THE BAD LOCUS IN THE MODULI OF SUPER RIEMANN SURFACES
WITH RAMOND PUNCTURES

RON DONAGI AND NADIA OTT

ABSTRACT. The bad locus in the moduli of super Riemann surfaces with Ramond punctures
parametrizes those super Riemann surfaces that have more than the expected number of inde-
pendent closed holomorphic 1-forms. There is a super period map that depends on certain discrete
choices. For each such choice, the period map blows up along a divisor that contains the bad locus.
Our main result is that away from the bad locus, at least one of these period maps remains finite.
In other words, we identify the bad locus as the intersection of the blowup divisors. The proof
abstracts the situation into a question in linear algebra, which we then solve. We also give some
bounds on the dimension of the bad locus.
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1. INTRODUCTION

The super vector space €2 of closed holomorphic differentials on a general super Riemann surface
of genus g with 2r Ramond punctures has dimension g|r. The super period map as defined by Witten
in [W15] sends this space to a g|r dimensional maximal isotropic subspace P(f2) of period space,
which is a 2g|2r-dimensional super vector space with a supersymplectic pairing. Unfortunately
there is a bad locus B in the moduli space parametrizing super Riemann surfaces ' where the odd
dimension of () is strictly greater than r, so the period map fails to be injective there. This bad
locus B was studied by Witten in [W15], mostly in the case r = 1. The goal of this note is to study
the bad locus for higher 7.

When r = 1, the bad locus has codimension 1 and it is the locus where Witten’s super period
map blows up. We will see in Theorem 8 that in general the bad locus (or at least one of its
components) has codimension r. The period map depends on some discrete choices: a symplectic
basis of the integral homology, as in the bosonic case, plus an orientation 1 of each of the Ramond
punctures. Each choice of ¢ determines a period matrix that blows up along a certain divisor Y.
Here 0 = o(%) is a sign choice, determined by 1 but retaining less information than 1: there are
22" choices of 1, but only 2" choices for o. The blowup divisor Y” depends only on ¢. Our main
result, Theorem 2, is that the intersection Y of these divisors equals the bad locus B. The Y
therefore give a more-or-less explicit set of equations for the bad locus. (This story has a variant
that depends additionally on the choice of a pairing v of the 2r punctures. It follows from our
result that this intersection of the Y is independent of the choice of v.)

We review the setup and state the main result in section 2. Our strategy for the proof is to
abstract the situation and translate it to a question in linear algebra, Conjecture 3. A special case
of this conjecture, sufficient for our needs here, is proved in Appendix A. The full conjecture was
proved in [D22]. The reduction of the main theorem to this linear algebra result is explained in
section 5.

IThe supermoduli space of super Riemann surfaces with Ramond punctures is a Deligne-Mumford superstack
([CV19], [OV22], [BR21], [MZ19]) and so locally has an étale cover by superschemes, and a compatible system of
universal curves. All our statements pertain to the stack, and can be easily translated into statements over the étale
covers.
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2. PERIODS OF SUPER RIEMANN SURFACES WITH RAMOND PUNCTURES

A genus g super Riemann surface X with 2r Ramond punctures determines a curve C' of the
same genus g with a divisor D = Z?lei consisting of 2r distinct labeled points and a twisted spin
structure, i.e. a line bundle L satisfying

(1) L®% = Ko(D).
Riemann-Roch gives
(2) X(L) = h(L) = h*(L(=D)) =r.

For r > 0 an easy general position argument shows that generically h°(L) = r. This means that
the set of super Riemann surfaces with h°(L) = r can be identified with an open subset of the
moduli space

(3) M :={(C,D,L) | C a curve of genus g, D € C*", L € Pic?™"~1(C) satisfies (1)}.
Following Witten [W15], we refer to the complement
B:={(C,D,L)|h°(L) > r+1} C M.

of this open subset as the “bad locus”.

