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This article concerns the use of parallel transport to create a diabatic basis. The advantages of
the parallel-transported basis include the facility with which Taylor series expansions can
be carried out in the neighborhood of a point or a manifold such as a seam (the lo-cus of
degeneracies of the electronic Hamiltonian), and the close relationship between the
derivative couplings and the curvature in this basis. These are important for analytic
treatments of the nuclear Schrodinger equation in a neighborhood of degeneracies. The
parallel-transported basis bears a close relationship to the singular-value basis; in this arti-
cle both are expanded in power series about a reference point and they are shown to agree
through second order but not beyond. Taylor series expansions are effected through the
projection operator, whose expansion does not involve energy denominators or any type of
singularity, and in terms of which both the singular-value basis and the parallel-transported
basis can be expressed. The parallel-transported basis is a version of Poincaré gauge, well
known in electromagnetism, which provides a relationship between the derivative cou-
plings and the curvature and which, along with a formula due to Mead, affords an efficient
method for calculating Taylor series of the basis states and the derivative couplings. The

case in which fine structure effects are included in the electronic Hamiltonian is covered.



[. INTRODUCTION

This article concerns bases of electronic wave functions in polyatomic molecules that span a
chosen subspace of strongly coupled states. We are especially interested in the parallel-transported
basis and the closely related singular-value basis. The context of this work is Born-Oppenheimer
theory, applied to multiple, strongly coupled electronic states, a subject that is treated and reviewed in
many places (Cederbaum (2004); Faraji, Gémez-Carrasco, and Képpel (2012); Koppel (2004);
Matsunaga and Yarkony (1998); Yarkony (1996, 2004, 2001, 2012); Zhu and Yarkony (2016);
Kendrick, Mead, and Truhlar (2002); Mead (1988, 1992); Mead and Truhlar (1979, 1982); Rich-
ings and Worth (2015); Richings and Habershon (2020)). The bases we refer to are really fields

of bases, that is, defined over some region of the nuclear configuration space.

In this article we refer to any basis that is smooth over the region in question as “diabatic,” with-
out any assumption that the derivative couplings vanish and without the common prefix “quasi.”
We do this because as a practical matter the derivative couplings in polyatomic molecules never
vanish; if we wish to refer to the (rare) cases in which they do, we will refer to a “strictly diabatic”
basis. In addition, the designation “quasi” implies that a quasi-diabatic basis is close to a strictly
diabatic basis, that is, that the derivative couplings are small. There is much wishful thinking in the
literature that the derivative couplings can be made small enough to be ignored, but without
guantitative justification. A careful analysis by Kendrick, Mead, and Truhlar (2002), however,
shows that the derivative couplings are generically of order unity over a range of the order of one
atomic unit, unless forced to be even larger by small energy denominators. In addition numerical
evidence (Choi and Vani¢ek (2021)) supports the conclusion that these couplings must be taken

into account for accurate results.

There is some subtlety in the question of the magnitude of the derivative couplings, however,
because these couplings are components of a vector potential of a gauge theory (Pacher et al.
(1989); Pacher, Cederbaum, and Képpel (1993); Wittig (2012); Kendrick and Mead (1995);
Mead (1980b, 1987, 1992); Bohm, Boya, and Kendrick (1991); Bohm et al. (1992); Bohm,
Kendrick, and Loewe (1992); Kendrick (2004); Berry (1984)), in which the gauge transforma-
tions are changes of frame, specified by (ideally) smooth fields of unitary matrices. We call this the
Mead-Truhlar-Berry vector potential or connection (Mead and Truhlar (1979); Berry (1984)). In
this article, the derivative couplings and the Mead-Truhlar-Berry connection or vector poten-tial

(the only vector potential we consider) are almost the same thing (the small differences are



explained in Sec. IV D).

Thus, diabatic bases are not unique, and different choices have different advantages and dis-
advantages. Several choices of diabatic basis have been reviewed by Pacher, Cederbaum, and
Koppel (1993), including the singular-value basis (Pacher, Cederbaum, and Koppel (1988)) and
the Lorentz-gauge basis (Pacher et al. (1989)), which minimizes the mean square of the connection
over a region of nuclear configuration space.

In addition there is the basis of Werner and Meyer (1981), which diagonalizes the dipole oper-
ator in a single dimension, and of Cave and Newton (1996, 1997) and Subotnik et al. (2008) who
generalized this diagonalization to multidimensional problems. Historically, within the chemistry
literature, the emphasis has been on finding a good set of diabatic states that serve as initial and
final states for electron transfer problems, e.g., Subotnik et al. (2009), so that one can apply Mar-cus
theory; that being said, our treatment here is more general dynamically (rather than serving as a
platform for a spin-boson model Hamiltonian (Xu and Schulten (1994); Rosso and Dupuis
(2006))). In such a case, there is no need to have an element of electronic locality inherent within a
smooth diabatic basis.

The advantages of the parallel-transported basis include the facility with which it can be ex-
panded in Taylor series about given points or even given manifolds, such as seams or degeneracy
manifolds, and the close relationship it bears to the curvature. These features will be explained in
detail in this article, but the following is some of the basic ideas.

It turns out that by means of a gauge transformation it is possible to make the vector potential
vanish at any given point. Indeed, both the parallel-transported basis and the singular-value basis do
this, as will be explained below. In fact, in some circumstances (triatomics in the electrostatic
model) there exists a parallel-transported frame that causes the vector potential to vanish over the
entire degeneracy manifold or seam, which is a one-dimensional curve. In the neighborhood of
such a point or such a manifold in such a basis, the derivative couplings are indeed small. Then the
question is how rapidly the couplings grow as we move away from the chosen point or manifold.

This question draws attention to the curvature, a tensor that is a function of the derivative cou-
plings and their derivatives. Here the important fact is that the curvature tensor, unlike the vector
potential, is a tensor, so that it transforms under a gauge transformation by simple conjugation by
the unitary matrix specifying the transformation, see (68). Thus, the magnitude of the curvature
tensor, whose square is the sum of squares of its components, is invariant under a gauge trans-

formation. In a sense the curvature represents the part of the connection that is gauge-invariant,



while the part that is not is what is changed by a gauge transformation. We will not attempt to
make this notion precise but merely use it to motivate the idea that to minimize the connection we
should find a gauge that expresses the connection in terms of the curvature. As we will show, the
parallel-transported basis does this.

Our interest in the parallel-transported basis is part of a larger project in which we aim to find
analytical treatments of the nuclear Schrodinger equation in the neighborhood of conical intersec-
tions. Part of that work involves normal forms for Landau-Zener transitions in many dimensions;
these are illustrated by Littlejohn and Flynn (1992), in which a 2-dimensional Landau-Zener prob-
lem is treated. A conical intersection has an effective range in the nuclear configuration space,
outside of which the potential energy surfaces can be decoupled by adiabatic means (Weigert and
Littlejohn (1993); Panati, Spohn, and Teufel (2002); Teufel (2003)). That range depends on the
nuclear momentum and gets larger as that momentum grows, but even for fairly large nuclear mo-
menta by ordinary standards, that is, momenta such that the nuclear kinetic energy is of the order of
one atomic unit, the range of a conical intersection is still quite small in atomic units. Thus, Taylor
series expansions are a viable approach for covering the strongly coupled region.

Expansions in Taylor series about a conical intersection have a long history, including the
works by Mead (1983); Thompson and Mead (1985); Yarkony (1997) on derivative couplings
and their singularities in the neighborhood of a conical intersection and by Yarkony (2000) on the
bifurcations of degeneracy manifolds. This work focuses on the projection operator and its
expansion, an attractive intermediate goal since the projection operator is smooth and diabatic
bases such as the singular-value and parallel-transported basis can be expressed in terms of it.
The usual approaches work with the adiabatic basis, which leads to small or vanishing energy
denominators when one moves tangent or nearly tangent to the degeneracy manifold or seam. In
this article we avoid the adiabatic basis as much as possible, mainly using the projection operator as a
substitute; this gives us expansions that are valid even when one moves tangent to the degeneracy
manifold.

In Sec. Il we discuss aspects of the singular-value diabatic basis, which is due to Pacher, Ceder-
baum, and Koppel (1988, 1993). We begin with a variational principle for the singular-value dia-
batic basis that differs somewhat from the one used in the original work on the subject, but which
shows a closer connection with the variational foundations of the parallel-transported basis, which is
our main topic. We emphasize the issue of the smoothness of the solution; although the singular-

value diabatic basis is smooth, some of the the objects used in its derivation and construction are
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not. We express the singular-value basis in terms of the projection operator, an important step
since the latter is smooth. In addition, the projection operator can be expanded about a reference
point, possibly on a conical intersection, something that we carry out in Sec. Ill. We then use that to

expand the singular-value basis to third order about the reference point.

In Sec. IV we develop the theory of parallel transport and use it to construct the parallel-
transported basis and its expansion about a reference point, which we show agrees with the
singular-value basis through second order but differs at third order. We then express the Hamilto-
nian, connection and curvature in the parallel-transported bases as power series expansions about a
reference point. We point out that the parallel-transported frame is a version of Poincaré gauge,
which in electromagnetism is a gauge that is transverse in real space. This allows us to express the
connection in terms of an integral involving the curvature, which provides an efficient method of
calculating the connection in the parallel-transported frame. Finally we point out that construc-tions
of diabatic bases are only needed in 3N 3 directions of nuclear configuration space, because in the
remaining 3 directions the nuclear configuration changes by a pure rotation, and in those di-rections
the basis should transform by a rotation operator. Thus the construction of diabatic bases takes place

ona (3N 6)-dimensional “section” of the nuclear configuration space.

