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Abstract. Computer models are commonly used to represent a wide range of real systems, but they often involve
some unknown parameters. Estimating the parameters by collecting experimental data becomes
essential in many scientific fields, ranging from engineering to biology. However, most of the existing
methods are developed under the assumption that the experimental data contains homoscedastic
measurement errors. Motivated by an experiment of plant relative growth rates where replicates are
available, we propose a new calibration method for inexact computer models with heteroscedastic
measurement errors. Asymptotic properties of the parameter estimators are derived which can be
used to quantify the uncertainty of the estimates, and a goodness-of-fit test is developed to detect
the presence of heteroscedasticity. Numerical examples and empirical studies demonstrate that
the proposed method not only yields accurate parameter estimation, but also provides accurate
predictions for physical data in the presence of both heteroscedasticity and model misspecification.
An R package for the proposed methodology is provided in an open repository.
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1. Introduction. Computer models, which use mathematical representations to simulate
real systems, have been widely adopted to understand a real-world feature, phenomenon
or event. The applications of computer models range from economics to the physical and
biological sciences. For instance, a computer model based on mass action reaction mechanisms
is developed in [12] to simulate the carbon flow in plant cell wall synthesis networks and to
understand the patterns of carbon flow and their regulation, which underpin plant growth and
development. A computer model often contains some unknown parameters that represent
certain inherent attributes of the underlying systems but cannot be directly controlled or
measurable in its physical experiment, which are called calibration parameters in the literature
[48, 20]. When its physical experiment is available, these parameters are used to calibrate
the computer model such that the model simulations agree with characteristics observed in
the physical experiment. This process is called calibration, and it is of great importance for
computer modelers because it not only improves the model prediction, but the estimated value
of the calibration parameters also provides some scientific insight which can help modelers
better understand the system. For example, the parameters in the cell adhesion study of
[52] include kinetic rates and their estimated values provide the information of molecular
interactions in the biological system.

This paper is motivated by the preponderance of computer models used to interpret bi-
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ological data in plant biology. For example, the underlying biochemistry facilitating carbon
fixation by plants can be determined by calibrating a computer model with rates of photo-
synthesis measured as a function of light intensity or carbon dioxide concentration [49, 56].
Computer models are also used to quantify plant metabolic fluxes [37]. Oftentimes gathering
and interpreting data from plant science experiments face the same challenges when used
in calibration approaches: (1) models are inexact or imperfect due to simplifications or in-
complete understanding of the system, and (2) data contain heteroscedastic variance due to
limitations in measurement approaches and variability in plant development. A real prob-
lem in plant biology involving inexact models and heteroscedastic errors will be illustrated
in Section 5. Apart from plant biology, many calibration problems in various fields, such as
engineering and astronomy, also face these two challenges. See, for example, [36] where a
sinusoidal model is used to estimate the period of a single periodic variable star but cannot
perfectly represent the light curve shape. In these problems, the weighted least-squares (WLS)
estimator is typically used to estimate the calibration parameters. The WLS estimator, how-
ever, can converge to an undesirable value of the parameters when the computer model is
inexact and the error is input-dependent. More details can be found in [36].

In this paper, we develop a new calibration framework for inexact computer models with
replicated experiments potentially having input-dependent errors, where a new statistical model
is introduced that enables to estimate the calibration parameters and produce predictions in
the face of heteroscedasticity. Moreover, the theoretical properties, including the asymptotic
distribution of the estimator and the goodness-of-fit test to detect the presence of heteroscedas-
ticity, are developed. Although there has been much work on calibration problems for inexact
computer models in the statistics literature (e.g., [31, 54, 44, 26]), these methods are devel-
oped under a homoscedastic assumption, which may in turn lead to faulty inferences in the
presence of heteroscedasticity. On the other hand, recent study by [36] proposes an adaptive
estimator which accounts for heteroscedasticity and has lower asymptotic variance than ordi-
nary least-square and WLS estimators. This method, however, is limited to a linear computer
model and requires the assumption that the variances are independent of input variables.

It is worth noting that the focus of this paper is on input-dependent noises in the physical
experiments, and the computer simulations can be either deterministic or stochastic, while
recent studies, such as [1], [6] and [2], develop heteroscedastic models for tackling the het-
eroscedasticity inherent in stochastic computer simulations. The extension is non-trivial, as
an accurate estimation for calibration parameters needs to account for the model inadequacy
of computer models, while the methods therein focus on accurate predictions for expensive
computer simulations. In addition, the theoretical properties of the parameter estimator are
of great interest which can be used to quantify the uncertainty of the estimates, but have not
been systematically studied.

The remainder of this paper is organized as follows. In Section 2, a heteroscedastic model
is introduced, and the estimation procedure for the calibration parameters and the hyperpa-
rameters in the model is developed. The asymptotic distribution of the parameter estimator
and the goodness-of-fit of the heteroscedastic model are presented in Section 3. Synthetic
examples are illustrated in Section 4. The proposed framework is applied to the case study of
plant relative growth rates in Section 5. Concluding remarks are given in Section 6. Estima-
tion details, mathematical proofs, an R [46] package, HetCalibrate [51], and the R code for
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implementation are provided in Supplemental Materials.

