.1) and find
a series expansion of u in terms of eigenvectors of (3.2) with the boundary condi-
tions (3.3)—(3.5). This series representation will give a motivation for finding a corner
compatibility condition of a practical CRBC formulation suitable for discretization
methods such as the finite element method for numerical computation.

Since L2(Q) = L2(D;)Q L%(D,), by Theorem 3.7 we can assume that f € L3(Q)
with compact support can be written as

fOLx) = D Cupm@on XDFon, (¥2), (4.4)

ni,no=0
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where the series includes only eigenvectors for eigenvalues with I(4,;) < 0. Here f
is considered as the (0, 0)-component of the function F = (fj,[)f’zzo with fj ¢ = f
for (j,£) = (0,0) and f; ¢ defined analogously to (3.9) with respect to £ with the
initial function f; o otherwise, which can be expanded as

]

Fr,x) = Y Cpmn (51) ® Yy (x2).

ny,ny=0

Theorem 4.1 There exists a solution u in H'(Q) satisfying Au € L>(Q) of the form

o]

Wi, x2) = Yty @ (61 G0,y (x2) (4.5)

ni,np=0

With un, ny = Cny.ny (K% — )‘311 - )L,zlz)_l to the problem (4.1).

Proof 1t suffices to show that (4.5) is well-defined and it solves the problem (4.1). To
this end, we let

o0
UG x2) = Y gy Vg (61) ® Yy (x2)
ni,np=0
o 4.6)
= Z Apy,no (cm,nzym x1)® ynz(x2)>
ni,np=0
with ap, 4, = (k% — A,zll — )»3[2)_1. We first show that
(1) an, n, is of bounded bivariation, i.e.,
o0
Z |an1,n2 — Api+1,np — Any,na+1 +anl+1,n2+l| < 00, 4.7
ni,ny=0

(i1) ay, 0 of bounded variation, i.e., ZZ?:O |an,,0 — an,+1,0] < 00,
(iii) agp,,, of bounded variation, i.e., Z;CE:O |ao,n, — ao,ny+1| < 00,

by using the asymptotic behavior (3.10) of eigenvalues. Indeed, due to the fact that

|an|,ng — dpy+1,n, — Anynp+1 + an1+1,nz+1|
2 2 2 2 2 2 2 2 2
()“ﬂ] B )”nl-%—l)()‘nz B }”n2+1)(2k - )“nl B )‘nl+1 - )“nz B )“nz+1)

(k* — }”%1 - A%Z)(kz - }”%1+1 - }”%2)(](2 - )”%1 - }”%2+1)(k2 - )”%Hrl - )”%2+1) (4.3

0(n1)0(n2) O (n? + n3) 1
= =0 ,
O((n} +n3)*) (n} +n3)?
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2 2
)‘nl - }‘nl+l

k2 = A%, = MK = A7y — 40)
O 1
o)) ny

and the analogous asymptotic behavior for |ag ,, — ao,n,+11, (1), (ii) and (iii) holds.
Now, since two series

any,0 — an1+l,0| =

(4.9)

oo N

Foon @1, 22) =D Y Cnyny Yoy (x1) ® Yoy (x2)

n1 np=0

co M
Frtoo(1,%2) = D > Cuymy Yoy (51) ® Yy (x2)

ny n;=0

converges for each M, N € N as a projection onto (L3(D))*P*2 @ span{y,,z}r]:/z:0

and span{Y,, } 241 —o® (LX(D1))*P*2, respectively, and ay, ,, satisfies (i), (ii) and (iii),
we can apply Dedekind’s test (see e.g., [18]) to conclude that the series (4.6) converges

in (L2(Q))** +D? Therefore (4.5) is well-defined as the (0, 0)-component of U and
satisfies the Dirichlet boundary condition on I's and T'yy.

Furthermore, one can show that A, 1Gny,na is of bounded bivariation, in case of
nj = ny, by using (4.8) and A,;;, — A, 41 = O(1)

p‘n]anl,nz - )\n1+lan1+l,nz - )Lnlan|,nz+1 + )\n|an1+l,n2+1|

=< |)\n1 ||an1,n2 — Any+1,np — Anynp+1 T+ an1+1,n2+l| + C|an1+1,n2 - an1+1,n2+1|

Y — +0[—2 —0 !
(n} +n3)? (n? +n3)? (nf+n3)32 )"

and Ay, ap, o is of bounded variation (A,,aop,,, as well)

|Any@ni,0 = Any41Gn +1,01 = (A [lan; 0 — any+1,01 + Clan, 41,0l
] : +0 : 0 :
- \n ni) o \ni)’
and so Dedekind’s test again verifies that
o

vj(x1, x2) = Z _kn_,‘unl,nzlzo,nj(xj)‘Z’O,n((xZ) J#FL

ny,ny=0

converge in LZ(Q) for j, £ =1, 2. Noting that v; = d;u in the weak sense, we see
that u is in H'(Q).
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For the partial sum Uy xv = Z%:o Zrl,\;:o Uny .y Yy (X1) Y, (xn,) and the analo-
gous one Fys y for F, it holds that (A + k2)UM,N = Fum.n. Thus, for any smooth
function G with compact support

U, (A+ Do = lim Uny, (A+k)9e

= lim (Fun,9a=(F, 9q,
M,N— o0

which implies that U is the solution to the Helmholtz equation in the weak sense, and
AU e (L2(Q)*+4. In particular the (0, 0)-component reads the Helmholtz equation
of the problem (4.1).

