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Abstract: The Gaussian process has been one of the most important approaches for emulating
computer simulations. However, the stationarity assumption that is common to Gaussian process
emulation and computational intractability for large-scale datasets limit accuracy and feasibility
in practice. In this article, we propose a clustered Gaussian process model which simultaneously
segments the input data into multiple clusters and fits a Gaussian process model in each. The model
parameters and the clusters are learned through the efficient stochastic expectation-maximization,
which allows for emulation for large-scale computer simulations. Importantly, the proposed method
provides valuable model interpretability by identifying clusters, which reveal hidden patterns in the
input-output relationship. The number of clusters, which controls the bias-variance trade-off, is
efficiently selected via cross-validation to ensure accurate predictions. In our simulations as well
as a real application to solar irradiance emulation, our proposed method has smaller mean squared
error than its main competitors, with competitive computation time, and provides valuable insights
from data by discovering the clusters. An R package for the proposed methodology is provided in

an open repository.
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1. Introduction

Gaussian processes (GPs) have been one of the most popular modeling tools in var-
ious research topics, such as spatial statistics (Stein, 2012), computer experiments
(Fang et al., 2005} [Santner et al., |2018}; |Gramacy, 2020), machine learning (Rasmussen
and Williams|, 2006)), and robot control (Nguyen-Tuong and Peters, [2011). Gaussian
processes provide the flexibility for a prior probability distribution over functions in
Bayesian inference, and the posterior can be used not only to estimate the unknown
function at an unknown point but also to quantify uncertainty in this estimate. This
explicit probabilistic formulation for GPs has proved to be powerful for general func-
tion learning problems. However, its use is often limited due to the following chal-
lenges. First, GP posterior involves O(N?) computational complexity and O(N?) stor-
age where N 1is the sample size, so that GP emulation becomes infeasible for mod-
erately large datasets, say N = 103. Second, a GP model often utilizes a stationary
covariance function, in the sense that the outputs with the same separation of any two
inputs are assumed to have an equal covariance. We call a GP with a stationary covari-
ance function a stationary GP throughout this article. This assumption is violated in
many practical applications. Figure|l|demonstrates an illustrative example in|Gramacy
and Lee| (2009) where a stationary GP may perform very poorly when the underlying
function indeed consists of two different functions: a relatively rough function in the
region = € [0,10] and a simple linear function in the region = € [10,20]. Figure

shows that a stationary GP results in very poor prediction particularly in the region



x € [10,20] with very high uncertainty. See more examples in [Higdon et al. (1999);

Paciorek and Schervish (2006); [Bui-Thanh et al.|(2012).
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Figure 1: An example of stationary Gaussian process emulation applied to a non-
stationary function. Black line is the true function, black dots represent collected
data. Blue dashed line represents a stationary Gaussian process emulator, with the
gray shaded region providing a pointwise 95% confidence band.

These two challenges to GP modeling are common in practice and have attracted
lots of attention lately. To name a few, sparse approximation (Quinonero-Candela and
Rasmussen, 2005} Sang and Huang, 2012), covariance tapering (Furrer et al., 2006)), in-
ducing inputs (Snelson and Ghahramani, 2006j Titsias, 2009), multi-step interpolation
(Haaland and Qianl 2011])), special designs (Plumlee, |2014), and multi-resolution ap-
proximation (Nychka et al., 2015)), address the computational issue for large datasets.
For non-stationarity, Higdon et al. (1999); Higdon| (2002); Paciorek and Schervish
(2006)); Plagemann et al. (2008]); |Plumlee and Apley|(2017) adopted nonstationary co-
variance functions for Gaussian processes. Tresp|(2001)); Rasmussen and Ghahramani

(2002); Kim et al.|(2005); \Gramacy and Lee (2008) considered multiple Gaussian pro-



cesses by segmentation in the input spaces. Ba and Joseph (2012) proposed a compos-
ite of two Gaussian processes, which respectively capture a smooth global trend and
local details. However, only few of them are able to tackle the non-stationarity and
computational issues simultaneously. Exceptions include the multi-resolution func-
tional ANOVA approximation (Sung et al., |2020), which uses a group lasso algorithm
to identify important basis functions, and the local Gaussian process approximation,
which selects a small subsample to fit a Gaussian process model for each predictive
location (Gramacy and Apley, 2015]).

In this article, we propose a clustered Gaussian process (clustered GP) to address
the two challenges simultaneously. The clustered GP makes use of the divide-and-
conquer idea, which segments the input data into clusters with a hard-assignment clus-
tering approach, in each of which a Gaussian processes is fitted. This makes the com-
putation more tractable for large-scale datasets while retaining the mixture model struc-
ture to address the non-stationarity issue. As latent variable models often suffer from
computational difficulties, the stochastic EM algorithm (Celeux and Diebolt, 19835)) is
employed to learn the clusters efficiently. Although combining mixture GP and ef-
ficient SEM algorithm has shown to have a potential to simultaneously address non-
stationarity and computation challenges, it has not been carefully studied. In addition,
the number of the clusters plays a crucial role for a mixture GP model, which controls
the flexibility and non-stationarity of the model, and thus a systematic criteria to select

the tuning parameter is necessary; however, little attention has been paid in this regard.



The cross-validation criterion, which retains efficient computation, is carefully studied
in this article. Importantly, unlike many existing methods, the clustered GP retains the
features of unsupervised learning approaches which reveal hidden patterns in the data
that can lead to interesting model interpretation, and provide important insights about
the underlying aspects of the problem by showing some grouping structures.

It is worth noting that, unlike traditional unsupervised learning, such as K-means
clustering and the GP clustering of |Kim and Lee| (2007), which aims to partition the
observations into groups based on their similarities in the input space and does not
make use of information contained in the output, the main purpose of clustered GP is
to build a flexible model that can produce accurate prediction at new input locations,
and the assignments to each cluster are determined by both inputs and outputs. These
clusters indicate that the observations within each of the clusters share similar behavior
of input-output relationships, and they can be used for data compression in a supervised
fashion to save computational and storage costs as in Joseph and Mak| (2021)).

The remainder of this article is organized as follows. In Section 2] the clustered GP
model is introduced, along with its relationship to existing methods. In Section 3] our
estimation and prediction to fit the clustered GP model using a stochastic expectation-
maximization algorithm is described. Computational details are discussed in Section
M] In Section[5] some synthetic examples are demonstrated to show the tractability and
prediction performance of the proposed method. A real data application for predict-

ing solar irradiance over the United States is presented in Section [f] Some potential



future work is discussed in Section [/l Mathematical proofs are given in Supplemen-
tary Materials, and an R package, GPcluster, is provided in an open repository for

practitioners to implement the methodology.

