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Abstract
This paper continues Part I (Hagstrom andKim inNumerMath 141(4):917–966, 2019)
of the investigation on the complete radiation boundary condition (CRBC) in waveg-
uides. In this paper, we propose corner compatibility conditions for CRBC applied
to the Helmholtz equation posed in R

2. Since CRBC is developed as a high-order
absorbing boundary condition approximating the radiation condition by using ratio-
nal functions via the cross-sectional Fourier analysis, it is well-studied and its accurate
performance is validated on a straight/planar fictitious boundary in waveguides. How-
ever in the presence of corners on artificial absorbing boundaries such as boundaries of
rectangular domains, a special treatment for corner conditions is required. We design
and validate the accurate CRBC with the corner compatibility conditions on rect-
angular domains. We also analyze the existence and uniqueness of solutions to the
Helmholtz equation coupled with CRBC with the corner compatibility conditions.
Finally, numerical experiments illustrating the accuracy of CRBC will be presented.
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1 Introduction

This paper is concerned with an analysis of the complete radiation boundary condition
(CRBC) applied to the time-harmonic wave propagation problem in a domain with
corners. The CRBC is an efficient high order absorbing boundary condition that can
be easily used for truncating unbounded domains of wave propagation problems to
a finite computational domain so that wave phenomena can be well described in the
computational domain without any noticeable pollution from fictitious reflections.

We consider the Helmholtz equation

�u + k2u = f in R2 (1.1)

with the Sommerfeld radiation condition at infinity, where k is a positive wavenumber
and f is a wave source with compact support. The numerical solution of the model
problem (1.1) requires a domain truncation technique for which artificial reflections
canbemade as small as desired. To this endmanydifferent types of absorbing boundary
conditions, also knownas transparent or non-reflecting boundary conditions, have been
developed and analyzed such as Dirichlet-to-Neumann (DtN) conditions [19, 26, 28,
33], approximate far-field expansions [8, 34], pole conditions [24, 25, 41] and perfectly
matched layers (PML) [9, 12, 13, 32].

Rational approximation approaches [3, 15, 20, 38] to the non-local pseudodifferen-
tial operator related with the radiation condition have also been employed to construct
efficient absorbing boundary conditions. Among others CRBC is devised in [21, 30] as
a rational approximation to the exact radiation condition pertaining to the square root
function. The rational approximation of CRBC can be rephrased as a system of dif-
ferential equations of certain auxiliary functions with respect to tangential derivatives
on artificial boundaries and so it is well-suited for a high-order absorbing boundary
condition on a straight/planar boundary. Thus CRBC is successfully used on cross-
sectional boundaries for computation of scattering waves in waveguides, and it is also
found that the optimal minimization of reflection errors and efficient handling of both
propagating and evanescent modes including grazing modes, make CRBC an attrac-
tive technique. In addition, it is shown in [31] that its performance can be improved
by hybridization with PML.

On the other hand, when the wave propagation takes place in the open space, arti-
ficial boundaries for absorbing boundary conditions are required to surround wave
sources or scatterers. As a simplest computational domain with such boundaries, we
can take a rectangular region, and in this case it is demanded to provide certain con-
ditions at corners for two systems of the boundary differential equations employed
for CRBC from each side. These must be constructed so that the resulting problem
coupled with CRBC incorporating the corner compatibility conditions has a unique
solution and produces approximate radiating solutions of high accuracy. As a goal
of this paper, we design and validate such compatibility conditions at corners for
CRBC. The study on corner conditions for absorbing boundary conditions based on
approximations of the pseudodifferential operators of the radiation condition has been
developed for a long time such as [6, 14, 20, 22, 43] in time-domain computations
and [38, 40] in frequency domain problems. However, we will provide an improved
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Complete radiation boundary conditions for the Helmholtz… 777

analysis including the existence and uniqueness of solutions to the Helmholtz equa-
tion supplemented with CRBC satisfying the corner compatibility conditions. To this
end, we carry out a spectral analysis based on [37] to understand the distribution of
eigenvalues associated with CRBC and the completeness of eigenvectors, which is
essential for verifying the existence and uniqueness of solutions. It is worth noting
that there have been approaches to avoid corners of fictitious boundaries by using
regular boundaries [4, 27].

This paper is organized as follows. In Sect. 2we reviewCRBC for absorbing bound-
ary conditions in the half space. The initial CRBC is introduced by certain relations
involving the normal derivatives of auxiliary functions defined on a neighborhood of
the boundary and then it is transformed to a system of differential equations of the
auxiliary functions with respect to the tangential derivatives on the boundary. Sec-
tion 3 is devoted to a study of the eigenvalue problem with CRBC as the boundary
condition in the unit interval. Here we study the asymptotic behavior of eigenvalues
and completeness of eigenvectors. In Sect. 4 the model problem on a square domain
inR2 is introduced together with CRBC for two radiating directions orthogonal to the
fictitious boundaries. The CRBC is defined in terms of auxiliary functions defined on
a neighborhood of the fictitious boundaries and this will motivate the derivation of
the corner conditions of CRBC imposed only on the artificial boundaries. The exis-
tence of solutions to the problem truncated by CRBC is also established by using the
spectral analysis presented in Sect. 3. We propose the corner compatibility conditions
for CRBC in Sect. 5, and the model problem coupled with CRBC satisfying the cor-
ner conditions is reformulated in a variational form in Sect. 6, which will be utilized
for obtaining finite element approximations. In Sect. 7 we complete the proof of the
existence of unique solutions to the model problem. Finally, numerical experiments
demonstrating the efficiency of the CRBC will be presented in Sect. 8.

We remark that our spectral analysis also applies in three space dimensions and
thus motivates and validates the construction of edge and corner conditions in the
three-dimensional case. However we focus here on the two-dimensional case for ease
of presentation.

2 Complete radiation boundary conditions in the half space

We consider the Helmholtz equation in the free space R2 of x = (x1, x2)

�u + k2u = f in R2, (2.1)

where k is a positive wavenumber and f is a compactly supported source function in
L2(R2) vanishing for x1 > −δ with δ > 0. LetR2− be the left half space of x1 < 0 and
let � denote the boundary of R2−. The limiting absorption principle (see e.g. [1, 44])
shows that the problem (2.1) with the Sommerfeld radiation condition has a unique
solution. By taking the Fourier transform û defined by

û(x1, ξ) =
∫
R

u(x1, x2)e
−i x2ξdx2
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778 T. Hagstrom, S. Kim

with respect to x2 for appropriately regular functions u, the radiating solution to the
problem (2.1) can be written as

u(x) = 1

2π

∫
R

û0(ξ)eix1
√

k2−ξ2+i x2ξ dξ for x1 > 0, (2.2)

where û0 is the Fourier transform of u|� and the branch of the square root function
is chosen such that

√
k2 − ξ2 = i

√
ξ2 − k2 for |ξ | > k. The integral representation

(2.2) for the radiating solution u can be seen as a superposition of propagating modes
for |ξ | ≤ k and evanescent modes for |ξ | > k. The precise meaning of the integral
(2.2) in terms of weighted Sobolev spaces can be found in [10]. The radiating solution
u satisfies the Dirichlet-to-Neumann (DtN) condition on �,

∂1u = T (u) on �,

where ∂ j represents the derivative with respect to x j and T is the DtN map defined by

T (φ) = 1√
2π

∫
R

ik

√
1 − ξ2

k2
φ̂(ξ)eix2ξ dξ. (2.3)

A study on local absorbing boundary conditions by approximating the square root
function involved in the DtN map was initiated by the seminal works [16, 17], and
since then various absorbing boundary conditions have been developed, for instance,
Padé-type approximations [4, 5, 45] and optimized rational approximations [15, 21,
30].

2.1 Formulation of complete radiation boundary conditions

Now we present a brief description of CRBC approximating the radiation condition
based on the DtN map T in the half space. Following the idea in [21, 30], for non-
negative integers n p, ne with P := n p + ne, we consider the auxiliary variables φ j

defined in x1 > −δ solving the Helmholtz equation and the recurrence relations,

φ0 = u, (2.4)

(∂1 + a j )φ j = (−∂1 + ã j )φ j+1 for j = 0, 1, . . . , P − 1 (2.5)

with the terminal condition ∂1φP = 0 on �. Here the parameters a j , ã j are given by

a j = −ic j k, ã j = −i c̃ j k for j = 0, . . . , n p − 1 (2.6)

with 0 < c j , c̃ j ≤ 1 for propagating modes related to |ξ | ≤ k and

a j = c j k, ã j = c̃ j k for j = n p, . . . , n p + ne − 1 (2.7)
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Complete radiation boundary conditions for the Helmholtz… 779

with c j , c̃ j > 0 for evanescent modes with |ξ | > k. The essential idea is that for
some specific values of ξ the functions φ̂ j (ξ) associated with the radiating solution
will vanish for j = j0 < P in which case the terminal condition is exact. Thus we
have a mechanism for interpolating the exact radiation condition.

The recurrence relations (2.4)–(2.5)with the terminal condition can be reformulated
to an equivalent form suitable for numerical computations cooperating with the finite
element method. To do this we remove the normal derivatives from the recursive
formulas by first multiplying the recursive formulas by the operator ∂1 and second
eliminating the second derivatives using the Helmholtz equation with simple algebraic
manipulations as in [21, 30]. Denoting 	 = (φ0, . . . , φP )�, the resulting practical
CRBC is given by

− ∂1ue0 = −L∂2	 + (−k2L + M)	 on �, (2.8)

where e j for j = 0, . . . , P is the j th vector of the standard basis inCP+1. In addition,
L and M are the (P + 1) × (P + 1) tridiagonal symmetric (not Hermitian) matrices
defined by

L j, j−1 = 1

a j−1 + ã j−1
, L j, j = 1

a j−1 + ã j−1
+ 1

a j + ã j
, L j, j+1 = 1

a j + ã j

and

M j, j−1 = −a2j−1

a j−1 + ã j−1
, M j, j = a j−1ã j−1

a j−1 + ã j−1
+ a j ã j

a j + ã j
, M j, j+1 = −ã2j

a j + ã j

for j = 0, . . . , P with the convention ignoring a
 and ã
 with 
 outside of the index
range of the parameters, 0 ≤ 
 ≤ P − 1.

2.2 Error analysis

We remark that CRBC has been investigated for the waveguide problem in [21, 30],
for which the radiating solution is an infinite series consisting of discrete modes as
opposed to the Fourier integral (2.2) of the half space problem. Noting that the Fourier
transform φ̂ j of the j-th auxiliary variable φ j with respect to x2 can be written as

φ̂ j (x1, ξ) = A j (ξ)eix1
√

k2−ξ2 + Bj (ξ)e−i x1
√

k2−ξ2

for x1 > −δ, it follows from the Fourier transform of the recurrence relation (2.5) and
the terminal condition that the reflection coefficient is given by

Z(ξ) := B0(ξ)

A0(ξ)
=

P−1∏
j=0

(a j + i
√
k2 − ξ2)(ã j + i

√
k2 − ξ2)

(a j − i
√
k2 − ξ2)(ã j − i

√
k2 − ξ2)

.
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780 T. Hagstrom, S. Kim

Therefore the solution to the Helmholtz equation satisfying CRBC is written as

u(x) = 1

2π

∫
R

(
1

1 + Z(ξ)
eix1

√
k2−ξ2 + Z(ξ)

1 + Z(ξ)
e−i x1

√
k2−ξ2

)
û0(ξ)eix2ξdξ

for x1 > 0, which allows us to have the DtN map for CRBC,

TCRBC(φ) = 1

2π

∫
R

ik

√
1 − ξ2

k2

(
1 − Z(ξ)

1 + Z(ξ)

)
φ̂(ξ)eix2ξdξ. (2.9)

Here Z can be factored as Z = HpHe depending on the types of parameters, where

Hp =
n p−1∏
j=0

(c j − √
1 − ξ2/k2)(c̃ j − √

1 − ξ2/k2)

(c j + √
1 − ξ2/k2)(c̃ j + √

1 − ξ2/k2)
,

He =
n p+ne−1∏

j=n p

(c j − √
ξ2/k2 − 1)(c̃ j − √

ξ2/k2 − 1)

(c j + √
ξ2/k2 − 1)(c̃ j + √

ξ2/k2 − 1)
.

satisfy |Hp| < 1, |He| = 1 for |ξ | < k and |Hp| = 1, |He| < 1 for |ξ | > k. Hence we
can see that the purely imaginary parameters a j , ã j for 0 ≤ j ≤ n p−1 are responsible
for attenuating the reflections of propagatingmodeswhereas the real parameters a j , ã j

for n p ≤ j ≤ n p + ne − 1 play a role of reducing the errors from slowly decaying
evanescent modes. Denoting P(μ) = ∏P−1

j=0 (a j/k + iμ)(ã j/k + iμ), then CRBC is

related to a (P, P)-type rational approximation to
√
1 + x of the form

fP (x) = √
1 + x

P(−√
1 + x) − P(

√
1 + x)

P(−√
1 + x) + P(

√
1 + x)

. (2.10)

Noting that the radiating solution u generated by a source δ away from the absorbing
boundary � satisfies

û0(ξ) = eiδ
√

k2−ξ2 û(−δ, ξ),

the error of the Fourier transform of TCRBC(u|�) for the radiating solution u is given
by

E := i
√
k2 − ξ2 � û(−δ, ξ),

where � := �1�2 with

�1 := 2Z(ξ)

1 + Z(ξ)
and �2 := eiδ

√
k2−ξ2 . (2.11)
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Complete radiation boundary conditions for the Helmholtz… 781

Here �1 is interpreted as the relative error of the (P, P)-type rational function repre-
sentation (2.10) of CRBC approximating the square root function and �2 reveals the
exponentially small amplitude of evanescent modes on �.