Due to the fact that f; ; vanishes in Qj, the auxiliary variables ¢JE and ¢év , (7,0)-
and (0, £)-components of U, respectively, defined by

[e¢]

PrL ) = Y tnyma@jm (1) G0.n (X2),

ni,no=0

o
¢ (1, X2) = Dty 0y B0.0y (X1 Pt (X2)

ni,no=0

solve the Helmholtz equation in (1 — 4, 1) x (0, 1) and (0, 1) x (1 —§, 1), and satisfy
(4.2) and (4.3), respectively. Therefore they define CRBC on I'g and I'y, which
completes the proof. O

Remark 4.2 If u is a solution to the problem (4.1), then there exist doubly indexed
auxiliary variables, (j, £)-components of U,

o0
dje(x1,x2) = Z Unyny @y (X1)Pe.ny (X2)

ni,ny=0
satisfying
(A +KkH¢pje =0in Qs,
(1 +aj)pj o= (=01 +aj)Pj+1,ein Q, (4.10)
(02 +ap@j e = (=02 +age;jer1in 2
with ¢j,0 = (]5}5,(]50,43 = ¢é\/’ and 81(]513’((1, ) = 0 on FE, 32¢j,p(~, l) = 0 on FN
for j,£ =0, ..., P. These relations lead to a corner condition to be imposed at NE

in deriving practical CRBC. We discuss this corner compatibility condition in more
detail in the following section.

5 Practical CRBC with the corner compatibility condition

In this section we derive a practical CRBC on I'g and I'y from CRBC analyzed
in the preceding section and define a corner compatibility condition. Let &£ and

@ Springer



804 T. Hagstrom, S. Kim

@V represent vector functions whose components are the auxiliary variables for each
absorbing boundary,

P P
¢E=Z¢]Eej and <I>N=Z¢éve[.
=0

j=0

As studied for the half space problem in Sect.2, CRBC on each absorbing boundary
can be written as

(du)eg = (L33 DE + (KL — M)®E) on Tg (5.1)

and
(dou)eg = (L7 DN + (K*L — M)®Y) on Ty. (5.2)

In order to complete the systems of differential equations (5.1) and (5.2), boundary
conditions for the auxiliary variables qbf and d)év at two end points of I'g and I'y,
respectively, are required. Clearly, at one end of I'g and I'y, they satisfy

¢7(1,0)=0 and ¢;'(0,1)=0. (5.3)

Motivated by Remark 4.2, the condition at the other end, which is the required corner
condition at NE, is derived as follows. From the relations (4.10) in Remark 4.2, one
can show that auxiliary variables ¢f and qbév satisfy

(020F)e0 = (92.0)e0 = —Lo; dY — MY,

5.4)
016} )eo = (d1¢0.0)e0 = — L7 OF — MoF

at NE, where d>§v = Y i objeec and dF = Zfzoqu,gej for j,£ =0,...,P.
All derivative terms in the right hand side of the boundary conditions (5.4) will be
eliminated by using the Helmholtz equation as follows. Denoting

P
ONE = Z Qje; ey,
j.£=0
it is clear that
P P P
dNE — Zqﬁj,gej@eg:Zej@q);V: (Df@eg. (5.5)
j,£=0 =0 £=0
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Thus, it follows from (5.4) and (5.5) that

P P
> (Lej ® hpreg) = - (Le; @ L3 DY + Le; @ MoY) 56
j=0 j=0 ‘

= —(L®L)»#HVE + (Lo M)oNF)

and
P P

> (014 eo @ Leg) = — Y (Lo} ® Lep + Mf @ Ley)
=0 =0

= —(L®L)ZONE + M L)dVNE).

6.7
Adding (5.6) and (5.7) followed by using the Helmholtz equation removes all derivative
terms in the right hand sides, which results in

Lhof ®ep+eo @ L) = K*LOL-L®M-M@L)dVE (5.8)
at NE.

Therefore, the model problem (4.1) can be written as the problem to find # defined
inQ, ®F on Tz, Y on 'y and ®VE € CP+D’ satisfying

Au+k*u= fing, (5.9)
u=0onTsUTw, (5.10)
(du)eg = (L3 dE + (KL — M)®F) on T,

(dou)eg = (L DN + (K°L — M)®Y) on Ty, (5.11)

and

(Lo o) ® o + o ® (L3 dY)
=kLQQL-L®M-M®L)®VE atNE, (5.12)
®E(1,0) =0and @V (0, 1) = 0. (5.13)

6 Variational reformulation

For a variational formulation of the problem (5.9)—(5.13), we introduce Sobolev spaces

Hiy(@) ={ve H'(Q) : v=00onTsUTly},
Hi(Tp) ={ve H'(Tg) : v(1,0) =0},
Hyw(Ty) ={ve H(Ty) : v(0, 1) =0}
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and

2
V={@, oF o o) e HéW(Q) X (H.éE(rE))P+1 X (Hjllw(rN))PH x CP+D7
¢=¢£OHFE, ¢=q>(1)v0nI‘N and
o7 =615, ¢ =) atNEforj,£=0,...,P}.