2. Clustered Gaussian Process

2.1 Preliminary: Gaussian Processes

A brief review for Gaussian processes is first given in this section. A Gaussian process
(GP) is a stochastic process whose finite dimensional distributions are defined via a
mean function x(z) and a covariance function 3(x, 2’) for d-dimensional z, 2’ € x C

R?. If the function y(-) is a draw from a GP, then we write

y(-) ~ GP(u(-), X(,-))-

In particular, given n inputs X = (z1,...,x,), if y(-) is a GP, then the outputs Y =

(y(z1), ..., y(x,)) have a multivariate normal distribution,
YIX ~ N (u(X), 2(X, X)),

where (X) € R"and X(X, X) € R™™ are defined as (u(X)); = p(z;) and (X(X, X)), ; =
Y(z;,x;), respectively. Conventionally, /(-) is often assumed to be a constant mean,
i.e., pu(-) = p, and 3(+,-) is assumed to have the form o?®., (-, -), where @, is a corre-
lation function with @, (z,z) = 1 for any = € x and contains the unknown parameter

~v. In addition, ®., is often assumed to depend on the displacement between two input
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locations, that is, ., (z,z’) = R(x — ') for some positive-definite function R. Such a
correlation function is called stationary correlation function which implies the process
y(-) is stationary, since y(x1),...,y(zr) and y(z1 + h),...,y(zL + h) have the same
distribution forany h € R® and zy,...,xp, 21 +h, ...,z +h € Y. A common choice

for ® is a power correlation function

O, (z,2') = exp{— 7" (z — 2')||"}, (2.1)

where p is often fixed to control the smoothness of the output surface, and v = (71, ..., v4)"
controls the decay of correlation with respect to the distance between z and x’. Hence,
the parameters include y(-), 0% and v and can be estimated by either maximum like-
lihood estimation or Bayesian estimation. See |[Fang et al. (2005), Rasmussen and
Williams (2006) and |Santner et al. (2018)) for more details. Importantly, when the
interest is in the prediction at an untried x,.,, Whose response could be denoted as
Unew the predictive distribution of v, can be derived by the conditional multivariate
normal distribution. In particular, one can show that Ypey|Y, X, Znew ~ N (u*, (0%)?),

where
1 = (Tnew) + Py (Tnew, X) P (X, X) (Y — (X)) and (2.2)
(0%)? = 0 (1 — Py (2new, X )P (X, X) 1P, (X, Zpew)) - (2.3)

In practice, the unknown parameters /(-), 02 and v in (2.2) and (2.3)) are replaced by

their estimates.
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2.2 Clustered Gaussian Process

In practice, we might expect the unknown function that we are trying to approximate
to exhibit some degree of non-stationarity. A natural conceptual model to take into
account such a circumstance would be a mixture GP, where each component of the
mixture acts as an approximately stationary model with high accuracy for a subset of
the data. That is,

y() [ 2() =k ~ GP(ui(), 05 P, (), k=1,... K,

where (), 0,% and ®,, are the mean function, variance, and stationary correlation
function of the k-th GP, and gy (x, @) is the probability that z(z) = k with unknown
parameter o, satisfying Zsz1 gr(z; 1) = 1for any z. It can be seen that in this model,
z(+) takes the role of a latent function, which assigns y(-) to one of the X' GPs. These
models introduce a non-stationarity by assuming different parameters of the stationary
correlation functions in each cluster, dependent on the input space, which allows for
the local smoothness of the function of interest, while the conventional GP lacks the
ability to adapt the smoothness in the function. This input-dependent smoothness is
essential in various applications, such as geo-science, traffic simulations, and robotics
(Plagemann et all, 2008). For example, modeling the solar irradiance in Section [0]
requires the ability to deal with a varying data density and to account for the local
smoothness potentially dependent on the input locations, where the discontinuities may

arise at geographic features such as mountain ranges. Such features can help scientists
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to discover interesting insights that differentiate these clusters.

Now, a little notation is introduced. Given n inputs X = (zy,...,z,), denote the
corresponding outputs as Y = (Y (z1),...,Y (x,)). Forclusterk = 1,..., K,let P, =
{i: z(z;) = k} denote the set of indices of the observations in cluster k. Additionally,
let Yp, and Xp, respectively denote the (ordered) responses and input locations for the
observations from cluster k. Then, given Z = (21,...,2,) = (2(x1),..., 2(z,)), the

output Y, in each cluster & has the multivariate normal distribution
ka‘XPk ~ N(:uk(XPk)»O'I%(I)’Yk (ka7X7)k))7 (2.5)

where the observed y;’s depend on the response values and locations of the other cluster
members, in addition to their corresponding input location z; within each cluster. The
latent cluster/mixture component assignments z; 1s assumed to be independent across
observations ¢ but dependent on input location z;, so that the (unobserved) cluster as-

signment likelihood is given by

f(Z1X) =Pr(z(x1) = 21, ..., 2(xn) = 2p)

n K
- ngi(xi; ©z) = H H I (755 x)- (2.6)
=1

k=1i€Py

Then, by combining (2.5]) and (2.6)), the likelihood function of complete data is

Y, 21X) =f(Y[X, 2)f(Z]X)

= (H fk(YPk|X7>k§9k)) (H 11 gd%;w)) : 2.7)
k=1

- k=14icPy,
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where f, is the probability density function of a multivariate normal distribution with
parameters 0 = {1z (), 02, Y1}

The clustered GP in (2.4)) is related to some existing methods. If z(-) is a Bayesian
treed model (Chipman et al., |1998|, 2002), the model becomes similar to the Bayesian
treed GP of Gramacy and Lee| (2008)). If z(-) assigns cluster memberships based on a
Voronoi tessellation, the model bears some similarity to the model of Kim et al. (2005)).
When z(-) is assumed to be a Dirichlet process or a generalized GP, the model becomes
similar to the mixtures of GPs of [Tresp (2001) and Rasmussen and Ghahramani|(2002),
respectively. Despite the similarity, their application is limited in large-scale data set-
ting due to their costly MCMC sampling. Some other work, such as Nguyen-Tuong
et al.[(2009); Zhang et al.| (2019), chose the assignment based on traditional unsuper-
vised clustering methods, such as K'-means clustering.

