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As the coronavirus disease 2019 (COVID-19) has shown profound ef-
fects on public health and the economy worldwide, it becomes crucial to as-
sess the impact on the virus transmission and develop effective strategies to
address the challenge. A new statistical model derived from the SIR epidemic
model with functional parameters is proposed to understand the impact of
weather and government interventions on the virus spread in the presence of
asymptomatic infections among eight metropolitan areas in the United States.
The model uses Bayesian inference with Gaussian process priors to study the
functional parameters nonparametrically, and sensitivity analysis is adopted
to investigate the main and interaction effects of these factors. This analy-
sis reveals several important results including the potential interaction effects
between weather and government interventions, which shed new light on the
effective strategies for policymakers to mitigate the COVID-19 outbreak.

1. Introduction. As the coronavirus disease 2019 (COVID-19) has already had pro-
found effects on public health and the economy worldwide, how to use statistical approaches
to model and understand the spread of COVID-19 to inform and educate the public about the
virus transmission and develop effective strategies for addressing this challenge has become
crucial. In particular, the understanding of how government interventions and environmental
factors, such as temperature and humidity, affect the virus transmissibility is important yet
unclear. Moreover, an effective strategy to mitigate the outbreak based on the weather condi-
tions is in extreme need for policymakers yet little attention has been paid to the interaction
effect between weather and government interventions. For instance, a natural question for
policymakers is “Should the government implement more restrictions to mitigate the pan-
demic as the weather gets colder?”

Since the COVID-19 outbreak, many studies have investigated the impact of weather and
government interventions, but some challenges remain. Yu (2020); Xu et al. (2020); Carson
et al. (2020) find some evidence that the weather may be associated with the COVID-19
spread, while Jamil et al. (2020); Gupta, Pradhan and Maulud (2020) find no significant as-
sociations. Most of the studies on the impacts of government interventions on COVID-19
spread show that government interventions are associated with reduced COVID-19 transmis-
sion; e.g., Cowling et al. (2020); Haug et al. (2020); Haldar and Sethi (2020); Flaxman et al.
(2020). However, most of this work focuses on individual effects of weather and govern-
ment interventions, which may lead to misleading results due to potential collinearity issues
(Wilson, 2020). For example, cold weather may increase the risk of disease overall, leading
governments to impose travel restrictions. Further, interaction effects between weather and
government interventions variables cannot be estimated if the effects in these two sets of vari-
ables are estimated separately. Moreover, most of the existing work study the impact without
accounting for the presence of the persons who are asymptomatic but can nevertheless in-
fect others, which is a distinguishing feature of COVID-19 in comparison with previous viral
diseases.
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In this paper, we employ a nonparametric regression method not only to model the impacts
of weather and government interventions jointly in the presence of asymptomatic infections,
which incorporates an epidemic model that allows us to evaluate the effects on the virus
transmissibility, but also provide forecasts of future COVID-19 infections. Specifically, a
Gaussian process prior (Williams and Rasmussen, 2006) is imposed on the functional param-
eters in the susceptible-infectious-removed (SIR) model (Kermack and McKendrick, 1927),
and based on this model, the posterior distribution of the basic reproduction number, which
is used to measure the transmission potential of a disease, will be derived. Both main and
interaction effects of these factors will be analyzed by sensitivity analysis (Sobol, 1993).

Parameter estimation in epidemic models is often called calibration in the computer exper-
iment literature (Kennedy and O’Hagan, 2001; Santner, Williams and Notz, 2018; Tuo and
Wu, 2015). Although there are numerous developments on calibration, most of the existing
work are based on scalar parameters rather than functional parameters. Exceptions include
the recent work by Plumlee, Joseph and Yang (2016); Brown and Atamturktur (2018), but
their work is based on continuous outputs with a Gaussian assumption, which does not hold
for count data in the epidemic models.

In Section 2, the SIR model and a modified SIR model with functional parameters will be
introduced. The statistical model incorporated with the SIR model will be explicitly described
in Section 3. Numerical studies are conducted in Section 4 to examine the performance. In
Section 5, the statistical model is applied to the COVID-19 outbreak to assess the impacts
of weather and government interventions. Final remarks are given in Section 6. The details
of sampling for the posterior distributions, the R (R Core Team, 2018) code, and the data
for reproducing the results in this paper are provided in the Supplementary Material (Sung,
2022).