In Sec. V we discuss degeneracy manifolds, usually called seams, and the construction of dia-
batic bases in the neighborhood of them. For example, in triatomic molecules in the electrostatic
model for the electronic Hamiltonian, for which the degeneracy manifold is a 1-dimensional curve in
the 3-dimensional section, we construct a diabatic basis in a tubular region surrounding the curve.
Again the connection is expressed in terms of the curvature, but the components of the connection
along the degeneracy manifold and transverse to it have different expansions. We also point out that
in the case of triatomics with the electrostatic model, it is possible to choose a gauge such that the
derivative couplings (in all of their components) vanish on the degeneracy manifold. Finally, in Sec.

VI we present some conclusions.

In this article we denote the adiabatic basis by jax;ki, the singular-value diabatic basis by
jdx; ki, the basis that is parallel transported away from a reference point by jpx; ki and the basis
that is parallel transported away from the degeneracy manifold by jDx; ki, where x is a point of

nuclear configuration space and k is a quantum number or sequencing number for the basis state.



[l. THE SINGULAR-VALUE DIABATIC BASIS

In this section we cover some aspects of the singular-value diabatic basis, which is due to
Pacher, Cederbaum, and Koppel (1988, 1993). This basis is easy to compute at a point x of
configuration space, and it does not require integration along some path starting at another point xg.
For these reasons it is popular in numerical work. It is also conceptually simple and geometrically
compelling. In this article we present some new results on the singular-value basis, including a
discussion of its smoothness properties, its relation to the projection operator, and Taylor series
expansions about a reference point.

We begin by showing that the singular-value basis satisfies a certain variational principle. This
differs only slightly from the original variational principle used by Pacher, Cederbaum, and Képpel
(1993), but we present it anyway because it reveals a close connection with parallel transport which is
the main topic of this paper. Both variational principles lead to the same (singular-value) diabatic
basis. Other variational principles that have been considered, for example, the one by Cimiraglia et
al. (1985), are not equivalent and lead to different diabatic bases.

We also emphasize the issue of the smoothness of the singular-value diabatic basis, something
that takes some effort since the adiabatic basis with which the construction begins is not smooth.
Finally we show that the singular-value diabatic basis can be expressed in terms of the projection
operator onto the coupled subspace of the electronic Hilbert space. Since the projection operator is
smooth, this shows that the singular-value diabatic basis is, too, and it also provides a method for

expanding the singular-value basis in a Taylor series about a reference point.

A. Terminology and Notation

We let x represent a point of the nuclear configuration space in the center-of-mass frame, so
that x stands for the collection of N 1 Jacobi vectors (Aquilanti and Cavalli (1986); Smirnov
and Shitikova (1977)) or their 3(N 1) components, where N 3 is the number of nuclei. We let H (x)
be the electronic Hamiltonian, which initially we assume is taken in the electrostatic model,
although later we make some comments about the changes necessary when fine structure effects
are included. We label the energy levels of H(x) by a sequencing number k, and define a “coupled

subspace” by a set of adjacent energy levels,

A= fko;ko+1;:::;ko+ N, 1g; (1)
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where N; is the number of coupled levels. Usually in practice kg is the ground state and N, is
small. We consider a region of nuclear configuration space in which energy level kg is not degen-
erate with level ko 1 and level ko+ N; 1 is not degenerate with level ko + N, that is, a region in
which there are no degeneracies that cross the boundaries of A. Degeneracies within A (“internal
degeneracies”) are allowed, however (and these require N; 2). In practice, if the region we are
interested in does have degeneracies that cross the boundaries of A (caused by “intruder states”
(Venghaus and Eisfeld (2016))), we can either excise the locations where those degeneracies oc-
cur from the region in question, or we can expand the definition of A to make the problematic
degeneracies internal. If we choose the first option then the region after the excision will often fail to
be simply connected, which has topological implications for the existence of smooth fields of
frames.

For k 2 A we denote the energy eigenstates by jax; ki, so that
H(x)jax; ki = ex(x)jax;ki; k2 A; (2)

where, as indicated, the energy eigenvalues are ex(x). The a in the notation jax; ki indicates the adi-
abatic basis, and the x-dependence of the eigenstate is separated by a semicolon from the quantum
number k.
We let S (x) be the subspace of the electronic Hilbert space spanned by the set of vectors jax; ki
for k 2 A, what we will call the “coupled subspace.” The projection operator onto this subspace is
P(x) = g jax; kihax;kj: (3)
k2A

We denote the subspace of the Hilbert space orthogonal to S (x) by S ?(x), and denote the pro-

jection operator onto S °(x) by

Q(x)=1 P(x): (4)

For k 2 A we write jax; ki for a basis in S ?(x) that is discrete and orthonormal but otherwise
arbitrary. We will call the set of states fjax; kig for all k the “adiabatic basis”, even though the
basis states for k 2 A are not energy eigenstates. This is not exactly standard terminology but in
fact normal usage is often restricted to the states k 2 A. In addition there are reasons not to deal
with energy eigenstates when k 2 A, which present a number of difficulties, both computational
and theoretical. Computationally the high lying energy eigenstates are seldom accessible, and

theoretically they present problems because their phase and frame conventions have singularities

7



on surfaces that proliferate at k is increased. In addition there is the problem of the continuum and
the transition thereto, which changes as x changes. Actually one never needs to refer to energy
eigenstates when k 2 A and we shall not do so. We must remember, however, that in our “adiabatic

basis” the vectors jax; ki are energy eigenstates only when k 2 A.

B. Phase Conventions and Smoothness

Energy eigenstates are defined only to within a phase convention (when nondegenerate) or a
frame convention inside the degenerate eigenspace (when degenerate), and this must be kept in
mind when using the notation jax; ki for k 2 A. Although it is always possible to assign those
conventions at any given point x of the region in question, in general this assignment is not smooth on
certain submanifolds of the region as x is varied. Notably this occurs when x lies on an internal
degeneracy (usually a conical intersection). There may be additional singularities when x is not on
an internal degeneracy; these occur on surfaces that can be moved about by a gauge transformation
like a branch cut in the complex plane or the strings of monopoles but that cannot be eliminated.
These singularities (of both types) are the main drawback of the adiabatic basis.

In this article when we say that something is smooth we mean that it is a continuous function
of x and that it has as many continuous derivatives as needed for any applications we might make.
A function is continuous at a point xg if it is defined at xp and its limit as x | xg is independent
of the direction of approach and equals the value of the function at xp. It is precisely in this sense
that the adiabatic basis is not continuous at an internal degeneracy (the limit exists as x | xo but
it depends on the direction of approach), and the lack of continuity implies that the derivatives of
the adiabatic basis diverge at such points.

In fact the singularities of the adiabatic basis occur only on a subset of measure zero, so else-
where, on a subset of full measure, it is possible to talk about the derivatives of the adiabatic basis
vectors, as is commonly done in the literature. Such derivatives occur in the derivative couplings
and other quantities of interest. Such quantities diverge as a degeneracy is approached, and a great
deal of literature is devoted to analyzing and eliminating these divergences. In this article we will
simply refrain from ever assuming that the vectors jax; ki are smooth functions of x, and, in partic-
ular, we never talk about derivatives of these vectors with respect to x. This applies both for k 2 A
and k 2 A; at any given x we can choose jax; ki for k 2 A as a basis that spans S °(x), but we will not

assume that that assignment can be made in a smooth manner as x is varied.
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The singularities of the adiabatic basis vectors jax; ki for k 2 A are always due the impossibility
of making phase and/or frame conventions in a smooth manner as x is varied. Granting this, an
object constructed out of the basis vectors jax; ki can be smooth only if it is independent of the
phase and/or frame conventions of the basis.

This applies in particular to the projection operator P(x), defined by (3). The definition is just
the expression of the projector onto S (x) in terms of an orthonormal basis in that subspace. But
any orthonormal basis can be used for that purpose, including those which differ from jax; ki by a
change of phase and/or frame conventions. Therefore P(x) is independent of the phase and/or
frame conventions for the energy eigenstates jax; ki for k 2 A.

Moreover there are no other reasons why the projection operator might not be smooth. It is true
that the projection operator is not defined where degeneracies cross the boundaries of A, but we are
excluding such points from the region under consideration.

Thus, the derivatives of P(x) exist and P(x) can be expanded in a Taylor series about any point
Xo in the region in question, in which all derivatives are well defined. Since P(x) is smooth,
Q(x)=1 P(x)is too.

We have presented a more careful argument for the smoothness of P(x) in Appendix A, in
which the basic idea is to use the Cauchy-Kato formula to express P(x) in terms of the electronic

Hamiltonian H(x), which is assumed to be a smooth function of x.

C. A Definition of Diabatic Basis

Originally a diabatic basis was defined as one for which the derivative couplings vanish.
This would cure the drawback of the adiabatic basis, that the derivative couplings are not only
nonzero, they diverge at conical intersections. Unfortunately, such bases do not exist in polyatomic
molecules, for which the derivative couplings cannot be transformed away.

Since the main difficulties with the adiabatic basis are due to its lack of smoothness, we suggest
that a diabatic basis be defined as one that is smooth in the region in question. This does not quite
solve all the problems with the adiabatic basis, however, since if the new basis is rapidly varying
then the derivative couplings will be large (not infinite, but large). Thus there must be some
understanding on how rapidly the basis vectors change with x.