Our modeling approach belongs to the popular model based clustering approach
using latent variables within an Expectation-Maximization (EM) framework (e.g., Fra-
ley and Raftery, 2002). A likelihood-based EM approach to estimate the unknown pa-
rameters is, however, not straightforward, because strong dependencies among obser-
vations due to the GP correlation structure makes computation difficult. One may want
to compute the cluster probability f(Z|X,Y), whether for implementing the E-step
in the EM algorithm (soft assignment), or updating cluster membership in a K -means
type algorithm (hard assignment). Unfortunately, the cluster probability f(Z|X,Y)

does not factor beyond being proportional to (2.7), so we cannot compute the cluster
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membership for each observation separately from one another even though z; is in-
dependent of each other. In the next section, we adopt a stochastic EM algorithm to

address this issue, along with computational details associated with our approach.

3. Statistical Inference via Stochastic EM Algorithm

In this section, we present our estimation and prediction approach for the model in
(2.4). Our proposed method addresses the aforementioned challenges using the stochas-
tic EM algorithm (SEM, |Celeux and Diebolt, 1985)). SEM algorithm is particularly
suitable for our challenges as it leads to a computationally efficient algorithm in clus-
tered GP while avoiding insignificant local maxima of likelihood functions. SEM
herein is a general approach to calculate the conditional expectation required in the
E-step of the EM algorithm, while recent studies, such as Cappé and Moulines| (2009)
and |Chen et al.| (2018), particularly focuses on the stochastic approximation of the gra-
dient when optimizing the parameters in the M-step, which is applicable to independent

observations but is not straightforward for dependent observations like the data herein.

3.1 Stochastic E-step

In the EM-algorithm, the E-step computes the expected value of the log posterior of

complete data given the observed data Y':

Ellog f(Y, Z|X)| X, Y. 0, ] + log 7(8) + log w(¢), (3.8)
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where 0 = {0, }5_ |, o = {¢r} |, while 7(0) and 7(y) are priors of 6 and . We

assume 6, and ¢, are mutually independent through £ = 1,..., K so
K K
log m(0) = Z logm(fr) and logm(p) = Z log (k). (3.9)
k=1 k=1

Computing the expected value requires the cluster probabilities f(Z|X,Y'), which can-
not be explicitly evaluated. Instead, we adopt a Gibbs sampling, or iterative stochastic
hard assignment. The key quantity for this approach is the cluster membership proba-

bility for observation ¢ given the data X, Y and the other cluster memberships Z_;,

f(Zi = k’|X,Y7 Z—i) X f(Y|Xa Z_iy 2z = k)f(zz = k’|X7 Z—i)
(3.10)
= <fk(YPku{i}|X73ku{i}§ Or) H Fi(Yp | Xpp gy 93‘)) (35 @r).

s

Despite our highly dependent situation, (3.10) can be calculated in a simple form as

shown in Proposition [Il The proof is deferred to Supplementary Material
Proposition 1. Under the complete data likelihood given in (2.7)),
flzi =k XY, Z_) < &((yi — py)/or)9x(Ti; 0x), where (3.11)

THESTICHE SHCTP CRYBIL SO CRYRID, RN Rl  CRVO S IO CRVAV)

(UZ)Q - Gi (1 - (I)’Yk (l’i, ka\{i})q)’wc (ka\{i}v ka\{i})_lq)’m (ka\{i}a IZ)) ’

(3.12)

where ¢ is the density probability function of a standard normal distribution.

Proposition [I]implies the cluster is assigned very intuitively. For an unknown pre-



3.1 Stochastic E-step13

dictive location x;, the predictive distribution of each cluster k& is a normal distribution
with mean .} and variance (o) as in (2.2)) and (2.3). Thus, the membership of z; can
be determined from the probability density function of cluster £ at y;, and the probabil-
ity mass function g, of membership k at x;. The membership is likely to be assigned
to kth class if (a) y; is closer to p;j, with regard to the scale o7; (b) gi has a high mass
probability at location x;.

Once (3.11) is available for each i and k, a random cluster assignment can be
drawn from a multinomial distribution. Each step of this Gibbs scheme satisfies de-
tailed balance (assuming none of the probabilities/densities in (3.11)) equal zero), so
eventually this process produces samples from f(Z|X,Y’). Hence, the cluster mem-
bership samples can be used to approximate quantities depending on f(Z|X,Y"), such
as the expectation in (3.8). Further, partitioned matrix inverse and determinant for-
mulas (Harvillel [1998)) allow one to update the augmented and diminished Gaussian
densities in O(n}) time, where ny, is the number of observations in cluster k. The de-
tails are provided in Supplementary Material In total, each iteration going through
all the observations would take at most O(Zle n3). One may ease computational
burden by controlling the maximum number of observations in each cluster, denoted
bY Nmax, then the total computation becomes O(Kn? . ). Computation in this step can
be easily distributed over multiple cores, in particular, (3.12) can be done separately
for different k. The detailed algorithm is given in Stochastic E-step of Supplementary

Material [S3
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3.2 M-step

Once a random assignment drawn from P;, = {i : 2, = k} is available from the
stochastic E-step, we can proceed to the M-step. Let Z denote the random assignment,
and P, = {i : Z; = k} the set of indices of the observations in cluster & assigned
in Z, respectively. From and ((3.9)), the log posterior of complete data in (3.8)) is

approximately by
log f(Y, Z|X, 0, %) +logm(0) + log (¢)

K K K K
= log fi(Yp, | Xp:06) + > > loggr(aior) + Y logm(B) + Y logm(er).
k=1 k=1 k=1

k=1 iE'ka
The maximum a posteriori probability (MAP) estimate {@k}ff:l and {¢,} 5| can then
be obtained by maximizing
K K

> log (fe(Yp, | Xp,;06)7 () and > [ > log gi(wi; or) + logw (k) | ,

k=1 k=1 \;eP,
respectively. In particular, >, log (f4(Yp, | Xp,; )7 (6))) can be optimized by max-
imizing each component f;.(Y |Xp ;0k)7(6), which is proportional to the posterior
distribution of the k-th GP. The choice for the prior of 6; and its resulting posterior
can be found in Chapters 3 and 4 of Santner et al. (2018). The computation for M-
step can be done for K clusters separately, which can be efficiently parallelized as in

Supplementary Material [S3]
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3.3 Prediction

Predicting the responses ., at a new input location ., can be challenging, since
the cluster assignment z,,.,, at the new location is unknown. Given the assignment 7 =
(3(x1),...,%(x,)) and the estimates {0, ¢, }/<, returned in the SEM algorithm, we
perform the predictive distribution of y,.,, by weighted averaging across the clustered

GPs:

f(ynew|2new = kaxnevwX? Y7 Z)f(znew - klxnewaxp Y; Z)

]~

.f(ynew|:L‘1'1e\;\;7)(7 }/7 2) =

k=1

¢((ynew - ﬂ;)/é-;;)gkz(xnew; @k)?