The super vector space §2 of closed 1-forms on X has dimension g|h°(L). (Our sign convention
is that when X is split, the forms pulled back from the reduced curve C' are considered even, e.g,
for local coordinates (z,6) on X, dz is even and df is odd. Both this and the opposite convention
occur in the literature.) In the split case, the even closed forms are pulled back from H°(C, K¢)
while the odd closed forms are exact, of the form da(z)0 where a = a(z) is a section of the twisted
spin bundle L, cf. [W15], section 5.1, or our appendix B.2. So generically €2 is of dimension g|r.

We recall Witten’s superperiod map

P:Q— A=A ®A_ =CH>

This depends on some discrete choices. The 2¢g even periods, just as in the classical theory, depend
on the choice of a symplectic basis (a1,...,a4;b1,...,by) of Hi(X,Z). Since the residue gives a
natural trivialization of the fiber of K¢ (D) at each puncture x; € D, equation (1) specifies a
trivialization of the square (L|z;)? of the fiber of L at x;. By an orientation 1; of the puncture we
mean a square root of this, i.e. a trivialization of L|x; that squares to the above trivialization of
Ko (D). The 2r odd periods depend on a choice of orientation at each of the 2r punctures.

These discrete choices determine identifications

Ao = HY(C,C)

and

2r

A, = HY(L/L(-D)) = @ L.,

i=1
The even part of the superperiod map is then restriction from X to C followed by integration on
the symplectic basis (a1,...,a4;b1,...,by). The odd part is just the restriction from C to D:

HO(Cv L) - HO(DvL) = HO(L/L(_D))7

cf. Appendix B.2.
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One bad thing about the “bad” locus B is that this superperiod map P is not injective there:
On X € B there are (odd) closed 1-forms with all periods equal to zero, as can be seen from the
long exact sequence

(4) 0 — HY(L(-D)) — HY(L) & H°(L/L(-D)) - HY(L(-D)) — . ..

where h%(C, L(—D)) > 1.

The target of the superperiod map is period superspace A = C2912". This comes equipped with
a super symplectic pairing Q (symplectic on C?9, orthogonal on CO‘QT) which we may think of as a
super version of the usual intersection pairing on H'(X,R). In the obvious notation,

Q=X{_ ap Nbp — 327, (4;)?,

where we recall that the orientations 1; form a basis for A;. The period map can be described
by a (g|r) x (2¢|2r) matrix P. In order to obtain a (g|r) x (g|r) period matrix, we need to split
period space as a sum of two complementary Q-Lagrangian subspaces, A = A4 ® Ap. For the even
part we use the span of (ai,...,a4) for Agg and of (b1,...,by) for Apy. For the odd part we fix
a pairing v of the 2r punctures, e.g. we could pair x9;,—1 with z2;. We then take A4 as the span
of w91 + v/—1z2; and Ap; as the span of xa;—; — /—1z9;. The period map then decomposes:
P = (P4, Pp), with corresponding decomposition of the matrix, P = (P4, Pp). The (g|r) x (g|r)
period matrix is then 7?;‘1733 . This is defined only where P4 is invertible. It depends on:

e the data X = (C, D, L) underlying the super Riemann surface with labeled Ramond punc-
tures,
e the symplectic basis (a1,...,a4;01,...,by) of Hi(X,Z), and
e the orientations ;.
Sometimes we may want to replace the specific pairing (x9;—1 with x9;) by an arbitrary pairing
v and to emphasize the dependence on this choice. A pairing v is specified by relabeling the 27
points as:
xij, 1=1,...,r, jex:={+ -}
By gluing the points (z;4,2;_) in each pair we obtain a nodal curve C (of arithmetic genus g + r,
with 7 nodes). Specifying the pairing of the points is equivalent to specifying the normalization
map v:C — C.
Having specified the pairing v, a sign choice o is a specification of a spin bundle, aka theta
characteristic, on the nodal curve C, i.e, a line bundle L, on the nodal curve C' satisfying

() L% = K.
In particular, L := v*L, is a twisted spin structure on C' satisfying (1). Equivalently, given L, o
specifies for each ¢ = 1,...,r an isomorphism
(6) 0;: Ly, — Ly,
whose square:

0i?: Ko(D)jy,, = LS — L3? = Ko(D)
is identified via residues with multiplication by —1,

c®2=_-1:C—C.