Given a configuration xo we define a diabatic basis as one that is not only smooth (free of

singularities) in a neighborhood of x¢ but also smooth enough, in a manner to be specified. In



the literature one is usually interested in the case that xg lies on a degeneracy manifold (usually a
seam or surface of conical intersection) but there are applications for which this is not so and in the
following we shall make no assumptions about xo.

A diabatic basis so defined is not unique, since any smooth field of unitary transformations on
S (x) and another on S ?(x) will map one smooth basis into another. As is well known (Pacher
et al. (1989); Bohm et al. (1992); Mead (1992); Pacher, Cederbaum, and Képpel (1993)), such
changes of frame are gauge transformations of the theory. Thus additional criteria must be imposed
for the selection of a unique diabatic basis.

The derivative couplings (59) involve the derivatives of the basis states and these change when
a gauge transformation is carried out. One could take a smooth diabatic basis and subject it to
a gauge transformation (a change of frame) based on a unitary transformation that was a smooth
function of x in the mathematical sense but rapidly varying on the atomic length scale. The re-
sulting basis would still be smooth in a mathematical sense but it would have large derivative
couplings. To avoid this we must require that a diabatic basis be not only smooth, but smooth
enough.

Intuitively, a diabatic basis is smooth enough if one must move a distance of order unity in
atomic units for the basis vectors to change by an amount of order unity. Both the singular-value
basis and the parallel-transported basis satisfy this criterion. Such bases are related by fields of
unitary matrices that themselves have a variation on the atomic length scale but not smaller. By
this definition, the derivative couplings in a diabatic basis are of order unity when measured in
atomic units. They do not vanish, but they do not diverge, either.

We can formalize this by speaking, not of the numerical values of the derivative couplings
(or other quantities), but rather their dependence on the Born-Oppenheimer ordering parameter k
= (m=M)1*4. Many quantities of interest can be assigned an order in k. That is, a quantity that
scalesask™ask ! 0is considered of order k™. In particular, a quantity that scales as k9 = 1, that s,
a quantity that is independent of k for small k, is of order unity in this sense.

This leads us to suggest that a diabatic basis should be defined as one that is smooth and
independent of k. This means that the diabatic basis is independent of the nuclear masses M, so
that its derivatives and the derivative couplings are of order unity when measured in atomic units.
Both the singular-value and the parallel-transported diabatic bases satisfy this condition, since, as
we will show, both bases can be expressed in terms of the projection operator (3). The latter

depends on the electronic Hamiltonian but not on the nuclear masses, and so is of order k° = 1,
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that is, it is independent of k.

The dependence of the diabatic basis and the derivative couplings on k is important when
adiabatic perturbation theory, which is an expansion in powers of k, is carried out (Littlejohn and
Flynn (1991); Weigert and Littlejohn (1993); Teufel (2003); Panati, Spohn, and Teufel (2002)).
For this purpose one wants the diabatic basis and all of its derivatives to be independent of k.

For reference we will need a basis in the electronic Hilbert space that is independent of x. For
convenience we choose this basis to be jaxp; ki, which is the adiabatic basis at xg. In the
literature when this basis is used to study dynamics at points x = Xp it is sometimes called the

“crude adiabatic basis.”

D. A Variational Criterion

We now present a variational criterion for a diabatic basis, which leads to the singular-value
basis. Initially we focus on the part k 2 A of the basis that spans the coupled subspace S (x). We
define the diabatic basis at x, denoted jdx; ki with a designation d for “diabatic,” as the frame at x
that is closest to the adiabatic frame at xp, in the sense that it minimizes the quantity

2
gidx; ki jaxg;ki = §(2  haxg;kjdx;ki  hdx; kjaxog; ki): (5)
k2A k2A

According to our definition, to use the notation jd; xi and to call the basis “diabatic” we should
both define the basis and show that it is smooth. We defer the latter task to subsection I E and in the
meantime refer to the basis provisionally as “diabatic” (which it turns out to be).

Both the diabatic basis jdx; ki and the adiabatic one jax; ki for k 2 A span S (x), so we must

have

jdx;ki= gjax;liUj(x); (6)
12A

where Uj(x) is an Ny N; unitary matrix. Thus the quantity (5) can be written, "
H#

a 2 A(SkUk+Syuy) ; (7)
K2A 12A

where

Skl = haxo; kjax; li: (8)
The notation S for this matrix is the same as in Pacher, Cederbaum, and Képpel (1993).
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With no restrictions on k and |, (8) defines S as an infinite-dimensional, unitary matrix, but for
use in the variational principle we only need the N; N, block of this matrix, Sy, for k;12 A. We find it
convenient to partition infinite dimensional matrices like this according to what we will call the a
and b subsets of indices, which are those for which k2 A and k 2 A, respectively. For example, we
partition the infinite dimensional matrix S as follows:

0 1
5% gab

S= @ A, (9)
Sba Sbb

so that S@@ is an Nj N; matrix, etc. In terms of this notation, the quantity (5) or (7) can be written
2N, [tr(S*?U)+c.c.]: (20)

We assume that the adiabatic basis is given as a function of x so that the matrix S is known
(but it is not assumed to be a smooth function of x). We wish to minimize the quantity (7) with
respect to the choice of the unitary matrix Uy, (where k;|1 2 A). We enforce the unitarity of U by

adding the term, |

tr[L(UUT |)] = é le é UkmUIm dkl ; (11)
k;12A m2A
where Ly is a Hermitian matrix of Lagrange multipliers. Now varying with respect to either U or
U™ we find

s@=y'L; (12)

in which S22 is given and unitary U and Hermitian L are to be determined. The theory of the polar
decomposition tells us that if S is nonsingular then (12) has a unique solution for a unitary matrix U
and a positive definite, Hermitian matrix L. We will show below that S is, in fact, nonsingular

in a neighborhood of xg and that L must be positive definite for a meaningful solution; thus we
obtain unique results for U and L over the neighborhood in question. That is, since (532)7s22= L2 |
= [(S2)7s22]1=2 \here here and below by the square root of a positive definite, Hermitian
matrix we mean the unique positive definite, Hermitian square root; and given L, U = L(S23) L
Then (6) gives us the diabatic basis at x in terms of a finite linear combination of adiabatic basis
vectors at x. This is identical to the singular-value diabatic basis of Pacher, Cederbaum, and

Képpel (1988).
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E. Smoothness of the Solution

To complete the construction of the basis jdx; ki we must prove that it is smooth, thereby
justifying the use of the terminology “diabatic.” In fact, jdx; ki is smooth, but neither S, U or L
are. Since singularities are due to the phase and frame conventions for the adiabatic basis states
jax; ki (frame conventions applying inside a degenerate subspace), let us change these conventions

for k 2 A by means of an N; N; unitary matrix V,

ja%;ki= §jax;liVy; (13)

12A
and study how various quantities transform under such a change. In (13) V is allowed to be a
nonsmooth function of x. Combining (13) with (6), the definition of U, and with (8), the definition

of S, we find

520 = gaay/. ul=vtu; LO=vTLv: (14)

Thus neither S3, U nor L is smooth, in general.

On the other hand, the products $?U = U LU and $22(S2@)" = U L2U are invariant under the
change (13) and are therefore smooth (for example, $?20U°% = S33U), as is the quantity jdetS3?j. As
for the latter, we note that at x = xg, $% = | so jdetS®j = 1. Therefore by continuity detS3?
is bounded away from 0 in some finite neighborhood of x¢ (and note that we can use continuity

arguments only on smooth functions), and therefore S22 is nonsingular in this neighborhood.

Let us define

S=s2y=uUtLu = s7; (15)

which, as noted, is a smooth function of x. To get its value at xo we require of our diabatic basis that
jdxo; ki = jaxg; ki, that is, it agree with the adiabatic basis at xg. This means that U = | atx = X,
and thus also L = S = | at xg. But since S is a smooth function of x, it must be positive definite
in a neighborhood of xo. This meansthatL = USU T, which is not smooth, is also positive definite in
the same neighborhood (the eigenvalues are not changed by unitary conjugation).

These considerations suggest that rather than factoring S via the polar decomposition as in
(12), we factor it the other way using $2@ = SUT to obtain S and U. That is, we compute S =
[S22(S22)"11=2 and then compute U = (S22) 1S. The advantage of this approach is that S, a

smooth function of x, takes the place of the nonsmooth L, which is never needed.
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F. Relation to the Projection Operator

We still have not shown that the diabatic basis jdx; ki is a smooth function of x, but if it is we
guess that it should be possible to express it purely in terms of the projection operator P(x), which is
known to be smooth. This turns out to be the case, as we now show.

For k 2 A the procedure above gives the diabatic basis jdx; ki as a finite linear combination of the
adiabatic basis jax; ki, also for k 2 A. For some purposes, however, it is convenient to have the
diabatic basis expressed as a linear combination of the reference basis jaxo; ki, in spite of the fact
that this involves an infinite number of terms. We obtain a useful form of this expansion by

writing, fork 2 A,

jdx; ki= P(x)jdx; ki= g jaxo;lihaxg;lj § jax;mihax;mjdx;ki
all 1 m2A
é jaxo;IiSﬁgUmk+ é jaXO,'liSHﬁ‘Umk
I;m2A 12A;m2A
3 jaxo; li(S?U) + §jaxo; li(SP2U): (16)
12A 12A

Evidently, for this expansion we need the matrices S2U = S and SPaU.