2. Compartmental models in epidemiology.

2.1. SIR model. Compartmental models are widely used in epidemiology which simplify
the mathematical modelling of infectious diseases. One of the prominent models is the SIR
model (Kermack and McKendrick, 1927; Diekmann, Heesterbeek and Britton, 2012), which
assigns the population to three compartments: susceptible (S), infectious (I), and removed
(R), where the three compartments respectively represent the number of the susceptible in-
dividuals, the infected individuals, and the removed individuals, which include the ones who
are recovered, quarantined or deceased. The SIR model has been widely used for under-
standing how a disease spreads in outbreaks of measles, influenza, rubella, smallpox, Ebola,
monkeypox, SARS, and the current COVID-19 pandemic. See, for example, Osthus et al.
(2017); Chen et al. (2020); Cooper, Mondal and Antonopoulos (2020); Roda et al. (2020);
D’Arienzo and Coniglio (2020).

Transitions among the three compartments can be expressed mathematically by three or-
dinary differential equations as follows:

(1)
dS(t)

dt
=−βI(t)S(t)

N
,

dI(t)

dt
=

βI(t)S(t)

N
− γI(t),

dR(t)

dt
= γI(t),

where S(t), I(t) and R(t) represent the numbers of cases in the corresponding compart-
ments, N = S(t) + I(t) +R(t) is the total population, β is the contact rate that represents
the average number of contacts per person per time in the susceptible compartment that is
sufficient to spread the disease, and γ is the removed rate from the infectious compartment to
the removed compartment. The ratio of β and γ is called the basic reproduction number in
epidemiology, often denoted by R0 := β/γ, which indicates the average number of infected
cases generated by a typical infectious individual when introduced into a fully susceptible
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population. This number is of great importance in public health and epidemiology, which is
often used to measure the transmission potential of a disease or a virus (Dietz, 1993; Zhao
et al., 2020; Zhang et al., 2020). Essentially, when R0 is larger than 1, the infection will be
able to start spreading in a population, and the larger R0 is, the harder it is to control the
epidemic.

2.2. Modified SIR model. Although the SIR model has been widely used in epidemiol-
ogy, the model has been shown that it cannot reflect the reality due to its simplifications and
assumptions. See, for example, Heesterbeek et al. (2015); Sung and Hung (2020). In partic-
ular, the constant parameter assumption of β and γ, which implies that the contact rate and
the removed rate are both fixed in the entire process, is too strong and unrealistic (Cowl-
ing, Ho and Leung, 2008; Cauchemez et al., 2016; Hong and Li, 2020; Yu, 2020; Ambrosio
and Aziz-Alaoui, 2020). Therefore, in this article, we consider a modified, more flexible SIR
model by assuming that the parameters can vary based on potential factors.

First, similar to Hong and Li (2020), we consider a discrete version of SIR models by
replacing the derivatives in (1) with finite differences, which results in

I(t+ 1)− I(t) =
βI(t)(N − I(t)−R(t))

N
− γI(t),

R(t+ 1)−R(t) = γI(t).

Then, by assuming the functional parameters β(x) and γ(x), where x ∈ Ω ⊆ Rd is a d-
dimensional factor, and expressing the equations in a recursive fashion, a modified SIR model
can be expressed as

I(t+ 1) = (1 + β(x)− γ(x))I(t) + β(x)I(t)(I(t) +R(t))/N,

R(t+ 1) =R(t) + γ(x)I(t),

and S(t + 1) = N − I(t + 1) − R(t + 1) for t ∈ N ∪ {0}. Thus, the number of the daily
infectious cases at day t based on the modified SIR is the difference in susceptible from day
t− 1 to day t, which we denoted as

(2) f(t, β(x), γ(x)) := S(t− 1)− S(t).