)

|zi—

(Lo clearly determines a o as in (6). Conversely, given ¢ as in (6), we recover L, as the subsheaf
of L consisting of sections s of L satisfying

(7) s(zi) = —V—lois(iy)
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for all 1 < 4 < r. In particular, h°(C,L,) > 0 if L has a global section satisfying the gluing
equations (7) for all 1 <i <7r.)

Recall that an orientation ¢ is a trivialization of L|p compatible via residues with (1). In our
current notation this amounts to trivializations v;; of each L,;. Such a ¢ combined with formula
(6) therefore determines a 0 = o(¢). Changing v at both x;4 and z;_ leaves o unchanged. On a
given X there are 227 ¢’s but only 2" ¢’s.

Recall that the odd parts

P Ql — Al, PAJ : Ql — AAJ
of the superperiod map depend on the orientation . The kernels, however, depend only on
o = o(). Indeed, if we identify Q1 with H°(C, L), we find the identifications :

(8) Ker(Py) = H°(L(-D)) C Ker(Pa,) = H°(C,L,) c H°(C, L).

We will write P¥? when we want to emphasize that the matrix P representing the period map
depends on a choice of pairing v and sign o.

3. MODULI SPACES AND THE MAIN THEOREM

We are interested in describing the locus in moduli space where the period matrix is not defined,
i.e., the locus where P, is singular for all possible signs o and for some or all pairings v. To do
this, we need to consider some covers of the moduli space M of (3). Let

M :={v:C—C,D,L}

be the (bosonic) moduli space parametrizing the data of a curve C' with labeled divisor D, a pairing
v on the points of D, and a twisted spin bundle L satisfying (1). There is a forgetful map

m: M — M.
There is a further 2"-sheeted cover

M — M
where

M":={v:C—C,D,L,}
parametrizes curves C' with labeled divisor D, a pairing of the points of D, and a choice of a spin
bundle L, satisfying (5).
Let P denote (the component of degree g + r — 1 of) the relative Picard of the universal curve

over the Deligne-Mumford compactification of the moduli space M., of curves of genus g + r, so

P:={C',L' | C' a stable curve of genus g + r, L’ € Pic?™"~}(C")}.

In P there is a natural divisor P, parametrizing pairs {C’, L'} where L’ is an effective line bundle:
hO(L') > 0. There is a natural map of M” to P sending {v: C — C, D, Ly} to {C, Ly }. We let Y"
denote the inverse image of the divisor Pe:
Y'=Y)={(v:C—C,D,L,) | LE?* = Kz, h°(L,) > 1} c M".

This is a divisor in M". If (C, D, L,v,0) € Y then there exists a global section of L satisfying (7)
for all 1 <i <7, i.e., there exists a global section s whose odd A-periods all vanish. So PlAjﬁ has a
non-trivial kernel and the matrix 732’3 is singular.

As shown in Appendix A of [W15], the period matrix (viewed as a map on M"”) blows up (has
a pole) along this divisor. This divisor Y does not depend on a choice of sign o; the subscript o
simply reminds us that it is a divisor in M”, whose fiber over a point of M’ is indexed by the o’s.)
The reason that o occurs here rather than the full orientation ¥ was explained at the end of the
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previous section: Y parametrizes points where the (odd part of the) superperiod map fails to be
injective. According to (8), this depends only on o rather than .
Descending to M’, we have the closed locus