2. Heteroscedastic Modeling for Calibration Problems under Replication. Suppose that
N observations are collected from the physical experiments, denoted by y1, ..., yn, and their
corresponding inputs are z1,...,xy, where z; € Y € R? In the case of replication, we
further denote z;, ¢ = 1,...,n as the n distinct input locations, where n < N, and yZ(J ) as
the j-th output out of a; > 1 replicates at the distinct location Z;, and denote its sample

mean, Z?;l yi(j ) /a;, as y;. Furthermore, denote f(z,0) as the computer model output, which

is a function of the input z € y C R? and the calibration parameter # € © where © is a
compact subset of R?. When computer simulations are computationally demanding, such as
the high-fidelity simulation in [38], a common approach is to run a computer experiment with
various inputs and build a cheaper emulator for the actual computer simulations, for which
Gaussian process modeling is often used [47, 48, 20]. Then, the calibration problem for inexact
computer models with heteroscedastic errors can be represented as follows,

(2.1) y(z;) =C((z;) +¢€, i=1,...,N,

where ((z;) = f(2i,0)+bo(x;), and ¢; is the measurement or some stochastic error from the real
system and independently follows an normal distribution with zero mean and variance Vle;] =
r(z;), i.e., € ~ N(0,r(x;)). The function {(-) is the true process of the real system, and the
function by(-) is the discrepancy (or bias) between the true process and the computer model.
The inclusion of the discrepancy term in the model is necessary because the computer models
are often considered ineract or imperfect, meaning that even with an optimal calibration
parameter, the computer model does not perfectly match the true process, which is referred
to as model inadequacy in the literature [31]. Note that the dependence of by(-) on 6 is often
suppressed in the literature, but it is included here for clarity. It is also worth noting that
when r(z;) is assumed to be constant, this model is a special case of [31]. When f(z,0)
is a constant mean or a linear function and by(-) follows a Gaussian process model that is
independent of 6, the heteroscedastic model is closely related to the models of [1] and [6],
where their primary objective is to emulate stochastic simulations, whereas our focus here is
on estimation and inference of the calibration parameters as well as statistical correction of
model predictions.

The inexact computer models were first discussed by [31] which model the model dis-
crepancy as a Gaussian process (GP) model, and this method has been widely used in many
applications (e.g., [27, 26, 58, 23]). Similar to [31], we assume that the distribution of by(-)
is represented by a GP with zero mean and a positive-definite covariance function ¢, so that
bo(x1),...,bp(zn) is an N-dimensional multivariate normal distribution with zero mean and
covariance matrix (c(x;,x;))1<i<j<n. A scale v > 0 is commonly separated from a kernel
function, c(z;, xj) = vk(z;, x;; ¢), where ¢ are hyperparameters of the kernel. That is,

bg ~ NN(ON, I/KN),

where by := (bg(x1),...,bg(zn))T, Oy is a zero vector of length N, and Ky is an N x N

matrix with ij elements k(z;,2;;¢). The dependency of ¢ will be suppressed in the rest of

the paper for notational simplicity. Typical choices of the kernel function are Gaussian or
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Matérn kernels which are independent of 6. However, recent studies (e.g., [21, 54, 55, 44])
indicate that these choices of kernel functions may lead to unreasonable calibration parameter
estimation due to unidentifiability of the calibration parameters. Therefore, here we consider
an orthogonal kernel function [44] to avoid the identifiability issue, which will be introduced
in Section 2.2.

Thus, given the noise function r(x), the observations Yy = (y1,...,yn) follow a multi-
variate normal distribution,

Yy ~ NN(f(Q), v(Ky + An)),

where £(0) = (f(z1,0),..., f(zn,0))T, and Ay is an N x N diagonal matrix with diagonal
elements A1, ..., Ay, where \; = r(x;)/v. Based on the properties of conditional multivariate
normal distributions, the predictive distribution of y(z) at a new input setting z, y(z)| Y, is
a normal distribution, N'(i(z), o?(z)), where

() = f(x,0) + k(=) (Ky +An) " (YN —£(0))
and
(2.2) o?(z) = vk(z,z) + r(z) — vk(z)T (Ky + Ax) Tk(z),

where k(z) = (k(z,z1),..., k(z,2x))T.