Applying the L2-inner product of (5.9) with test functions £ € H ;W(Q) and inte-
grating it by parts lead to

(Vu, VE)g — kK (u, £)g — (d1u, E)ry, — (Bou, E)ry = (f, E)a. 6.1)

where (-, -)p is the L2-inner product on a domain D. For the boundary integrals on
I'r and 'y in (6.1), we take test functions

WE =l .y e (HL @),
WV =@y T e (HYyw @)t

with 1//(‘)5 =& onlg and wév = & on 'y and apply L2-inner products of (5.11) with
WE and WV to obtain that

—@u, E)r, = L, ,95)r,

+ (=KL +M)®E, WwE)r, — (Lo, ®F (NE), WE (NE)) i,
—(u, E)ry = Lo @Y, 30V,

+ (=KL + M)®N, WMy — (La; N (NE), WY (NE)) cr+1,

(6.2)

where (-, -)cw is the standard inner product for CN. In order to deal with the inner
product of the vectors composed of the corner values at NE in (6.2), we denote test

vectors in C(P+D’ by

P
NE NE
' = E Iﬂjy[ e ey
J-¢=0

with w;"(f = I/If (NE) and )'F = ¢ Y (NE). Then noting that ¥ = WZ, we observe
that
E E E E
(]Lag@ (NE), W (NE))N+1 = (]L82<D (NE) ® e, WE(NE) ® eo)C(M2
- <L32CI>E(NE)  eo, \yNE)

ce+n?’

(6.3)
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By (6.3) and the analogous equation for L3; ®N (NE), the corner condition (5.12)
produces

Loy ®" (NE), WH(NE)) pii2 + (L1 DY (NE), WV (NE))piip

(6.4)
= (KLOL-L®M-MeL)®VE, WVE) pane-

Finally, combining (6.1), (6.2) and (6.4) gives a variational problem to find
(u, DE, ®N, ®NE) € V such that

A, F, oV, oVE) (&, WE WV WNEY) — (f £)q (6.5)
for all (¢, WE, WN WNE) ¢ V, where

= A1(u, &) + Bp(®F, WF) 4+ By (@, WN) + (ROVE, WNE) 0

with

Ar(u, &) = (Vu, Vé)g — k*(u, £)q,
Bp(®F, W) = Lo, ®", 5,9 5)r, + (—k°L + M@=, wH)r,,
By(@", W) = @ ", vV, + (=L + M), ¥V,
R=(-kKLIL+LOM+M®L).

7 Existence of unique solutions to problem (6.5)

We first show that the problem (6.5) has a unique solution in V. To do this, we begin
with some properties of matrices defining the corner compatibility condition. Let L,
and M be the P x P submatrices of I, and M obtained by removing the 0-th row and
0-th column of L and M, respectively. Also, R, denotes the P? x P2 submatrix of R
associated with elements e; @ ey for j, £ =1,..., P,

R.=—kL.QL, +L. @M, +M, ® L..

Their properties are listed in the following lemma.
Lemma 7.1 The matrices IL;, M; and R, have the following properties:

(i) The matrices 1L, and M, are invertible.
(ii) If ) is an eigenvalue of]Lgle, then I(A) < 0.
(iii) The matrix R is invertible.
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808 T. Hagstrom, S. Kim

Proof To prove (i), assume that L,® = 0 for ® = (64, ..., @P)T € CP. Then, it is
easy to show that

P—1

(L:©,O)cr =Y

i@t

10; + 9.,'+1|2 =0

with 6y = 0. Since both real and imaginary parts need to be zero, that is,

P—1
1
R(L:0. O)cr) = Y el +6,411* =0,
j=np, € J
np—l
(L0, O)cr) = Y P +0,411> =0,
iz k€ j

from the assumptions (2.6) and (2.7) for a; and a; it follows that §; = 0 for
j = 1,..., P, which establishes the invertibility of L,. As for M, we use back-
ward Gaussian elimination to show that det M, = ]—[j!-):_o1 ajaj/(aj+aj) # 0, which
completes the proof of (i).
For (ii), consider the linear problem to find ® € C” satisfying
(=AL, +M,)® = E 7.1

for E = (Eq,..., Ep)" e CP. It is enough to show that if J(1) > 0 then (7.1) is
uniquely solvable. First of all, we notice that (7.1) has a unique solution for A = 0 by
(ii). Now we assume that A % 0 and we introduce