2.3 Parameter selection

It is crucial for the accuracy of the absorbing boundary condition to reduce themaximal
value of �. One approach is to take a sufficiently small ε > 0 and a sufficiently large
M > 1 such that the Fourier integral for grazing modes satisfying |k − |ξ || < εk and
evanescent modes for |ξ | > Mk are ignorable, and then to minimize �1 on the set
G := {|k − |ξ || ≥ εk and |ξ | ≤ Mk}. Since |Z| ≤ 1 for ξ ∈ R and Z → 1 as |ξ |
approaches infinity, it holds that

max|k−|ξ ||≥ε
|�| ≤ C max{max

ξ∈G |�1|, e−kδ
√
M2−1}

for some positive constant C independent of CRBC parameters. From here on, the
constants C and c represent generic positive numbers which have different values at
different places but do not depend on CRBC parameters and functions to be estimated.
We can nearly minimize the maximal value of �1 by minimizing Hp in [0, (1 − ε)k]
and He in [(1 + ε)k, Mk]. Denoting z = √

1 − ξ2/k2, the min-max problem of Hp

can be rephrased as finding the parameters c j and c̃ j for j = 0, . . . , n p − 1 solving

ρp := min
c j ,c̃ j∈[γ,1]

max
z∈[γ,1]

n p−1∏
j=0

(c j − z)(c̃ j − z)

(c j + z)(c̃ j + z)
(2.12)

with γ = √
ε(2 − ε). It is related with the third Zolotarev problem about the least

deviation fromzero, see e.g., [36, 46].As shown in [15, 30], it can be solved analytically
by using elliptic functions [2]: c j = s2 j and c̃ j = s2 j+1 for j = 0, . . . , n p − 1 with

s j = dn

((
1 − 2 j + 1

4n p

)
K (γ̃ ), γ̃

)
for j = 0, . . . , 2n p − 1, (2.13)

where dn is the delta amplitude of the Jacobi elliptic functions and K (γ̃ ) represents the
complete elliptic integral with γ̃ = √

1 − γ 2, and it turns out that the minimal value
ρp decays exponentially with respect to the number of the imaginary parameters, n p,

ρp ≤ Ce−cn p/ ln(1/γ ). (2.14)

The min-max problem (2.12) can also be solved numerically by using the Remez
exchange algorithm [39] based on the equioscillation theorem.
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782 T. Hagstrom, S. Kim

By solving the min-max problem for d j = c j/
√
M2 − 1 and d̃ j = c̃ j/

√
M2 − 1,

ρe := min
d j ,d̃ j∈[γ,1]

max
z∈[γ,1]

n p+ne−1∏
j=n p

(d j − z)(d̃ j − z)

(d j + z)(d̃ j + z)
(2.15)

with γ = √
ε(2 + ε)/

√
M2 − 1, the analogous result forHe holds as well.

For the actual implementation ofCRBC, it is of importance to determine appropriate
ε and M for efficient performance of CRBC, however it is not clear to understand how
to determine desired ε andM . For general data we develop worst-case estimates below
which guarantee accuracy.

Representing u using the fundamental solution of the Helmholtz equation we have

u(x) = − i

4

∫
y1<−δ

H1
0 (k|x − y|) f (y)dy,

which motivates the estimation of ε and M for the Hankel function,

H1
0 (k|x − y|) = 1

π

∫
R

eiξ(x2−y2) e
−
√

ξ2−k2|x1−y1|√
k2 − ξ2

dξ. (2.16)

Theorem 2.1 There exists a constant C independent of P and k such that for any
τ > 0 and separation δ > 0 from the support of f and the radiation boundary x1 = 0
there exist P CRBC parameters,

P ≤ C

(
ln

1

τ
+ ln

1

kδ

)2

, (2.17)

such that the error uR satisfies

|uR(x)| ≤ τ‖ f ‖L1 . (2.18)

If kδ ≥ 1 the second term in the estimate is absent.

Proof The error due to the artificial boundary can be represented by the perturbation
to the fundamental solution H(x, y) = −i

4 H1
0 (k|x − y|) to the Helmholtz equation.

More precisely, we begin by noticing that the fundamental solutionG to the Helmholtz
equation satisfying the CRBC on � can be written as

G(x, y) = H(x, y) + HR(x, y),

where HR to be determined represents a reflection term due to the artificial boundary.
First of all, from (2.16) we see that the Fourier transform of H is given by, for y1 <
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Complete radiation boundary conditions for the Helmholtz… 783

x1 < 0,

Ĥ((x1, ξ), y) =
(

−ie−iξ y2

2

e
√

ξ2−k2 y1√
k2 − ξ2

)
e−

√
ξ2−k2x1 = A(ξ, y)e−

√
ξ2−k2x1 .

By applying the Helmholtz operator in x to G it can be shown that

−(�x + k2)HR(x, y) = 0

so that the Fourier transform of HR can be written in the form

ĤR((x1, ξ), y) = B(ξ, y)e
√

ξ2−k2x1 for x1 < 0.

Then, by applying the CRBC on � to G we get B(ξ, y) = Z(ξ)A(ξ, y), from which
it follows

HR(x, y) = − i

4π

∫
R

eiξ(x2−y2)Z(ξ)
e
√

ξ2−k2(x1+y1)√
k2 − ξ2

dξ. (2.19)

Therefore the error function is written as

uR(x) =
∫
y1<−δ

HR(x, y) f (y)dy. (2.20)

We estimate HR using the symmetry with respect to ξ = 0 and the inequalities
x1 + y1 ≤ −δ, |Z(ξ)| ≤ 1:

|HR(x, y)| ≤ 1

2π
(I1 + I2 + I3 + I4)

I1 =
∫ 1−ε

0

|Z(ηk)|√
1 − η2

dη,

I2 =
∫ 1+ε

1−ε

|Z(ηk)|
|√1 − η2|dη,

I3 =
∫ M

1+ε

|Z(ηk)|e−
√

η2−1kδ√
1 − η2

dη,

I4 =
∫ ∞

M

e−
√

η2−1kδ√
1 − η2

dη.

For I1, we use (2.14) with γ = O(
√

ε) and

∫ 1−ε

0

1√
1 − η2

dη ≤ π

2
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784 T. Hagstrom, S. Kim

we get

|I1| ≤ Cecnp/ ln ε−1
. (2.21)

For I2, due to the fact that |Z| ≤ 1 and
√
1 + η > 1 for |1 − η| < ε,

|I2| ≤
∫ 1+ε

1−ε

1

|√1 − η|dη ≤ 4
√

ε (2.22)

For I3, we use a bound for (2.15) analogous to (2.14) with γ = O(
√

ε/M) and with
n p replaced by ne to see

|Z| ≤ Ce−cne/(ln ε−1+lnM).

Since by a change of variables
√

η2 − 1 = ζ

∫ M

1+ε

e−
√

η2−1kδ√
η2 − 1

dη =
∫ √

M2−1

√
ε(2+ε)

e−kδζ√
ζ 2 + 1

dζ ≤
∫ M

0
e−kδζdζ ≤ 1

kδ
, (2.23)

we have

|I3| ≤ C

kδ
e−cne/ ln(ε−1+lnM). (2.24)

Lastly, for I4 using the same change of variable as in (2.23) we have

|I4| ≤
∫ ∞

√
M2−1

e−kδζdζ = 1

kδ
e−√

M2−1kδ (2.25)

Combining (2.21)–(2.25), we deduce

|HR(x, y)| ≤ C

(
e−cn p/ ln ε−1 + √

ε + 1

kδ
e−cne/

(
ln ε−1+lnM

)
+ 1

kδ
e−cMkδ

)
.

(2.26)
To meet some error tolerance τ we must choose:

ε = O(τ 2), (2.27)

n p = O

(
ln

1

τ
· ln 1

ε

)
= O

(
ln2

1

τ

)
, (2.28)

M = O

(
ln 1

τ
+ ln 1

kδ

kδ

)
, (2.29)

ne = O

(
(ln

1

τ
+ ln

1

kδ
)(ln

1

ε
+ lnM)

)
= O

(
(ln

1

τ
+ ln

1

kδ
)2
)

(2.30)

where we have assumed kδ < 1. For larger values of kδ the terms involving kδ in the
estimates are absent. Using (2.27)–(2.30), (2.26) and (2.20) we establish the bound
(2.17) on P . 
�
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Complete radiation boundary conditions for the Helmholtz… 785

As noticed in the proof of the above theorem, we can choose parameters by following
the procedure tomake themaximal value of the reflection less than τ relative to ‖ f ‖L1 :
for given τ

i. set ε = √
τ for a frequency range of grazing modes,

ii. determine n p and choose 2n p imaginary parameters such that |ρp| < τ by solving
(2.12),

iii. determine M such that (kδ)−1e−kδ
√
M2−1 < τ for the upper bound of evanescent

modes,
iv. determine ne and choose 2ne real parameters such that |ρe| < τ by solving (2.15).

Although this result for the half space is not applicable directly to domains with
corners, it can be used as a useful guide to select parameters of CRBC with high
accuracy. In doing so, τ represents an error bound of reflected waves in the maximal
norm relative to the source term in the half space but it does not mean that it can make
actual relative L2-errors of approximate solutions in domains with corners less than
τ . However we can expect smaller relative L2-errors by taking smaller τ since smaller
τ gives CRBC of higher order accuracy.

On the other hand, as will be seen in the numerical experiments in Sect. 8, for
special data one can achieve much better results, that is obtain the desired accuracy for
smaller values of P , with different choices. Developing a solution-adaptive strategy for
choosing the parameters would be of interest, but we argue that the general procedure
described above leads to choices of P which are far more efficient than the use of
simple approximate conditions if one takes into account the fact that the artificial
boundary can be located very close to the sources.

We remark that Theorem 2.1 also holds in three space dimensions. The estimate
is slightly worse than what is proven in [23] for CRBC in the time domain. Roughly
speaking, purely glancing waves do not propagate to the boundary in finite time. We
note that a discussion of optimal rational approximants for the Helmholtz equation is
given in [15] with glancing modes excluded. The implementation there uses optimal
grids - although the authors choose to call this a PML, in fact the method is more
closely related to CRBC. For applications of the usual PML method in the half space,
which can also provide the exponential convergence of high-frequency propagating
modes, it is shown in [11] that PML also suffers from slow convergence of grazing
modes only reciprocally proportional to PML strength and PML width whereas [35]
avoids the grazing modes in solutions by taking imaginary wavenumber in the model
problem.

3 Eigenvalue problemwith CRBC on the intervalD1 = (0, 1)

In this section, we analyze an eigenvalue problem with the CRBC in the unit open
interval D1 ⊂ R. The eigenvalue problem to be investigated is supplemented with the
homogeneous Dirichlet condition at x = 0 and CRBC at x = 1. The result in this
section will be used for the existence and uniqueness of solutions to the Helmholtz
equation posed in the square domain (0, 1)2 ⊂ R

2 supplemented with CRBC on
boundaries later.
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786 T. Hagstrom, S. Kim

3.1 Eigenvalues of CRBC

For a given set of parameters a j and ã j we consider the eigenvalue problem to find
λ ∈ C and non-zero solutions u ∈ L2(D1) satisfying

d2

dx2
u + λ2u = 0 in D1,

u(0) = 0 and CRBC at x = 1.
(3.1)

The above eigenvalue problem (3.1) can be written in a system of differential
equations as follows: find 	̃ = (ϕ̃0, . . . , ϕ̃P )� ∈ (L2(D1))

P+1 such that

d2

dx2
	̃ + λ2	̃ = 0 in D1, (3.2)

subject to the conditions

ϕ̃0(0) = 0, (3.3)(
d

dx
+ a j

)
ϕ̃ j =

(
− d

dx
+ ã j

)
ϕ̃ j+1 in D1 for j = 0, , . . . , P − 1, (3.4)

dϕ̃P

dx
(1) = 0, (3.5)

where the 0-th component ϕ̃0 of 	̃ is an eigenvector to the problem (3.1).
By taking the negative real axis branch cut for the square root we assume that

− π/2 < arg(λ) ≤ π/2 (3.6)

and hence 
(λ) ≥ 0. Also, we note that a j , ã j �= iλ for j = 0, . . . , P − 1 due to the
conditions (2.6)–(2.7) for a j , ã j and (3.6).