The main difference of the model from the others in the literature lies in the the het-
eroscedastic error ¢; whose variance r(x) is non-constant, while typical homoscedastic cases
consider a constant variance, 7(z;) = 72. This assumption makes the calibration problem
more challenging, because the noise function r(z) is unknown which needs to be estimated. A
straightforward and sensible estimate is the sample variance of the replicates at each distinct
location, that is, 7(z;) = Z?izl(y,gj) —9;)?/(a; — 1), The estimate #(z;) was also used in [1]
where they fit a GP model on the pairs (Z;,7(z;)). This estimate, however, often requires a
minimal number of replicates. For example, [1] recommends a; > 10 replicates for fitting a
stochastic GP while [59] recommends a; > 5. This is impractical in many applications because
physical data from a real system is often time-consuming or too costly to collect. In addition,
the predictive variance (2.2) still requires the value of r(z) at the new input setting z but
physical data at this input setting is not directly available for estimation. To this end, we
employ a latent log-variance GP similar to [6] to model the noise function r(-), which does not

require a minimal number of the replicates and is computationally efficient under replication.

2.1. Latent Variable Process for Modeling r(:). Since r(-) = vA(-), we instead model
A(+) and then r(-) can be obtained by multiplying the scale v. Denote A,, = (A(Z1), ..., A(Zn))
and A, = diag(ai,...,a,). Similar to [19] and [6], we model log A1, ...,log A\, and assume
that their quantities are obtained via the predictive mean of a regularizing GP on new latent
variables, d1,...,d,. That is, assume 0; = do(Z;) + 1;, where n; ind- N(O,gu(g)/ai) and d(-)
is a GP with zero mean and a positive-definite covariance function, vy k() (-, ), where vy is
a positive scale and k() is a kernel function that contains some hyperparameters, which are
denoted by ¢. Typical kernels such as Gaussian or Matérn kernels can be used for k(,). Thus,
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denote A, = (d1,...,d,), it follows that
Ay ~ No(0, 1) (K(g) + 9ALY)),

and assume that log \; is the predictive mean, which gives

1\ —1
log An = K(g) (Kig) +9A,") Ay,

where K, = (k(g)(;%,;,a_;j)) The form of log A,, can be viewed as a smoother of

1<i,j<n’
the latent ¢;’s, which are unknown and treated as additional parameters that will be es-
timated in Section 2.3 along with ¢ and nugget g. The predictive value of log A\(x) at
an new input x can then be obtained by log A(z) = k) (z)" (K +gA51)_1 A, where
k(g) (m) = (k(g) (x, fl), ce k(g) (.’L‘, in))T

2.2. Orthogonal Gaussian Process for Modeling by(-). Although the GP modeling of
[31] (referred to as KO in the rest of the paper) for by(-) has been widely used, recent studies
have raised concerns about its identifiability issue of the calibration parameters [35, 3, 4, 23,
21, 54, 55, 44, 60]. In particular, [54, 55, 60] define the true calibration parameter as

(2.3) 0" = argmin [C(-) = £( )7, 0,

which minimizes the Lo distance between the true process and the computer model, where

190l 22() = <fx g(x)zdm> 1/2, and [54, 55] show that the KO estimator is asymptotically incon-
sistent with the true parameter, which could lead to poor approximations to physical systems.
[44] further points out that the GP modeling of the bias by(-) should depend on 6, but the
one in KO does not. Therefore, [44] provides an alternative GP modeling by orthogonalizing
the model bias to avoid mixing the GP and the definition of the parameter, the idea of which
is to create an orthogonal kernel function satisfying the condition

| a7 omieras

which is shown to be a necessary condition to minimize the Lo distance in (2.3). Note that
while other modeling approaches may be considered here, such as [53] and [61], the orthog-
onal GP can be naturally adopted in a maximum likelihood or Bayesian framework, as the
latent variable process J(-) is also a (regularizing) GP. More details regarding the potential
alternatives will be discussed in Section 6.

An orthogonal kernel function has the form of

(2.4) k’(l’i,l‘j) = ko(xi,xj) — hg(l‘i)THa_lhe(.rj),

where ko(-,-) is any valid kernel function on x X x and is independent of 6, such as Gaussian
or Matérn kernels,

0

o) = | 5 (€ Ok, €)d
X
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and

T
He:/x/x(%f(éh@) (;ef(&,@)) ko(&1,&2)dE1dEs.

Note that the orthogonal kernel function k(-,-) is dependent of € but here it is suppressed for
notational simplicity.

In practice, the integrals in hgy and Hy can be difficult to solve. This can be addressed by
the stochastic average approximation, such as Monte Carlo integration [11]. For example, one
can draw m uniform samples, 1, ..., &y, and then approximate hy(x) by

o) % = 3 (6 O, 1),

When the gradient 0 f(x,#)/00 is not available, it can be approximated by numerical methods,
such as Richardson’s extrapolation [34, 16]. When the evaluations of the computer model,
f(x,0), at any input pair (z,0) € x x © are computationally too demanding, a GP emulator
is often used [47, 48], and the predictive distribution of the emulator can be taken as a fixed
probabilistic definition of f(-,-). Hence, the definition of orthogonal kernel function can be
modified accordingly. We refer more details to [44].