Y':i={(v:C—C,D,L)| L®? = K¢(D), h°(Ly) > 1Vo} ={ye M' | 7" '(y) cY"} c M

parametrizing super Riemann surfaces with a given pairing of their 2r Ramond punctures D such
that the period matrix blows up for every sign choice o, i.e., (C,D, L,v) € Y' if P} is singular for
all 0. So the complement of Y’ is the open subset where the period matrix, for at least one sign
choice o, makes sense. Somewhat informally we write Y’ = N,Y}. (Informal because Y" C M”
while Y/ € M'.)
Descending further to M, we have the closed locus
Y :={(C,D,L)|(v:C - C,D,L)cY' Wy={yeM|n'(y) cY'}C M,

where (C,D,L) € Y if P} is singular for all pairings v and signs o, and also the a priori larger
locus

Y :={(C,D,L)|(v:C — C,D,L) €Y' for some v} = w(Y') C M.
The distinction is that (C, D, L) is in Y if (C,D,L,v) € Y’ for some pairing v, while in order to
be in Y this must hold for all v .
Lemma 1. BQYQEN/

Proof. If (C, D, L) € B, then h%(L(—D)) > 1 and so there exists a global section of L satisfying
the gluing equation (7) for all 1 < ¢ < r and for all pairings v and signs o. O

Our main result can now be stated as follows:

Theorem 2. B=Y =Y.

4. LINEAR ALGEBRA
Consider a set of 2r abstract points
pij,t=1,...,7, j€£:={+1,—-1}.
By a section, or r-section, we mean a function
o:{l,...,r} = =+,
or equivalently the set of r points

DPi,o(i)> (7’ =1,... 7T)'
Our study of Ramond punctures leads to the following;:

Conjecture 3. Let V' be a vector space of dimension > r containing v pairs of points p;j,i =
1,...,r, j € %+ that span V. The following conditions (*), (**) are equivalent:

(*)  For each of the 2" sections o, the v points p; ,;), (i =1,...,7) are linearly dependent.

(**)  There is a subset I C {1,...,r} of some cardinality k < r such that the 2k points p;j, i €
I, j € £ span a subspace of dimension < k.

In section A of the appendix we prove
Theorem 4. The conjecture holds when V is r dimensional.

We will need only this case. The full Conjecture has been proved in [D22].
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5. FROM RAMOND PUNCTURES TO LINEAR ALGEBRA

In this section we reduce Theorem 2 to the linear algebra result, Theorem 4.

We begin by proving that condition (*) in Conjecture 3 and Theorem 4 characterizes the locus
Y. Let V be the vector space

V= (H(L)/H°(L - D))"
of linear functions on H°(L) that vanish on H°(L — D). (Equivalently, it is the dual of the image
of the odd superperiod map P;.) By Riemann-Roch, its dimension is . We are interested mostly
in the case that h%(L) = r, so H(L — D) = 0 and V = H°(L)*. For each i € {1,...,r} and
J € %, fix an orientation 1);;, i.e. a trivialization of the fiber Lig,; of L at x;;, compatible with the
residue trivialization of L®? = K¢(D). Evaluation at z;; then becomes a vector g;; € V. We let
Dij = Qi+ + jv/—1g;_, or explicitly:
Pit = Giv + V=1, pim =gy — V—1gi—.

The collection of 27 vectors g;; clearly spans V', and therefore so do the p;;. A sign choice o picks,
for each i, a vector p;,(;) which is one of p;y,p;—. The condition for being in Y," is that the r points
Pio(i)» ¢ =1,...,7 should be contained in a hyperplane in V. Condition (*) of Theorem 4 therefore

characterizes Y.
Next we describe a certain locus W in moduli space which we will show is equal to both B
(Lemma 7) and Y (Lemma 6), and thereby we prove Theorem 2. For every subset

Ic{1,...,r},
the divisor
Dr = Sier(wiy +x4-)
which is of degree 2k where k := #1, determines the locus:
Wi :={(C,D,L)|h°(L(—Dy)) > r+1—k} C M.
For example, the bad locus B equals Wj. Now let
W .= uU;Wi.
Note 5. These loci obey a duality. Let k := #1I and let I' denote the complement of I. We have
hY(L(—Dy)) = x(L(—=Dr)) + W' (L(=Dy)) = r —2k+h* (K@ LY (D — D)) = r — 2k +h°(L — D))
so Wp = Wr.
Lemma 6. Condition (**) of Conjecture 3 and Theorem, 4 characterizes W. In particular, W =Y .