3. A statistical model incorporated with the SIR model.

3.1. Gaussian process priors for functional parameters. In this section, we introduce a
statistical model incorporated with the modified SIR model in (2). First, denote yt as the daily
reported number of infectious cases at day t, and assume yt follows an independent Poisson
distribution with the mean function that is a fraction of f(t, β(x), γ(x)). That is,

(3) yt
indep.∼ Poi(κ(t)f(t, β(x), γ(x))),

where κ(t) ∈ (0,1), indicating that only a fraction κ(t) of the total number of infected are
reported. The fraction κ(t) plays a crucial role for taking into account the presence of asymp-
tomatic, or however undetected, infectious cases, which is one of the distinguishing features
of COVID-19. The idea of including the fraction was also mentioned in the literature (e.g.,
Piazzola, Tamellini and Tempone (2021) and Ansumali et al. (2020)), but a constant fraction
was often considered, which was criticized by Ansumali et al. (2020) as unrealistic. A dy-
namic fraction as in (3) varying with time is more realistic for the problem. It should be noted
that in the model (3), it is intrinsically assumed that the rate of transmission by an infected-
asymptomatic person is the same as the infected-symptomatic person. More sophisticated
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models with an additional “asymptomatic-but-infected” compartment, which allow for dif-
ferent transmission rates in the model, may be considered, such as Robinson and Stilianakis
(2013) and Ansumali et al. (2020). However, as pointed out by Ansumali et al. (2020), sev-
eral recent studies show that there is no discernible difference between the two rates in the
COVID-19 outbreak. See, for example, He et al. (2020); Li et al. (2020); Liu et al. (2020);
Wölfel et al. (2020). As such, equal transmission rates are assumed in the proposed model,
and the extension to the compartmental models with the asymptomatic-but-infected com-
partment, such as the SAIR model of Ansumali et al. (2020), is left for the future work. Such
work could also allow for studying whether the effects of potential factors differ among the
asymptomatic versus symptomatic persons, such as government interventions.

Notably, as pointed out by Ansumali et al. (2020), another popular epidemic model for
the outbreak, SEIR model (Susceptible-Exposed-Infectious-Removed) (Kermack and McK-
endrick, 1927), is not as realistic, because the exposed group (E) of the SEIR model does
not infect the susceptible group (S) as the E group does not carry a sufficient viral load to
infect others through contact. This is unlike the asymptomatic-but-infected individuals in the
COVID-19 outbreak, which do lead to the S group getting infected. As such, a model like the
proposed model accounting for these asymptomatic individuals is more realistic.

The functional parameters in the SIR model are assumed to follow a joint Gaussian process
(GP) prior:

logit

(︃
β(·)
γ(·)

)︃
∼ GP

(︃[︃
µ1(·)
µ2(·)

]︃
, τA

[︃
Kϕ1

(·, ·) 0
0 Kϕ2

(·, ·)

]︃
A

)︃
,(4)

where logit(x) = log x
1−x and

A=

[︃
1 ρ
ρ 1

]︃1/2
=

1√︂
2 + 2

√︁
1− ρ2

[︃
1 +

√︁
1− ρ2 ρ

ρ 1 +
√︁

1− ρ2

]︃
.(5)

The logit transformation is used here because both β and γ are rates which are bounded from
zero to one, but the GP prior has positive measures over the negative reals. Other transfor-
mation, such as the probit function, Φ−1(x), the cumulative log-log function, log(− log(x)),
or the identity function, x, could be also used here. µj(·) is the mean function, where we
assume a constant mean, i.e., µj(x) = µj . τ > 0 is the process variance, and Kϕj

is the cor-
relation function, for which a Gaussian correlation function is commonly used in the form
of Kϕj

(x,x′) = exp(−∥ϕj ⊙ (x− x′)∥22) for any x,x′ ∈Ω⊆Rd, where ϕj ∈Rd is the un-
known lengthscale parameter and ⊙ denotes the element-wise product of two vectors. Note
that the correlation function is usually reparameterized as

(6) Kϕj
(x,x′) =

d∏︂
l=1

ϕ
4(xl−x′

l)
2

jl for any x,x′ ∈Ω,

where ϕj = (ϕj1, . . . , ϕjd) ∈ (0,1)d, for the purpose of numerical stability, because the do-
main of ϕjl ∈ (0,1) is now bounded. See, for example, Brown and Atamturktur (2018) and
Mak et al. (2018). As a result, the form of the kernel function (6) is used throughout this
article.