Lemma 3.1 The eigenparameters λ are neither real nor purely imaginary. In addition,
the eigenvalues λ2 satisfy �(λ2) < 0.

Proof If λ = 0, then it is easy to show that non-zero 	̃ can not fulfill (3.4)–(3.5) since
all ϕ̃ j are polynomials of degree 1. Therefore, λ �= 0 and the components ϕ̃ j of the
eigenvectors are of the form

ϕ̃ j = A je
iλx + Bje

−iλx . (3.7)

and (3.4) gives

(a j + iλ)A j = (ã j − iλ)A j+1 and (a j − iλ)Bj = (ã j + iλ)Bj+1. (3.8)

We first claim that if λ2 is an eigenvalue, then a j , ã j �= −iλ for j = 0, . . . , P − 1.
Indeed, suppose that a
 = −iλ for some 
 as the other case ã
 = −iλ for some 
 can
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be treated similarly. From (3.8), it can be shown that that A j = 0 for j = 
+1, . . . , P .
Since AP = 0, the terminal condition (3.5) implies BP = 0. Thus the second equation
of (3.8) gives Bj = 0 for j = 0, . . . , P . Due to (3.3), we have A0 = 0 and hence it
follows from the first equation of (3.8) that A j = 0 for j = 0, . . . , P , which means
that 	̃ = 0 and λ2 cannot be an eigenvalue. Once we normalize ϕ̃0 such that A0 = 1,
B0 = −1 by (3.3), a simple computation from (3.8) and (3.5) leads to

e2i(λ− π
2 ) =

P−1∏
j=0

(a j − iλ)(ã j − iλ)

(a j + iλ)(ã j + iλ)
. (3.9)

Now, suppose that λ is a positive real number. Due to the conditions (2.6)–(2.7)
for the parameters a j and ã j , the magnitude of the right-hand side of (3.9) is less
than 1 whereas the left-hand side has magnitude 1, which implies that λ2 with λ > 0
cannot be an eigenvalue. The similar argument can be used to verify that there is no
eigenvalue with purely imaginary λ such that �(λ) > 0.

Since λ is neither real nor purely imaginary, �(λ2) is non-zero. Finally, in order to
prove that �(λ2) < 0, we suppose that �(λ2) > 0 and so �(λ) > 0. Then the left-hand
side of (3.9) has magnitude less than 1 while that of the right-hand side is larger than
1, which contradicts and the proof is completed. 
�

Since eigenvalues are related with an eigenvalue problem of a holomorphic Fred-
holm operator valued function (see (3.17) below), the eigenvalues are discrete and
all eigenvalues have finite algebraic multiplicity (see [37, Theorem 1.3.1, Corollary
3.1.3]), which allows to order eigenvalues in magnitude with λ2n being the n-th eigen-
value.

Lemma 3.2 For |n| � 1, the eigenvalue λ2n has the asymptotic formula

λ2n = (2n + 1)2π2

4
+ 2

P−1∑
j=0

(a j + ã j ) + O(n−1). (3.10)

Proof To motivate this, note that if |λn| � 1 then the right-hand side of (3.9) is
approximately 1. Therefore

λn = (2n + 1)π

2
+ o(1).

Then we have

iλn − a j

iλn + a j
= 1 + 2ia j/((2n + 1)π)

1 − 2ia j/((2n + 1)π)
+ o(n−1)

= 1 + 4ia j

(2n + 1)π
+ o(n−1).
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Substituting it and the analogous formula for ã j into (3.9), we find

e2i(λn−
π
2 ) = 1 + 4i

(2n + 1)π

P−1∑
j=0

(a j + ã j ) + o(n−1).

Taking the logarithm gives

λn = (2n + 1)π

2
+ 2

(2n + 1)π

P−1∑
j=0

(a j + ã j ) + o(n−1)

and (3.10) follows. 
�

3.2 Eigenvector expansion

Now,we shall establish that the set of eigenvectors is complete in (L2(D1))
P+1, which

allows the eigenvector expansion for functions in (L2(D1))
P+1. To this end, we look at

the system of equations of the auxiliary variables with the modified recursions serving
as boundary conditions: to find λ2 ∈ C and non-trivial solutions 	 = (ϕ̃0, . . . , ϕ̃P )�
in (L2(D1))

P+1 satisfying (3.2) with the boundary conditions (3.3), (3.5) and with
(3.4) replaced by

(
d

dx
+ a j

)
ϕ̃ j =

(
− d

dx
+ ã j

)
ϕ̃ j+1 at x = 0, 1 for j = 0, . . . , P − 1. (3.11)

The only difference between the two eigenvalue problems is that the recursive formulas
of (3.4) hold in thewhole domain D1 whereas themodified recursions of the conditions
(3.11) are imposed only at the two boundary points x = 0 and 1.

Obviously, eigenvalues of the problem (3.2) with the conditions (3.3)–(3.5) are
eigenvalues of the expanded eigenvalue problem with (3.11) instead of (3.4). We
note that the expanded eigenvalue problem has additional eigenvalues. However,
eigenvectors associated with the additional eigenvalues do not contribute to eigen-
vector expansions for functions satisfying (3.4). Indeed, let λ2 be an eigenvalue of the
expanded eigenvalue problem for an eigenvector 	 such that

δ j = d

dx
ϕ̃ j+1 − ã j ϕ̃ j+1 + d

dx
ϕ̃ j + a j ϕ̃ j �= 0.

Then it solves the problem

d2

dx2
δ j + λ2δ j = 0 and δ j (0) = δ j (1) = 0.
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This is satisfied for λ2 = n2π2, δ j = C j sin(nπx). Here we claim that for each n the
eigenspace associated with λ2 is of P-dimension. To prove it, we see that

ϕ̃ j = A j sin(nπx) + Bj cos(nπx) (3.12)

for some constants A j and Bj , and the boundary conditions (3.3),(3.5) and (3.11) are
satisfied if

B0 = AP = 0, (3.13)

nπ A j + a j B j = −nπ A j+1 + ã j B j+1, j = 0, . . . , P − 1. (3.14)

These represent P + 2 linearly independent linear equations in 2P + 2 unknowns
and so the null space has dimension P . If the full extended system has a complete
set of eigenvectors then we can expand any vector function 	 for which all δ j = 0.
These will only involve the eigenvectors corresponding to the original problem (see
Theorem 3.7).

From now on, we shall prove the completeness of eigenvectors of the expanded
eigenvalue problem (3.2) with (3.3), (3.5) and (3.11). To do this, we use the spectral
theory in [37] investigating a general class of non-self-adjoint boundary eigenvalue
problems in L2(D1), in particular, of the form

d

dx
Y = λAY in D1 (3.15)

with the boundary condition given by

W̃ (0)(λ)Y(0) + W̃ (1)(λ)Y(1) = 0, (3.16)

where Y ∈ (L2(D1))
N and A is an N × N invertible matrix for N ∈ N. Also,

W̃ ( j)(λ) are N × N matrices. The theory deals with boundary eigenvalue problems
for which eigenparameters are involved non-linearly in boundary conditions and gives
sufficient conditions for the norm convergence of the eigenvector expansions. The
eigenvalue problem (3.15)–(3.16) is related to the holomorphic Fredholm operator-
valued function of λ ∈ C from (L2(D1))

N to (L2(D1))
N × C

N defined by

T (λ)Y =
( d

dxY − λAY
W̃ (0)(λ)Y(0) + W̃ (1)(λ)Y(1)

)
:=

(
T D(λ)Y
T R(λ)Y

)
, (3.17)

and (μ,Y) is an eigenpair of the problem if and only if T (μ)Y = 0.
The eigenvector expansion under consideration is defined as an infinite sum of

certain eigenvectors and associated vectors of (3.17), (precisely they are called the
canonical system of eigenvectors and associated vectors), where eigenvectors and
associated vectors for an eigenvalueμ are defined as a set {Y0,Y1, . . . ,Ym} satisfying
T (λ)Y has a zero at λ = μ of multiplicity ≥ m + 1 with a root function Y =
Y0 + (λ − μ)Y1 + · · · + (λ − μ)mYm (see [37, Definition 1.6.1]).
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The desired series expansion in terms of eigenvectors and associated vectors of
(3.17) is guaranteed if the boundary eigenvalue problem (3.15) with the boundary
condition (3.16) satisfies the so-called Birkhoff regular condition, whose definition is
given as follows. For an eigenvalue λν ofA for ν = 1, 2, . . . , N , let ϕν denote arg(λν).
For λ ∈ C \ {0} we set

γν(λ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 
(λeiϕν ) < 0,
1 if 
(λeiϕν ) > 0,
0 if 
(λeiϕν ) = 0 and �(λeiϕν ) > 0,
1 if 
(λeiϕν ) = 0 and �(λeiϕν ) < 0.

Finally, we define the N × N diagonal matrix

�(λ) = diag(γ1(λ), . . . , γN (λ)).

Definition 3.3 The boundary eigenvalue problem (3.15)–(3.16) is said to be Birkhoff
regular if there exist N × N matrices W ( j) independent of λ satisfying

|W̃ ( j)(λ) − W ( j)| = O(λ−1) as λ → ∞. (3.18)

and

W (0)(IN − �(λ)) + W (1)�(λ)

is invertible for λ ∈ C \ {0}, where IN represents the N × N identity matrix.

The definition of the Birkhoff regular condition is a special case of the general
definition given in [37, Definition 4.1.2]. The following theorem quoted from [37]
provides a sufficient condition for the existence of a series expansion of functions in
(L2(D1))

N in terms of eigenvectors and associated vectors.

Theorem 3.4 ([37, Theorem 5.3.2]) If the boundary eigenvalue problem (3.15) with
the boundary condition (3.16) is Birkhoff regular, then every functionF ∈ (L2(D1))

N

has a series expansion

F =
∞∑
n=0

mn−1∑
q=0

cqnYq
n ,

where cqn are complex coefficients and {Yq
n }mn−1

q=0 is the canonical system of eigenvec-
tors and associated vectors for the eigenvalue λn of (3.15), (3.16).

To follow the theory in [37], we convert the second order eigenvalue problem to a
first order boundary eigenvalue problem by introducing ψ̃ j such that

d

dx
ϕ̃ j = −λψ̃ j and

d

dx
ψ̃ j = λϕ̃ j .
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Then we seek eigenvalues λ ∈ C such that there is a non-zero function

Y = (ϕ̃0, ϕ̃1, . . . , ϕ̃P , ψ̃0, ψ̃1, . . . , ψ̃P )� ∈ (L2(D1))
2P+2

satisfying (3.15) and the boundary condition (3.16) with N = 2P + 2, where A is a
(2P + 2) × (2P + 2) matrix defined by

A =
[

0 −IP+1
IP+1 0

]
=

[
0 −1
1 0

]
⊗ IP+1, (3.19)

and W̃ (0) and W̃ (1) are (2P + 2) × (2P + 2) matrices given by

W̃ (0)(λ) =
[
Ṽ (0) − J̃ (0)

0P+1 0P+1

]
and W̃ (1) =

[
0P+1 0P+1

Ṽ (1) − J̃ (1)

]
(3.20)

with (P + 1) × (P + 1) matrices

Ṽ (0) =

⎡
⎢⎢⎢⎢⎢⎣

a0 −ã0
a1 −ã1

. . .
. . .

aP−1 −ãP−1
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, J̃ (0) =

⎡
⎢⎢⎢⎢⎢⎣

λ λ

λ λ

. . .
. . .

λ λ

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Ṽ (1) =

⎡
⎢⎢⎢⎢⎢⎣

a0 −ã0
a1 −ã1

. . .
. . .

aP−1 −ãP−1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

, J̃ (1) =

⎡
⎢⎢⎢⎢⎢⎣

λ λ

λ λ

. . .
. . .

λ λ

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

Here 0P+1 denotes the (P + 1) × (P + 1) zero matrix. By the change of basis using
the transition matrix

S =
[
i 1
1 i

]
⊗ IP+1,

A can be diagonalized and by abuse of notation we continue to write A for S−1AS.
Similarly, we continue to use W̃ (0) and W̃ (1) for 2S−1W̃ (0)S and 2S−1W̃ (1)S, respec-
tively. Thus, we can assume that A is a diagonal matrix

A =
[
i 0
0 −i

]
⊗ IP+1 (3.21)

123



792 T. Hagstrom, S. Kim

and W̃ (0) and W̃ (1) are given by

W̃ (0)(λ) =
[
1 −i
i 1

]
⊗ Ṽ (0) −

[−i 1
1 i

]
⊗ J̃ (0),

W̃ (1)(λ) =
[
i 1
1 −i

]
⊗ Ṽ (1) −

[
1 i
−i 1

]
⊗ J̃ (1).