We define the matrix representation of the projection operator P(x) in the reference basis,

P (x) = haxo; kjP(x)jaxo; li = g haxg; kjdx; mihdx; mjaxo; li; (17)
m2A

for all k, I. Now substituting (16) into (17), we obtain
paa - (SaaU )(SaaU)‘r — Saa(saa)‘r — 52;

Pba — (SbaU)(SaaU)‘r — Sba(saa)‘r; (18)

where we partition P(x) as in (9). Thus the matrix S?@U that appears in (16) is the positive definite

matrix S = (P22)1=2, As for the matrix SP2U, we have
PP = sPay(say)’ = shays’ = shays; (19)

or,

SbaU - Pba(Paa) 1=2: (20)

Thus, both matrices needed in the expansion (16) can be expressed in terms of the projection

operator.
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Let us write T for the infinite-dimensional unitary matrix that connects the diabatic basis jdx; ki
with the reference basis jaxo; ki,

jdx; ki= g jaxe; liTy; (21)

all |

which holds for all k, I. Again, this notation follows Pacher, Cederbaum, and Képpel (1988, 1993),

and we note that their variational principle minimizes the quantity

2

T 1% (22)

So far we have worked on the case k 2 A and found T2 = S3U and TP2 = SPay in terms of the

projection operator. We can find the other blocks, T22 and T?°, by repeating the same procedure we
have just been through, but now taking k 2 A and swapping subspaces a $ b and projectors

P S Q. This gives altogether,

0
paa)l=2 ab(bby 1=2
;. @ (P32) Q**(Q*) = 4
pba(paa) 1=2 (be)1=2
0 10
aa ab aay 1=2
=@P Q A@(P ) 0 A (23)
Pba be 0 (be) 1=2
where we note that Q@° = P20 and QPP = 1Pb PP, 5o that the entire result can be expressed in

terms of P. It can be directly checked that TT" = TTT = |; for this one must use the facts that P =
P"and P2 = P.

Now (21) and (23) show that the transformation from the reference basis to the singular-value
diabatic basis can be expressed purely in terms of the projection operator. This not only shows that
the diabatic basis is smooth in a neighborhood of xg but it also allows us to expand the diabatic

basis in a Taylor series about xg.

[1I. EXPANSION OF THE PROJECTION OPERATOR

In the following we will use the symbol P or P(x) for both the projection operator and its matrix
in the reference basis, as in (17), with hopefully little danger of confusion. We wish to expand P in
a power series about the reference point xg. We write x = xpo+ x, where x is a displacement vector
in nuclear configuration space. We think of all the symbols, x, xg and x, as standing forthe N 1
Jacobi vectors or their 3(N 1) components, effectively using these as coordinates on the nuclear

configuration space in the center-of-mass system. We will write these coordinates explicitly as
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xM, xg, x™M etc., where m= 1;:::;3N 3. We use the summation convention on such coordinate
indices m, n, etc.

The expansion of the projection operator is a part of degenerate or quasidegenerate perturbation
theory, see for example Kato (1949); Bloch (1958); des Cloizeaux (1960); Klein (1974), which
discuss, among other techniques, the use of Cauchy’s theorem and the resolvent operator to obtain
expansions of the projection operator. In the following we summarize a straightforward approach,
which is suitable to the order to which we carry the expansion. We simply note that the usual goal of
perturbation theory is to expand the energy eigenstates (which in our case would be the adiabatic
basis) in a power series, something which however must cope with degeneracies, near degeneracies
and small or vanishing energy denominators, none of which is an issue in the expansion of the
projection operator. These complications are due to the singularity of the adiabatic basis at a
degeneracy, which we are avoiding by using the projection operator.

We expand the projection operator in a power series in X,

P(x)= Pp+ P14+ Py+:::; (24)
where
Po= Plxo); Py= x™ 12 (xo); Py = %xmx"ﬂ:ﬁ;’xn (xo); (25)
etc., and similarly we expand the Hamiltonian,
H(x)= Ho+Hy+Hy+:::: (26)

We carry out the perturbation expansion by requiring P(x)" = P(x)2 = P(x) and [P(x); H(x)] =

0. At zeroth order, that is, at x = xg, we have
0 1 0 1

aa Haa 0
p0=@| Op. H = @ o A (27)
00 0 Hg

where matrices are partitioned as in (9). Since the reference basis is an energy eigenbasis at xg for
k2 A, we have
Hoik = eok di; (28)

where egx = ex(xo) for k2 A. Equation (28) applies when k; | 2 A; in equations like this we shall not
indicate the ranges of indices when they are evident from the superscripts (for example, aa in this

case).
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At first order we must satisfy PoP;+ P1Pq= P;, which gives P? = 0 and P?b=0. In addition,

when we require [Pg; H1] + [P4; Ho] = 0O, we find

Ptk = @ H2hmR(eok)mi; (29)
m2A

where the resolvent R(e) is a bb-type matrix defined by

A R(e)m edm  Hegn = dig; (30)
m2A

that is,
R(e) = (el®® HE®) (31)

The resolvent R(e) is defined when e = eqy for k 2 A, which is outside the range of eigenvalues of

HP® Thus we can write 0 1
0 0 Pab
P = @ 1 A ; (32)
b
P2 0

where PP2 = (p2b)*,
At second order we require PgP,+ P2+ P,Py= P, which gives P3 =  p3bpba and pbp =

+Pt{a be. We also require [Py; Ha] + [Py; H1]+[Py; Ho] = 0, which gives

2:l = é Hab+ Pab be Haa Pab R(EOk)mI:

101 1 1 km
Thus we can write 0 1
Pabpba Pab
p=@ 11 2 AL y
b bapab
pba  pbapa (34)
Finally, at third order we find
0
abpba abpba ab
_ @ PR PP P A
P; = Pba Pba Pab Pba pab (35)
3 1 2 TP
where
- 8 ab abpybb aapab abpbaypyab
pf‘;'?d— a(H3 +PPHY  HIPPP® PPPP?H!
m2A
+ PgPHPb  paapab  pabpbapab) - R(eg)mi; (36)

and P2 = (P2b)",
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Now we can take the square roots indicated in (23), which to third order are given by

- 1 1

(Paa)l—Z = |3 —2 Plabplba 2‘ (bepzba + Pgb P?a); (373)
- 1 1

(be)l‘2 = |bb 3 PlbaPlalo —2(PlbaP25‘b+ Ptz’a be): (37b)

These allow us to write out the expansion of T,

0 1 O 1 O
aa ab - abpba ab
0™ %a, 00 Pa,e (=2PPR pb
0 |bb pba 0 pba (1=2)Pbapab
0 1 2 1 1 1

(1=2)(P3bpba+pabpba)  pab  (1=))pabpbapab
P22 +(1=2)PPaP3PPha  (1=2)(Pb2P2P+Phap2P)

, @ A

(38)

which gives the expansion of the singular-value diabatic basis about an arbitrary point xg to third

order.

IV. A DIABATIC BASIS VIA PARALLEL TRANSPORT

Parallel transport is a standard topic in gauge theories (Kobayashi and Nomizu (1963); Naka-
hara (2003)) and is an important part of the theory of Berry’s phases (Berry (1984); Simon (1983)).
Its role in Born-Oppenheimer theory is also well known (Mead (1992); Bohm, Boya, and Kendrick
(1991)). Parallel transport can be used to create a diabatic basis; one simply takes a basis at a ref-
erence point xg, possibly on a conical intersection, and parallel transports it along radial lines
emanating from xg to fill in a basis defined over a neighborhood of xg. Such bases have a long
history in the chemical literature, going back at least to Smith (1969), who used parallel transport in
diatomics to create a strictly diabatic basis, possible in his case because his parameter space was
1-dimensional. Strictly diabatic bases (by any means of construction) do not exist in the poly-atomic
molecules considered in this article (Mead and Truhlar (1982)), but for a contrary opinion see Baer
(1975, 1976, 1980); Baer and Englman (1992); Baer and Alijah (2000); Baer (2000a,b, 2001,
2002).

A. Parallel Transport

We review some aspects of parallel transport that we will need; for a slightly different per-

spective see Mead (1992). Given a vector y(x) 2 S (x), we wish to find the vector y (x + dx) =
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y(x) + dy at a nearby point such that y(x+ dx) 2 S (x+ dx) and such the square distance in
Hilbert space
y(x+dx) y(x)? (39)

is minimum. Writing simply y for y(x) and likewise P for P(x), we have Py = y and (P +
dP)(y+dy) =y +dy, or,
dy = Pdy +(dP)y: (40)

We regard y as given and dy as unknown. Sincedy = Pdy + Qdy we seethat (dP)y = Qdy and
that the two terms in (40) are orthogonal. Also, the term (dP)y, the component of dy orthog-onal
to S (x), is fixed; therefore to minimize the square distance (39) we choose dy so that it is
orthogonal to S (x), that is, so that Pdy = 0.