4 . L~ .
A A
ilm'i_—l\/_ forj SK’ 1_[ M— forj S g,
Qje= =) am—i\/x Rj¢= m=j am—i«/x
1 for j > ¢, 1 for j > ¢,

and Zj ¢ = Qj ¢Rj ¢. Then the same computation as that used in [21, Lemma 8.5]
and [30, Lemma 5.2] with a minor modification shows that if 1 + Zp p_; # 0O, then
the problem (7.1) has a unique solution of the form

P
O = ZS‘Z’/'EJ"
=1

where

(I =Zoe—1)Rej-1(0+Zj p_1)

o —2in(1 + Zo p—1)
. (1 =20,j-1)Qje-1(1 +Zgp-1)

—2i (1 +Zy p-1)

for¢ < j,

for ¢ > j.
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Therefore, we have only to show that if J(1) > Oand A # Othen 14 Zp p—; # 0. 1In
fact, this result is obtained by observing that

. . 1 for J(A) > 0, . <1 forI(1) >0,
—icjk Al ik )
‘ICJ—-H\/_ <1 forA > 0, and ﬂ =1 forA >0,
_’Cjk_“/X =1 forA <0, Cjk_“/X <1 forx <0,

for ¢; > 0, from which together with the analogous inequalities for ¢; > 0 it follows
that 1 + Zp, p—1 # 0 and the proof of (ii) is completed.

To prove (iii), it suffices to show that zero is not an eigenvalue of the following
matrix

k2 k2
(H"z,_l ®]L21) R = <—71 +1L;1MZ) QI+I® <—?1 + ]LZ‘IMZ> . (712

Here, we recall that every eigenvalue of the Kronecker sum (7.2) arises as a sum of
eigenvalues of — %1 +ILZ_1MZ. Since all eigenvalues of — %1 —I—]LZ_IMZ have negative
imaginary parts due to the result of (ii), it follows that (]L;1 ® LZI )R does not have
a zero eigenvalue, which completes the proof of (iii).

O

Theorem 7.2 The problem (6.5) has a unique solution (u, L N dNEy c V.

Proof We know that there exists a solution to the problem (4.1) by Theorem 4.1. Thus,
it suffices to show that if

A, F, oV, dNE) (g, WE WV WNVEY) =0 forall (¢, WE, WV WVE) cy,
(7.3)
then (u, ®F, ®V, ®NE)y = 0in V.

To show that u = 0 in Q:

Let {u,}>2 | be a sequence of compactly supported functions converging to u in
L3(R). By the existence of a solution discussed in Theorem 4.1, there exists a solution
(&n, VE, WN WNE) € V to the problem (6.5) with f = ii,, where ~ represents the
complex conjugate. Noting that A(«, f) = A(B, a) for o, B € V, we can show that

(u, up)o = A((u, F, @V, ®NE) (g, WE, WN WNE)) — (.

Since u, converges to u in L%(Q), it follows that u = 0 in .

To show that ®£ = 0 on 'z and ®V = 0 on I'y under the conditions ¢g =0
onI'g and c/)(])V =0ony:

As the equations for the auxiliary variables ®" on I'y are identical with those for
the auxiliary variables ®F on I'f, it is enough to show that ®£ = 0 on I'z. By taking
test functions (&, WE, WV WNE) in V such that WY = 0, W € (C*(Tg))P*! and
WNE — 0 in (7.3), it can be shown that the auxiliary variables ®F satisfy

— L33 0F + (—k* L+ M)®f =0onTg (7.4)
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with ®F(0) = 0 (identifying ' with the interval (0, 1)). Now, we claim that ¢ for
j=1,..., P canbe written as

j—1
¢F =" Py j 14, sin(@,x2) (7.5)

9=0

for some constants A,. Here &3 = k2 + Ezg and

j—1 ~
am + aq
Prj-i=[] -
m=q+1 """ 4
forq =0,...,j—2with P;_; j_1 = 1. To prove it, we proceed by an induction

argument on j. Since ¢>65 = 0 on I'g, it follows from the 0-th equation of (7.4) that
we have an equation for ¢£,

k* + aj
21E+( 0

ap+ao ° ap + aop

) ¢1E =0onTlg
with ¢£ (0) = 0, which leads that

oF (x2) = PooAo sin(@ox2)

for some constant Ag. Assume that up to the j-th (j < P) auxiliary variables are given
by the formula (7.5). The j-th equation of (7.4) shows that ¢ /E ", satisfies the equation

2, 72 22
1 82¢E N k -l-aj q)E _ -1 82¢E N k ai_y ¢E
aj+aj 27+ aj+aj; J+1 aj_1+aj_q 2%j-1 aj_1+aj_q J=1
~1 ~1 —kK>+aj_jaj_1  —k>+a;a;
+< — ~>a22¢>§3+< Tttt ~”)¢f
aj-1+aj-1 ajtaj ‘ aj-1+aj-1 aj+aj
(7.6)
with qbﬂ 1(0) = 0, which can be written simply as
j—1
03T +ai0r =Y (aj +ag)@j + dg) Py j1Aq sin(@gxa).
q=0
forg =0, ..., j — 1. By solving the second order ordinary differential equation we

see that qbf 1 1s of the form
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¢F, 1 (x2) = A sm(ozsz)+z ’+ qP i~ 1A sin(@,x2)
q= O
j—1
= Ajsin(@;x2) + ZPq jAg sin(agx2) = ZPq jAg sin(ayx2)
q=0 q=0

for some constant A ;, which verifies (7.5).
Now, since the last equation of the system (7.4) reveals that