M

b
Il

1

where

ﬂz = ﬂk;(xneW) + (I)’%c (xneW7X75k)(I) (ka’X ) (Yf’k o ﬂk(Xﬁk)) ’

(&2)2 = &z (1 (I)'yk (xnewaX )(I) (kaa X ) 1(1)'% (Xkaa xnew)) .

Thus, the prediction mean of ey 1S

K

Tnew = Elynew|Tnew, X, Y, Z1 = i gr(Tnews $1), (3.13)
k=1

with its variance

YV [Ynew| Tnew X, Yy Z] =E[V [Ynew| Znews Znews X5 Vs Z]] 4 VIE [Ynew | Znews Tnew, X, Y, Z]]

K K K
:Z 1) gk (Tnew: Pr) + Z ()2 gk (Tnew; Pr,) — (Z (9% (Tnew; Py,

k=1

)
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The g-th quantile of ¥y, which will be used for constructing confidence intervals, has
no closed form but can be calculated by finding the value of y for which ffoo f(tTnew, X, Y, Z)dt =

¢, which is equivalent to solving

i ([ otte =i o0)at) i ) = o

The summation and integration are interchangeable because the probability density
function is finite. The equation can be solved numerically, for example, using a line

search or generating Monte Carlo samples.

4. Computational details

In this section, we provide some computational details for the proposed SEM that we
have provided in Section [3| In particular, we discuss the possible choices of each
element in the algorithm, with the focus on the specific implementation that we have

adopted.

4.1 Choices for class assignment model

The model for z(-) in (2.4) determines the latent class distribution of the cluster assign-
ment, where g, is the conditional probability that z(x) = k given an input x. The func-
tion g; determines the decision boundaries between the clusters, and their flexibility
controls the bias-variance trade-off of the clustered GP. Amongst several possibilities

for z(-), one may consider a less flexible model because GP itself is fairly flexible.
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For example, K -class multinomial logistic regression, which produces linear decision
boundaries, can be considered. Then overall complexity and flexibility of the clustered
GP can be determined by carefully selecting the number of clusters, which will be de-
scribed in Section The simple decision boundaries are useful for interpreting the
clusters, which will be illustrated in Sections[5|and[6] The K '-class multinomial logistic

regression has the form of

Pr((@) = k) = guas ) = Pt i)

S exp{Bo, + BT}
fork =1,...,K — 1 and Pr(z(z) = K) = 1 — Z]K:_ll Pr(z(x) = j), where S
is the intercept, [y is a d-dimensional coefficient of x, and ¢, = (51,...,8k_1). Al-

ternatively, one can also consider the linear discriminant analysis (LDA) or quadratic

discriminant analysis (QDA) methods by assuming
gi(@; o) = o(wsvg, Xy) for k=1,... K,

where ¢(z; vy, X ) is the density probability function of a (multivariate) normal distri-
bution with mean v, and covariance >;,. LDA assumes >; = ... = X, while QDA
assumes the covariances can be different. The multinomial logistic regression and LDA
methods are closely connected, which often result in similar linear decision boundaries
of the K classes. QDA methods, on the other hand, result in quadratic decision bound-
aries. From our preliminary investigation, the clustered GP with these models give
similar prediction results. It is also possible to apply non-parametric or machine learn-

ing approaches, such as random forest classification, for modeling g,. However, our
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preliminary investigation shows that these approaches have similar prediction perfor-
mance, and they tend to result in less interpretable clusters in low-dimensional settings.
This is because clustered GP’s main advantage is from combining flexibility of GP as-
sisted by the cluster structure, so g, of an excessively complex form may not help

much. As such, we only present K -class multinomial logistic regression hereinafter.

4.2 Initialization

The SEM algorithm can be sensitive to the initialization. One may run many initial-
izations and select the one that gives the optimal criterion. This is, however, com-
putational intensive especially for large data sets. One potential initialization is the
K-means clusters or other unsupervised clustering algorithms solely based on the in-
put X. This initialization enables the clustered GP to make the input locations of each
cluster close to each other and distant from the ones of other clusters, which often leads
to nice model interpretation. Although this initialization may end up with a local opti-
mum, the cluster structure still further improves the model performance by efficiently
exchanging the class assignment over the iterations. As such, in Sections [5|and [6] the

initialization of K -means clusters are used.

4.3 Stopping criteria

The iteration in the SEM algorithm in Supplementary Material [S3| needs a stopping

criterion to determine a convergence. For this purpose, we propose to use leave-one-
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out cross-validation (LOOCYV), so that the algorithm stops when the cross-validated
prediction error does not improve. LOOCYV iteratively holds out one particular loca-
tion, trains on the remaining data at other locations, and then makes prediction for the
held-out location. Although LOOCYV is often too expensive to implement in many situ-
ations as the model has to fit n times in each iteration, the clustered GP has an efficient
shortcut that makes the LOOCV very affordable. Specifically, denote ¢, as the pre-
diction mean based on all data except i-th observation and y; as the real output of ¢-th

observation, then based on (3.13)), 7, = Zszl ﬂ,g_i) gk (xi; @y ), where
i = () + @5, (i, Xpo i) Pa, (X gy Xpo )~ (Yf?k\{i} - ﬂk(Xm\{i})> :
For those is which do not belong to Py, / uk " becomes
i = (@) + @5 (21, Xp,)®s, (Xp,, Xp,) ™" (Vp, — i X5,))
and for those is which belong to Py, it can be simplified to

i = ——qu — (). (4.14)
b

where ¢;; is the (4, j)-th element of ®s, (X3 , X5 )~". Then, the LOOCYV root-mean-

squared error (RMSE) is

n n K ?
S URIAENEDS (y =3 i e sbk)) -
=1

i=1 k=1

This computation costs at most O( K which is same as the SEM algorithm.

max)
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4.4 The choice of K

The number of clusters K plays an important role for the degree of non-stationarity of
approximation functions and flexibility of the model, which in turn controls the bias-
variance trade-off of the model that can affect the prediction accuracy. That is, a too
large K could lead to an over-flexible model and a too small K could lead to an under-
flexible model. A natural choice is using cross-validation with different /s to target
a small prediction error, such as the LOOCV RMSE described in Section 4.3] Other
choices using bootstrap techniques to estimate prediction error also can be considered,
such as the 632+ bootstrap method of |[Efron and Tibshirani (1997). |[Kohavi (1995)
explicitly discussed the comparison between cross-validation and bootstrap from bias
and variance point of view, and comprehensive numerical experiments were conducted
therein. For the purpose of saving computational cost, we choose the K that gives
the lowest LOOCV RMSE, because LOOCV RMSE can be computed efficiently for

clustered GPs as given in (4.14).