2.3. Parameter Estimation. The estimation procedure for the model parameters herein
is based on maximum likelihood estimation. This procedure is developed along the lines
described in [6], which develop computationally efficient inference and prediction for a het-
eroscedastic GP when replication is present. The model parameters include the calibration
parameters 6, the hyperparameters of the two GPs, ¢, ¢, g, and the latent variables d1, ..., 0y.
Conditional on the parameters 0, ¢, ¢, g,01,...,0,, the scales v and v, both have plug-in
MLEs: 7 = N~ (Yy — £(0))" (Ky + An) " (Yn — £(0)) and i) = n ' AL (K, + gA; 1)~
The log-likelihood conditional on o and 7, is then

‘A,

N
2
n n N 1 1 n

N N 1
log L = — 510g27r— Elogf/— 510g|KN+AN| -

where the top line above is the mean-field component and the bottom line is the variance-field
component. While optimizing the log-likelihood can be computationally demanding when N
is large, because the inverse and determinant of Ky + Ay requires O(N?3) computations, the
computation complexity can be efficiently reduced from O(N?3) to O(n®+ N) by the Woodbury
identity [25], which essentially only depends on the number of the distinct input locations.
Moreover, since the gradient of the log-likelihood is available in a closed form, the parameters
can be efficiently estimated by maximizing the log-likelihood via a Newton-like optimization
algorithm, such as the quasi-Newton optimization [10]. We leave the computational details
to Supplemental Materials SM1. An R package, HetCalibrate [51], is available in an open
repository for the parameter estimation, which is via modifications to the source code of R
package hetGP [5].



3. Inference and Goodness-of-fit. In this section, the asymptotic distribution for the
maximum likelihood estimators is studied in Section 3.1, which is crucial for calibration
problems because the inference of the calibration parameter is often of great interest, and
a goodness-of-fit statistic is introduced in Section 3.2 to detect the presence of heteroscedas-
ticity. These theoretical results will be applied to the case study in Section 5.

3.1. Asymptotic Distribution for the Estimator of the Calibration Parameter. Denote
all the model parameters as w = (0,9,v, ®,g,v(y),01,-..,0,) and their estimators as wy.
Asymptotic results are presented here to show that @y is asymptotically normally distributed
as both n and N become sufficiently large. The regularity conditions and proofs are given in
Supplemental Materials SM2.

Theorem 3.1. Under the regularity conditions in Supplemental Materials SM2, the max-
imum likelihood estimators wy are asymptotically consistent and normal as n — oo and
N — oo,

By (w) 2 (@n — w) -5 N(0, L),

where I, is the m x m identity matriz, m is the size of the vector w, and By(w) is the
information matriz whose closed-form expression is provided in Supplemental Materials SM2.

Hence, by the theorem, an approximate (1 —a) x 100% confidence region of the calibration
parameter 6 can be constructed as

{9 €0 C R (Uby — 0)T (UBy(@y) 'UT) " (Uay — ) < Xg,l_a} ,

where U is a ¢ x m matrix composed of the first through the g-th row of the m-dimensional
identity matrix, and Xg,l— o 18 the (1 —a)-quantile of a chi-squared distribution with ¢ degrees
of freedom.

3.2. Goodness of Fit: Heteroscedasticity Test. As the main assumption of the proposed
model is the heteroscedastic assumption, to avoid overparameterization, it is essential to
develop a hypothesis test to detect the presence of heteroscedasticity. There are a variety
of test procedures proposed in the literature to detect heteroscedasticity. See, for example,
[28, 24, 18, 32, 41]. However, these procedures are developed under the assumption that the
specification of the regression function, or the computer model in our context, is correct. These
test procedures may falsely indicate the presence of heteroscedasticity if the computer model
is incorrect. One exception is the heteroscedastic test of [33], which is robust to the regression
function misspecification. This test, however, is limited to detect a linear specification of
measurement errors.

Given the model proposed herein, we can provide a more flexible heteroscedastic test for
an inexact computer model. In particular, in the proposed model we have r(z) = vA(x)
and log A(z) = kg (2)" (K, + gA,_Ll)_1 A,. Then, under homoscedasticity, the variance
function r(z) is constant over x, which implies that all of the latent variables, d1,...,d,, are
equal to zero simultaneously. Therefore, a testable hypothesis to detect heteroscedasticity is

Hy:61=---=0,=0 v.s. Hjp: at least one J; is non-zero.
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Based on the asymptotic results of Theorem 3.1, a test statistic for the null hypothesis is given
in the next theorem. The proof can be done by Slutsky’s theorem.

Theorem 3.2. Under the regqularity conditions in Theorem 3.1, the heteroscedastic test
statistic . 4
(Hon)" (HBy(w)'HY) ™ (Hoy) -5 x2

formn and N sufficiently large under the null hypothesis, where H is an n X m matriz composed
of the last n rows of the m-dimensional identity matriz.