(3.22)

Before we go further to study the Birkhoff regularity of the eigenvalue problem,
we investigate the algebraic multiplicity mn of eigenvalues of the problem (3.21)
and (3.22) by analyzing the determinant of the characteristic matrix function (see
[37, Section 1.11, Section 3.2]). To do this, we shall recall the characteristic matrix
function of (3.17) in a decomposition of T (λ): let

Y (x, λ) =
[
eiλx 0
0 e−iλx

]
⊗ IP+1,

which is a generator of solutions of the form Y = Y (x, λ)c0 for c0 ∈ C
2P+2 to the

homogeneous equation T D(λ)Y = 0 and is called the fundamental matrix function
of (3.17). We define Z(λ) : C

2P+2 → (H1(0, 1))2P+2 by Z(λ) = Y (x, λ)c0 for
c0 ∈ C

2P+2. We can also find the right inverse of T D(λ) for the zero initial condition,
which is denoted by U (λ), for g ∈ (L2(0, 1))2P+2

U (λ)g = Y (x, λ)

∫ x

0
Y (t, λ)−1g(t)dt .

The maps defined up to now come together in the following short exact sequence.

0 C
2P+2 (H1(0, 1))2P+2 (L2(0, 1))2P+2 0

C
2P+2

Z(λ)

M(λ)

T D(λ)

T R(λ)

U (λ)

In particular, since T D(λ) has the right inverse U (λ), the exact sequence is split-
ting, i.e., (H1(0, 1))2P+2 � C

2P+2 ⊕ (L2(0, 1))2P+2, and the map (Z(λ),U (λ)) :
C
2P+2 × (L2(0, 1))2P+2 → (H1(0, 1))2P+2 defined by (Z(λ),U (λ))(c0, g) =

Z(λ)c0 +U (λ)g is invertible. By introducing

M(λ)c0 = T R(λ)Z(λ)c0, (3.23)

which is called the characteristic matrix function of (3.17), we can decompose T (λ)

into

T (λ) =
(
T D(λ)

T R(λ)

)
=

(
0 id(L2(0,1))2P+2

id
C2P+2 T R(λ)U (λ)

)(
M(λ) 0
0 id(L2(a,b))2P+2

)
(Z(λ),U (λ))−1.
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Since the first and last matrix functions in the decomposition are invertible, the spec-
trum of T (λ) is determined by the characteristic matrix function M(λ). From the
definition (3.23) of the characteristic matrix function, we see that

M(λ) =
[
M11 M12
M21 M22

]
,

where

M11 = −i(Ṽ (0) + i J̃ (0)) + ieiλ(Ṽ (1) + i J̃ (1)),

M12 = −i(Ṽ (0) − i J̃ (0)) + e−iλ(Ṽ (1) − i J̃ (1)),

M21 = −i(Ṽ (0) + i J̃ (0)) + eiλ(Ṽ (1) + i J̃ (1)),

M22 = −i(Ṽ (0) − i J̃ (0)) − ie−iλ(Ṽ (1) − i J̃ (1)).

Denoting

α±
j = a j ± iλ, and α̃±

j = ã j ± iλ, (3.24)

a = 1 + ieiλ, b = −i + e−iλ, c = i + eiλ and d = 1 − ie−iλ, (3.25)

M(λ) can be written as

M(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

⎡
⎢⎢⎢⎢⎢⎢⎣

α+
0 −α̃−

0
α+
1 −α̃−

1
. . .

. . .

α+
P−1 −α̃−

P−1
1/a 0 · · · 0 −eiλ/a

⎤
⎥⎥⎥⎥⎥⎥⎦

b

⎡
⎢⎢⎢⎢⎢⎢⎣

α−
0 −α̃+

0
α−
1 −α̃+

1
. . .

. . .

α−
P−1 −α̃+

P−1
−i/b 0 · · · 0 −ie−iλ/b

⎤
⎥⎥⎥⎥⎥⎥⎦

c

⎡
⎢⎢⎢⎢⎢⎢⎣

α+
0 −α̃−

0
α+
1 −α̃−

1
. . .

. . .

α+
P−1 −α̃−

P−1
i/c 0 · · · 0 ieiλ/c

⎤
⎥⎥⎥⎥⎥⎥⎦

d

⎡
⎢⎢⎢⎢⎢⎢⎣

α−
0 −α̃+

0
α−
1 −α̃+

1
. . .

. . .

α−
P−1 −α̃+

P−1
1/d 0 · · · 0 −e−iλ/d

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.26)

Lemma 3.5 The determinant of M(λ) is

− 2(−2i)P (e−iλ − eiλ)P

⎛
⎝e−iλ

P−1∏
j=0

(a j − iλ)(ã j − iλ) + eiλ
P−1∏
j=0

(a j + iλ)(ã j + iλ)

⎞
⎠ .

(3.4)
Thus an eigenvalueλwith�(λ) < 0 has algebraicmultiplicity 1whereas an eigenvalue
λ with λ = nπ has algebraic multiplicity P.
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Proof Since eigenvalues λ with �(λ) < 0 are solutions to the equation (3.9), the
determinant must have the factor

w0 := e−iλ
P−1∏
j=0

(a j − iλ)(ã j − iλ)

︸ ︷︷ ︸
:=w−

+ eiλ
P−1∏
j=0

(a j + iλ)(ã j + iλ)

︸ ︷︷ ︸
:=w+

.

Using (3.24), w− and w+ are simply written as

w− = e−iλ
P−1∏
j=0

α−
j α̃−

j and w+ = eiλ
P−1∏
j=0

α+
j α̃+

j .

Taking the number of linear factors α±
j and α̃±

j with respect to λ into account, we note
that det(M(λ)) is of the form

det(M(λ)) := z(eiλ)w0 = z(eiλ)w− + z(eiλ)w+,

where z(eiλ) is a function of eiλ, and it does not include any terms with mixed signs
such as α+

j α−

 , α−

j α+

 , α+

j α̃−

 and α−

j α̃+

 . We will find the common factor z(eiλ) by

examining w− and w+ in computing det(M(λ)).
We begin by denoting the multipliers of w± in det M(λ) by z±(eiλ), respectively,

and we will show that

z+(eiλ) = z−(eiλ) = −2(−2i)P (e−iλ − eiλ)P .

In order to examine the term z+(eiλ)w+ of det(M(λ)), we note that the first P rows
of M11, M12, M21 and M22 have the common factors a, b, c and d defined by (3.25),
respectively. Since w+ is determined by how many α+

j are selected in M11 and how

many remaining α+
j are selected in M21 (or equivalently how many α̃+

j are selected in

M12 andM22), it suffices to find the determinant of thematrix M̃ obtained by replacing
α−
j , α̃

−
j with 0 and α+

j , α̃
+
j with 1,

M̃(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

a 0
a 0

. . .
. . .

a 0
1 0 · · · 0 −eiλ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 −b
0 −b

. . .
. . .

0 −b
−i 0 · · · 0 e−iλ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c 0
c 0

. . .
. . .

c 0
i 0 · · · 0 ieiλ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 −d
0 −d

. . .
. . .

0 −d
1 0 · · · 0 −e−iλ

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← (P+1)th row

← (2P+2)th row

. ↑

. (P+1)th column

(3.28)
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Then we add the (P +1)-th row multiplied by i to the (2P +2)-th row to eliminate
the (2P + 2, P + 1) entry ieiλ and use the cofactor expansion along the (P + 1)-th
column, which includes only one non-zero entry −eiλ at (P + 1, P + 1). We conduct
the cofactor expansion along the (P + 1)-th column and then do it once again along
the (P + 1)-th column (which also has only one non-zero entry 2 at (P + 1, 2P + 1))
in computing the (P + 1, P + 1) minor to see that det(M̃) is given by

det(M̃) = (−1)P+12eiλ det(M̃1),

where M̃1 is a 2P × 2P matrix of the form

M̃1 =
[
a −b
c −d

]
⊗ IP .

Using the fact that the determinant of M̃1 is (bc− ad)P = (2i)P (e−iλ − eiλ)P yields
that

z+(eiλ)w+ = det(M̃(λ))

P−1∏
j=0

α+
j α̃+

j

= −2(−2i)P (e−iλ − eiλ)Peiλ
P−1∏
j=0

α+
j α̃+

j .

Similarly, one can show that

z−(eiλ)w− = −2(−2i)P (e−iλ − eiλ)Pe−iλ
P−1∏
j=0

α−
j α̃−

j ,

and so it is shown that (3.4) is the determinant of M . Thus, it turns out that eigenvalues
λ are the zeros of e2iλ = 1 or w0 = 0 (the equation (3.9)).

Now, we are left to show that the zeros of e2iλ = 1 and w0 = 0 are all simple. It is
easy to see that the zeros of e2iλ = 1 are simple and hence their algebraic multiplicity
is P due to the P-th power of (e−iλ − eiλ)P . For the case of (3.9), we shall show that
the derivative of the function

F(λ) = e2iλ
P−1∏
j=0

(a j + iλ)(ã j + iλ)

(a j − iλ)(ã j − iλ)
+ 1

does not have a zero in the fourth quadrant of C. To do this we find the derivative of
the function

F(λ) = e2iλ
2P−1∏
j=0

b j + iλ

b j − iλ
+ 1
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with b j = a j and bP+ j = ã j for j = 0, . . . , P − 1:

F ′(λ) = 2ie2iλ
2P−1∏
j=0

b j + iλ

b j − iλ
+ e2iλ

2P−1∑

=0

2ib


(b
 − iλ)2

∏
j �=


b j + iλ

b j − iλ
.

If λ is a zero of F(λ) = 0, then we have

F ′(λ) = −2i −
2P−1∑

=0

2ib


(b
 − iλ)2

b
 − iλ

b
 + iλ
= −2i

(
1 +

2P−1∑

=0

b


b2
 + λ2

)
.

Therefore, it suffices to show that 1 + f(λ) + g(λ) = 0 has no zero λ with −π/2 <

arg(λ) < 0, where

f(λ) =
n p−1∑
j=0

−ic j k

λ2 − c2j k
2

+ −i c̃ j k

λ2 − c̃2j k
2
,

g(λ) =
n p+ne−1∑

j=n p

c j k

λ2 + c2j k
2

+ c̃ j k

λ2 + c̃2j k
2
.

Now we observe that linear fractional transformations of the form

η(z) = −ic

z − c2
and ζ(z) = σ

z + σ 2

with c > 0 and σ > 0 have the following mapping properties

η, ζ : {z ∈ C : −π/2 < arg(z) < 0} → {z ∈ C : 
(z) > 0}
η, ζ : {z ∈ C : −π < arg(z) ≤ −π/2} → {z ∈ C : �(z) > 0}.

Then the required result follows from the fact that 
(f(λ)) > 0, 
(g(λ)) > 0 for
−π/4 < arg(λ) < 0 and �(f(λ)) > 0, �(g(λ)) > 0 for −π/2 < λ ≤ −π/4, which
completes the proof. 
�

We further transform the boundary condition (3.16) by multiplying it by an invert-
ible diagonal matrix I2 ⊗ � with � = diag(˘−1, . . . , ˘−1, 1), which results in the
equivalent boundary condition of the form (3.16) with

W̃ (0)(λ) =
[
1 −i
i 1

]
⊗ �Ṽ (0) −

[−i 1
1 i

]
⊗ J (0), (3.4)

W̃ (1)(λ) =
[
i 1
1 −i

]
⊗ �Ṽ (1) −

[
1 i
−i 1

]
⊗ J (1) (3.5)

with abuse of notations for W̃ (0) and W̃ (1), where J ( j) are the matrices obtained from
J̃ ( j) by replacing λ with 1. It is clear that W̃ (0)(λ) and W̃ (1)(λ) are asymptotically

123



Complete radiation boundary conditions for the Helmholtz… 797

constant for large λ, i.e. there exist (2P +2)× (2P +2) matricesW (0) andW (1) such
that

W̃ (0)(λ) = W (0) + O(λ−1) and W̃ (1)(λ) = W (1) + O(λ−1),

where

W (0) =
[
1 −i
i 1

]
⊗ EP,0 −

[−i 1
1 i

]
⊗ J (0),

W (1) = −
[

1 i
−i 1

]
⊗ J (1).

(3.6)

Here E
, j is a (P + 1) × (P + 1) matrix whose only non-zero element is one at the
(
, j) component with 0 ≤ 
, j ≤ P .

On the other hand, we recall that A has the eigenvalues i and −i of multiplicity
P + 1 and see that if γν(λ) = 1 for the first P + 1 eigenvalues i counting their
multiplicity for λ ∈ C \ {0}, then γν(λ) = 0 for the remaining P + 1 eigenvalues, −i ,
and vice versa. It implies that

�(λ) =
[
1 0
0 0

]
⊗ IP+1 or

[
0 0
0 1

]
⊗ IP+1.