4.5 Remarks on alternative implementations and asymptotic properties

The SEM and prediction can be modified in a more fully Bayesian fashion using the
Monte Carlo samples from the posterior distribution of {z(z;)}",, {0k, px H-, with
a Gibbs routine to generate predictions. The computational burden for this direction,
however, can be prohibitively heavy in a large-data context. In particular, saving sam-

ples from the posteriors requires enormous amounts of storage for large data sets. Us-
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ing the returned assignment Z and the MAPs {@ k> P HE | can be an efficient alternative
with representative samples for more efficient fitting and prediction procedures.

The MAP estimation in the M-step can be replaced by maximum likelihood (ML)
estimation, simply by letting the prior distributions of {0 }X_, and {(;, } 2 | be uniform.
Under some regularity conditions, the ML estimators {0;}X_, and {(,}X | can be
shown to have an asymptotically normal distribution in such approach. We refer the

asymptotic properties of the parameter inference to Nielsen| (2000).

5. Numerical study

In this section we present several exemplar functions to demonstrate the effectiveness
of clustered Gaussian processes. We first present examples with lower dimensional in-
puts to visually present the cluster structure and the benefit from non-stationary model-
ing and then to an example with higher-dimension inputs. Throughout, the iteration in
the SEM algorithm stops when LOOCYV does not improve, or the number of iterations
exceeds the preset maximum. We select the assignment Z which results in the lowest
LOOCV RMSE during the iterations, which will be illustrated in Section Power
correlation function of (2.1)) with p = 2 is chosen. Both of the mean functions () and
px(+) of the stationary GP and the clustered GP are assumed to be constant. For each
cluster, a small nugget, 1079, is added when fitting a GP model for numerical stability.

In addition, we let the prior distributions of {60 }5-_, and {,x }-_, be uniform.
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5.1 One-dimensional synthetic data

Consider an example from |Gramacy and Lee (2009), which is a modification of the

example in Higdon| (2002). Suppose that the true function is

sin(0.27z) 4+ 0.2 cos(0.87wx), if z < 10.
fz) =

0.1z — 1, otherwise

and 11 unequally spaced points from [0, 20] are chosen. The black lines in Figure
demonstrate this function, and it can be seen that the function is discontinuous at
x = 10. When the data are modeled by a stationary GP, it can be seen in the left panel
of Figure [2| that the prediction within region [10, 20] performs poorly with large uncer-
tainty. |Ba and Joseph| (2012) explained that the constant mean assumption for GP is
violated so the predictor tends to revert to the global mean, whose estimate is 0.208
by maximum likelihood estimation in this example. This consequence is frequently
observed especially at the locations far away from input locations. Moreover, the con-
stant variance assumption for GP is also violated. The function in the region [0, 10]
is rougher than that in the region [10, 20]. Therefore, the variance estimate for region
[10,20] tends to be inflated by averaging with that of region [0, 10], which leads to
the erratic prediction in this region. On the other hand, clustered GP introduces some
degree of non-stationarity by considering a mixture GP, which is shown in the right
panel of Figure [2l Two subsets of the data are represented as red and green dots, which

are given by the assignment Z returned in the SEM algorithm, and both are fitted by
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stationary GPs. The mean estimates of the GPs are -0.045 and 0.529, respectively. It
can be seen that the predictor performs much better than a stationary GP, especially
at the locations within region [10, 20|, in terms of prediction accuracy and uncertainty
quantification. The most uncertain region is located on the boundary of two clusters,
which is expected because the assignment of cluster membership is more uncertain in
the region. One potential remedy of improving the accuracy on the boundaries will be
discussed in Section[7] The middle panel illustrates the composite GP of Ba and Joseph
(2012), which is a popular method in the computer experiment literature for addressing
the non-stationary issue. It shows that the prediction and uncertainty quantification are

more accurate than the stationary GP, but less accurate than the clustered GP.
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Figure 2: One-dimensional synthetic data. The left, middle and right panels illustrate
the predictors by the stationary GP, the composite GP (Ba and Joseph, 2012), and the
clustered GP, respectively. Black line is the true function, black circles are input loca-
tions, and blue dotted lines are the predictors, with the gray shaded region providing
a pointwise 95% confidence band. Red and green dots in the right panels represent

different clusters.

Two more one-dimensional synthetic data generated from the exemplar functions
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of Xiong et al. (2007 and Montagna and Tokdar (2016)) are presented in Supplementary
Material [S4] in which both examples show that the clustered GP yields better prediction

accuracy than the stationary GP and the composite GP.

5.2 Two-dimensional synthetic data

In this section, the selection of K and the stopping rule using LOOCV RMSE will be
demonstrated. Consider a wavy function, which also appeared in Ba and Joseph|(2012)

and Montagna and Tokdar (2016). The wavy function is

f(Il,[EQ) = sin (xlllé) 7

where z1, 2 € [0.3, 1]. The function is illustrated in Figure [3[a), in which it fluctuates

rapidly when z; and x5 are small and gets smoother as they increase toward 1. A
40-run maximin distance Latin hypercube design (Morris and Mitchell, [1995) from
[0.3, 1] is chosen to select the input locations at which the wavy function is evaluated.
These locations are shown as black dots. The stationary GP, the composite GP (Ba
and Joseph, 2012), and the clustered GP with K = 3 are fit on these locations, whose
predictive surfaces are shown in Figures [3(b-d). It can be seen that the stationary GP
and the composite GP performs fairly poorly as x; and x5 are small, while the clustered
GP generally has better prediction performance over the input space. To evaluate the

prediction performance quantitatively, we predict the responses at 1296 (= 36 x 36)
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equally spaced points from [0.3, 1]? as the test points, and compute their RMSEs by

Ntest 1/2
(nl >, (f(fhl“z) - f(ffhb))?) :
test i=1

where niq 1S the number of test points and f(xl, x9) is the predicted value at x; and

Zo. In this example, the clustered GP outperforms the composite GP and the stationary
GP in terms of prediction accuracy, where their RMSEs are 0.2081, 0.2284 and 0.3959,
respectively, and the interval scores of their 95% prediction intervals (see equation (43)

in|Gneiting and Raftery (2007)) are 0.6950, 0.9635 and 2.0915 (the lower the better).

(a) (b) (c) (d)

Figure 3: Two-dimensional example: (a) the true wavy function, (b) the stationary GP,
(c) the composite GP (Ba and Joseph, 2012), and (d) the clustered GP, where the input

locations are shown as black dots.