In a finite sample application, By(w) can be estimated by By (wy), which can be shown
to be consistent under the regularity conditions. Thus, with Theorem 3.2, an approximate
level-« test is given by rejecting Hy when

(Hon)" (HBy(on) "HT) ™ (Hon) > X2 _q-

4. Numerical Study. In this section, numerical experiments are conducted to examine
the calibration performance of the proposed method, including one computer model with one
calibration parameter and one with three calibration parameters. In the implementation of
the proposed method, Matérn kernels with the smoothness parameter 5/2 are chosen for K(g)s
which have the form

ki) (x,y) = (1 + \flx —yll+ 33@“?5 - y|2> exp (—\f!\z - yl!) ,

and the Matérn kernels with hyperparameter ¢ are chosen for ky in (2.4) to derive the or-
thogonal kernel k.

4.1. Example with One Calibration Parameter. We consider an example adapted from
[54]. Assume that the input x is uniformly distributed on [0, 27], the true process is ((z) =
exp(z/10) sinx, and the observations are given by y; = ((z;) + €;, where ¢; is independently
normally distributed with zero mean and the variance 7(x;) = (0.01 +0.2(z; — 7)?)2. Suppose
that the computer output is given by the function f(z,0) = ((z)—v60? — 6 + 1(sin fx+cos z).
There does not exist a real number 6 such that f(-,0) = ((-) because V62 — 6 + 1(sin 0z +
cosfz) is always positive for any 6. Thus, this computer model is inexact because even
with the optimal setting 6*, there still exists discrepancy between f(-,0*) and ((-). The true
parameter 0* can be calculated as in (2.3), which is 6* ~ —0.1789.

In this numerical study, eight distinct input locations are selected with equal space in
[0,27], and 5 replicates are generated at each distinct location, that is, a1 = ... = ag = 5.
Figure 1 demonstrates the simulated data, in which three different methods are performed,
which are: (left) the WLS estimator; (middle) the homoscedastic modeling, which is the
frequentist version of the KO approach; (right) our proposed method. The calibration param-
eter estimates are -0.2784, 0.2674, and -0.1727, respectively. In this example, our proposed
method provides a more accurate parameter estimate (the true parameter is 0* ~ —0.1789),
which also can be seen from the upper panels, where the computer model with the estimate is
closer to the true process than other two methods in the sense of Ly distances. Figure 1 also
shows that the WLS yields inaccurate predictions for physical data, and the KO approach
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suggests unreasonably wide prediction intervals due to the constant variance assumption. On
the other hand, the proposed method not only provides a more accurate parameter estimate,
but it also provides more accurate predictions as well as more reasonable prediction intervals
by recovering the variance process.

We conduct the simulation 100 times to examine the performance of our proposed method
(labeled HetOGP), in comparison with the weighted least-squares (labeled WLS), homoscedas-
tic modeling with a Matérn kernel (labeled HomGP), which is the frequentist version of the
KO approach, homoscedastic modeling with an orthogonal kernel (labeled HomOGP), which is
the frequentist version of the calibration approach in [44], and heteroscedastic modeling with
a Matérn kernel (labeled HetGP), which is close to the model in [6]. Three main metrics are
used for the comparison: (i) estimation bias, § — 6*; (i) root mean squared errors (RMSEs)

based on 101 test equal-spaced locations in [0, 1], (Z}Sl(c(:cl) — g}($i))2/101>1/2, where y(x)
is the prediction mean for the input x; (iii) predictive score, which is a scoring rule provided
by Equation (27) of [17] that combines prediction means and variances.

Figure 2 shows the results for the five methods based on the 100 simulations. The pre-
dictive score of WLS is not available because the prediction variances at unobserved input
locations are not available for the WLS. First, from the left panel, it can be seen that our
proposed method (HetOGP) outperforms the other methods in terms of the calibration pa-

variance
2
1

Figure 1. Illustration of three methods: (left) WLS; (middle) KO; (right) the proposed method. Upper
panels represent the replicates as open circles with the averaged observation y, in filled circles at each distinct
input location, the true process as a black dashed line, the computer model f(,é) as a blue dashed line, and
the prediction mean curve as a red solid line, with 95% prediction intervals in green dotted lines. Lower panels
represent the sample variance 7(Z;) as black points, the true variance process as a dashed line, and the fitted
variance process as a red solid line.