This gives dy = (dP)y. If now the step from x to x + dx is taken along a curve x(I), then by

dividing by d | we obtain an equation of parallel transport along the curve,
y°= P%; (41)

where the prime means d=d|. This equation is to be used only for vectors y (x) that lie in S (x),

that is, that satisfy Qy = 0. It can be shown (see Appendix A) that (41) implies

di|+P° (Qy) = 0; (42)

sothatif Qy = Oatl = OthenQy = Oforalll (this follows from the uniqueness of the solution of

the differential equation). Similarly, if we wish to transport a vector that remainsin S ?(x) if it starts

out in that space, then we use the transport equation
yO= Q= POy (43)
We can combine both types of parallel transport into a single equation by writing
y®= (P°P PPy = [P%Ply: (44)

It can be shown that if y satisfies this equation then Qy satisfies (42), so thatify 2 S (x) initially
then it remains in S (x); and it can be shown that if y satisfies this equation and Qy = 0 theny
satisfies the simpler equation (41). (See Appendix A.) Thus, (41) and (44) are equivalent ify 2
S (x). Similarly it can be shown that (43) and (44) are equivalent ify 2 S ?(x).

The form (44) is convenient because it applies to the transport of any vector, one in S (x), one

inS ?(x), or any linear combination thereof. Also, since the commutator [P%; P] is anti-Hermitian,
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it follows that parallel transport via (44) is unitary, and preserves the scalar product of vectors. In
particular, the parallel transport of an orthonormal frame is orthonormal. Furthermore, if we
parallel transport a frame that block diagonalizes the Hamiltonian, it continues to do so as we

evolve along the curve. Finally, we note that another useful form for (44) is
vy = (P°P+QQ)y: (45)

We mention this because it makes it evident how parallel transport is generalized to the case in
which there are multiple subspaces of the electronic Hilbert spaee under consideration (not just

two).

B. The Parallel Transported Basis

Now let us replace the displacement x by | x, so that
x™(1) = xg+1x™; (46)

which represents a radial line parameterized by | starting at xo when | = 0. We expand the
Hamiltonian H(x) and projector P(x) as before, except now with a | dependence, so that for
example

H(x(l1)) = Ho+ IH1 +12Hy + 13 H3+:::; (47)
instead of (26). We expand P(x(l)) and a parallel-transported wave functiony (1) similarly. The
wave function y is initially defined only along a single curve, so it is a function of | but not of x.

Then we have

P(x)= P+ I Py+12Py+13P3+:::; (48a)
Po(x)= P+ 21 Py+312Py+:::; (48b)
[P Pl = [Py; Pyl + 21 [Py; Pyl
+ 12 3[P;P]+[P;P]+::: (48c)
3 0 2 1

andwithy = yo+ 1y +12y,+13y3+:::, (44) becomes

y1 = [P1;Polyo; (49a)
2y2 = [Py; Poly1 + 2[Py; Polyo; (49b)
3y3 = [P; Po]VZ +2[P,; Po]yl
3[P;P]+[P ;P ]yo; (49c)
3 0 2 1
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etc. These allow us to express y1, y2, etc., in terms of yg.
We write the result in the following way. Define y (| ) as the components of y (1 ) with respect
to the reference basis jaxog; ki, that is, y (1) = haxg; kjy(l)i. Then y(I) is a linear function of

yk(0), which is expressed by

yi(l) = @ Tpkvi(0); (50)
all |

where Ty is an infinite-dimensional matrix that depends on | along a single curve, or, with | = 1
and x regarded as a variable, on x = xg+ X . This matrix plays a similar role to T for the singular-
value diabatic basis and, in particular, if we define jpx; ki as the basis that is parallel transported

along radial lines from xp, with the initial values being the reference basis jaxo; ki at xo, then

ipx; ki = g jaxo; li[To(x)]j; (51)
all |

which may be compared to (21). The subscript on T, refers to the parallel-transported basis.

Now we expand Tp = Tpo+ | Tp1 + 12Tz +::: and use (49) to obtain

Tp1 = [Py; Pol; (52a)

1
Tp2 = 5["1} PolTp1 + [P2; Pol; (52b)

1 2
Tp3 = §[P1; PolTp2 + g[Pz; Pol Tp1

1
+ [P3; Po] + §[P2} Py]: (52¢)
Then we set| = 1 and work out the commutators to obtain T, through third order,
0 1 0 1 0
[2a 0 0 pab (1=2)Pabpba pab
T,= @ A+ @ 1AL @ 1ol 2 A
0 Ik P2 0 pha (1=2)pbapab
0 |
- abpba - abpba ab - abpbapab
, @ (2=3)P7°PJ%  (1=3)P2°P, P2 (1=2)P{°PY?P] A (53)
ba - bapabpba - bapab - bapab
Py%+(1=2)P PP (2=3)P27P2°  (1=3)P)°P’

Comparing this with (38) we see that the singular-value diabatic basis and the parallel-transported
diabatic basis are identical through second order in an expansion about xg but differ at third order.
The two expansions cannot be identical to all orders, since in effect each small step of the parallel
transport involves an infinitesimal version of the singular-value basis, but one that compares frames

between x and x + d x rather than between xg and x.
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C. Hamiltonian in Parallel-Transported Basis

Let us write

Hp,ki(x) = hpx; kjH(x)jpx;li (54)

for the Hamiltonian matrix in the parallel-transported basis, while other matrices (H1, P, etc.) are

understood to be in the reference basis jaxo; ki, as previously. Then
Hp(x) = Tp(x)"H (X)Tp(x): (55)

Now we expand H(x) as in (26) and Ty(x) as in (52) and multiply series to compute Hp(x) to
second order. We find that the off-diagonal elements vanish, H;‘b(x) = Hé’a(x) = 0, as they should,
while through first order the diagonal elements of H(x) are the same as those of H(x), that is,
H¥ = H HZ = H?, Hpb(;" = HP and H&b = HP®. As for the diagonal elements at second order,

we find

1

HiZ = H+ S(HI"PP?+ PI°HD?); (56)
bb_ pybb 1 pybapab, pbapjaby.

Hpp = Hy® S (HPPR"+ PR2HP): (57)

We note that if the electronic Hamiltonian at xg is completely degenerate in the coupled subspace,

then we can use (90) to obtain
H22 = H3+H3 R(eo)H}?; (58)

the usual result from degenerate perturbation theory.

Now by diagonalizing Hga we obtain the adiabatic basis jax; ki, if we want it. If xg is on an
internal degeneracy (a seam or conical intersection), then this will reveal the usual singularities of
the adiabatic basis, for example, the dependence of jax; ki on the direction of approach as x ! xg
and the p phase discontinuity as we encircle the degeneracy manifold in the case of a 2-fold
degeneracy in the electrostatic model (Herzberg and Longuet-Higgins (1963); Longuet-Higgins
(1975); Mead and Truhlar (1979)). In the case of a triatomic with an odd number of electrons and

spin-orbit effects included it will reveal the string of a Dirac monopole (Mead (1980a, 1987)).
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D. The Derivative Couplings and Connection

If jx; ki is any smooth basis that block diagonalizes the Hamiltonian then we define the deriva-

tive couplings by
Finsk = DG kjllmix;li= (Ambx;Kjlix;li= Fog; (59)

where 9 = 9=9x™ and where the alternative forms follow from the orthonormality of the basis
vectors. For example, the basis jx; ki could be jdx; ki or jpx; ki or the adiabatic basis jax;ki in
regions where the latter is smooth. If we just write Fy, we mean the infinite dimensional matrix
whose components are F.; this can be decomposed into aa-, ab-, etc., blocks. As is well known,
the derivative couplings appear when the molecular Schrodinger equation is transformed to the
Born-Oppenheimer representation. The matrix of derivative couplings Fm, as well as its diagonal
blocks, F22 and Fﬁb, are anti-Hermitian and thus belong to the Lie algebra of the unitary group.

Any process of parallel transport gives rise to a connection, which in the general case is a rule for
associating a unique object at a point x + dx, given that object at point x. The object in question could
be a vector such as y, a frame, or other things. In the case of transporting the vector y as in Sec.
IV A, the components of the connection, which we denote by Gy, ., are defined by

dyk _ dxm

— AGm.—VYi; (60)
dl alll

where the minus sign is conventional. If we now substitute

Jy ()i= dix(1); kiy(l) (61)
allk
into the equation of parallel transport (44) or (45) we find (see Appendix A),
0 1
Fe? 0
Gm = @' A} (62)
0 FPP

that is, the diagonal blocks of the connection are the same as the derivative couplings. The off-
diagonal components of the connection vanish because of the way we designed the process of
parallel transport in Sec. IV A, that is, so that a vector that begins in one of the subspaces S (x) orS
?(x) remains in that subspace.

If jbx;ki is any smooth basis that block-diagonalizes the Hamiltonian, where b just means
“basis,” then another such basis is given by

joO% ki= §jbx; iU (x); (63)
|
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where U (x) is unitary, a smooth function of x and also block-diagonal. Then the derivative cou-

plings in the new basis are given by
FO=U"FnU +UTnU; (64)

which, as is well known, is the transformation law for a (generally) non-Abelian gauge potential.
Because of the inhomogeneous term the derivative couplings can be made to take on any value at
any given point by means of such a gauge transformation. Indeed, in both the singular-value and
parallel-transported basis the derivative couplings vanish at the reference point xp. Since a
common goal in practice is to minimize the derivative couplings over some region, naturally the
question arises as to how fast these couplings grow (in some basis) as we move away from a point

where they are known to vanish. This question leads us to the curvature, which we take up next.