Figure ] demonstrates the stopping rule and the selection of K discussed in Section
M The left panel presents the LOOCV RMSEs of K = 2,3,4 and 5 during the 100
iterations of the SEM algorithm. It shows that even though the LOOCV RMSE of
initial iteration of K = 3 is larger than other choices of K, the error drops rapidly

and ends up with a lower LOOCYV error at 36-th iteration. For each choice of K, we
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Figure 4: The LOOCV RMSEs with K = 2, 3,4 and 5 during the 100 iteration of the
SEM algorithm (left), and the minimum LOOCV RMSE of each choice of K (right).

chose the assignment of the iteration that results in the minimum LOOCV RMSE as
the final assignment Z for prediction. The right panel presents the minimum LOOCV
RMSE of each choice of K in the 100 iterations, and it shows that X = 3 gives the
lowest LOOCV RMSE so it was selected in this example. Figure [5| demonstrates the
assignments at iteration 0, 4, and 36 when ' = 3. The assignment at iteration 0
represents initial assignment, which is the K-means clusters as described in Section
4.21 whose LOOCV RMSE is 0.294. The LOOCV RMSE then drops dramatically
in the 4-th iteration from 0.294 to 0.277 with only two assignments switched, that is,
the point 1 = 0.726, x5 = 0.482 is from circle to square cluster and the point z; =
0.702, 2z, = 0.866 is from triangle to square cluster. With more iterations and more
assignments switched, the LOOCV error decreases to 0.214 at iteration 36. The final
assignment gives an intuitive explanation: the points when both of x; and x, are small,

where the true function has a sharp change, appear to belong to the same cluster (see the
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circle cluster). To demonstrate the advantage of the clustering in terms of prediction
accuracy, we further compare the true RMSE with an supervised learning approach,
K-means clustering (left panel of Figure [5)), whose RMSE is 0.2728, which is larger
than the one of the clustered GP, 0.2081. This shows that, when the goal is making
predictions, our clustering that integrates output information can efficiently improve

unsupervised learning clustering that does not make use the output information.
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Figure 5: The cluster assignments at iteration 0, 4, and 36 of the SEM algorithm and
their LOOCV RMSEs.

5.3 Borehole function

In the section, a borehole function, a more complex exemplar function with 8-dimensional
input, is considered to examine the scalability of clustered GP. The borehole function
models water flow through a borehole, and has been commonly used for testing meth-

ods in computer experiments because of its quick evaluation. The borehole function is
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given by
27TTU(HU — Hl>

n(r/ry) (1 + 1n(r/2rgﬁ,2ul<w + %)

f(z) = : (5.15)

where r,,, 7, T, H,, T}, H;, L and K, are the eight inputs. We refer the detailed de-
scription of these input variable to Morris et al. (1993)).

Consider n uniformly distributed input locations in the input space described above
and nsr = 10,000 random input locations in the same input space for examining pre-
diction accuracy, whose outputs are evaluated from (5.15)). Four methods are compared,
including a stationary GP, local GP (Gramacy and Apley, 2015), multi-resolution func-
tional ANOVA (MRFA) (Sung et al., [2020), and clustered GP. These methods are im-
plemented using R (R Core Team, 20135)) via packages m1egp (Dancik, 2013), 1aGP
(Gramacy, 2015), MRFA (Sung, [2019), clusterGP, on a MacBook Pro laptop with
2.6 GHz Intel Core 17 and 16GB of RAM. For the purpose of demonstration, K =
n/200 was chosen for all the cases. For 1aGP, MRFA and clusterGP, 10 CPU
threads were utilized via foreach (Revolution Analytics and Weston, 2015) for par-
allel computing.

Table @ shows the performance of the four methods, in terms of computation
time and prediction accuracy. It can be seen that the stationary GP is feasible only
when n = 1,000, while other three methods can incorporates larger n. Even when a
stationary GP is feasible, the accuracy is worse than MRFA and clusterGP. Among

the four methods, c1usterGP has better accuracy with reasonable computation time.



29

MRFA has slightly larger predictive errors with faster computation. On the other hand,
local GP has larger predictive errors, even though the computation is faster. One may
consider a different setting for local GP (e.g., the size of subsample) which may lead to
better accuracy. While the proposed method yields better prediction accuracy with rea-
sonable prediction time, which is the main goal of emulation for computer simulations,
the model fitting time and storage can be demanding particularly for very large-scale
datasets. Some potential remedies of improving the computational efficiency will be

discussed in Section [/l

6. Solar irradiance prediction

We leverage the statistical developments to predict solar irradiance. Predicting solar ir-
radiance, or the power per unit area produced by electromagnetic radiation, plays a very
important role in power balancing and determining the viability of potential sites for
harvesting solar power. One dataset can be brought to bear on this problem is the sim-
ulations from the North American Mesoscale Forecast System (NAM) (Rogers et al.,
2009), which is one of the major weather models run by the National Centers for En-
vironmental Prediction (NCEP) for producing weather forecasts. We extract the solar
irradiance (global horizontal irradiance) simulations from the NAM model at the loca-
tions of 1,535 Remote Automatic Weather Station (RAWS) (Zachariassen et al., [2003))
sites in the contiguous United States. Note that the RAWS stations are not uniformly

distributed. Figure |S2| visualizes the available locations and their corresponding solar
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irradiance with the average taken over one year, which can be seen that many promis-
ing locations for solar farms are sparsely covered particularly in the Midwest. These
locations of interest are considered for solar energy forecasting. Detail description of
the dataset can be found in Hwang et al.| (2018)) and Sun et al.| (2019b). Similar to
Sun et al. (2019b)), here we work with average irradiance values over one year from
the NAM simulations for each of 1535 spatial locations (as shown in Figure [S2)), and
the research interest of this study is making accurate prediction for solar irradiance at
those unavailable locations.