Proof. Let k := #1. The condition that the 2k points p;;, i € I, j € & are contained in a subspace
of dimension k — 1 implies that we are in W;. The converse fails in general, because h°(L) can
be > r if we are at a point of B. However, if we are at a point of Y that is not in B = W,
then h%(L) = r, HY(L — D) = 0 and V = H°(L)*, and then the condition that the 2k points
pij, 1 € I, j € £ are contained in a subspace of dimension £ — 1 is equivalent to being in W;. So
Condition (**) of Theorem 4 characterizes W. O

The proof of Theorem 2 is now reduced to the following result:
Lemma 7. We have the inclusion and equality:
B=Wy=UWr=WcCY.
In particular, B=Y =Y.
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Proof. A point of Wy is given by (C, D, L) such that h%(L(—Dy)) > r + 1 — #1. For elements of
H°(L(—Dy)), the conditions for being in some Y are clearly satisfied automatically at points of I
since such an element vanishes along the divisor D, so we only need to impose r — #1I conditions
at the remaining points in D — Dy, ending with hO(LC,) >1. Thus W =U;Wr; CY.

On the other hand, each W7y is contained in B. Indeed, say we have a point of W} that is not in
B. Then h%(L) = r and the divisor D; imposes at most k — 1 conditions on sections of L, where
we assume 1 < k := #I < r — 1. But the equality W; = W} implies that the divisor Dy imposes
at most r — k — 1 conditions on sections of L. So h®(L — D) >r—(k—1)—(r—k—1) = 2,
contradicting (2).

O

6. DIMENSION COUNTS

Among general line bundles L of degree g — 1 + r on a curve C of genus g, for 0 < r < g, the
locus where h°(L) > r has codimension r + 1 by Brill-Noether theory [BN, ACGH]. One might
therefore naively expect that the bad locus B should have codimension r + 1 in M. The residue
theorem implies that this expectation is wrong: it is off by at least 1. In this section we show that
there are no further corrections:

Theorem 8.
e In the unpunctured case r = 0, the moduli space M = M+ UM~ is reducible. The bad locus
B consists of all of M~ plus the irreducible “vanishing thetanull” divisor in M.
e forl <r < g, every component of B has codimension < r and there is a component of
codimension exactly r.
e Forr > g the bad locus is empty.

Proof. The case r = 0 is well known: M~ is the moduli of odd spin bundles L, where h°(L) is
odd and in particular h°(L) > 1. M* is the moduli of even spin bundles L, for which h°(L) = 0
generically and h°(L) is even and > 2 along the irreducible divisor of vanishing thetanulls [A71,
MT71].

For r > g, the degree of a twisted spin bundle L is > 2g — 1, so h!(L) = 0 and h°(L) = r, so the
bad locus is empty.

Assume 1 < r < g. To see that the codimension is at most r (and thus off by 1 from the
Brill-Noether expectation), it is convenient to switch to the 2r-sheeted cover

M :={(C,D,L,p) | (C,D,L) € M and p € D}
and to B, the inverse image there of B. Consider the map
f: M — Pic9"(C/M),
sending
Here C is the universal curve over M. In the Picard, the effective locus
Gy, ={N|Rr'(N)>0}
has codimension r. We claim that B
B = f_l(Gg—'r)v
which implies that the codimension is at most 7.
Indeed in one direction,

LeB < h(L)>r < h°(L(-D)) >0 = h%N)>0.



But conversely, a non-zero section s € H’(N) gives a meromorphic 1-form
s € H'(K(~(D —p))(p))

with a possible pole only at p. By the residue theorem, it actually cannot have a pole there, so s
must be a non-zero section in H(N —p) = H(L — D).