E. Curvature

Let jbx; ki be an arbitrary, smooth basis that block-diagonalizes the Hamiltonian, as above, and
let x™ and h™ be two infinitesimal displacements from a point x. Then let us carry out a parallel
transport around the parallelogram, x! x+x ! x+x+h ! x+h ! x Initially we parallel
transport the a-part of the frame, that is, the vectors jbx; ki for k 2 A. This is a standard calculation
in gauge theories (Kobayashi and Nomizu (1963); Nakahara (2003); Mead (1992)) and we just
quote the results. Since parallel transport preserves orthonormality, the parallel-transported frame,
once again back at the starting point x, must be related to the original frame at that point by a
unitary matrix. Moreover, the unitary matrix must be infinitesimal, that is, the identity plus an
infinitesimal, anti-Hermitian correction. If we denote the parallel-transported frame, back at x, by
jbx; ki, then we have

jbx;ki= g jbx;li[dy  x™h"Gga, . (x)]; (65)
12A
which defines the aa-block of the curvature tensor Gy at x. In this formula, G is understood to

be expressed in the basis jbx; ki; if we omit the k;| indices, we refer to the matrix G33,. The
calculation shows that

G = ImF2  aF32+[F3F3): (66)
If we carry out this calculation for the b-block, we find the same equation but with aa replaced by
bb; and the off-diagonal blocks of G vanish, G,, #°G,,, £20, for the same reason that the off-

diagonal blocks of the connection do (see (62)).
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Given the fact that F22 and F2P are anti-Hermitian, it follows from (66) that G32_and G2 are,
too, thatis, G5, = Gi . etc.

The nuclear Hamiltonian involves the vector potential F, not the curvature G, but the curvature
appears in the commutators of the velocity operators (Littlejohn and Reinsch (1997)) and in the
classical equations of motion, which are useful for wave packet evolution (Berry and Robbins
(1993); Wu, Miao, and Subotnik (2020); Bian et al. (2021)), especially when nuclear dynamics
depend on spin.

We now present another formula for the curvature, which is a simplification of Eq. (3.42) of

Mead (1992) and which connects the curvature with the projection operator. It is
Gmn;kl(x) = hbx; kj[Pr; Pnljbx; li; (67)

where P, = 9, P. This applies to the full, infinite-dimensional matrix Gmn, that is, for all k;I. In
particular, it correctly gives zero for the off-diagonal elements. The proofis givenin Appendix A 4. In
our applications this turned out to be the most convenient means of calculating the curvature
(much more convenient than (66)).

Under the change of basis (63) the curvature transforms as a tensor, that is,
G\ =UGmaU"; (68)

(Mead (1992)), where U is the same (block-diagonal) unitary matrix as in (64). This means that

the quantities

a Gz, i’ (69)
k;12A

are independent of basis, as are the sums over the bb-block. These quantities, which constrain the

derivatives of the derivative couplings, cannot be transformed away, not even at a single point. For

this reason, there is some interest in finding a gauge that expresses Fy, in terms of Gmn.

Finally, we quote the Bianchi identity, which is

1G22 +1m G2 + 91, G2,

+[F3%, G2 1+[F2%, G331+ ([F3%;,G%3 1= O; (70)

S n m

with a similar formula for the bb-block. This is the analog of Maxwell’s equation NB = 0 in

electromagnetism.
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F. Non-Abelian Poincaré Gauge

In electromagnetism, Poincaré gauge (Cohen-Tannoudji, Dupont-Roc, and Grynberg (1989)) is
transverse in real space, that is, x A(x) = 0. In a molecule, if xg is a reference point in nuclear
configuration space and x(I) = xo + | x is a radial line, as above, then the analog of Poincaré

gauge for the Mead-Truhlar-Berry connection is a gauge such that

XxMF2 x(1) = xMF x(1) = 0; (71)

m m
that is, the radial component of the connection vanishes.

It turns out that parallel-transported gauge is Poincaré gauge, in this sense. To prove this we
start with k;1 2 A and note that in the parallel-transported frame we have

xMF24) = x"hpx; kjImjpx;li = hpx; k%jpx;li

hpx; ki[P%; Plipx;li= hpx;kiP(P°P  PP°)Pjpx; li

where we use d=d| = xMq, and (44). A similar proof holds for F'?Tb, but radial components of the
off-diagonal blocks of the derivative couplings, F";‘nb and F?Ta, do not vanish.

Poincaré gauge has the interesting property that the vector potential can be expressed in terms
of the magnetic field. Thus one obtains Hamiltonians that are not expressed in terms of some
arbitrary vector potential, but rather directly in terms of the magnetic field, which is fully physical.
This is mainly useful in some neighborhood of a given point, by means of Taylor series expansions.

This property carries over to the non-Abelian case. Specifically, if F&? is in parallel-transported

gauge, then

n 201 nm
F(x) = dl Ix"G?® x(I); (73)
where x on the left-hand side means x = xo+ x and x(|) under the integral means xo + | x, as

above. The integral is carried along a radial line from xo to x = xo+ x. A similar equation holds for
the bb-block of the connection and curvature.

This is a rather remarkable formula, because it appears to give a linear relationship between
F and G, which in the non-Abelian case are in fact connected by the nonlinear relationship (66).
For us (73) is merely an identity connecting the curvature and connection in parallel-transported

gauge, but if one were to interpret it as a map from a given curvature to a corresponding vector
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potential, then it must be understood that the formula only works if G satisfies the Bianchi identity
(70).
To prove (73) we assume that F is the parallel-transported connection and G is the curvature and

we examine the integral on the right-hand side, but without assuming that it equals the left-hand

side. Writing G in terms of F, the integral becomes
yA
1

NCIRESIR I AL U (74)

where it is understood that everything under the integral is evaluated at x(1 ) = xo+ | x . Because

x"F22 x(l) = 0the commutator term vanishes. The first term in (74) can be written

21 dF2
dl | ——; 75
0 dl (75)
where we use d=d| = xn{,,. As for the second term, it is
Z
T URLL AT LYMIYLINNT
0 x 0 x n "
Z1
= dl an; (76)
0

where we use 1=x™ = | 9§, and where one major term vanishes on account of (71). Now adding

(75) and (76) we obtain
y4

1

d :
. dl ﬂ[IF":‘na x(1)] = Fa; x(1) = FaaQ(), (77)
which is the given left-hand side of (73).

Now we may expand the integrand in (73) in a power series in | and do the integral, which

through order | 2 gives us
Fa%(xo +x ) = %X"Gﬁ;(xo) + %x”xs(ﬂsGﬁn)(xo) . (78)

This can be used to express F and its derivatives at xg in terms of the curvature,

F2a = q; (79a)
1
1aF# = Gom; (79b)
1
T9sF32 = g[ﬂsG?\?n"'ﬂn G331 (79¢)

where it is understood that everything is evaluated at xg. As we see, the Mead-Truhlar-Berry
connection in the parallel-transported frame vanishes at xo and the curvature governs the rate at
which it grows as we move away from xo.

The facility of expressing the connection in terms of the curvature is one of the advantages of

the parallel-transported frame over the singular-value frame.
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G. Connection and Curvature in Parallel-Transported Basis

We can now work out the components of the connection and curvature in the parallel-transported
basis. It is straightforward to do this with the expansion of the parallel-transported basis jpx; ki
in terms of the reference basis jaxg; ki, given by (51), with coefficients given by (53). First we
substitute this into the definition (59) of the derivative couplings to compute F, and then use (66)
to compute Gmn. This will give expressions for Fy, and G in terms of the components of the
projection operator, and, ultimately, in terms of the Hamiltonian and its derivatives.

It turns out to be much easier, however, to use first Mead’s formula (67) in the parallel-
transported basis to find G, and then to use (73) to find F. In this work we must be careful
with notation. We will henceforth write P for the projection operator (previously simply denoted
P), P for its matrix with respect to the reference basis jaxo; ki and P for its matrix with respect to the
parallel-transported basis. Also, we will append (x) to a quantity if we mean it to be evalu-ated
at x = Xg+ x, and we will omit the (x) if we mean it to be evaluated at xg. Also, we define P, (x)
= (ImP)(x), etc.

We are interested in the curvature tensor in the parallel-transported basis, which according to

Mead’s formula (67) is
Gmn;ki(X) = hpX; ki[Pm (x); P (x)]jpx;1i = [Pr(x); Pn(X)]ii; (80)

since the matrix of the commutator is the commutator of the matrices. (This holds when the

matrices are the full, infinite-dimensional matrices, as here.) For this we need the matrix,
P(X) = Tp(x)"Pr(x) Tp(x); (81)

which is a change of basis from jaxg; ki to jpx; ki. This matrix vanishes on the diagonal blocks,

for example, if k;1 2 A then

[Pr(X)]ki = hpx; kjPm(x)jpx;li

hpx; kjP (x)Pm (X)P(x)jpx;li= 0; (82)

as follows since P (x)[Im P (x)]P(x) = O.
The expansion of P(x) = P(xo+ x ) is given by (27), (32), (34) and (35), which to second order
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can be written

0 1 0 1
122 0 o p®
P(x)= @ A+@ T AxM
0 pb2 0
1

abpba _ ab
Pm Pn (1 2)PmnAxmx“+:::; (83)

(1=2)Ppa pbapab

+ @

where P2 is the ab-block of (1mP)(xo), P20 is the ab-block of (imTnP)(xo), etc. Notice that in

terms of our previous notation we have

1
pab = pabym,  pab- EP;’;;k;xmx”; (84)

etc. Differentiating (83) we obtain

0 1
0o p®
P(x)= @ A
a
. PrT 0
bpb bpb b
+ @ Pri I:’na Pr? Pma Pr?m A_n b 85
Pba pbapab + Pba Pab X e ( )
mn m n n m

Now we use the expansion (53) of T,, which we only need to first order and which we write as

0 1 0 1

1220 o p®
Tp(x)=@ A+ @ n AxMin; (86)

0 b PP2 0

to carry out the change of basis (81). This gives

0 1 O 1

- 0 p3 0 pan

Pix)= @ . "TA+ @ . M Ax" 4 (87)
P2 0 P2, O

which is off-diagonal, as predicted.