In Figure [S2] it appears that some relatively high solar irradiance are measured
compared to their neighborhood, such as at the location on the coordinate (—93.57,45.99),
and some relatively low solar irradiance are measured such as at the location on the co-
ordinate (—93.16,33.69). These instances may suggest that heterogeneity rather than
homogeneity in the input-output relationships should be considered. The assumption
of identical covariance function throughout the input domain for stationary GPs, there-
fore, is likely to fail and may result in poor performance, as shown in Section [5

A clustered GP is performed on this dataset, where similar setup in Section[5.2] was
used. We first use the LOOCYV to determine the number of clusters K. The left panel of
Figure[S3|shows the LOOCV RMSEs of K = 15, 25, 35, 45 during 20 iterations of the
SEM algorithm, and the right panel shows the minimum LOOCV RMSEs with respect
to different choices of K. Based on the right panel, it appears that X = 35 has the

lowest LOOCV RMSE among K = 10, 15, 20, 25, 30, 35, 40, 45, 50, which suggests
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that K = 35 is a good choice for predicting solar irradiance. Similar to the numerical
study in Section [5] we chose the assignment of the iteration which results in the lowest
LOOCV RMSE as the final assignment Z. The assignment Z is visualized in Figure
S4] where the 35 clusters are presented as different colors and numbers. It appears
that the clusters reveal interesting hidden patterns in the input-output relationship. For
example, cluster 26 are mostly located on Michigan and part of Pennsylvania and New
York, which tells us that some common aspects of the solar irradiance are shared in
those areas adjacent to Great Lakes, even though they are not spatially connected. The
example shows that the clustering can provide a useful insight for discovering groups
and identifying interesting insight of a dataset.

To examine its prediction accuracy, we use LOOCV RMSE:s as the prediction er-
ror and compare with a recent emulation method in Sun et al.| (2019a), where they
proposed a multi-resolution global/local GP emulation by extending the idea of local
GP (Gramacy and Apley, 2015), and their latter work in |Sun et al.| (2019b)) applied
this method to the same NAM simulation data herein. [Sun et al.| (2019b) reported the
LOOCYV errors of the multi-resolution global/local GP emulation as well as the ordi-
nary stationary GP. The results together with our proposed method are presented in
Figure The figure presents the true solar irradiance (top left) and the LOOCYV pre-
dictions of the stationary GP (top right), the multi-resolution global/local GP (bottom
left), and the clustered GP with K = 35 (bottom right), along with their correspond-

ing LOOCV RMSE:s in the titles. It can be seen that, the stationary GP does a poor
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job in predicting the solar irradiance, the LOOCYV predictions of which are all essen-
tially equal which implies that almost all of the pattern remains in the errors, which
in turn gives a high LOOCV RMSE (23.20). Performances of the multi-resolution
global/local GP as well as the clustered GP on the other hand are very good, the result
of which may suggest that the non-stationarity should be taken into account for this
dataset. Although the LOOCYV predictions are visually similar, the LOOCV RMSE of
the clustered GP is slightly lower than the multi-resolution global/local GP (9.11 and
9.74, respectively). In particular, it appears that the clustered GP has better prediction
accuracy in the Northeast and Southeast, whereas the multi-resolution global/local GP

tends to be more smooth over the whole space.

7. Discussion

In this paper, we proposed a clustered Gaussian process that can simultaneously reduce
computational burden and incorporate non-stationarity, which effectively address two
of major limitations of stationary GP. Unlike traditional unsupervised clustering meth-
ods, the clusters in the clustered GP are supervised by the response - the clustered GP
makes use of the response in order to partition the input domain that not only clusters
the observations that have similar features, but also that have the same stationary pro-
cess in the response. This clustering algorithm is implemented using a stochastic EM
algorithm, which is available in an open repository. Examples including the applica-

tion of solar irradiance simulations show that the method not only has advantages in
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computation and prediction accuracy, but also enables discovery of interesting insights
by interpreting the clusters.

The clustered GP shows several avenues for future research. First, the stochastic
EM algorithm can be modified in an online fashion. That is, if the data is available
in a sequential order, then the algorithm can be modified to update the clusters and
the best predictor for future data at each step instead of starting from the new dataset
augmented with the additional data. For example, the solar irradiance simulations are
available every hour, so a modified algorithm could be used to update the clusters and
predict future data in real time, which may save substantial computational cost and
storage especially when the training sample size is extremely large. In addition to the
online stochastic EM, sub-sampling methods can be naturally applied to the clustered
GP that can alleviate the storage limitations for large-scale data. The CURE algorithm
(Guha et al.,|2001)) provides an efficient way for large-scale datasets for traditional clus-
tering algorithms, which employs a combination of random sampling and partitioning.
It is conceivable to apply this technique to the our clustering algorithm. Moreover, the
flexible structure of the proposed model can be easily generalized to other applications
in computer experiments. For instance, although the focus of this paper is on the em-
ulation for deterministic computer simulations, the proposed method can be naturally
applied to stochastic computer simulations by including a nugget term or heteroscedas-
tic variance function (Ankenman et al., 2010; Binois et al., [2018)) in each of the GPs.

Last but not the least, to reduce the prediction uncertainty on the boundary between
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two regions (see, for example, x = 10 in Figure [2)), it is conceivable to apply the idea
of “patchwork” in Park and Apley (2018) by patching the GPs on the boundary, which
can mitigate the discontinuous problem that may degrade the prediction accuracy. We

leave these to our future work.

Supplementary Materials: The online supplementary materials contain the detailed
proof of Proposition [I} the detailed SEM algorithm in Section [3| supporting tables
and figures for Sections [5| and [ An R package GPcluster for implementing the

proposed method is available at https://github.com/ChihLi/GPcluster.
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Supplementary Materials for ‘“A Clustered Gaussian
Process Model for Computer Experiments”

S1. Proof of Proposition [1]

For notational convention, denote X; = CI>7].(X7>J.\{,~},X73J\{Z-}) and W; = Ypapy —
i (Xpp\iy) for j =1,..., K. Then, for any j # F,

1 1 _
—(E) exp{—éijZj IWJ}, (S1.1)
J

Fi(Ypa (3| Xp\ iy 65) o

by the fact that f; is the probability density function of a multivariate normal distribu-
tion with parameters 6; = (y;(-), 0%,;). For j = k, by partitioned matrix inverse and

determinant formulas,

Te(Ypur | Xpugy)

T —1
1 1 [ W, ] [ S 1L ] [ W,
= exp —5 72
rT Yi — ,uk(xz) Ti—i O Yi — Mk(l’i)

2 i,—i
21 det B
Ti,—i Ok
1

= (Yo (| Xpo i) X

1
exp {—5(% — MZ)Q/(JZ)Q} , (S1.2)

where 7, ; = O, (2, Xpoqay)s g = pw(xi) + i3, ‘Wi, and (07)? = o2(1 —

7"1'771'2];17“471 )