To conclude, we need to exhibit a component of codimension r. Let A be a generic odd theta
characteristic:

A®? = K h0(A) =1.

Let a € Sym?~!(C) be the unique divisor of a non-zero section of A, and let d € Sym"(C) be the
sum of any r of these points. (Recall we are assuming r < g — 1.) Let p € d be one of these
points. Generically such p is not in a — d, which we will assume. Take D := 2d,L := A(d). We
claim that f(M) is transversal to GS_T at f(C,D, L), so the component of B through (C, D, L)
has codimension .

This is seen by comparing the tangent spaces to f(M) and Gg_r at

f(C,D,L) =N := L(p— D) = A(d 4 p — 2d) = A(—(d — p)).

The tangent there to GS_T is spanned by the g — r tangent lines to the Abel-Jacobi image of C
in its Jacobian at the points of a — d + p, or projectively by the corresponding g — r points of
the canonical image of C' in canonical space. The tangent to f (M ) is likewise spanned by the 2r
tangent lines to the Abel-Jacobi (or: canonical) image of C' at the points of D = 2d. (Since our
D is non-reduced, this really means the r osculating planes to C' at the points of d.) This follows
from the relation

N®? = K(—(D —p) +p),

which implies that the differential of f at each of these points is :l:% times the corresponding
differential of Abel-Jacobi, so the spans are the same.
The transversality is therefore equivalent to saying that the divisor

2d+(a—d+p)=a+d+p

is not contained in any canonical divisor. From our assumption that h°(A) = 1 it follows that the
unique canonical divisor containing a equals 2a. This does not contain a + d + p because of our
assumption that p ¢ a — d.

d
Appendices
A. PROOF OF THE LINEAR ALGEBRA RESULT
We rephrase Theorem 4 as follows:
Theorem 9. Let {Pi,...,P.}, P, # 0 be a set of nonzero subspaces of the r dimensional vector

space V = (HY(L)/H®(L—D))* such that diim P, < 2. For each P;, fiz two spanning vectors {p;, p;}
(with one necessarily redundant if dim P; = 1) and define

‘/7‘ = {{Uh' . 'avr‘} | v; € {plap;}}
If no element of V; spans V, then there exists a subset {P;,,..., P} for k <r such that
dimspan{P;,,..., P, } < k.
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Let p = max{ dim(spanv) | Vv € V;} and let V¥ = {v € V,. |dimspanv = p}. For each v € V,
let the set v' € V;. be defined by the rule that if v; € v then v} € v/. Let

v_j ={v1,. .05,y Uy = {1,000, UL )
For A C (vUv") N W, the square brackets [A] will denote the indices of the elements in A. For
example, if A = {vy,v],ve,v3}, then [A] is the multi-set {1,1,2,3} where the two copies of 1
correspond to v and v{. We say that i € [A] is a double if v; € A and v} € A.

Definition 10. Let v € Vif, let W = spanv, and let W' = spanv’. We say that w C (vUV)NW
is a spanning set if it satisfies the following conditions: (1) spanw = W, (2) cardw = p, and (3)
[w] contains no doubles.

Note that a spanning set w is just a certain choice of basis for W. We let max(v) denote the set
of all spanning sets in (v Uv") N W and let w® C v denote the complement of w.

Lemma 11. Let v € V¥ and let w € max(v). If i € [w€], then P; C spanw.

Proof. Suppose P; ¢ spanw. Then v] ¢ spanw, or v; ¢ spanw. WLOG, let v] ¢ spanw and
note that, under this assumption, we have that dimspanw,; = p + 1. Recall that we assumed
that the maximal dimension of any element in V,’ is equal to p. Since w,y € Vi, the equality
dimspanwy; = p + 1 contradicts the maximality of p and thus, P; C spanw. O

Definition 12. Let v € V) and let P, C W = spanv. We say that a nonzero subset «(P;) C v is a
minimal set for P; if P; is contained in span ((P;) but there exists no proper subset of t(P;) whose
span contains P;.