rameter estimation. The estimates of WLS are very biased when the computer model is
inexact. HomOGP gives relatively unbiased estimates, but the variation of the estimates is
larger than HetOGP. From the middle and right panels, it shows that heteroscedastic modeling-
based methods (HetGP and HetOGP) are better than WLS and homoscedastic modeling-based
methods (HomGP and HomOGP) in terms of prediction performation. The reason of the poor
predictive scores of HomGP and HomOGP is that, as shown in Figure 1, the homoscedas-
tic modeling yields unreasonably wide prediction intervals when heteroscedasticity is present.
HetGP results in superior prediction accuracy and prediction scores, but the estimates are
quite off from the true parameter. On the other hand, our proposed method (HetOGP), which
models the discrepancy function using an orthogonal GP to avoid the identifiability issue,
provides more accurate parameter estimates. We also construct the 95% confidence intervals
for the calibration parameter based on the result of Theorem 3.1, and 92 out of the 100 sim-
ulations cover the true parameter, which is close to the nominal coverage 95%. In terms of
the computational cost, all the methods here are implemented within 3 seconds, on a laptop
with 2.6 GHz CPU and 16 GB of RAM. Based on the estimation and prediction results, it
suggests that our proposed method is more appropriate for the calibration problem in the face
of heteroscedasticity and inexact computer models, which provides more accurate parameter
estimates along with high prediction accuracy and prediction scores.
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Figure 2. The comparison of estimation and prediction performance. The left panel represents the estima-
tion bias of the calibration parameter, with the red horizontal line indicating zero bias. The middle panel shows
their root mean squared errors, and the right panel represents their predictive scores.

To further examine the estimation performance, three additional variance processes are
considered in the example: (i) a constant variance, r(x) = 1; (ii) variance with two weak peaks
at m/2 and 37/2, r(z) = 3(exp (=3(x — 7/2)?) + exp (—3(z — 37/2)?)) + 0.01; (iii) variance
with one strong peak at 7/2, r(z) = 6exp (—6(z — 7/2)?) + 0.01. These variance functions
are presented in the top panels of Figure 3 and 100 simulations are similarly conducted for
each of the processes. The parameter estimation results are summarized in the bottom panels
of Figure 3. It can be seen that when the variance is constant, HomOGP and HetOGP perform
equally well, which is expected because the heteroscedastic modeling does not benefit from the
homoscedastic case. When the variance process has two weak peaks as in (ii), our proposed
method improves the estimation accuracy by accounting for the heteroscedasticity, which
provides more accurate estimates with a lower variance than others. With a stronger peak as
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Figure 3. True variance process (top) and the resulting estimation bias (bottom).

in (iii), the benefit of heteroscedastic modeling is even more apparent.

We further use these three variance processes to examine the heteroscedastic test developed
in Section 3.2, where the empirical powers are computed as the proportion of the time during
the 1000 simulations that the null hypothesis is rejected with type I error 5%. The empirical
powers with four different sample sizes are summarized in Table 1. The empirical powers
of the constant variance (i) are close to the desired power, 5%, because the null hypothesis
is true. The powers of (ii) and (iii) are both higher than 0.97 in this finite-sample setting,
showing that the test can detect the presence of heteroscedasticity with high degree of power.

n a| (i) (i) (i)

g 50035 0971 0.995

10 | 0.019 1.000 0.999

g 10]0.021 1.000 1.000

20 | 0.024 1.000 1.000
Table 1

Empirical powers of the heteroscedastic tests, where a is the number of replicates of each of the n distinct
inputs, which gives the total sample size N = na.
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4.2. Example with Three Calibration Parameters. In this subsection, we consider a
calibration problem where two input variables and three calibration parameters are involved
in a computer model. Assume that the input 2 € R? is uniformly distributed on [0, 1]?, the
true process is ((z) = 4x; + z1sin(5z2), and the observations are given by y; = ((x;) + €,
where ¢; is independently normally distributed with zero mean and the variance r(z;) =
0.01 exp(—10sin(z17) cos(xam)). Suppose that the computer output is given by the function
f(x,0) = 01+ Ooz1 + 0312, where § = (01, 02,05) € © = [0,1]>. By minimizing the Ly distance
as in (2.3), we have 6* ~ (0.50,4.14, —1.00).

Similar to the previous subsection, we conduct the simulation 100 times, where each
simulation uses a two-dimensional Latin Hypercube sample (LHS, [39]) of size 30 on the unit
cube for designing the input z. In this study we consider three different numbers of replicates,
{2,5,10}, for each distinct input setting x, leading to N € {60,150,300}. The estimation
results are summarized in Figure 4, which shows the boxplots of estimation bias arranged
by the numbers of replicates (three groups of five from left to right) for each calibration
parameter. The results show that the proposed method (HetOGP) provides more accurate
estimates than the other four methods for each of the three calibration parameters. HomGP
and HomOGP provide relatively unbiased estimates, but the estimate variances are much larger
than HetOGP. The estimates of the proposed method are more accurate with lower variances
by the increase of the replicates, which agrees with the asymptotic result in Theorem 3.1.
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Figure 4. The estimation bias of (left) 61; (middle) 02; (right) 0, with the red horizontal line indicating
zero bias. Results with 2, 5 and 10 replicates at each input location are arranged in three groups of five along
the x-axis in each panel.