Consequently, according to Definition 3.3 it follows that the boundary eigenvalue
problem (3.15) with the boundary condition (3.16) (and hence (3.2) with (3.3), (3.5)
and (3.11)) is Birkhoff regular, once it is established that

W0 := W (0)
([

1 0
0 0

]
⊗ IP+1

)
+ W (1)

([
0 0
0 1

]
⊗ IP+1

)
(3.7)

and

W1 := W (0)
([

0 0
0 1

]
⊗ IP+1

)
+ W (1)

([
1 0
0 0

]
⊗ IP+1

)
(3.8)

are invertible.

Lemma 3.6 The matrices W0 and W1 defined as above are invertible.

Proof A simple computation using (3.6), (3.7) and (3.8) shows that

W0 =
[
1 0
i 0

]
⊗ EP,0 −

[−i 0
1 0

]
⊗ J (0) −

[
0 i
0 1

]
⊗ J (1).

Writing the matrix W0 in 2 × 2 block form gives

W0 =
[
W11 W12
W21 W22

]

with

W11 = EP,0 + i J (0), W12 = −i J (1)
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W21 = i EP,0 − J (0), W22 = −J (1),

and so we have

iW11 = W21 and iW12 = −W22.

Here we note that

det(W11) = (−i)P and det(W22) = (−1)P+1.

Multiplying W0 by an invertible matrix

[
IP+1 0

−i IP+1 IP+1

]

gives

[
IP+1 0

−i IP+1 IP+1

]
W0 =

[
W1,1 W1,2
0 2W2,2

]
,

from which it then follows that det(W0) = −2(2i)P �= 0.
A similar computation leads to det(W1) = −2(−2i)P �= 0. Therefore, both W0

and W1 are invertible. 
�
The eigenvector expansion of f ∈ L2(D1) can be established from Theorem 3.4.

Theorem 3.7 Let A and W̃ ( j) be given as in (3.19) and (3.20), respectively, for the
boundary eigenvalue problem (3.15)–(3.16). Then every function f ∈ L2(D1) has
a series expansion f = ∑∞

n=0 cn ϕ̃0,n where ϕ̃0,n is the zero-th component of an
eigenvector Yn := Y0

n = (ϕ̃0,n, . . . , ϕ̃P,n, ψ̃0,n, . . . , ψ̃P,n)
� for the eigenvalue λn

with �(λn) < 0 of (3.15)–(3.16), satisfying (3.4).

Proof For f smooth and compactly supported in (0, 1 − δ) we define f j by f0 = f
and

f j+1(x) = − f j (x) − (a j + ã j )e
ã j x

∫ x

1−δ

f j (t)e
−ã j t dt (3.9)

for j = 0, . . . , P − 1. Indeed, the sequence of the functions f j is constructed in such
a way that they solve the recurrence relations

− d

dx
f j+1 + ã j f j+1 = d

dx
f j + a j f j for j = 0, . . . , P − 1

and vanish for 1 − δ < x < 1.
We define F = ( f0, . . . , fP−1, 0, . . . , 0)� ∈ (L2(D1))

2P+2. By Theorem 3.4
there exist constants cqn such that

F =
∞∑
n=0

mn−1∑
q=0

cqnYq
n . (3.10)
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Due to Lemma 3.5 the geometric multiplicity is equal to the algebraic multiplicity,
that is, mn = 1 for �(λ) < 0 and mn = P for λ = nπ . Furthermore, it can be shown
that the series (3.10) involves only eigenvectors Y = (ϕ̃0, . . . , ϕ̃P , ψ̃0, . . . , ψ̃P )� for
eigenvalues λ with �(λ) < 0, by examining

δ j (Y) := d

dx
ϕ̃ j+1 − ã j ϕ̃ j+1 + d

dx
ϕ̃ j + a j ϕ̃ j .

Indeed, it is enough to show that Ŷn := ∑P−1
q=0 cqnYq

n in the series (3.10), where

Yq
n , q = 0, . . . , P − 1 are the P linearly independent eigenvectors corresponding to

λ = nπ ,must vanish. If so, cqn = 0 sinceYq
n are linearly independent.We recall that the

components ϕ̃q
j ofYq

n are of the form (3.12)with coefficients Aq
0 , . . . , A

q
P , Bq

0 , . . . , Bq
P

satisfying (3.13)–(3.14). By simple computation using (3.14), we get

δ j (Yq
n ) =

(
a j A

q
j − ã j A

q
j+1 − nπBq

j − nπBq
j+1

)
sin (nπx) := Cq

j sin(nπx)

and so

δ j (Ŷn) = δ j (

P−1∑
q=0

cqnYq
n ) =

⎛
⎝P−1∑

q=0

cqnC
q
j

⎞
⎠ sin(nπx).

Since δ j (F) = 0 and δ j (Y) = 0 for eigenvectors Y associated with eigenvalues λ

with �(λ) < 0, we have

0 = δ j (F) =
∑

λ=nπ

δ j (Ŷn) =
∑

λ=nπ

⎛
⎝P−1∑

q=0

cqnC
q
j

⎞
⎠ sin(nπx).

Thus it follows that
∑P−1

q=0 cqnC
q
j = 0 due to the linear independence of the sine func-

tions, which means δ j (Ŷn) = 0. If Ŷn was non-zero, then Ŷn would be an eigenvector
for λ = nπ since it is the linear combination of eigenvectors for λ = nπ , and so we
would conclude that nπ is an eigenvalue with the eigenvector satisfying (3.4) saying
δ j (Ŷn) = 0. This possibility is excluded by Lemma 3.1. We thus conclude that the
eigenvectors corresponding to the eigenvalue nπ do not contribute to the expansion of
f . The final result follows from the density of smooth compactly supported functions
in L2(D1). 
�

Remark 3.8 The analysis of the eigenvalue problem in this section allows us to have a
series expansion of functions in L2(D1) in terms of eigenvectors satisfying CRBC at
one boundary. It is also possible withminormodifications to extend it to the eigenvalue
problem equipped with CRBC at both boundaries of the unit interval.
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4 Model problems in a domain with corners

In this section, we consider an application of CRBC to a time-harmonic wave propa-
gation problem posed in a domain with corners. Let� = (0, 1)2 be the square domain
in R

2 with north, west, south and east boundaries denoted by �N , �W , �S and �E ,
respectively. In order to focus on a corner condition of CRBC at one corner, CRBC is
imposed on �N and �E while a homogeneous Dirichlet boundary condition is given
on �S and �W , so that we will analyze a corner condition for CRBC at the north-
east corner denoted by NE. In the model problem, we assume that wave sources are
supported away from the boundaries �N ∪ �E . We consider the problem to find u in
H1(�) satisfying ⎧⎪⎨

⎪⎩
�u + k2u = f in �,

u = 0 on �W ∪ �S,

CRBC on �E ∪ �N .

(4.1)

for a source function f compactly supported in (0, 1 − δ)2 ⊂ � with 0 < δ < 1.
We notice that solutions to the above problem satisfy the Helmholtz equation on a

neighborhood of �E ∪ �N , say �δ = � \ (0, 1− δ]2. The CRBC on �E is defined by
a sequence of auxiliary variables φE

j satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�φE
j + k2φE

j = 0 in (1 − δ, 1) × (0, 1), for j = 0, . . . , P,

φE
0 = u in (1 − δ, 1) × (0, 1),

(∂1 + a j )φ
E
j = (−∂1 + ã j

)
φE
j+1 in (1 − δ, 1) × (0, 1), for j = 0, . . . , P − 1,

∂1φ
E
P = 0 on �E .

(4.2)
Similarly, the CRBC on �N is defined by the auxiliary variables φN


 satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�φN

 + k2φN


 = 0 in (0, 1) × (1 − δ, 1), for k = 0, . . . , P,

φN
0 = u in (0, 1) × (1 − δ, 1),

(∂2 + a
)φ
N

 = (−∂2 + ã
)φ

N

+1 in (0, 1) × (1 − δ, 1), for 
 = 0, . . . , P − 1,

∂2φ
N
P = 0 on �N .

(4.3)
Now, we establish the existence of the solution u to the problem (4.1) and find

a series expansion of u in terms of eigenvectors of (3.2) with the boundary condi-
tions (3.3)–(3.5). This series representation will give a motivation for finding a corner
compatibility condition of a practical CRBC formulation suitable for discretization
methods such as the finite element method for numerical computation.

Since L2(�) = L2(D1)⊗L2(D1), by Theorem 3.7 we can assume that f ∈ L2(�)

with compact support can be written as

f (x1, x2) =
∞∑

n1,n2=0

cn1,n2 ϕ̃0,n1(x1)ϕ̃0,n2(x2), (4.4)

123



Complete radiation boundary conditions for the Helmholtz… 801

where the series includes only eigenvectors for eigenvalues with �(λn j ) < 0. Here f
is considered as the (0, 0)-component of the function F = ( f j,
)Pj,
=0 with f j,
 = f
for ( j, 
) = (0, 0) and f j,
 defined analogously to (3.9) with respect to 
 with the
initial function f j,0 otherwise, which can be expanded as

F(x1, x2) =
∞∑

n1,n2=0

cn1,n2Yn1(x1) ⊗ Yn2(x2).

Theorem 4.1 There exists a solution u in H1(�) satisfying �u ∈ L2(�) of the form

u(x1, x2) =
∞∑

n1,n2=0

un1,n2 ϕ̃0,n1(x1)ϕ̃0,n2(x2) (4.5)

with un1,n2 = cn1,n2(k
2 − λ2n1 − λ2n2)

−1 to the problem (4.1).

Proof It suffices to show that (4.5) is well-defined and it solves the problem (4.1). To
this end, we let

U (x1, x2) =
∞∑

n1,n2=0

un1,n2Yn1(x1) ⊗ Yn2(x2)

=
∞∑

n1,n2=0

an1,n2

(
cn1,n2Yn1(x1) ⊗ Yn2(x2)

) (4.6)

with an1,n2 = (k2 − λ2n1 − λ2n2)
−1. We first show that

(i) an1,n2 is of bounded bivariation, i.e.,

∞∑
n1,n2=0

|an1,n2 − an1+1,n2 − an1,n2+1 + an1+1,n2+1| < ∞, (4.7)

(ii) an1,0 of bounded variation, i.e.,
∑∞

n1=0 |an1,0 − an1+1,0| < ∞,

(iii) a0,n2 of bounded variation, i.e.,
∑∞

n2=0 |a0,n2 − a0,n2+1| < ∞,

by using the asymptotic behavior (3.10) of eigenvalues. Indeed, due to the fact that

|an1,n2 − an1+1,n2 − an1,n2+1 + an1+1,n2+1|

=
∣∣∣∣∣

(λ2n1 − λ2n1+1)(λ
2
n2 − λ2n2+1)(2k

2 − λ2n1 − λ2n1+1 − λ2n2 − λ2n2+1)

(k2 − λ2n1 − λ2n2 )(k
2 − λ2n1+1 − λ2n2 )(k

2 − λ2n1 − λ2n2+1)(k
2 − λ2n1+1 − λ2n2+1)

∣∣∣∣∣

= O(n1)O(n2)O(n21 + n22)

O((n21 + n22)
4)

= O

(
1

(n21 + n22)
2

)
,

(4.8)
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∣∣an1,0 − an1+1,0
∣∣ =

∣∣∣∣∣
λ2n1 − λ2n1+1

(k2 − λ2n1 − λ20)(k
2 − λ2n1+1 − λ20)

∣∣∣∣∣

= O(n1)

O(n41)
= O

(
1

n31

) (4.9)

and the analogous asymptotic behavior for |a0,n2 − a0,n2+1|, (i), (ii) and (iii) holds.
Now, since two series

F∞,N (x1, x2) =
∞∑
n1

N∑
n2=0

cn1,n2Yn1(x1) ⊗ Yn2(x2)

FM,∞(x1, x2) =
∞∑
n2

M∑
n1=0

cn1,n2Yn1(x1) ⊗ Yn2(x2)

converges for each M, N ∈ N as a projection onto (L2(D1))
2P+2 ⊗ span{Yn2}Nn2=0

and span{Yn1}Mn1=0 ⊗ (L2(D1))
2P+2, respectively, and an1,n2 satisfies (i), (ii) and (iii),

we can apply Dedekind’s test (see e.g., [18]) to conclude that the series (4.6) converges
in (L2(�))4(P+1)2 . Therefore (4.5) is well-defined as the (0, 0)-component of U and
satisfies the Dirichlet boundary condition on �S and �W .