If we fix w € max(v), then there is a unique minimal set ¢(P;) C w for P; = span{v;, v} consisting
of the unique set of generators in w for v; and v}, e.g, if

/
V; = a1, + -+ Apvi,,

is the linear combination for v} in terms of the basis w = {vy;,...,v;,}, then vy, ..., v;, € «(F),
and similarly for v;.

Lemma 13. Fiz w € max(v) and let ¢ € [w°]. Let «(P;) C W be minimal for P;, then for each
J € [(P;)], we have that P; C W. Furthermore, if «(P;) is a minimal set for P; and | € [(P;)],
then P, C W. More generally, any n-th descendant of P; is contained in W .

Proof. By definition, if v; € ¢(F;), then P; ¢ span ¢(P;)—; and so either v; or v} is not in span ¢(FP;)_;.
WLOG, let v] ¢ «(P;)—; and note that this assumption implies that v] ¢ spanw_j;. Since v ¢
spanw_;, the set w_; ;s is a spanning set and since j € [wfj’ﬂ,] we find that P; C spanw_; ;v C W
by Lemma 11. For the same w € max(v) as above, let ¢(P;) C w be the minimal set for P; and let
l € [(P;)]. We can use the same proof to prove that P, C W if we can find a minimal set B for P;
such that | € [B] and j ¢ [B]. Since P; C spanw_j; 1, there exists a unique B C w_;  minimal
for P;. For | # j,7, note that [ € [¢(P;)] if and only if [ € [B]. since we already know that P; and
P; are contained in W, we may assume that [ # j,i’. Now since j € [B], we can use the same proof
as above to conclude that P, C W.

O

Fix w € max(v) and define
[Yhn] ={J|vj€[(P)], such that ¢«(P;) Cwand i€ Tp1} ULy 1,

where
(Yol ={ j | v; € [L(F)], such that «(P;) C w and i € [w°], }
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is the “initial condition.” Note that we meant what we wrote when we defined [Y¢], i.e., we do not
want Yo = [we]. Clearly, the sets T1, To,... will eventually converge to some subset Y of w. That
is, there exists some ng >> 0 such that Y,,, = Ty +ip, Vip > 0 and so T =T,

Lemma 14. If j € [Y], then P; C spanY.

Proof. If j € [Y], then j € [Y,,] for some n. By construction, ¢(P;) C Y,41 and so Pj C span Y, 1.
In particular, P; C span Y since Y, 41 C T.
]

The proof of Theorem 9 is now trivial:

Proof of Theorem 9. Let
[T] = {jla s 7jh}
and note that dimspan T < h and that spanY contains at least h planes, i.e, P;,,..., P;, CspanT

by Lemma 14. Recall that by construction ji,...,j, € [w], but P; C spanY for all i € [w®] since
we defined | J;c e t(F;) = Yo. Since cardw® > 1, the set {Pj,..., Pj,} U, Pi satisfies the
conclusion of Theorem 9. O

B. ODD PERIODS

In [W15], the odd periods are defined to be restrictions of elements of €2 to the components of the
Ramond divisor, see Section B.2. Throughout the paper, we computed the odd periods as values
of elements in H°(C, L) along the points of D. In this section of the appendix we prove (Lemma
17) that these values agree with the values of the odd periods as defined by Witten . Throughout
this section we consider only split super Riemann surfaces, e.g. ones defined over a point or more
generally over a (bosonic) base.

B.1. Q; = H(C,L). We begin by recalling Witten’s argument that the odd elements of € can be
identified with global sections of L. Let Ber’y denote the subsheaf of Berx (R) whose sections have
a f-independent residue along R. One can check that

(9) Bery = Qb @ I1L.