5. Case Study: Estimation of Plant Growth Rate.

5.1. Plant Growth Experiment. Plant relative growth rate [7, 29, 30] plays an important
role to study the performance of plant productivity as related to environmental stress and
12



disturbance regimes. To calculate the relative growth rate of plants, a relatively simple, yet
mechanistically accurate, computer model is commonly used. This model expresses plant
biomass after = days, S(x), in the form of an equation:

dsS(z)

dx
where 0 is a constant and defined as the relative growth rate. This differential equation has
the solution S(x) = S(0) exp(fx). In this study the initial plant biomass is set S(0) = 1. The
experimental data are observations from plant growth experiments, where the plant biomass
is quantified by imaging the photosynthetically active areas of the tissues using a overhead
camera system that measured fluorescence emitted from photosynthetically active tissues [40)].
To account for technical and biological variation, multiple replicates are conducted in the
experiment.

The three groups of plants differ by the presence or absence of certain genes involved in
photorespiration. The different plant groups tested lacked distinct steps involved in photores-
piration, either a critical enzymatic interconversion step (glyk) [8], or a transporter (plgg)
[43] which can be circumvented via other transport mechanisms [57, 50]. These groups were
compared to wild type plants (WT), which have a fully functioning photorespiratory pathway.

(5.1) = 05(),

5.2. Calibration Results. We leverage the statistical developments to investigate the plant
relative growth rates for the plants grown under ambient and high COg concentrations, with
the three plant groups: glyk, plgg, and WT. The experimental data consists of the total pro-
jected areas of the plants at 8 distinct time points, as the input variable z € [0,20], and
for each distinct time point, three to five replicates are measured. The computer model is
as described in (5.1), which shares the same input variable x (time) and has a calibration
parameter, the relative growth rate, 6 € [0,1]. The calibration results using the experimental
data under ambient and high COs concentrations are presented in Figures 5 and 6, respec-
tively. First, it can be seen that in the experimental data under both ambient and high CO»
concentrations, the variances tend to increase as the time increases. By performing the het-
eroscedasticity test developed in Section 3.2, the p-values for the three groups are given in
Table 2, which shows that all of the p-values are less than 0.05, indicating that heteroscedastic
modeling is essential for this data. Our approach takes into account the heteroscedasticity
and provides the fitted variance process (as the red lines in the middle panels), which in turn
gives sensible prediction intervals (as the green dotted lines in the top panels). Moreover,
bottom panels present the fitted discrepancy function, b;(x), with 95% pointwise confidence
intervals based on the orthogonal GP modeling in Section 2.2. The discrepancy functions show
that the computer model is imperfect as expected, especially for the data under CO5 ambient
concentrations (Figure 5), which may suggest that a quadratic polynomial is needed in the
computer model. Future studies of plant growth rates may require more complex models if
debiasing the computer model is of interest. Alternatively, it is also possible that the mea-
surement itself could be imperfect, that is, measurement errors have non-zero mean that are
input-dependent. For example, leaves could be more likely to overlap during the middle stage
of growth, which makes it difficult to measure the growth by overhead images. These results
show that the proposed method not only gives reasonable prediction means and intervals for
the experimental data, but also provides important insights via the model discrepancy.
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Figure 5. Calibration results of the three plant groups under ambient COz: glyk (left), plgg (middle), and
WY (right). Top panels represent the replicates as open circles with the averaged observation 4, in filled circles
at each input location, the curve f(x,é) as a blue dashed line, and the prediction mean curve as a red solid
line, with 95% prediction intervals in green dotted lines. Middle panels represent the sample variance #(Z;) as
black points, and the fitted variance process as a red solid line. Lower panels represent the mean curve of the
discrepancy function, with 95% pointwise confidence intervals in green dotted lines.

COq Grou Relative Growth Rate Het. Test
Concentration P MEstimate ‘ 95% Confidence Interval | p-value
glyk 0.1590 [0.1512, 0.1668] 0.0015
Ambient plgg 0.1581 [0.1515, 0.1647] 0.0205
WT 0.1780 [0.1697, 0.1864] <0.0001
glyk 0.2128 [0.1947, 0.2308] <0.0001
High plgg 0.2428 [0.2364, 0.2493] <0.0001
WT 0.2295 [0.2197, 0.2394] <0.0001
Table 2

FEstimated relative growth rates and p-values of heteroscedastic tests.
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Figure 6. Calibration results of the three plant groups under high COa: glyk (left), plgg (middle), and WY
(right). Top panels represent the replicates as open circles with the averaged observation §, in filled circles
at each input location, the curve f(x,é) as a blue dashed line, and the prediction mean curve as a red solid
line, with 95% prediction intervals in green dotted lines. Middle panels represent the sample variance #(Z;) as
black points, and the fitted variance process as a red solid line. Lower panels represent the mean curve of the
discrepancy function, with 95% pointwise confidence intervals in green dotted lines.