365+ (K2 +ad_ ) oF_, + 0305 + (@ —aprdp-1) ¢ =0, (7

substituting (7.5) for j = P — 1 and j = P into (7.7) gives

P—1
—(ap—1+ap—1) Z aq Py p_1A4sin(@gxz) =0onT'g.
q=0
Finally, since a, P, p—1 # O and sin(agx2) forqg =0, ..., P —1 are linearly indepen-
dent, we can conclude that A, = 0forg =0, ..., P — 1, which implies that dE =0

onlg.

To show that ®¥E = 0 in CP+D” under the conditions that ¢§\" ¢0 ;=
for j,£=0,..., P:

Since u = 0, ®* = 0 and ®" = 0, the problem (7.3) is reduced to the linear
problem for the corner values,

R Z qb]ee]@eg =0.

jA=1P
Since R is invertible by Lemma 7.1, it follows that ¢jvf =0forj,t=1,...,P,
which completes the proof of uniqueness of solutions. O

8 Numerical experiments

This section provides numerical examples illustrating the performance of the CRBC
for time-harmonic wave propagation problems in R In the first example, we consider
a source problem in the square domain € = (0, 1) with the CRBC on 'z U 'y and
the homogeneous Dirichlet boundary condition on I'yy U I's. The source function f
is prescribed in a way that the analytical solution is given by

u(r,0) = x(r)Z —— H), (kr) sin(2n6)

(2n )2
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€e=03

100H———o07

| | | | | | |
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Fig.1 The plots of the error, /1 + x 01, of the rational function representation (2.10) of CRBC withn, =2
as an approximation to /1 +x of x = —& 2 /k2 for £ € [0, k]. The CRBC parameters are chosen such
that the error is minimized in the region of & € [0, (1 — €)k]. The vertical lines represent the bounds of x
corresponding to & = (1 — €)k

in polar coordinates, where k = 4 and x is a smooth cut-off function vanishing for
0 < r < 0.25 and being one for r > 0.9.

For the first test, instead of following the parameter selection procedure in Sect. 2.3,
we consider the performance of CRBC as a function of n,, and n, once € and M are
set for the bounds of spectral ranges of propagative and evanescent modes. Assuming
that the separation between the wave source and the absorbing boundary is § = 0.1,
we set M for the upper bound of evanescent modes to be handled by CRBC by making
(2.25) less than t for a tolerance t for maximal reflection errors of CRBC, for instance,
T = 10~*. The parameters a j and a; for the CRBC on I'g UT' y are chosen analytically
by the formula (2.13) in Sect. 2.3 to test the performance of CRBC with various
values of ¢ = 0.01, 0.1, 0.3,0.5,0.7 and 0.9 and so CRBC are tuned for attenuating
reflections uniformly for the frequency range of £, £[0, (1 —€)k] and +[(1+€)k, Mk].
See Fig. 1 for the plots of the error, 4/1 + xp1, of the rational function representation
(2.10) of CRBC with n;, = 2 as an approximation to +/1 +x of x = —£2/k? for
& e€[0,k] fore =0.1,0.3,0.5 and 0.7.

The finite element computations are conducted with mesh size 4 = 1/400 and with
bilinear elements using the deal . IT finite element library [7]. From the resulting
relative L2-errors reported in Fig.2, we observe that the errors decrease until finite
element errors are dominant as n, increases. The black dash-dot horizontal lines
represent the relative L2-error & 2.33 x 10~ of the finite element approximation to
the Helmholtz equation with the exact Dirichlet boundary condition on 92, and the
green dash horizontal lines do the relative L?-error of the L?-projection &~ 1.02 x 10~
of the analytical solution onto the finite element space. It is also seen that the errors of
CRBC withn, = 0 and 1 canreach the level of finite element errors with increasing n,
but slowly, which implies that CRBC is required to have at least 2 auxiliary variables
corresponding to real parameters in order to handle evanescent modes efficiently in
this particular example. We note that € is positively correlated with 7 as seen in (2.27)
but since CRBC requires more parameters to reduce reflection errors in the larger
spectral ranges (the case of smaller €) as indicated in (2.28), (2.30), relative L2-errors
are not necessarily monotonically decreasing with decreasing ¢ for fixed n,, and n,.