1,—1



Therefore, combining (3.10), (S1.1)) and (S1.2),

flzi = kIX,Y, Z2) o< fu(Yp,o Xpaogy: O6) [T (VP01 X0 g0y 05) 90 (s on)
J#k

K
1 * *
=TI /s (Ypo | X iy Ox) exp {—5(% — Mk)Q/(Uk)Z} gr (i3 or)
k=1

¢ ((yi — 1) [01) g (35 ©r).
S2. Efficient Update for the Stochastic E-step

In this section, partitioned matrix inverse formula is introduced to efficiently update
the mean and variance of (3.12) when looping through observation 7 in the stochastic
E-step. Suppose that the current assignment of observation i is z(x;) = k but the new
assignment of it is z(x;) = s where s # k, then the sets P, and P will be updated,
that is, P, <= Py \ {1} and P; <= Py U {i}. The matrix inverses of ®,, (Xp/, Xp/)
and ®., (Xp:, Xp,) can be updated accordingly via partitioned matrix inverse formula
as follows. Let U € R™*2 where n; is the number of observations in the set Py,
andU;; = land U_;» = ., (Xp,, x;), otherwise U; ; = 0. For notational simplicity,
denote A = &, (Xp,, Xp,) . Then, by the Woodbury formula (Harville, [1998), the
matrix inverses of ®., (Xpr, Xp/) can be updated by
O, (Xp, Xp1) ' = (A+ AU(L, - UTAU)'UTA) _, .,

where I, € R? is a diagonal matrix.

LetV = @, (Xp,z;) € R**! and denote B = ®., (Xp,, Xp,)"'. Then, by the

partitioned matrix inverse formula (Harville, 1998)), the matrix inverses of ®., (Xp/, Xp/)



can be updated by
(@ (Xpy, X)), , =1/(1 = VBV,

(®o (Xpy, Xpy)7h), = —VT'B/(1=V'BV) = (0., (Xp;, Xp,) ")
(@4, (Xpy, Xp)™) . =B+ BVV'B/(1-V'BY).

T

—i)?

S3. Stochastic EM algorithm for clustered Gaussian process

Initialization:

Set K clusters with random memberships {z(x;)}",

Set Py, < {i : z(x;) = k} for each k

Set initial parameters 0, = {1 (+), 0%, v} and pp, fork =1,... K
Stochastic E-Step:

Fori=1to:=n,

For k = 1 to K do parallel,
i = i) + Do (20, Xpo (i) P (Xpovgi, Xpna) ! (Yoo — me(Xpg)

(02)2 A 01% (1 - q)’}'k ('Ti? ka\{i}><b7k (ka\{i}’ ka\{i})_lq)'wc (ka\{i}7 Jil))
' d((yi—ry)/ok)gr (Tis0k)
LRI > S Y P
Draw z from a random multinomial cluster assignment with probabilities (p;1, . . ., Pix)

Update z(z;) + 2
Update Py, < {i : z(z;) = k} for each k
M-Step:
For k = 1 to K do parallel,
Update 6, < arg maxg, log fr(Yp, | Xp,; 0k)m(0k)
Update {@; }i | + argmax, > 0, (Xiep, 10g gk (i r) + log m(eor))
Iteration: Iterate stochastic E-step and M-step until some stopping rule is met.
Output {z(z;)}7_1, {0k, vr}i,



S4. One-dimensional examples

Two more one-dimensional examples of Section are presented here. Consider an-

other example from Xiong et al. (2007), where the true function is
f(z) = sin(30(x — 0.9)*) cos(2(z — 0.9)) + (x — 0.9)/2

and 17 unequally spaced points from [0, 1] are chosen to evaluate. Similarly, the top
panels of Figure [ST| show that the clustered GP (right) outperforms the stationary GP
(left) in terms of prediction accuracy and uncertain quantification. The two clusters
are separated at location around x = 0.40. In particular, the predictor in the region
[0.42,1.00] has better prediction accuracy with much smaller prediction uncertainty.
The same argument applies to this example: the constant mean and variance assump-
tions are violated in this function so the stationary GP results in the erratic prediction
in the region [0.42, 1.00].

Lastly, consider the inhomogeneous smooth function in Montagna and Tokdar
(2016),

f(z) = sin(z) + 2 exp(—3027),

and 15 unequally spaced points from [—2, 2] are chosen to evaluate. The bottom pan-
els of Figure S1|demonstrates a stationary GP (left), where the prediction mean curve
has large oscillations with confidence intervals except the tall peak in the middle. The
is due to the rippling effect of the discovery of a tall peak, and Montagna and Tok-
dar| (2016)) called the phenomenon a spline tension effect in the predictor form. The
clustered GP (right) overcomes the issue by separating the input locations into three
clusters and fits a stationary GP in each cluster. The result shows that the prediction

mean curve quite matches the true curve with a narrower confidence band.
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Figure S1: One-dimensional synthetic data from (top) Xiong et al. (2007} and (bottom)
Montagna and Tokdar (2016). The left, middle and right panels illustrate the predic-
tors by the stationary GP, the composite GP (Ba and Joseph, 2012), and the clustered
GP, respectively. Black line is the true function, black circles are input locations, and
blue dotted lines are the predictors, with the gray shaded region providing a pointwise
95% confidence band. Red, green, and blue dots in the right panels represent different

clusters.

S5. Supporting Tables and Figures in Sections[5|and [6]

The figures and tables that present the results in Sections [5] and [6] are provided in this

section.
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Table S1: Borehole function example with n training samples 14t = 10,000 testing

locations.
Method n Fitting Prediction RMSE
Time (sec.) Time (sec.)

mlegp 1,000 5204 24 1.0902
1,000 - 153 1.1806
laGP 10,000 - 137 0.4149
100,000 - 144 0.1617
1,000 116 17 0.4668
MRFA 10,000 723 16 0.0844
100,000 6789 18 0.0827
1,000 255 9 0.1124
clusterGP | 10,000 2950 55 0.0689
100,000 28434 535 0.0523
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Figure S2: Solar irradiance simulation from the North American Mesoscale Forecast
System (NAM). The black dots are the Remote Automatic Weather Station (RAWS)
measurement sites in the contiguous United States from which the NAM simulations
are extracted. The regional colors represent the solar irradiance in the subfield of a

particular measurement site.
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Figure S3: The LOOCV RMSEs with K = 15, 25,35 and 45 during the 20 iteration
of the stochastic EM algorithm (left), and the minimum LOOCV RMSEs of K =
15,20, 25, 30, 35, 40, 45, 50 (right).



REFERENCESS8

50

35 40 45

Latitude (degree)

30

25

I T T 1
-125 -110 -95 -80 -65
Longitude (degree)

Figure S4: Visualization of the cluster assignments with K = 35.
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Figure S5: Comparison of solar irradiance predictions. The true solar irradiance (top
left), and the LOOCYV predictions of a stationary GP (top right), a multi-resolution
global/local GP (bottom left), and a clustered GP with K = 35 (bottom right) are
presented, along with their corresponding LOOCV RMSEs in the figure titles.
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