Furthermore, one can show that λn j an1,n2 is of bounded bivariation, in case of
n j = n1, by using (4.8) and λn1 − λn1+1 = O(1)

|λn1an1,n2 − λn1+1an1+1,n2 − λn1an1,n2+1 + λn1an1+1,n2+1|
≤ |λn1 ||an1,n2 − an1+1,n2 − an1,n2+1 + an1+1,n2+1| + C |an1+1,n2 − an1+1,n2+1|

= O

(
n1

(n21 + n22)
2

)
+ O

(
n2

(n21 + n22)
2

)
= O

(
1

(n21 + n22)
3/2

)
,

and λn1an1,0 is of bounded variation (λn2a0,n2 as well)

|λn1an1,0 − λn1+1an1+1,0| ≤ |λn1 ||an1,0 − an1+1,0| + C |an1+1,0|

= O

(
1

n21

)
+ O

(
1

n21

)
= O

(
1

n21

)
,

and so Dedekind’s test again verifies that

v j (x1, x2) =
∞∑

n1,n2=0

−λn j un1,n2ψ̃0,n j (x j )ϕ̃0,n

(x
) j �= 


converge in L2(�) for j, 
 = 1, 2. Noting that v j = ∂ j u in the weak sense, we see
that u is in H1(�).
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For the partial sum UM,N = ∑M
n1=0

∑N
n2=0 un1,n2Yn1(x1)Yn2(xn2) and the analo-

gous one FM,N for F , it holds that (� + k2)UM,N = FM,N . Thus, for any smooth
function G with compact support

(U , (� + k2)G)� = lim
M,N→∞(UM,N , (� + k2)G)�

= lim
M,N→∞(FM,N ,G)� = (F ,G)�,

which implies thatU is the solution to the Helmholtz equation in the weak sense, and
�U ∈ (L2(�))4P+4. In particular the (0, 0)-component reads the Helmholtz equation
of the problem (4.1).

Due to the fact that f j,
 vanishes in �δ , the auxiliary variables φE
j and φN


 , ( j, 0)-
and (0, 
)-components of U , respectively, defined by

φE
j (x1, x2) =

∞∑
n1,n2=0

un1,n2 ϕ̃ j,n1(x1)ϕ̃0,n2(x2),

φN

 (x1, x2) =

∞∑
n1,n2=0

un1,n2 ϕ̃0,n1(x1)ϕ̃
,n2(x2)

solve the Helmholtz equation in (1− δ, 1)× (0, 1) and (0, 1)× (1− δ, 1), and satisfy
(4.2) and (4.3), respectively. Therefore they define CRBC on �E and �N , which
completes the proof. 
�
Remark 4.2 If u is a solution to the problem (4.1), then there exist doubly indexed
auxiliary variables, ( j, 
)-components of U ,

φ j,
(x1, x2) =
∞∑

n1,n2=0

un1,n2 ϕ̃ j,n1(x1)ϕ̃
,n2(x2)

satisfying
(� + k2)φ j,
 = 0 in �δ,

(∂1 + a j )φ j,
 = (−∂1 + ã j )φ j+1,
 in �,

(∂2 + a
)φ j,
 = (−∂2 + ã
)φ j,
+1 in �

(4.10)

with φ j,0 = φE
j ,φ0,
 = φN


 , and ∂1φP,
(1, ·) = 0 on �E , ∂2φ j,P (·, 1) = 0 on �N

for j, 
 = 0, . . . , P . These relations lead to a corner condition to be imposed at NE
in deriving practical CRBC. We discuss this corner compatibility condition in more
detail in the following section.

5 Practical CRBC with the corner compatibility condition

In this section we derive a practical CRBC on �E and �N from CRBC analyzed
in the preceding section and define a corner compatibility condition. Let 	E and
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	N represent vector functions whose components are the auxiliary variables for each
absorbing boundary,

	E =
P∑
j=0

φE
j e j and 	N =

P∑

=0

φN

 e
.

As studied for the half space problem in Sect. 2, CRBC on each absorbing boundary
can be written as

(∂1u)e0 = (L∂22	E + (k2L − M)	E ) on �E (5.1)

and
(∂2u)e0 = (L∂21	N + (k2L − M)	N ) on �N . (5.2)

In order to complete the systems of differential equations (5.1) and (5.2), boundary
conditions for the auxiliary variables φE

j and φN

 at two end points of �E and �N ,

respectively, are required. Clearly, at one end of �E and �N , they satisfy

φE
j (1, 0) = 0 and φN


 (0, 1) = 0. (5.3)

Motivated by Remark 4.2, the condition at the other end, which is the required corner
condition at NE, is derived as follows. From the relations (4.10) in Remark 4.2, one
can show that auxiliary variables φE

j and φN

 satisfy

(∂2φ
E
j )e0 = (∂2φ j,0)e0 = −L∂22	N

j − M	N
j ,

(∂1φ
N

 )e0 = (∂1φ0,
)e0 = −L∂21	E


 − M	E



(5.4)

at NE, where 	N
j = ∑P


=0 φ j,
e
 and 	E

 = ∑P

j=0 φ j,
e j for j, 
 = 0, . . . , P .
All derivative terms in the right hand side of the boundary conditions (5.4) will be
eliminated by using the Helmholtz equation as follows. Denoting

	NE =
P∑

j,
=0

φ j,
e j ⊗ e
,

it is clear that

	NE =
P∑

j,
=0

φ j,
e j ⊗ e
 =
P∑
j=0

e j ⊗ 	N
j =

P∑

=0

	E

 ⊗ e
. (5.5)
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Thus, it follows from (5.4) and (5.5) that

P∑
j=0

(
Le j ⊗ ∂2φ

E
j e0

) = −
P∑
j=0

(
Le j ⊗ L∂22	N

j + Le j ⊗ M	N
j

)

= −((L ⊗ L)∂22	NE + (L ⊗ M)	NE )

(5.6)

and
P∑


=0

(
∂1φ

N

 e0 ⊗ Le


) = −
P∑


=0

(
L∂21	E


 ⊗ Le
 + M	E

 ⊗ Le


)

= −((L ⊗ L)∂21	NE + (M ⊗ L)	NE ).

(5.7)

Adding (5.6) and (5.7) followedbyusing theHelmholtz equation removes all derivative
terms in the right hand sides, which results in

L∂2	
E
0 ⊗ e0 + e0 ⊗ L∂1	

N
0 = (k2L ⊗ L − L ⊗ M − M ⊗ L)	NE (5.8)

at NE.
Therefore, the model problem (4.1) can be written as the problem to find u defined

in �, 	E on �E , 	N on �N and 	NE ∈ C
(P+1)2 satisfying

�u + k2u = f in �, (5.9)

u = 0 on �S ∪ �W , (5.10)

(∂1u)e0 = (L∂22	E + (k2L − M)	E ) on �E ,

(∂2u)e0 = (L∂21	N + (k2L − M)	N ) on �N , (5.11)

and

(L∂2	
E ) ⊗ e0 + e0 ⊗ (L∂1	

N )

= (k2L ⊗ L − L ⊗ M − M ⊗ L)	NE at NE, (5.12)

	E (1, 0) = 0 and 	N (0, 1) = 0. (5.13)

6 Variational reformulation

For a variational formulation of the problem (5.9)–(5.13),we introduceSobolev spaces

H1
SW (�) = {v ∈ H1(�) : v = 0 on �S ∪ �W },

H1
SE (�E ) = {v ∈ H1(�E ) : v(1, 0) = 0},

H1
NW (�N ) = {v ∈ H1(�N ) : v(0, 1) = 0}
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and

V = {(φ,	E ,	N ,	NE ) ∈ H1
SW (�) × (H1

SE (�E ))P+1 × (H1
NW (�N ))P+1 × C

(P+1)2 :
φ = φE

0 on �E , φ = φN
0 on �N and

φE
j = φNE

j,0 , φN

 = φNE

0,
 at NE for j, 
 = 0, . . . , P}.

Applying the L2-inner product of (5.9) with test functions ξ ∈ H1
SW (�) and inte-

grating it by parts lead to

(∇u,∇ξ)� − k2(u, ξ)� − (∂1u, ξ)�E − (∂2u, ξ)�N = ( f , ξ)�. (6.1)

where (·, ·)D is the L2-inner product on a domain D. For the boundary integrals on
�E and �N in (6.1), we take test functions

�E = (ψ E
0 , . . . , ψ E

P )� ∈ (H1
SE (�E ))P+1,

�N = (ψN
0 , . . . , ψN

P )� ∈ (H1
NW (�N ))P+1

with ψ E
0 = ξ on �E and ψN

0 = ξ on �N and apply L2-inner products of (5.11) with
�E and �N to obtain that

−(∂1u, ξ)�E = (L∂2	
E , ∂2�

E )�E

+ ((−k2L + M)	E , �E )�E − (L∂2	
E (NE),�E (NE))CP+1,

−(∂2u, ξ)�N = (L∂1	
N , ∂1�

N )�N

+ ((−k2L + M)	N , �N )�N − (L∂1	
N (NE),�N (NE))CP+1,

(6.2)

where (·, ·)CN is the standard inner product for CN . In order to deal with the inner
product of the vectors composed of the corner values at NE in (6.2), we denote test
vectors in C(P+1)2 by

�NE =
P∑

j,
=0

ψNE
j,
 e j ⊗ e


withψNE
j,0 = ψ E

j (NE) andψNE
0,
 = ψN


 (NE). Then noting that�E
0 = �E , we observe

that

(
L∂2	

E (NE), �E (NE)
)
CP+1

=
(
L∂2	

E (NE) ⊗ e0, �E
0 (NE) ⊗ e0

)
C(P+1)2

=
(
L∂2	

E (NE) ⊗ e0, �NE
)
C(P+1)2

.

(6.3)
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By (6.3) and the analogous equation for L∂1	
N (NE), the corner condition (5.12)

produces

(L∂2	
E (NE), �E (NE))

C(P+1)2 + (L∂1	
N (NE), �N (NE))

C(P+1)2

= ((k2L ⊗ L − L ⊗ M − M ⊗ L)	NE , �NE )
C(P+1)2 .

(6.4)

Finally, combining (6.1), (6.2) and (6.4) gives a variational problem to find
(u,	E ,	N ,	NE ) ∈ V such that

A((u,	E ,	N ,	NE ), (ξ,�E , �N , �NE )) = ( f , ξ)� (6.5)

for all (ξ,�E , �N , �NE ) ∈ V, where

A((u,	E ,	N ,	NE ), (ξ,�E , �N , �NE ))

= AI (u, ξ) + BE (	E , �E ) + BN (	N , �N ) + (R	NE , �NE )
C(P+1)2

with

AI (u, ξ) = (∇u,∇ξ)� − k2(u, ξ)�,

BE (	E , �E ) = (L∂2	
E , ∂2�

E )�E + ((−k2L + M)	E , �E )�E ,

BN (	N , �N ) = (L∂1	
N , ∂1�

N )�N + ((−k2L + M)	N , �N )�N ,

R = (−k2L ⊗ L + L ⊗ M + M ⊗ L).

7 Existence of unique solutions to problem (6.5)

We first show that the problem (6.5) has a unique solution in V. To do this, we begin
with some properties of matrices defining the corner compatibility condition. Let Lz

andMz be the P × P submatrices of L andM obtained by removing the 0-th row and
0-th column of L andM, respectively. Also,Rz denotes the P2 × P2 submatrix ofR
associated with elements e j ⊗ e
 for j, 
 = 1, . . . , P ,

Rz = −k2Lz ⊗ Lz + Lz ⊗ Mz + Mz ⊗ Lz .

Their properties are listed in the following lemma.

Lemma 7.1 The matrices Lz ,Mz and Rz have the following properties:

(i) The matrices Lz and Mz are invertible.
(ii) If λ is an eigenvalue of L−1

z Mz , then �(λ) < 0.
(iii) The matrix Rz is invertible.
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Proof To prove (i), assume that Lz� = 0 for � = (θ1, . . . , θP )� ∈ C
P . Then, it is

easy to show that

(Lz�,�)CP =
P−1∑
j=0

1

a j + ã j
|θ j + θ j+1|2 = 0

with θ0 = 0. Since both real and imaginary parts need to be zero, that is,


((Lz�,�)CP ) =
P−1∑
j=n p

1

kc j + kc̃ j
|θ j + θ j+1|2 = 0,

�((Lz�,�)CP ) =
n p−1∑
j=0

1

kc j + kc̃ j
|θ j + θ j+1|2 = 0,

from the assumptions (2.6) and (2.7) for a j and ã j it follows that θ j = 0 for
j = 1, . . . , P , which establishes the invertibility of Lz . As for Mz , we use back-
ward Gaussian elimination to show that detMz = ∏P−1

j=0 a j ã j/(a j + ã j ) �= 0, which
completes the proof of (i).