Now we can compute the commutator and thence the curvature. We find

_ bpb . bpb b pb .
G2 (x) = (PP h:c:)+ (PP +P2° P> hic:)x®+:::; (88)

n ms' n

where subtracting the Hermitian conjugate of the indicated matrices is equivalent to antisym-
metrizing in m;n. The expression for GP?(x) is obtained from this by swapping a$ b, and the off-
diagonal blocks vanish, G2° = G2 = 0. Finally, replacing x by | x and carrying out the in-tegral

(73), we obtain the diagonal blocks of the Mead-Truhlar-Berry connection or derivative
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couplings in the parallel-transported basis. We find
aa _ 1 abpba h:c:)x "
Fai(x) = E(Pn P :C:)x
+6}(PaanﬁfS + PibPﬁf‘n+ ZP?@ Pﬁf‘ hic:))x"xS+:::; (89)

and similarly for the bb-block.

H. Coordinates and Rotations

So far we have been using the notation x to stand for a point of the nuclear configuration space
in the center of mass frame and x™ for the collection of the 3N 3 components of the N 1
Jacobi vectors. We will call these “Jacobi coordinates.” Thus derivatives 4, are understood to be
taken with respect to Jacobi coordinates. However, there is nothing in our analysis so far that has
required that the coordinates be these; everything goes through with an arbitrary coordinate system
on nuclear configuration space, that is, a set of 3N 3 arbitrary, possibly nonlinear functions 0™
of x™. We only require that the Jacobian matrix 1x°™=9x" be nonsingular in the neighborhood
in which we are working. Therefore all our formulas so far are valid with x™ reinterpreted as an
arbitrary coordinate system in this sense.

Our parallel-transported basis has been defined by integrating the (44) along radial lines ema-
nating from a reference point xg, which have the coordinate representation (46). This means that
the parallel-transported basis at a point x depends on the coordinates, since a line that is straight in
one coordinate system is not straight in another.

Another issue concerns the direction of integration. Let us assume that the configuration xg is
noncollinear, the typical situation in polyatomic systems. Then there are three directions in which
one can move away from xg that are purely rotational, and we do not want to use parallel transport to
create a diabatic basis in those directions. In those directions the nuclear configuration trans-forms
by a rigid rotation, that is, the shape of the molecule does not change, only its orientation. Those
directions are tangent to the the 3-dimensional surfaces which are generated by applying rotations
to a given configuration, which are the orbits or fibers of the action of rotations on the nuclear
configuration space, as explained by Littlejohn and Reinsch (1997). When the nuclear
configuration changes by a rigid rotation, the electronic basis functions should change by a ro-
tation operator, not by parallel transport (or any other method for constructing a diabatic basis,

such as the singular value method). Attention to those directions that are purely rotational versus
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Fo F1

X2

FIG. 1. Fibers Fg, F41 are 3-dimensional surfaces swept out by applying rotations to nuclear configurations
Xo, X1. Section Sisa (3N 6)-dimensional surface transverse to the fibers. To establish a frame of electronic
wave functions over a region of nuclear configuration space, we may use parallel transport along a section
S, such as along the path xg ! x31, and then rotation operators to transport the frame along the fibers, such

as along the path x; ! x».

those in which the shape changes is important in the construction of kinetic energy operators on
the internal space (Wang and Tucker Carrington (2000)).

The situation is illustrated in Fig. 1, which is a schematic illustration of a region of the nuclear
configuration space. Configuration xo is some configuration, and Fg is the set of other configura-
tions related to xg by rigid rotations, that is, configurations of the same shape as xg but different
orientations. Surface Fo is called the “fiber through xp”, as explained by Littlejohn and Reinsch
(1997). Similarly F1 is the fiber through x1. Configurations x1 and x, have the same shape but
different orientations.

Surface Sis a (3N 6)-dimensional surface that cuts transversally through the fibers in the
given region, called a “section” of the fiber bundle (Littlejohn and Reinsch (1997)). Sections are
needed to define orientational coordinates, that is, the section is the surface upon which the Euler
angles are those of the identity rotation. The section also defines a body frame; it is the surface
upon which the body frame coincides with the space frame. Sections are also implicitly used in
electronic structure calculations, when it is attempted to fill in some region of nuclear configuration
space. This is because one need only calculate the energy eigenvalues and eigenfunctions for a
single orientation of a given shape; for other orientations the energy eigenvalues do not change
and the energy eigenfunctions change simply by a rotation operator. Thus, electronic structure

calculations take place on a section.
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Now assume that xg is a reference configuration and we have an electronic basis at xp that
block-diagonalizes the Hamiltonian, and suppose we wish to find a diabatic basis at neighboring
points such as x; in the figure. Then the procedure is to use some rule (singular value, parallel
transport, etc.) to create a diabatic basis at x; on the section, and then to use rotation operators to
create a diabatic basis at x».

Thus we see that when we parallel transport a basis from a configuration xo, we do not need
togooutin all 3N 3 directions in nuclear configuration space, but rather only along the 3N 6
directions of a section passing through xg. So far we have been interpreting the coordinates x™ as
3N 3 coordinates on nuclear configuration space, but all our results hold if we reinterpret them
as 3N 6 coordinates on a section, and we will henceforth do this. These coordinates can be taken
to be shape coordinates, that is, quantities such as bond lengths and angles that are invariant under
overall rotations of the molecule. Similar considerations apply to all other methods (singular value,
etc.) of constructing a diabatic basis in the neighborhood of xp; the purely rotational directions are

handled by rotation operators.

V. DEGENERACY MANIFOLDS

In the following it is assumed that we are working on a section with coordinates x™, m=

(1)) contains at least two levels, so that internal degeneracies are possible. We define the degener-
acy manifold as the subset of S upon which there is an internal degeneracy. Degeneracy manifolds
are usually called “seams” but we prefer the alternative terminology as it is more descriptive. De-
generacy manifolds are usually surfaces of conical intersections, but it should be noted that while all
intersections of potential energy surfaces are degeneracies they are not always conical. We now
address the construction of a parallel-transported basis in a neighborhood of the degeneracy

manifold.

A. Models of the Electronic Hamiltonian

Up to this point we have been assuming that the electronic Hamiltonian was taken in the elec-
trostatic model, but now we will address the more general case in which fine structure effects are

included. We shall assume that no external fields are acting so that the molecular Hamiltonian has
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time-reversal symmetry. This has an important effect in the case of an odd number of electrons, in
which the electronic eigenstates become Kramers doublets. Let us agree to call a “level” a single
Kramers doublet in the case of an odd number of electrons, which means the degeneracy is twice
the number of levels. In other cases (electrostatic model or fine structure with an even number of
electrons) the degeneracy is equal to the number of levels.

With this understanding, we now review the simplest case of two levels. If there is no symmetry
in addition to time-reversal, the codimension of the degeneracy manifold is 2 in the electrostatic
model or when fine structure is included and the number of electrons is even (von Neumann and
Wigner (1929)), and it is 5 if fine structure is included and the number of electrons is odd (Mead
(1980a)). If there are symmetries then the picture is more complicated since in general the sym-
metry only holds on submanifolds of configuration space, but an important exception is the Cs
symmetry of triatomic molecules (reflection in the plane of the molecule), which is global. In
the case of triatomics with fine structure and an odd number of electrons, the codimension of the
degeneracy manifold is 3 (Mead (1980a)). We should also add that in the case of the electrostatic
model we are assuming that one is working within a given subspace of spin states, that is, energy
eigenstates of fixed S? and S, since degeneracies between states of different spin have codimen-
sion 1, whereas when fine structure is included we must enlarge the electronic Hilbert space to
include all spin states.

Let us denote the degeneracy manifold by D; its codimension is counted inside the section S.
For example, in triatomics S is 3-dimensional. Then in the electrostatic model or with fine structure
and an even number of electrons, D has codimension 2 or dimension 1, that is, it is a curve in S;
while if fine structure is included and number of electrons is odd, then the codimension of D is 3
and its dimension is O, that is, D consists of isolated points inside S. These codimension counts
apply at generic points of configuration space, where the Jacobian of the map from configuration
space to Hamiltonian matrix space is of maximal rank; where this is not the case other phenomena

arise, such as the bifurcation of degeneracy manifolds (Yarkony (2000)).

B. Reference point xg on Degeneracy Manifold

Henceforth we will assume that the reference point xo for the construction of a parallel-
transported basis lies on D. We will also assume that at xg the electronic Hamiltonian is completely

degenerate in the coupled subspace, so that H{?, = eody, where eg is the degenerate eigenvalue.
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In that case we note that Pgb can be expressed purely in terms of matrix products,

P2 = H2°R(eo); (90a)

P2 = [H2+H3PR(eo)H®  H22H2R(eo)]R(eo); (90b)

etc., with PP = (P3°)". These are simplified versions of (29) and (33).