The estimated relative growth rates, é, are reported in Table 2, where the confidence in-
tervals are constructed based on the asymptotic normality result in Theorem 3.1. First, we
observe that relative growth rates under ambient CO4 concentrations are slower than under
high CO4 concentrations across all plant groups. This is expected from the biological perspec-
tives, because CO3/02 under ambient CO2 concentrations is low enough to drive high rates
of photorespiration, which consumes energy and releases previously fixed carbon, decreasing
growth. Secondly, the group glyk and plgg have slower relative growth rates than WT under
ambient COq concentrations, which is consistent with either a disruption in growth generally
or specifically in photorespiration. These calibration parameter estimates and confidence in-
tervals provide insight into the values of the relative growth rates of different plant groups,
which are difficult to determine by physical experiments due to the limitation of the existing
experimental techniques.

To examine our approach, we compare the performance with the least-squares approach
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with logarithmic transformation on the response, which is commonly used to estimate growth
rates in the literature [42], and a traditional method in the biological literature (see, for
example, [13]), which uses least-squares estimates for each individual replicate and then takes

the average of them. That is, §; = arg mingeg Z?Zl(y(j) — f(#:,0))? and then obtain the

(2
estimate by o = Z?:1 9j /a, where a is the number of replicates. We use the experimental
data under ambient CO2 concentrations as an illustration, which is shown in Figure 7. Our
approach appears to improve the calibration performance over other two methods, in the
sense that the computer model outputs with our calibration parameter estimates, f(x, 9) in
the blue dashed line, appear to be closer to the experimental data compared to the other two
methods. In addition, it shows that the prediction intervals of the approach with logarithmic
transformation (middle column) are much narrower than one would expect. This issue is

resolved when the proposed heteroscedastic model is used.
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Figure 7. Comparison of the traditional method (left), the logarithmic transformation (middle), and the
proposed method (right) based on the experimental data under ambient CO2, where the replicates are open circles
with the averaged observation y, in filled circles, the curve f(m,@) is the blue dashed line, and 95% prediction
intervals are the green dotted lines. The three rows represent the three plant groups: glyk (top), plgg (middle),
and WT (bottom).

6. Summary and Concluding Remarks. Calibration of computer models plays a crucial
role in many scientific fields where computer models are essential to predict the reality. The
16



existing methods in the statistics literature, however, mainly focus on calibration with ho-
moscedastic errors. Motivated by an experiment in plant biology, where the noise levels can
vary dramatically across different input locations, we introduce a new calibration method to
address the heteroscedasticity, where a latent variable process is used to model the error vari-
ance and an orthogonal Gaussian process is used to model the misspecification of a computer
model. An R package is available for implementing the proposed method. We also study the
asymptotic properties of the estimator and provide a goodness-of-fit statistic to detect the
presence of heteroscedasticity. Our numerical studies demonstrate that when the errors are
not homoscedastic, our proposed method not only successfully estimates calibration param-
eters accurately, but it also provides accurate predictions for a real system. The application
to the plant relative growth rates illustrates that the proposed calibration method produces
reasonable estimates of relative growth rates and uncertainty quantification for the physical
experiments.

This work indicates several avenues for future research. First, in Theorem 3.1 we pro-
vide the asymptotic results of the maximum likelihood estimators for the parameters in the
proposed model, which adopts the orthogonal GP of [44] for the model discrepancy. It is
also worthwhile investigating whether the estimator 0 is theoretically consistent for the true
calibration parameter * as in (2.3), like the asymptotic results in [53] and [61]. As in the
homoscedastic case, where the orthogonal GP modeling has been shown numerically to be
consistent for #* [44, 61] and also conjectured to be theoretically consistent by [53], it is con-
ceivable to conjecture that the estimator 0 is consistent for 6* in the heteroscedastic case. This
also could be verified by the numerical studies in Section 4. Alternatively, one may consider
other modeling techniques for the discrepancy function that also address the identifiability
issue of the calibration parameters, such as [22], [53], [61], and [15], which provide the po-
tential to extend the proposed method with theoretical guarantees. However, the extension
to heteroscedastic cases with the noise process in Section 2.1 is not straightforward. Second,
instead of maximum likelihood estimation, Bayesian techniques can be naturally applied to
the proposed method. Specifically, one could assign the priors of the calibration parameters as
well as the hyperparameters in the model, and then draw samples from the posterior distribu-
tion using Markov chain Monte Carlo approaches, such as the Metropolis-Hastings sampler.
With this Bayesian framework, the proposed method can also be naturally extended to the
calibration problem with functional calibration parameters like in [9] and [45]. Last but not
the least, it is worth developing the sampling schemes that satisfy the conditions for Theorems
3.1 and 3.2. A potential sampling scheme is, similar to [14], to choose distinct input locations
whose minimum distance is sufficiently large. More details will be carefully investigated in
the future work.

Supplemental Materials. Additional supporting materials can be found online, including
the detailed proofs of Theorem 3.1, the detailed estimation procedure in Section 2.3, an R
package HetCalibrate for implementing the proposed method, and the R code and data for
reproducing the results in Sections 4 and 5.
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