In (4), we assume that logit(β(·)) and logit(γ(·)) are correlated with a positive cross-
correlation, 0 < ρ ≤ 1, which implies that for any given x ∈ Ω, the correlation between
logit(β(x)) and logit(γ(x)) is ρ. This can be verified by (5) and the fact that Kϕ1

(x,x) =
Kϕ2

(x,x) = 1 for any x ∈ Ω. The dependence assumption of the two parameters, β(·) and
γ(·), is crucial and appealing from an epidemiological perspective. For the compartmental
models like SIR, it is well known that the parameters are strongly coupled in the model-
ing literature. See, for example, the joint posterior distribution in Roda et al. (2020) which
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shows that the two parameters in an SIR model are highly positively correlated. Thus, the
independent GP assumption as in Brown and Atamturktur (2018) and Plumlee, Joseph and
Yang (2016) is not valid in this application. Note that unlike the covariance structures in
Banerjee and Gelfand (2002); Qian, Wu and Wu (2008) where the parameters ϕ1 and ϕ2 are
assumed to be identical, the covariance structure (4) adopts the one in Fricker, Oakley and
Urban (2013) and Svenson and Santner (2016), which is more flexible as the two lengthscale
parameters are not necessarily identical.

Lastly, the fraction κ(t) is assumed to have a Gaussian process prior:

(7) logitκ(·)∼ GP(µ3, νKφ(·, ·))

with ν > 0 and φ ∈ (0,1), where Kφ has the same form of (6).
Suppose that we observe the reported infectious cases in n days, which are denoted

by yn = (y1, . . . , yn). Denote κt = κ(t), βt = β(xt), γt = γ(xt), κ = (κ1, . . . , κn),β =
(β1, . . . , βn), and γ = (γ1, . . . , γn). Furthermore, denote 1n = (1, . . . ,1)T ∈ Rn×1,Kϕj

=

(Kϕj
(xi,xk))1≤i,k≤n ∈ Rn×n, Kφ = (Kφ(i, k))1≤i,k≤n ∈ Rn×n, and denote aij as the el-

ement Aij . Then, together with the model assumptions (3), (4), (6) and (7), we have the
following hierarchical model,

yt|β,γ,κ
indep.∼ Poi(κtf(t, βt, γt)) for t= 1, . . . , n,

logit

(︃
β
γ

)︃
∼N2n

(︃[︃
µ11n
µ21n

]︃
, τΣ

)︃
,

logit (κ)∼Nn(µ31n, νKφ),

τ ∼ InvGamma(aτ , bτ ),(8)

ρ∼ Beta(1, bρ),(9)

ν ∼ InvGamma(aν , bν),(10)

φ∼ Beta(1, bφ),(11)

ϕjl
indep.∼ Beta(1, bϕ) for j = 1,2; l= 1, . . . , d,(12)

µj
indep.∼ N (αj , σ

2
j ) for j = 1,2,3,(13)

where

Σ=

[︃
a211Kϕ1

+ a212Kϕ2
a11a21Kϕ1

+ a12a22Kϕ2

a11a21Kϕ1
+ a12a22Kϕ2

a221Kϕ1
+ a222Kϕ2

]︃
,

and (8), (9), (10), (11), (12), (13) are the priors of the parameters, in which InvGamma(a, b)
is an inverse gamma distribution with shape parameter a and rate parameter b, and Beta(1, b)
is a beta distribution with parameters 1 and b.

3.2. Posterior Distributions. The goal of this study is to infer the functional parameters
β(x) and γ(x) and subsequently investigate whether the d-dimensional factor x plays a role
in varying the basic reproduction number, which is denoted by R0(x) := β(x)/γ(x). In ad-
dition, predicting the number of future infections based on forecast weather and government
interventions, say xn+1, is also of great interest. Therefore, the joint posterior distribution of
β(x), γ(x), and the number of the future daily infected cases are developed as follows.

We first derive the joint posterior distribution of β(x) and γ(x). Denote the parameters
ψ = (τ, ρ, ν,φ,ϕ1,ϕ2, µ1, µ2) and data = {yt,xt}1≤t≤n. Then, the posterior distribution
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given observations can be obtained by

π(β(x), γ(x),β,γ,κ,ψ|data)

∝π(β(x), γ(x)|β,γ,κ,ψ,data)π(β,γ,κ,ψ|data),

where π(x|y) denotes the posterior distribution of x given y. Thus, the joint posterior distri-
bution of β(x) and γ(x) can be approximated by Markov chain Monte Carlo (MCMC) by
drawing the samples from π(β(x), γ(x)|β,γ,κ,ψ,data) and π(β,γ,κ,ψ|data) iteratively.
The posterior π(β(x), γ(x)|β,γ,κ,ψ,data) can be drawn based on the property of condi-
tional multivariate normal distributions, that is,

logit

(︃
β(x)
γ(x)