For (ii), consider the linear problem to find � ∈ C
P satisfying

(−λLz + Mz)� = E (7.1)

for E = (E1, . . . , EP )� ∈ C
P . It is enough to show that if �(λ) ≥ 0 then (7.1) is

uniquely solvable. First of all, we notice that (7.1) has a unique solution for λ = 0 by
(ii). Now we assume that λ �= 0 and we introduce

Q j,
 =

⎧⎪⎨
⎪⎩


∏
m= j

am + i
√

λ

ãm − i
√

λ
for j ≤ 
,

1 for j > 
,

R j,
 =

⎧⎪⎨
⎪⎩


∏
m= j

ãm + i
√

λ

am − i
√

λ
for j ≤ 
,

1 for j > 
,

and Z j,
 = Q j,
R j,
. Then the same computation as that used in [21, Lemma 8.5]
and [30, Lemma 5.2] with a minor modification shows that if 1 + Z0,P−1 �= 0, then
the problem (7.1) has a unique solution of the form

�
 =
P∑
j=1

S
, j E j ,

where

S
, j =

⎧⎪⎪⎨
⎪⎪⎩

(1 − Z0,
−1)R
, j−1(1 + Z j,P−1)

−2iλ(1 + Z0,P−1)
for 
 ≤ j,

(1 − Z0, j−1)Q j,
−1(1 + Z
,P−1)

−2iλ(1 + Z0,P−1)
for 
 > j .
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Therefore, we have only to show that if �(λ) ≥ 0 and λ �= 0 then 1+ Z0,P−1 �= 0. In
fact, this result is obtained by observing that

∣∣∣∣∣
−ic j k + i

√
λ

−ic j k − i
√

λ

∣∣∣∣∣
⎧⎨
⎩

< 1 for �(λ) > 0,
< 1 for λ > 0,
= 1 for λ < 0,

and

∣∣∣∣∣
c j k + i

√
λ

c j k − i
√

λ

∣∣∣∣∣
⎧⎨
⎩

< 1 for �(λ) > 0,
= 1 for λ > 0,
< 1 for λ < 0,

for c j > 0, from which together with the analogous inequalities for c̃ j > 0 it follows
that 1 + Z0,P−1 �= 0 and the proof of (ii) is completed.

To prove (iii), it suffices to show that zero is not an eigenvalue of the following
matrix

(
L

−1
z ⊗ L

−1
z

)
Rz =

(
−k2

2
I + L

−1
z Mz

)
⊗ I + I ⊗

(
−k2

2
I + L

−1
z Mz

)
. (7.2)

Here, we recall that every eigenvalue of the Kronecker sum (7.2) arises as a sum of
eigenvalues of− k2

2 I +L
−1
z Mz . Since all eigenvalues of− k2

2 I +L
−1
z Mz have negative

imaginary parts due to the result of (ii), it follows that (L−1
z ⊗L

−1
z )Rz does not have

a zero eigenvalue, which completes the proof of (iii).

�

Theorem 7.2 The problem (6.5) has a unique solution (u,	E ,	N ,	NE ) ∈ V .

Proof We know that there exists a solution to the problem (4.1) by Theorem 4.1. Thus,
it suffices to show that if

A((u,	E ,	N ,	NE ), (ξ,�E , �N , �NE )) = 0 for all (ξ,�E , �N , �NE ) ∈ V,

(7.3)
then (u,	E ,	N ,	NE ) = 0 in V.

1 To show that u = 0 in �:
Let {un}∞n=1 be a sequence of compactly supported functions converging to u in

L2(�). By the existence of a solution discussed in Theorem 4.1, there exists a solution
(ξn, �

E
n , �N

n , �NE
n ) ∈ V to the problem (6.5) with f = ūn , where ·̄ represents the

complex conjugate. Noting that A(α, β) = A(β̄, ᾱ) for α, β ∈ V, we can show that

(u, un)� = A((u,	E ,	N ,	NE ), (ξn, �E
n , �N

n , �NE
n )) = 0.

Since un converges to u in L2(�), it follows that u = 0 in �.
2 To show that 	E = 0 on �E and 	N = 0 on �N under the conditions φE

0 = 0
on �E and φN

0 = 0 on �N :
As the equations for the auxiliary variables 	N on �N are identical with those for

the auxiliary variables 	E on �E , it is enough to show that 	E = 0 on �E . By taking
test functions (ξ,�E , �N , �NE ) in V such that �N = 0, �E ∈ (C∞

0 (�E ))P+1 and
�NE = 0 in (7.3), it can be shown that the auxiliary variables 	E satisfy

− L∂22	E + (−k2L + M)	E = 0 on �E (7.4)
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with 	E (0) = 0 (identifying �E with the interval (0, 1)). Now, we claim that φE
j for

j = 1, . . . , P can be written as

φE
j =

j−1∑
q=0

Pq, j−1Aq sin(α̃q x2) (7.5)

for some constants Aq . Here α̃2
q := k2 + ã2q and

Pq, j−1 =
j−1∏

m=q+1

am + ãq
ãm − ãq

for q = 0, . . . , j − 2 with Pj−1, j−1 = 1. To prove it, we proceed by an induction
argument on j . Since φE

0 = 0 on �E , it follows from the 0-th equation of (7.4) that
we have an equation for φE

1 ,

1

a0 + ã0
∂22φE

1 +
(
k2 + ã20
a0 + ã0

)
φE
1 = 0 on �E

with φE
1 (0) = 0, which leads that

φE
1 (x2) = P0,0A0 sin(α̃0x2)

for some constant A0. Assume that up to the j-th ( j < P) auxiliary variables are given
by the formula (7.5). The j-th equation of (7.4) shows that φE

j+1 satisfies the equation

1

a j + ã j
∂22φE

j+1 +
(
k2 + ã2j
a j + ã j

)
φE
j+1 = −1

a j−1 + ã j−1
∂22φE

j−1 +
( −k2 − a2j−1

a j−1 + ã j−1

)
φE
j−1

+
( −1

a j−1 + ã j−1
+ −1

a j + ã j

)
∂22φE

j +
(−k2 + a j−1ã j−1

a j−1 + ã j−1
+ −k2 + a j ã j

a j + ã j

)
φE
j

(7.6)
with φE

j+1(0) = 0, which can be written simply as

∂22φE
j+1 + α̃2

jφ
E
j+1 =

j−1∑
q=0

(a j + ãq)(ã j + ãq)Pq, j−1Aq sin(α̃q x2).

for q = 0, . . . , j − 1. By solving the second order ordinary differential equation we
see that φE

j+1 is of the form
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φE
j+1(x2) = A j sin(α̃ j x2) +

j−1∑
q=0

a j + ãq
ã j − ãq

Pq, j−1Aq sin(α̃q x2)

= A j sin(α̃ j x2) +
j−1∑
q=0

Pq, j Aq sin(α̃q x2) =
j∑

q=0

Pq, j Aq sin(α̃q x2)

for some constant A j , which verifies (7.5).
Now, since the last equation of the system (7.4) reveals that

∂22φE
P−1 +

(
k2 + a2P−1

)
φE
P−1 + ∂22φE

P +
(
k2 − aP−1ãP−1

)
φE
P = 0, (7.7)

substituting (7.5) for j = P − 1 and j = P into (7.7) gives

−(aP−1 + ãP−1)

P−1∑
q=0

ãq Pq,P−1Aq sin(α̃q x2) = 0 on �E .

Finally, since ãq Pq,P−1 �= 0 and sin(α̃q x2) for q = 0, . . . , P−1 are linearly indepen-
dent, we can conclude that Aq = 0 for q = 0, . . . , P − 1, which implies that 	E = 0
on �E .

3 To show that 	NE = 0 in C
(P+1)2 under the conditions that φNE

j,0 = φNE
0,
 = 0

for j, 
 = 0, . . . , P:
Since u = 0, 	E = 0 and 	N = 0, the problem (7.3) is reduced to the linear

problem for the corner values,

Rz

⎛
⎝ ∑

j,
=1,P

φNE
j,
 e j ⊗ e


⎞
⎠ = 0.

Since Rz is invertible by Lemma 7.1, it follows that φNE
j,
 = 0 for j, 
 = 1, . . . , P ,

which completes the proof of uniqueness of solutions. 
�

8 Numerical experiments

This section provides numerical examples illustrating the performance of the CRBC
for time-harmonic wave propagation problems inR2. In the first example, we consider
a source problem in the square domain � = (0, 1)2 with the CRBC on �E ∪ �N and
the homogeneous Dirichlet boundary condition on �W ∪ �S . The source function f
is prescribed in a way that the analytical solution is given by

uex (r , θ) = χ(r)
4∑

n=1

1

(2n)2
H1
2n(kr) sin(2nθ)
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Fig. 1 The plots of the error,
√
1 + x�1, of the rational function representation (2.10) of CRBCwith n p = 2

as an approximation to
√
1 + x of x = −ξ2/k2 for ξ ∈ [0, k]. The CRBC parameters are chosen such

that the error is minimized in the region of ξ ∈ [0, (1 − ε)k]. The vertical lines represent the bounds of x
corresponding to ξ = (1 − ε)k

in polar coordinates, where k = 4 and χ is a smooth cut-off function vanishing for
0 < r < 0.25 and being one for r > 0.9.

For the first test, instead of following the parameter selection procedure in Sect. 2.3,
we consider the performance of CRBC as a function of n p and ne once ε and M are
set for the bounds of spectral ranges of propagative and evanescent modes. Assuming
that the separation between the wave source and the absorbing boundary is δ = 0.1,
we set M for the upper bound of evanescent modes to be handled by CRBC bymaking
(2.25) less than τ for a tolerance τ for maximal reflection errors of CRBC, for instance,
τ = 10−4. The parameters a j and ã j for the CRBC on�E ∪�N are chosen analytically
by the formula (2.13) in Sect. 2.3 to test the performance of CRBC with various
values of ε = 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9 and so CRBC are tuned for attenuating
reflections uniformly for the frequency range of ξ ,±[0, (1−ε)k] and±[(1+ε)k, Mk].
See Fig. 1 for the plots of the error,

√
1 + x�1, of the rational function representation

(2.10) of CRBC with n p = 2 as an approximation to
√
1 + x of x = −ξ2/k2 for

ξ ∈ [0, k] for ε = 0.1, 0.3, 0.5 and 0.7.
The finite element computations are conducted with mesh size h = 1/400 and with

bilinear elements using the deal.II finite element library [7]. From the resulting
relative L2-errors reported in Fig. 2, we observe that the errors decrease until finite
element errors are dominant as n p increases. The black dash-dot horizontal lines
represent the relative L2-error ≈ 2.33 × 10−4 of the finite element approximation to
the Helmholtz equation with the exact Dirichlet boundary condition on ∂�, and the
green dash horizontal lines do the relative L2-error of the L2-projection≈ 1.02×10−4

of the analytical solution onto the finite element space. It is also seen that the errors of
CRBCwith ne = 0 and 1 can reach the level of finite element errors with increasing n p

but slowly, which implies that CRBC is required to have at least 2 auxiliary variables
corresponding to real parameters in order to handle evanescent modes efficiently in
this particular example. We note that ε is positively correlated with τ as seen in (2.27)
but since CRBC requires more parameters to reduce reflection errors in the larger
spectral ranges (the case of smaller ε) as indicated in (2.28), (2.30), relative L2-errors
are not necessarily monotonically decreasing with decreasing ε for fixed np and ne.

Nextwe examineCRBCwhenparameters are selected via the procedure inSect. 2.3.
But we can see that ε is not necessarily too small as observed in the preceding tests
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(a) (b)

(c) (d)

Fig. 2 Relative L2-errors as a function of n p for various ε and τ = 10−4 (for determining M) with CRBC
imposed on �E ∪ �N

(a) (b)

Fig. 3 Relative L2-errors with respect to τ for each ε
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(a) (b)

Fig. 4 CRBC order P

Table 1 (n p, ne) for each ε and
τ

τ ε

0.01 0.1 0.3 0.5 0.7 0.9

1e–01 (2,2) (1,2) (1,2) (1,1) (1,1) (1,1)

1e–02 (2,4) (2,3) (1,3) (1,2) (1,2) (1,2)

1e–03 (3,5) (2,4) (2,4) (1,4) (1,4) (1,3)

1e–04 (4,7) (3,6) (2,5) (2,5) (1,5) (1,5)

1e–05 (5,9) (3,7) (2,7) (2,6) (2,6) (1,6)

(a) (b) (c)

(d) (e) (f)

Fig. 5 Snapshots of the finite element solution satisfying CRBC on �E ∪ �N and its error uex − u with
(n p, ne) = (2, 4), τ = 10−3 (for determining M) and ε = 0.1
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and so we consider ε as an independent parameter rather than one depending on τ of
order O(τ 2). Assuming this and expressing the terms containing ε explicitly in (2.28)
and (2.30), we get the number of parameters P of order

O

((
ln

1

τ
+ ln

1

kδ

)
·
(
ln

1

ε
+ ln

( 1

kδ
+ ln

(
ln

1

τ
+ ln

1

kδ

))))
(8.1)

from the parameter selection procedure from ii. to iv. in Sect. 2.3. Here τ is introduced
as a tolerance of maximal reflection errors of CRBC rather than a tolerance of relative
L2-errors of approximate solutions. The parameter τ only reflects the error of the
approximate boundary condition but does not include any discretization error resulting
from the finite element method and so relative L2-errors of approximate solutions are
not necessarily smaller than τ . However it is expected that the relative L2-errors
decrease monotonically with respect to τ in that the more accurate CRBC is achieved
by using the smaller τ . Figure3a shows the performance of CRBCwith respect to τ =
10−1, 10−2, 10−3, 10−4 and 10−5. Table 1 reports (n p, ne) and Fig. 4 exhibits order
P used for computations and the asymptotic behavior (8.1). It looks that approximate
solutions obtained by CRBC with smaller ε ≤ 0.3 converge faster than those with
larger ε ≥ 0.5 with respect to τ since more parameters are used for smaller ε. We
see that approximate solutions of the relative L2-error ≈ 2.3× 10−4 can be achieved
using only 5 or 6 auxiliary variables, for example, (n p, ne) = (2, 3) with τ = 10−2

and ε = 0.1, and (n p, ne) = (2, 4) with τ = 10−3 and ε = 0.1, 0.3. The snapshots
of the real and imaginary parts of the finite element approximate solution satisfying
CRBC of (n p, ne) = (2, 4) with ε = 0.1 are presented in Fig. 5, that exhibits that
their errors are concentrated at peaks of solutions rather than the artificial boundary.