Next we examine CRBC when parameters are selected via the procedure in Sect. 2.3.
But we can see that € is not necessarily too small as observed in the preceding tests
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Fig.4 CRBC order P
Table1 (np, n) for each € and N B

T

0.01 0.1 0.3 0.5 0.7 0.9

le-01 (2,2) (1,2) (1,2) (1,1) (1,1) (1,1)
le-02 (2.4) (2,3) (1,3) (1,2) (1,2) (1,2)
le-03 (3,9) 2,4) 2,4) (1,4) (1.4) (1,3)
le-04 4.7 (3,6) (2,5) (2,5) (1,5) (1,5)
le-05 (5,9) 3.7 2,7 (2,6) (2,6) (1,6)

119001

(a) Real part of the exact so- (b) Real part of the approxi- (C) Real part of the error
lution u®* mate solution u ur —u

(d) Imaginary part of the ex- (e) Imaginary part of the ap- (f) Imaginary part of the er-
act solution u®® proximate solution u ror u®* —u

Fig. 5 Snapshots of the finite element solution satisfying CRBC on I'g U 'y and its error u®* — u with
(np,ne) =(2,4), 7= 1073 (for determining M) and € = 0.1
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and so we consider € as an independent parameter rather than one depending on t of
order O (7?). Assuming this and expressing the terms containing € explicitly in (2.28)
and (2.30), we get the number of parameters P of order

1 1 1 1 1
0<<ln;+lnk—8) <1n +ln(k8+ln <1n —i—lnﬁ)))) 8.1)

from the parameter selection procedure from ii. to iv. in Sect. 2.3. Here 7 is introduced
as a tolerance of maximal reflection errors of CRBC rather than a tolerance of relative
L?-errors of approximate solutions. The parameter T only reflects the error of the
approximate boundary condition but does not include any discretization error resulting
from the finite element method and so relative L>-errors of approximate solutions are
not necessarily smaller than 7. However it is expected that the relative L2-errors
decrease monotonically with respect to 7 in that the more accurate CRBC is achieved
by using the smaller 7. Figure 3a shows the performance of CRBC with respectto 7 =
1071,1072, 1073, 10~* and 1073 Table 1 reports (n,, n.) and Fig.4 exhibits order
P used for computations and the asymptotic behavior (8.1). It looks that approximate
solutions obtained by CRBC with smaller ¢ < 0.3 converge faster than those with
larger € > 0.5 with respect to T since more parameters are used for smaller €. We
see that approximate solutions of the relative L?-error ~ 2.3 x 10~* can be achieved
using only 5 or 6 auxiliary variables, for example, (n,,n.) = (2,3) with 7 = 1072
and € = 0.1, and (np,n.) = (2,4) with t = 1073 and € = 0.1, 0.3. The snapshots
of the real and imaginary parts of the finite element approximate solution satisfying
CRBC of (np,n,) = (2,4) with € = 0.1 are presented in Fig.5, that exhibits that
their errors are concentrated at peaks of solutions rather than the artificial boundary.

The second example is a time-harmonic wave propagation problem with k = 4 in
the whole domain R2. The computational domain is restricted to 2 = (—0.5, 0.5)2
and CRBC is imposed on the four artificial boundaries. The external source function
f is determined by the analytical solution defined by

u®@r,0) = x(r) Z ( n 1)2 Hnl(kr)eina

in polar coordinates. In this example, the cut-off function y is supported on r > 0.3
and is defined by one for r > 0.4 so that the separation from the source and the
fictitious boundaries is 8 = 0.1. Figure 6 shows the convergence of relative L2-errors
with respect to n,, for each n, and €, which have the similar behavior to those in
the problem with CRBC on I'g U I'y of the first example. Approximate solutions
satisfying CRBC can be as close to the exact solution as the finite element solution
satisfying the exact Dirichlet boundary condition on 32, whose relative L>-error is
approximately 3.96 x 10~ It also reveals that a sufficient number of real parameters
related to evanescent modes are required for fast convergence, for example, n, > 3
for e = 0.3,0.5 and n, > 4 for ¢ = 0.1. By using the same pairs of (1, n.) in
Table 1 the convergence of relative L?-errors is presented in Fig.3b. It shows that
approximate solutions of errors 22 3.96 x 10™* can be obtained by using 6 auxiliary
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Fig.6 Relative L2-errors as a function of n p for various € and 7 = 10~4 (for determining M) with CRBC
imposed on the four sides

() ne=3

variables when 7 = 1073 and € = 0.1, 0.3. Finally, the snapshots of an approximate
solution satisfying CRBC of (n,,n.) = (2,4) with € = 0.1 on the four absorbing
boundaries are given in Fig. 7.

These experiments illustrate the importance of the real parameters when k is not
large. For larger values of k and larger separations § the propagating modes become
more prominent. As an example to show this we consider a time-harmonic wave
propagation problem with k = 20 in the whole domain R?. The computational domain
isrestricted to 2 = (—0.5, 0.5)% and CRBC'is imposed on the four artificial boundaries
I'e UT'w UT'y UTs. The external source function f is determined by the analytical
solution defined by

1

G e ke

4
u(r 0) = x(r) Yy
n=0

in polar coordinates. In this example, the cut-off function y is supportedonr > 0.1 and
is defined by one for r > 0.3. Figure 8 shows the convergence of relative L>-errors.
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(b) Real part of the approxi- (C) Real part of the error
mate solution u u® —u