)︃
|β,γ,κ,ψ,data∼N2 (u(x), s(x)) ,(14)

where

u(x) =

[︃
µ1

µ2

]︃
+Σ(x)Σ−1

(︃
logit(β)− µ11n
logit(γ)− µ21n

)︃
and

s(x) = τ

(︃[︃
1 ρ
ρ 1

]︃
−Σ(x)Σ−1Σ(x)T

)︃
with

Σ(x) =

[︃
a211kϕ1

(x) + a212kϕ2
(x) a11a21kϕ1

(x) + a12a22kϕ2
(x)

a11a21kϕ1
(x) + a12a22kϕ2

(x) a221kϕ1
(x) + a222kϕ2

(x)

]︃
,

where kϕj
(x) = (Kϕj

(x,x1), . . . ,Kϕj
(x,xn)). The MCMC samples of β(x) and γ(x) can

then be obtained by sampling from the multivariate normal distribution of (14) and taking the
inverse of the logit function. For the posterior π(β,γ,κ,ψ|data), we have

π(β,γ,κ,ψ|data)∝ π(data|β,γ,κ,ψ)π(β,γ|κ,ψ)π(κ|ψ)π(ψ)(15)

∝ exp

{︄
−

n∑︂
t=1

κtf(t, βt, γt)

}︄
×

n∏︂
t=1

κyt

t f(t, βt, γt)
yt

× exp

{︄
−1

τ

(︃
logit(β)− µ11n
logit(γ)− µ21n

)︃T

Σ−1

(︃
logit(β)− µ11n
logit(γ)− µ21n

)︃}︄

× exp

{︃
−1

ν
(logit(κ)− µ31n)

T K−1
φ (logit(κ)− µ31n)

}︃
× |Σ|−1|Kφ|−1τn+aτ−1 exp{−bττ}(1− ρ)bρ−1νn/2+aν−1 exp{−bνν}

×φbφ−1
2∏︂

j=1

d∏︂
l=1

(1− ϕjl)
bϕ−1 exp

⎧⎨⎩−1

2

2∑︂
j=1

(µj − αj)
2

σ2
j

⎫⎬⎭ .

The samples from this posterior distribution can be drawn by Gibbs sampling with
Metropolis-Hastings algorithm, the details of which are given in Section 1 of the Supple-
mentary Material (Sung, 2022).

Now we move to the posterior distribution of the number of future infections. Let xn+1

be the forecast weather and government interventions at time n + 1, and denote βn+1 =
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β(xn+1), γn+1 = γ(xn+1), κn+1 = κ(n+ 1). Then the posterior distribution of the infected
number, yn+1, given the current observed data has

π(yn+1,βn+1, γn+1, κn+1,β,γ,κ,ψ|xn+1,data)

∝π(yn+1|βn+1, γn+1, κn+1)π(βn+1, γn+1|β,γ,κ,ψ,xn+1)

×π(κn+1|β,γ,κ,ψ)π(β,γ,κ,ψ|data).

Similarly, this posterior distribution can be drawn by MCMC sampling, where the sam-
ples for π(β,γ,κ,ψ|data) can be drawn as introduced before, and the samples from
π(βn+1, γn+1|β,γ,κ,ψ,xn+1) can be similarly drawn from the multivariate normal distri-
bution (14). The samples of κn+1 from π(κn+1|β,γ,κ,ψ) can be drawn from the posterior
of κ(t),

logit (κ(t))|β,γ,κ,ψ,∼N (µ3 + kφ(t)K
−1
φ (logit (κ)− µ31n),(16)

ν(1− kφ(t)K
−1
φ kφ(t)

T )),

and set t= n+1, where kφ(t) = (Kφ(t,1), . . . ,Kφ(t, n)). The distribution, π(yn+1|βn+1, γn+1, κn+1),
follows a Poisson distribution with the mean κn+1f(n+ 1, βn+1, γn+1). Thus, the MCMC
samples can be drawn iteratively from these posteriors.