The second example is a time-harmonic wave propagation problem with k = 4 in
the whole domain R

2. The computational domain is restricted to � = (−0.5, 0.5)2

and CRBC is imposed on the four artificial boundaries. The external source function
f is determined by the analytical solution defined by

uex (r , θ) = χ(r)
6∑

n=0

1

(n + 1)2
H1
n (kr)einθ

in polar coordinates. In this example, the cut-off function χ is supported on r > 0.3
and is defined by one for r > 0.4 so that the separation from the source and the
fictitious boundaries is δ = 0.1. Figure6 shows the convergence of relative L2-errors
with respect to n p for each ne and ε, which have the similar behavior to those in
the problem with CRBC on �E ∪ �N of the first example. Approximate solutions
satisfying CRBC can be as close to the exact solution as the finite element solution
satisfying the exact Dirichlet boundary condition on ∂�, whose relative L2-error is
approximately 3.96× 10−4. It also reveals that a sufficient number of real parameters
related to evanescent modes are required for fast convergence, for example, ne ≥ 3
for ε = 0.3, 0.5 and ne ≥ 4 for ε = 0.1. By using the same pairs of (n p, ne) in
Table 1 the convergence of relative L2-errors is presented in Fig. 3b. It shows that
approximate solutions of errors ≈ 3.96 × 10−4 can be obtained by using 6 auxiliary
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(a) (b)

(c) (d)

Fig. 6 Relative L2-errors as a function of n p for various ε and τ = 10−4 (for determining M) with CRBC
imposed on the four sides

variables when τ = 10−3 and ε = 0.1, 0.3. Finally, the snapshots of an approximate
solution satisfying CRBC of (n p, ne) = (2, 4) with ε = 0.1 on the four absorbing
boundaries are given in Fig. 7.

These experiments illustrate the importance of the real parameters when k is not
large. For larger values of k and larger separations δ the propagating modes become
more prominent. As an example to show this we consider a time-harmonic wave
propagation problemwith k = 20 in the whole domainR2. The computational domain
is restricted to� = (−0.5, 0.5)2 andCRBC is imposed on the four artificial boundaries
�E ∪ �W ∪ �N ∪ �S . The external source function f is determined by the analytical
solution defined by

uex (r , θ) = χ(r)
4∑

n=0

1

(n + 1)2
H1
n (kr)einθ

in polar coordinates. In this example, the cut-off functionχ is supported on r > 0.1 and
is defined by one for r > 0.3. Figure8 shows the convergence of relative L2-errors.
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(a) (b) (c)

(a) (b) (c)

Fig. 7 Snapshots of the finite element solution satisfying CRBC on �E ∪ �N ∪ �W ∪ �S and its error
uex − u with (n p, ne) = (2, 4), τ = 10−3 (for determining M) and ε = 0.1

Interestingly, for large wavenumber k = 20, CRBC with sufficient parameters (its
error ≈ 4.67× 10−4) can give better approximations than the Dirichlet condition (its
error ≈ 1.06× 10−3 represented by the black dash-dot lines in the plots). In addition,
unlike the previous case it appears that CRBC can be an effective absorbing boundary
condition for sufficiently largen p without an effort to absorb evanescentmodes, though
for finer error tolerances we expect they would be needed. This observation can be
drawn from Fig. 9 presenting relative L2-errors vs. finite element mesh size h with
h = 1/400, 1/800 and 1/1600 as well. It is observed that the relative L2-errors of
approximate solutions satisfying CRBC, for n p ≥ 4 if ne ≥ 0, or for n p ≥ 3 if ne ≥ 1,
decrease at the optimal rate, which indicates the errors from the boundary condition
do not deteriorate the finite element solutions seriously. Finally, the snapshots of an
approximate solution satisfying CRBCwith (n p, ne) = (3, 0) and ε = 0.5 on the four
absorbing boundaries are given in Fig. 10.

As the last example, we use CRBC as an absorbing boundary condition for finding a
scattered field usc arising from an incident plane wave uin(x) = eikd·x of wavenumber
k = 20 hitting a sound soft disc DR of radius R = 0.2 centered at the origin (0, 0). Here
d = (cosφ, sin φ) is the propagation direction of the plane wave and x = (x1, x2).
Noting that the plane wave can be written as a series

uin(r , θ) =
∞∑

n=−∞
in Jn(kr)e

in(θ−φ)
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(a) (b)

(c) (d)

Fig. 8 Relative L2-errors as a function of n p for various ε

in polar coordinates (r , θ), from the Dirichlet condition uin + usc = 0 on |x| = R it
can be shown that the scattered field usc has the series representation

usc(r , θ) =
∞∑

n=−∞
AnH

1
n (kr)einθ for r > 0.2 = R

with An = −in Jn(kR)e−inφ/H1
n (kR). For numerical computation of the scattered

fields, we take the domain � = (−0.6, 0.6)2 \ DR and impose CRBC of order
(n p, ne) = (2, 2) on the four exterior boundaries of �. The domain is decomposed
into quadrilaterals with finite element mesh size h ≈ 0.0023. With τ = 10−4 to deter-
mine M and with ε = 0.3 that gives a good performance in the previous examples,
we get ρp ≈ 6.21 × 10−6 and ρe ≈ 5.49 × 10−6. When φ = 0, the resulting finite
element solution satisfying CRBC has a relative L2-error ≈ 3.57 × 10−4. Here the
error is calculated with the analytical scattered field of a finitely truncated series of
index n from −30 to 30. It shows that we can obtain an approximate scattered field
accurate within to 0.036% in L2-norm with only 4 auxiliary variables. This error is
between the relative L2-projection error ≈ 6.35 × 10−5 and the relative L2-error
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(a) (b)

(c) (d)

Fig. 9 Relative L2-errors vs. h with h = 1/400, 1/800 and 1/1600 as various pairs of order (n p, ne) with
ε = 0.5 and τ = 10−4 (for determining M)

≈ 9.05×10−4 of the solution satisfying the exact Dirichlet condition on the boundary
of the physical domain as seen in the previous examples. Thus the CRBC solution is
more accurate than the solution obtained using exact Dirichlet data. Errors of solutions
satisfying CRBC of other orders (n p, ne) are also reported in Table 2 and it can be
shown that the accuracy is quite good even for n p = 1 (all errors of the test cases are
less than 0.7%) and the cases of n p ≥ 2 produce sufficiently accurate approximate
solutions. In particular, CRBC of order (n p, ne) = (3, 0) gives the best result with
the smallest degrees of freedom (smallest auxiliary variables) among all these exper-
iments. We also test the performance of CRBC of order (np, n2) = (2, 2) with the
same parameters τ = 10−4 and ε = 0.3, when the incident plane wave propagates
in the direction d = (cosφ, sin φ) with various incident angles φ, and the relative
L2-errors are reported in Table 3. It shows that the propagation direction does not
have any influence on the performance of CRBC (Figs. 11, 12, 13). The snapshots of
the approximate scattered fields and their errors are presented in Fig. 12 for φ = 0 and
in Fig. 13 for φ = π/3. At last, we compare the performance of CRBC with that of
PML, one of the well-known absorbing boundary techniques. To do this, we introduce
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Snapshots of the finite element solution satisfying CRBC on �E ∪ �N ∪ �W ∪ �S and its error
uex − u with (n p, ne) = (3, 0), τ = 10−4 (for determining M), ε = 0.5 and h = 1/400

Table 2 Relative L2-errors of finite element solutions to the scattering problem satisfying CRBC of various
order (n p, ne)

ne n p

1 2 3
(ρp ≈ 3.52 × 10−3) (ρp ≈ 6.21 × 10−6) (ρp ≈ 1.09 × 10−8)

0 6.92 × 10−3 6.80 × 10−4 3.58 × 10−4

1 (ρe ≈ 3.31 × 10−3) 4.26 × 10−3 3.87 × 10−4 3.60 × 10−4

2 (ρe ≈ 5.49 × 10−6) 3.42 × 10−3 3.57 × 10−4 3.58 × 10−4

Table 3 Relative L2-errors of finite element approximate solutions satisfying CRBC of order (n p, ne) =
(2, 2) for the incident angle φ

φ π/4 π/6 π/8 π/10 π/12

rel. L2-errors 3.41 × 10−4 3.44 × 10−4 3.48 × 10−4 3.50 × 10−4 3.35 × 10−4

a Cartesian PML defined by the quadratic stretching function

x̃(x) =
⎧⎨
⎩
x + i

3σ

kW 3

∫ x

T
(t − T )2dt if x > T ,

x if 0 ≤ x ≤ T ,
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Fig. 11 Comparing relative L2-errors of solutions for CRBC with those for PML. The black *-markers
represent the total degrees of freedom of the finite element problems including those of auxiliary variables
for CRBC and those in the artificial layer for PML. The horizontal black dash line and green dash-dot line
represent the errors of the solution satisfying the exact Dirichlet condition on the exterior boundary of the
physical domain and the relative L2-projection error, respectively

satisfying x̃(−x) = −x̃(x), where T = 0.6 and the positive constantsW and σ repre-
sent the PML width and strength, respectively, with ỹ(y) being defined analogously,
that is, the absorbing layer of PML is the region of (T + W )2 \ � ⊂ R

2. The PML
is truncated with the homogeneous Dirichlet condition on the exterior boundary of
PML, x = ±(T + W ) or y = ±(T + W ). We take h = 0.3/27 ≈ 0.0023 and set the
PML width W = hNgp, where Ngp stands for the number of grid points along the x-
and y-axes and it corresponds to the number of auxiliary variables P = n p + ne of
CRBC.

With the PML strength σ = 2, 5 and 10, the resulting relative L2-errors of finite
element approximate solutions satisfying PML are exhibited in Fig. 11. It shows that
σ = 2 is too small to absorb propagating waves going into the layer and σ = 10
is so large that the medium property in PML is highly anisotropic, which results in
polluting the finite element approximations with a uniform mesh [29, 42]. The PML
with in-between σ = 5 gives the best performance among these, however even the
PML with σ = 5, Ngp = 50 (degrees of freedom = 883,632) gives the approximate
solution with the relative L2-error≈ 3.99×10−4, which is still larger than the relative
L2-error ≈ 3.57 × 10−4 of the approximate solution satisfying CRBC using only
4 auxiliary variables, P = 4, (degrees of freedom = 674,976). As the solve using
Dirichlet boundary conditions required 658,432 degress of freedom, the additional
degrees of freedom with CRBC are 16,544 and for the PML of comparable accuracy
the additional degrees of freedom are 225,200, which are 13 times as many degress
of freedom as CRBC. These experiments demonstrate the efficiency and accuracy of
CRBC as an absorbing boundary condition for the scattering problem.

In the end, we note that CRBC requires the somewhat elaborate variational problem
(6.5) in finite element implementations and it may need more efforts for extension to
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Snapshots of the finite element solution satisfying CRBC on �E ∪ �N ∪ �W ∪ �S and its error
usc − u with (n p, ne) = (2, 2), τ = 10−4 (for determining M), ε = 0.3 and h ≈ 0.0023 for the incident
angle φ = 0

(a) (b) (c)

(d) (e) (f)

Fig. 13 Snapshots of the finite element solution satisfying CRBC on �E ∪ �N ∪ �W ∪ �S and its error
usc − u with (n p, ne) = (2, 2), τ = 10−4 (for determining M), ε = 0.3 and h ≈ 0.0023 for the incident
angle φ = π/3
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scattering problem in R
3 as opposed to PML that requires only changing coefficient

matrices. However, CRBC can gain the higher efficiency and accuracy in return for
the extra effort. In addition, CRBC parameters can be chosen to provide any desired
accuracy with minimal cost based on the prescriptions listed above, while PML may
require experimentation to determine the layer width and damping profile.
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