(a) Real part of the exact so-
lution u®*

5.69e+0Q 5.69e+00Q

(a) Imaginary part of the ap- (b) Imaginary part of the ap- (C) Imaginary part of the er-
proximate solution u®* proximate solution u ror u* —u

Fig. 7 Snapshots of the finite element solution satisfying CRBC on ' U 'y U I'yy U I'g and its error
u® —uwith (np,ne) = 2.4, 7= 10~3 (for determining M) and € = 0.1

Interestingly, for large wavenumber k£ = 20, CRBC with sufficient parameters (its
error &~ 4.67 x 10™%) can give better approximations than the Dirichlet condition (its
error ~ 1.06 x 1073 represented by the black dash-dot lines in the plots). In addition,
unlike the previous case it appears that CRBC can be an effective absorbing boundary
condition for sufficiently large n , without an effort to absorb evanescent modes, though
for finer error tolerances we expect they would be needed. This observation can be
drawn from Fig.9 presenting relative L>-errors vs. finite element mesh size 4 with
h = 1/400, 1/800 and 1/1600 as well. It is observed that the relative L2-errors of
approximate solutions satisfying CRBC, forn,, > 4ifn, > 0,orforn, > 3ifn, > 1,
decrease at the optimal rate, which indicates the errors from the boundary condition
do not deteriorate the finite element solutions seriously. Finally, the snapshots of an
approximate solution satisfying CRBC with (n,, n.) = (3, 0) and € = 0.5 on the four
absorbing boundaries are given in Fig. 10.

As the last example, we use CRBC as an absorbing boundary condition for finding a
scattered field #* arising from an incident plane wave u'" (x) = ¢'k4* of wavenumber
k = 20hitting a sound soft disc Dg of radius R = 0.2 centered at the origin (0, 0). Here
d = (cos ¢, sin¢@) is the propagation direction of the plane wave and X = (x1, x2).
Noting that the plane wave can be written as a series

o0
W, 0) = > i"Jykr)e" 0=

n=—oo
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Fig.8 Relative L2-errors as a function of n p for various €

in polar coordinates (r, ), from the Dirichlet condition u’" + u*¢ = 0 on |x| = R it
can be shown that the scattered field #*“ has the series representation

o0
u’(r,0) = Z AnH,f(kr)ei”O forr > 02=R

n=—0oo

with A, = —i"J,(kR)e™"® / Hn1 (kR). For numerical computation of the scattered
fields, we take the domain Q = (—0.6, 0.6)2 \ Dg and impose CRBC of order
(np,ne) = (2,2) on the four exterior boundaries of 2. The domain is decomposed
into quadrilaterals with finite element mesh size 4 2 0.0023. With r = 10~ to deter-
mine M and with € = 0.3 that gives a good performance in the previous examples,
we get pp = 6.21 x 1076 and p, ~ 5.49 x 107°. When ¢ = 0, the resulting finite
element solution satisfying CRBC has a relative L>-error &~ 3.57 x 10~*. Here the
error is calculated with the analytical scattered field of a finitely truncated series of
index n from —30 to 30. It shows that we can obtain an approximate scattered field
accurate within to 0.036% in L?-norm with only 4 auxiliary variables. This error is
between the relative L>-projection error &~ 6.35 x 107> and the relative L>-error
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Fig.9 Relative L2-errors vs. h with h = 1 /400, 1/800 and 1/1600 as various pairs of order (np, ne) with
e=0.5and r = 10~* (for determining M)

~ 9.05 x 10~ of the solution satisfying the exact Dirichlet condition on the boundary
of the physical domain as seen in the previous examples. Thus the CRBC solution is
more accurate than the solution obtained using exact Dirichlet data. Errors of solutions
satisfying CRBC of other orders (np, n.) are also reported in Table 2 and it can be
shown that the accuracy is quite good even for n, = 1 (all errors of the test cases are
less than 0.7%) and the cases of n,, > 2 produce sufficiently accurate approximate
solutions. In particular, CRBC of order (n,,n.) = (3, 0) gives the best result with
the smallest degrees of freedom (smallest auxiliary variables) among all these exper-
iments. We also test the performance of CRBC of order (n),n2) = (2, 2) with the
same parameters T = 10™* and € = 0.3, when the incident plane wave propagates
in the direction d = (cos ¢, sin ¢) with various incident angles ¢, and the relative
L?-errors are reported in Table 3. It shows that the propagation direction does not
have any influence on the performance of CRBC (Figs. 11, 12, 13). The snapshots of
the approximate scattered fields and their errors are presented in Fig. 12 for ¢ = 0 and
in Fig. 13 for ¢ = 7/3. At last, we compare the performance of CRBC with that of
PML, one of the well-known absorbing boundary techniques. To do this, we introduce
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b Real part of the approxi- C) Real part of the error
P PP P
mate solution u u —u

(a) Real part of the exact so-
lution u®*

il I I

(d) Imaginary part of the ex- (e) Imaginary part of the ap- (f) Imaginary part of the er-
act solution u®* proximate solution u ror u** —u