4. Simulation Study. In this section, simulation studies are conducted to examine the
performance of the proposed method. In the simulations, the hyperparameters in the pri-
ors (8), (9), (10), (11), (12), (13), are set as follow. Similar to Brown and Atamturktur
(2018), the shape parameters bρ, bϕ and bφ are chosen to be 0.1, which place most proba-
bility mass near one to enforce the smoothness for the functional parameters; aτ = aν = 0.01
and bτ = bν = 0.01 are chosen so that the prior is centered at one with standard deviation√︁

0.01/0.012 = 10; for (13) we set αj = 0 and σ2
j = 1 for j = 1,2,3. For the MCMC

sampling, 2,000 iterations are performed in a burn-in period, and after that additional 2,000
MCMC samples are drawn, which are thinned to reduce autocorrelation.

Suppose that the observation yt is simulated from a Poisson distribution with the mean
function, κ(t)f(t, β(x), γ(x)), where f(t, β(x), γ(x)) = (t/10+5β(x)+γ(x)(t/10)2)2 and
x is one-dimensional factor in the space [0,1]. Let β(x) = sin(3x) exp(−x) + 0.2, γ(x) =
sin(3x), and κ(t) = exp(−t/50), which are demonstrated in the left and middle panels of
Figure 1. It can be seen that the two curves, β(x) and γ(x), share some similarity overall,
which suggests that the dependence assumption of these two functions is necessary. We gen-
erate x1, . . . , x80 from a uniform distribution, and randomly generate n = 80 observations,
y1, . . . , y80. The right panel of Figure 1 shows the random samples as dots, where the solid
line is the true mean function, κ(t)f(t, β(x), γ(x)). We use the first 60 samples, y1, . . . , y60,
as the training dataset and the other 20 samples as the test dataset.

Figure 2 shows the posterior draws of β(x), γ(x) and κ(t). It can be seen that the pos-
terior means can recover the true functions very well. The predictions on the test dataset
are presented in Figure 3, which shows that the posterior mean is reasonably close to the
true function. These results demonstrate that the proposed method can perform well for the
models with functional parameters in terms of estimation and prediction.

5. Application to COVID-19. In this section, we use the proposed model to analyze
the COVID-19 virus spread among the eight largest metropolitan areas in the United States
(US). In particular, we use the model to estimate the impacts of weather and government
interventions (and their interactions) on virus transmissibility, to forecast daily infected cases
based on these factors, and to estimate the fraction of cases reported.
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FIG 1. Simulation setting. The left panel demonstrates β(x) (solid line) and γ(x) (dashed line), the middle panel
demonstrates κ(t), and the right panel demonstrates the true mean function, κ(t)f(t, β(x), γ(x)) (dashed line),
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mean, and the dashed lines are the true functions.

The data source is briefly introduced here. The daily COVID-19 cases are obtained at
the US county level from the data repository provided by New York Times (Almukhtar
et al., 2020), starting from January 25, 2020 to November 25, 2020. The population sizes
are obtained from the census bureau website, which also can be found in Yu (2020). The
historical weather data and the weather forecast are collected from the Weather Underground
(The Weather Company, 2020), which include the daily average temperature, humidity, wind
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speed, pressure, and precipitation. The information of government interventions is obtained
from New York Times (Lee et al., 2020) and local media, where we categorize the interven-
tions into five levels: (0) no intervention; (1) all businesses are open with mask required and
some capacity limitations ; (2) all industries resume operations but some indoor services,
such as bars and restaurants, remain closed; (3) Industries resume operations with severe re-
strictions and capacity limitations; (4) all non-essential businesses are closed. Scatterplots
for every pair of factors are demonstrated in Figure 4, which appears to have no obvious
relationship between any pair of the factors.