In contrast to an ordinary curve, the dualizing sheaf Ber x on the supercurve X is not equal to the
cotangent bundle Q4 : this is of course obvious given that Ber x has rank 0|1 while Q) has rank 1|1.
However, there is a canonical isomorphism « : HY(X,Ber’y) = Q which in local superconformal
coordinates (z,0) sends s = (g(z) + 0f(z))[dz|df] to

(10) a(s) = g(z)dd + (f(z) + 04 (2))d=.
Composing a~! with (9) we find that Q = H°(C,Q}) @ IH’(C, L) (we will write = whenever an

isomorphism is canonical), and so dim Q = dim H°(X, Ber’y) = g|h°(L).

B.2. Odd periods. One can check that around each R; € R, there exist superconformal coordi-
nates (z,0) such that R; is defined by the equation z = 0. In these coordinates a general element
of Q is of the form f(z,0)dz + g(z,6)df and its restriction to R; (to compute: set z = 0 and apply
the condition ds = 0) can be shown to be equal to

g(0) ab,

where the constant ¢(0) € C is unique up to a superconformal change of coordinates 6 — —6. Let
o ={o0; € {+,—}} denote a choice of # or —@ for each R; € R.
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Definition 15. For each R; € R, the odd period of(s) of s € Q with respect o is the constant
;- g(O)

Lemma 16. The odd (resp. even) periods of even (resp. odd) elements in Q2 are equal to zero.

Proof. If s is an even element in €}, then its restriction to R; must also be even; however godf is
odd for all non-zero gg. Thus gg = 0.
Now let s € Oy be odd and let {ai,...,a4,b1,...,b5} be A- and B-cycles on C. The even (A-

and B-) periods of s are the integrals
[ [ 7o
a; bl

where 7 : C' C X is the canonical inclusion. In local superconformal coordinates (z,6), the odd
closed one form s can be written as s = f(z)0dz + g(z)df. The pullback 7%(s) is equal to 0 since
7*(0) = 0 and thus both of the above integrals are equal to zero. 0

We will now show that odd periods can be computed as residues along D. We need to explain
what we mean by a residue of an element in Q. Using the identification 2 = HY(X, Ber’y) and the
splitting (9) we can write every element s in {2 as a sum sg + s1 of a holomorphic differential sy on
C and a global section s; of the twisted spin structure L. For each p; € D, we define

res;(s) = resy, (so) + resy, (s1) = resp, (s1)

where resp, (sg) = 0 because sg is holomorphic near p;. Since s; is not a differential, we need to
explain what we mean by resp,(s1): Locally near each p; € D, there exists coordinates U(z) such
that Q%] = Oy and such that p; is defined by z = 0. Let dz be a generator for Q%] We then have two
possible generators for L|i7, namely 6 := /dz/z and —0 := —,/dz/z. For a fixed generator 6, there
is a canonical isomorphism L|y = (D) = Q};(p;) sending 0 to dz/z. Let 0 = {0; € {+,—}}?",
denote the sign of the generator for each L|y,. Then each s € £ is locally of the the form o; - g(z)0
and is sent to o - @dz in Qf(p;): And,

(11) res,. (s1) = 0; - Tes,, (‘Q(Zz)dz> .

Lemma 17. Let o be fized and let s € Q). Then for each point p; € D, we have

(1/27Ti)0pi(5) = respi(s)'

Proof. The lemma is obvious for even elements 2 so let s be an odd element and let U(z,0 - 0) be
superconformal coordinates near R; so that R; is defined by z = 0. Then there exist unique g such
that

slu =0i - (g9(2)df + ¢'(2)0dz)
and a~1(s) = (0;- g(2))[dz|df]. The odd periods are now easy to read off: namely, 07(s) = o; - g(0).
The section a~!(s) is identified with the section o; - g(2)0 of L|y by (9) where 6 = \/%. The

section o; - g(2)0 is in turn identified with the section o; - @dz of Q};(p;) under the identification
Ly = Qf(p;). It is now easy to see that

2miTes,—q (g(j)dz) = ;- g(0) = 07 (s)
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