Fig. 10 Snapshots of the finite element solution satisfying CRBC on ' U 'y U 'y U I'g and its error
u® —u with (np,ne) = (3,0), 7 = 10~# (for determining M), ¢ = 0.5 and h = 1/400

Table2 Relative L2-errors of finite element solutions to the scattering problem satisfying CRBC of various
order (np, ne)

Ne np
1 2 3
(pp ~3.52x 1073) (pp ~ 621 x 1076) (pp ~ 1.09 x 1078)
0 6.92 x 1073 6.80 x 1074 3.58 x 1074
1 (pe ~3.31 x 1073) 426 x 1073 3.87 x 1074 3.60 x 1074
2 (pe ~ 5.49 x 1079) 3.42 x 1073 3.57 x 1074 3.58 x 1074

Table 3 Relative L2-errors of finite element approximate solutions satisfying CRBC of order (np, ne) =
(2, 2) for the incident angle ¢

] /4 /6 /8 /10 /12

rel. L2-errors 3.41 x 1074 3.44 x 107* 3.48 x 107% 3.50 x 1074 335 x 1074

a Cartesian PML defined by the quadratic stretching function

i /x(t TVt ifx > T
- X+i——m — ifx>T,
X(x) = kW3 Jr

X if0<x<T,
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Fig. 11 Comparing relative L2-errors of solutions for CRBC with those for PML. The black *-markers
represent the total degrees of freedom of the finite element problems including those of auxiliary variables
for CRBC and those in the artificial layer for PML. The horizontal black dash line and green dash-dot line
represent the errors of the solution satisfying the exact Dirichlet condition on the exterior boundary of the
physical domain and the relative Lz-projection error, respectively

satisfying X (—x) = —x(x), where T = 0.6 and the positive constants W and o repre-
sent the PML width and strength, respectively, with y(y) being defined analogously,
that is, the absorbing layer of PML is the region of (T + W)? \ @ c R?. The PML
is truncated with the homogeneous Dirichlet condition on the exterior boundary of
PML, x = (T + W) or y = (T + W). We take h = 0.3/27 ~ 0.0023 and set the
PML width W = hNg,,, where Ng, stands for the number of grid points along the x-
and y-axes and it corresponds to the number of auxiliary variables P = n, + n, of
CRBC.

With the PML strength o = 2, 5 and 10, the resulting relative L2-errors of finite
element approximate solutions satisfying PML are exhibited in Fig. 11. It shows that
o = 2 is too small to absorb propagating waves going into the layer and o = 10
is so large that the medium property in PML is highly anisotropic, which results in
polluting the finite element approximations with a uniform mesh [29, 42]. The PML
with in-between o = 5 gives the best performance among these, however even the
PML with 0 = 5, Ngp, = 50 (degrees of freedom = 883,632) gives the approximate
solution with the relative L2-error &~ 3.99 x 10~*, which is still larger than the relative
L*-error ~ 3.57 x 10~ of the approximate solution satisfying CRBC using only
4 auxiliary variables, P = 4, (degrees of freedom = 674,976). As the solve using
Dirichlet boundary conditions required 658,432 degress of freedom, the additional
degrees of freedom with CRBC are 16,544 and for the PML of comparable accuracy
the additional degrees of freedom are 225,200, which are 13 times as many degress
of freedom as CRBC. These experiments demonstrate the efficiency and accuracy of
CRBC as an absorbing boundary condition for the scattering problem.

In the end, we note that CRBC requires the somewhat elaborate variational problem
(6.5) in finite element implementations and it may need more efforts for extension to
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(a) Real part of the analyti- (b) Real part of the approxi-
cal scattered field u®¢ mate solution u

1.03e+0Q

(d) Imaginary part of the an- (e) Imaginary part of the ap- (f) Imaginary part of the er-
alytical scattered field u®¢ proximate solution u ror u®¢ —u

Fig. 12 Snapshots of the finite element solution satisfying CRBC on ' U 'y U 'y U I'g and its error
u¥¢ —u with (np,ne) = 2,2), 7 = 10~ (for determining M), ¢ = 0.3 and & = 0.0023 for the incident
angle¢p =0

(a) Real part of the analyti- (b) Real part of the approxi- (C) Real part of the error
cal scattered field u®¢ mate solution u, ¢ =0 u —u, =0

(d) Imaginary part of the an- (e) Imaginary part of the ap- (f) Imaginary part of the er-
alytical scattered field u®¢ proximate solution u ror w

Fig. 13 Snapshots of the finite element solution satisfying CRBC on ' UT'y U 'y U I'g and its error
u’¢ — u with (np,ne) =(2,2), 1= 10~4 (for determining M), € = 0.3 and & =~ 0.0023 for the incident
angle ¢ = /3
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scattering problem in R as opposed to PML that requires only changing coefficient
matrices. However, CRBC can gain the higher efficiency and accuracy in return for
the extra effort. In addition, CRBC parameters can be chosen to provide any desired
accuracy with minimal cost based on the prescriptions listed above, while PML may
require experimentation to determine the layer width and damping profile.
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