Now we are ready to apply the proposed model to the data, where the setting of the MCMC
sampling is similar to the one in Section 4. Consider the confirmed cases before November
11 as the training data, and the cases from November 11 to 25 as the test data. Since the actual
infectious period for COVID-19 is not available and it varies by individual and situation, as
suggested by Centers for Disease Control and Prevention and Wilson (2020), we assume an
infectious period of 11 days from the actual infection to the confirmation of the positive test
result. In other words, we assume that the actual infection occurs 11 days prior to the confir-
mation date. The input factor is a 6-dimensional variable, i.e., x ∈ R6, including 5 variables
representing weather data and one variable representing government intervention levels. The
MCMC samples of the basic reproduction number can be obtained from the MCMC samples
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of β(x) and γ(x) by computing R0(x) = β(x)/γ(x). Since it’s hard to visualize the function
R0(x) via a six-dimensional x, similar to Welch et al. (1992), we use a functional ANOVA
decomposition (Hoeffding, 1948; Sobol, 1993; Santner, Williams and Notz, 2018) for R0(x)
and plot its overall mean and main effects, which respectively measure the overall influence
and the influence of a single factor on the basic reproduction number. That is, suppose that x
follows a distribution F (x) where F (x) = F1(x1)×F2(x2)× · · · ×Fd(xd), then the overall
mean and the main effects of the function R0(x) can be obtained by

(17) m0 :=

∫︂
Ω
R0(x)dF (x) and mj(xj) =

∫︂
Ω−j

(R0(x)−m0)dF−j(x−j),

respectively, where
∫︁
Ω−j

· · ·dF−j(x−j) indicates integration over the variables not in j and

F−j(x−j) =
∏︁d

i ̸=j Fi(xi). Since the MCMC samples of R0(x) are available for any x ∈ Ω
and the integration in (17) can be approximated by the Monte-Carlo integration (Caflisch,
1998), the samples of the posterior distributions of m0 and mj(xj) can be naturally drawn
via a Monte-Carlo sampling method. This is similar to Le Gratiet, Cannamela and Iooss
(2014) for estimating the Sobol indices through a surrogate model that accounts for both the
integration errors and the surrogate model uncertainty.

The boxplots of the overall means of R0(x) are shown in Figure 5. It can be seen that
among these eight cities, Chicago has the highest basic reproduction number than other cities,
which implies that each existing infection in Chicago can cause more new infections than
other cities, while the existing infection in Baltimore and Houston causes fewer new infec-
tions. Before illustrating the main effects, sensitivity analysis (Sobol, 1993) is adopted to
determine which input factors are responsible for the most variation in the basic reproduction
number. The result is shown in Figure 6. Although no unique factor can dominate the others
for all of the cities in terms of sensitivity index, it appears that government interventions have
made stronger impacts than weather factors on the virus spread in most of the cities, espe-
cially in Baltimore and San Francisco. On the other hand, some cities, such as Los Angeles,
Saint Louis, and Atlanta, have shown evidence that temperature has played a crucial role in
explaining the variation of the basic reproduction number.
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FIG 5. Overall mean of basic reproduction number.

The main effects of R0(x) are demonstrated in Figure 7. As shown in the sensitivity anal-
ysis, the intervention and temperature factors both have larger variations in the main effects,
ranging from -0.1 to 0.3, whereas the main effects of other weather factors mostly range from
-0.1 to 0.1. Among these six factors, it shows that temperature and government intervention
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FIG 6. Main effect indices of basic reproduction number.

both have negative effects on the virus spread for all of the cities, while other factors have
no common trend. In particular, it appears that a decrease of 10◦F in temperature leads to
an increase of roughly 0.06 (with a standard error (SE) of 0.0354) in the basic reproduction
number. This result is quite promising in the sense that most of the existing methods cannot
directly quantify the effect of temperature on the basic reproduction number. The intervention
factor shows that the basic reproduction number can be effectively reduced if governments
implement more restrictions to combat the COVID-19 outbreak, especially for New York and
San Francisco, where a change from no intervention to the strictest restrictions can lead to
a decrease in the basic reproduction number of approximately 0.42 (SE 0.03). This finding
is consistent with the results in some recent work on the effect of government intervention
for COVID-19, such as Flaxman et al. (2020); Haug et al. (2020); Haldar and Sethi (2020);
Wang et al. (2020).

We further investigate the interaction effects of the basic reproduction number. Particu-
larly, we focus on the interaction effects between the intervention factor, which is controllable
by governments, and the five weather factors, which are uncontrollable. The sensitivity in-
dices of these five interaction effects are first computed to compare their relative importance.
For the sake of saving the space, only the interaction effects for New York are demonstrated
here. The sensitivity indices and the interaction plot with the highest index are respectively
shown in the left and right panels of Figure 8. It can be seen that the interaction effect be-
tween temperature and government interventions has the highest sensitivity index, and from
the interaction plot of the two factors, it appears that when governments implement more
restrictions, the effect of temperature on the virus spread tends to be milder. This result sug-
gests that as the weather gets colder, policymakers may need to implement more restrictions
to mitigate the pandemic.

We validate the proposed model by performing predictions on the test data from November
12 to 25. The prediction results of the eight cities are shown in Figure 9. The predictions are
reasonably accurate over the 14-day period. Particularly, in the cities New York, Los Angeles,
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FIG 7. Main effect of basic reproduction number, mj(xj), which illustrates the influence of a single factor on the
reproduction number.

Baltimore, and San Francisco, the infected cases tend to increase over the 14-day period and
our predictions successfully capture the trend. This shows strong empirical justification for
our model specification.

Figure 10 presents the posteriors of the fraction of cases reported, κ(t). The posteriors
show that the actual infections are greatly undetected in most of the cities. This finding co-
incides with the recent results by U.S. Centers for Disease Control and Prevention (2021);
Pei et al. (2021); Noh and Danuser (2021). In particular, San Francisco shows that the frac-
tion less than 40% for the entire time of the ongoing pandemic, and New York shows low
fractions during the peak of confirmed cases, which suggests that the number of actual in-
fections during the peak is likely much higher (over 20,000 daily cases) than the confirmed
daily cases (about 8,000). The estimation of the fractions provides crucial insights for pub-
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lic health, which determines the actual severity of COVID-19 and can be used to develop
effective strategies against the outbreak.

To examine the robustness of the results, sensitivity analysis for the priors is conducted,
which examines the impact of 30 different prior specifications on the resulting posteriors of
R0(x) for the test data. The percentage deviations in the average posterior estimates between
the original model and the models with the 30 alternative prior specifications are computed,
which are presented in Figure 11. It appears that the results are somewhat stable under dif-
ferent prior settings, with the average percentage deviation being about 3.6%. The posteriors
based on the data of New York city are found to have higher shifts with some prior settings,
indicating that it may require a bit more care in the future analysis.

6. Concluding Remarks. How the weather and government interventions affect the
spread of a disease has been an important question but remains unclear in the literature.
A new statistical model incorporated with the prominent SIR model is employed to study the
impact on the COVID-19 virus transmissibility among eight US metropolitan areas. Gaussian
process modeling and sensitivity analysis for the functional parameters enable to investigate
the the main and interaction effects of the factors, which could lead to a new intervention
strategy for policymakers. This study shows that, among six factors, temperature and gov-
ernment interventions have stronger impacts on the COVID-19 spread in most of the cities.
The temperature has been found to have negative effects in all of the cities. Other weather
factors, such wind speed and pressure, do not show common effects among the eight cities.
New York city has shown a strong interaction effect between temperature and interventions,
which suggests that more restrictions are necessary to mitigate the outbreak as the weather
gets colder.

Although we found some potential associations between weather and virus transmissibil-
ity, it is worth emphasizing that these associations may not directly imply the causation of
the virus transmissibility, meaning that there might be some lurking/causal variables which
are correlated with these factors that make the associations appear stronger. For instance, as
recent studies have shown (e.g., Wilson (2020); Soucy et al. (2020)), the individual mobility
may have the direct impact on the COVID-19 spread, which could be strongly correlated with
weather factors. Therefore, incorporating the information of individual mobility and estimat-
ing the causal effects of mobility and weather is worthwhile to investigate in the future work.
In addition, it is conceivable to consider other potential factors for the virus transmission,
such as private sector (i.e., non-governmental) interventions, travel restrictions, and public
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FIG 9. Prediction performance of the proposed model. The dots are the confirmed numbers, the dashed lines are
the fitted values from July 1 to November 11, the gray lines and the solid lines are the MCMC draws and posterior
means for the test data from November 12 to 25.

compliance with government recommendations such as vaccinations, quarantines and face
coverings, if the data are available. However, including too many factors may lead to over-
parameterization which in turn causes unstable results. A potential solution is to perform
sensitivity analysis to screen out non-influential factors that have the least effect, and then
remove them from the analysis. We explore these issues in future work.
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SUPPLEMENTARY MATERIAL

Sampling details for the posterior distributions
The details of sampling for the posterior distributions in Section 3.2 are described in this file.

Data and R code
A zip file containing the data and R code for reproducing the results in Sections 4 and 5.
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