Let us also write the expansion of the Hamiltonian at x = xp+ x as a power series in x, just
as we did for the projection operator in (84). We define, for example, H2® = (1 H2P)(xo), H3® =

(m 1 H3®)(x0), etc., so that

1
H3P = H3x™,  HIP - EHﬁ‘nbnxmx”; (91)

etc., and similarly for the other blocks. Then with the aid of (90) the derivatives of P can be

expressed in terms of the derivatives of H,

PR’ = HZ"R(eo); (92a)
P20 = [H2 + HAR(eg)H PP + H2PR(eg)H P

(H2@H23b + H3aH2b)R(eq)]R(eo); (92b)

etc.

These can then be used to express the curvature and connection in terms of the derivatives of

the Hamiltonian. For example, (67) gives us the curvature, which becomes
G2 = [H2PR(eg)*H2®  hic:]+::: (93)

Here we omit the first order correction as it is rather lengthy. As for the connection, in the parallel-
transported basis jpx; ki it is given in terms of the curvature by (78) or (79); thus, to first order we

have

Fa33(x) = %[Hrﬁ’bR(eo)zHrbra hic:]x" +:::: (94)

The result (93) agrees with Eq. (56) of Mead and Truhlar (1982), in spite of the fact that those
authors were not using the parallel-transported basis. The reason is that the curvature is a tensor,
and has the same form in all frames. The same cannot be said for the connection. We believe the

first order correction to the curvature seen in (67) is new.
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Xo = (yl 0)

FIG. 2. The degeneracy manifold D as a subset of the section S and a neighborhood thereof are described
by coordinates x™ = (y';z'), where y' are coordinates along D and z' are coordinates transverse to D. Coor-

dinates z' = 0 on D itself.

C. Diabatic Basis in a Neighborhood of the Degeneracy Manifold

We now construct a version of the parallel-transported basis in a neighborhood of the degener-
acy manifold. So far we have constructed such a basis in the neighborhood of an arbitrary point xg;
we are free to choose xg to lie on D, but we still have just a small neighborhood of a single point,
where Taylor series expansions are valid. We desire a construction that is valid over all of D, or at
least the parts of D that form a smooth manifold. (Places where D bifurcates require a separate
analysis, for which see Yarkony (2000)). For example, in triatomic molecules where D is a line
inside the 3-dimensional section S, we desire a parallel-transported basis that is valid in a tubular

neighborhood of D, where the two potential energy surfaces are strongly coupled.

fold, and z' coordinates transverse to it. We let z' = 0 on D, and we use the summation convention on
coordinate indices | and i. See Fig. 2. This is merely a coordinate description of a neighbor-hood
of D. The whole construction takes place in S, a subset of the nuclear configuration space which in

general is curved; and D as a subset of S is generally a curved manifold.

These coordinates draw attention to the manifolds y = yo = const: illustrated in the figure which
are transverse to D and upon which z' are coordinates. These manifolds correspond roughly to
what has been called the “branching space” by Yarkony (2004); there is one such manifold for
each point on D. We propose to establish a diabatic basis in a neighborhood of D by parallel

transporting along radial lines in the transverse spaces away from D. We will denote this basis by
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jDx; ki; it is like the basis jpx; ki except that the reference point for the parallel transport, instead of
being fixed, moves along D as x moves. That is, if x = (y;z), then for the basis jDx;ki the
reference point for the parallel transport is xg = (y;0).

This construction requires that a diabatic basis be established on D, before being propagated
along the transverse spaces. This can be done by any convenient means, for example, the singular-

value method or by parallel transport. Once this is done, not only do we have frames for points xo

= (y;0) 2 D, but the y'-components of the connection, that is,
F 2% (x0) = hDxo; kjfijDxo; li; (95)

where 9, = 9=9y', become known at points xg 2 D.

Once the basis jDxg; ki is established for xo = (y;0) 2 D, we use parallel transport along radial
lines in the transverse spaces to create jDx; ki in a neighborhood of D, that is, for x = (y;z). The
radial line is x(1) = (y; 1z), which interpolates between (y;0) and (y; z) as| goes from 0to 1. The

radial component of the connection in this basis vanishes, for example, for k;| 2 A we have

ZhDx; kj¥ijDx; li = 2'F33(y; z) = 0; (96)

I

which is like (71) and proved in the same way.

D. Connection and Curvature in a Neighborhood of D

To find the connection and curvature in the basis jDx; ki we begin with the curvature. Since the
curvature is a tensor, the numerical values of its components at a point x, say, ?.r";‘n;m(x), depend on
the the coordinates and the basis at x. We wish to find these components in the basis jDx; ki where
x = (y;z). But the basis jDx; ki is the same as the parallel-transported basis jpx; ki if the reference
point for the latter is taken to be xg = (y;0). So with that understanding about the reference point,
our expressions for the curvature in the basis jpx; ki are valid also in the basis jDx;ki. We will,
however, want to break the coordinate indices up into their y- and z-parts, by replacing indices m,
etc., by | ori, etc. For example, we can rewrite (88) as

G?ja(y;z)=(PiabP§’a h:c:)+(P?‘thJ?|§‘+Pai‘|'(°ij’a hic)zf+:::; (97)

and similarly for the (il), (1i) and (1J) components of G. Here we have replaced x™ by (0;z'),

since the parallel transport is taking place only in the transverse manifold (at constant y). Also,
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all derivatives of the projection operator in (97) are understood to be evaluated on the degeneracy

manifold at point (y; 0). As for (93), it can be expressed in the basis jDx; ki, whereupon it becomes
Gf‘ja(y;z) = [Hi‘a‘bR(eo)ZH?a hic:]+:::; (98)

and similarly for the other components (il), (Ii) and (1J), where now the derivatives of H are
evaluated at (y; 0).
To obtain the connection in a neighborhood of D we begin with the components F; These are
related to the components Gj;j of the curvature by an integral formula like (73), that is,
Z 4 .
F2(y;z) = . dl 1z) Gji(y;12): (99)
This is really a special case of (73), which applies to any parameter space that the Hamiltonian de-
pends on, upon which the coordinates are x™; by interpreting that parameter space as the transverse

space y = const: and by replacing x™ with z', we obtain (99). One can also repeat the derivation of

(73) with a changed notation. This then implies a version of (79),

F2%=0; (100a)
1
;R = EG??; (100b)
1
09 F22 = §[ﬂkG??+ﬂjGak? ; (100c)

etc., where both sides are understood to be evaluated at (y;0). Now expressing the curvature in

terms of the Hamiltonian, we obtain a Taylor series for F; in terms of the coordinates z,
1 .
Fa2(y;z) = E[H;’*bR(eo)ZHiba hicilzd+:::; (101)

a version of (94). Here we omit the second order term (which is available) as it is rather lengthy,
and the derivatives on the right hand side are understood to be evaluated at (y; 0).
As for the components F|, we use the integral fc%rmula,
Faly;2) = FP2(y; 0) + Oldl 2 G22(y; 12); (102)

which may be compared with (73). In this formula it is understood that components of the con-
nection and curvature are taken with respect to the basis jDx; ki (while the basis jpx; ki was used

in (73)). To prove (102) we express G in terms of F so that the integral becomes
Z,
, dT2HR) 1) (MFF) ;1)

+[F32(y; 1z); F{e(y; 12)]e; (103)
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and we use (96), which causes the commutator and the second term to vanish. As for the first term,

itis
dl ﬂFﬁa(y;IZ) = FP(y;z)  FP%(y;0); (104)
0

which proves (102).

Now we expand the integrand in (102) in powers of | and do the integral to obtain

FPR(y;2) = F2(y;0)+2) G3P(y; 0) + 212 (G )y, 00+ (105)

This implies
0F = G (106a)
99557 = S 1GR +16%; (106b)

where everything is evaluated at (y; 0). Finally, we may express the connection in terms of the

Hamiltonian and its derivatives,
F23(y;z) = FR2(y;0)+[H3PR(e0)?HP?  hiclz'+:::; (107)

where again we omit the available second order term due to its length. Taken with (101) this
provides an expansion of the connection in a neighborhood of D. We see that the components along D
and those transverse to D can both be expressed in terms of the curvature, but the expansions are
different. Again, the bb-block is obtained by swappinga $ b.

We make one final comment. In the case of triatomic molecules in the electrostatic model the
degeneracy manifold D is a one-dimensional curve inside the section S, as noted. Thus if we use
parallel transport along D to create frame on D, the component of F along D will vanish. That s,
Fa3(y;0) = O, where there is only one index | since D is one-dimensional. But then (101) shows
that the transverse components F22 alsg vanish on D. Thus we have shown that in the 3-body
problem with the electrostatic model for the electronic Hamiltonian, there exists a diabatic basis
such that the derivative couplings vanish on the degeneracy manifold. This construction only works

when the degeneracy manifold is one-dimensional.

VI. CONCLUSIONS

In this article we have given two versions of a parallel-transported diabatic basis, one valid

in a neighborhood of a point (which is allowed to lie on a degeneracy manifold or seam), and
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another which is valid in a neighborhood of a degeneracy manifold of possibly global extent. In
both cases we have given Taylor series expansions of the basis vectors, the derivative couplings
and the curvature. We have demonstrated the close relationship between the parallel-transported
basis and the singular-value basis, showing that they agree to second order in a Taylor series
expansion about a point. Our expansion of the singular-value basis seems to be new. We have
promoted a method of carrying out these expansions that relies on the projection operator and that
avoids small or vanishing energy denominators or other singularities. This approach seems to be
new in the literature on diabatic bases. We have also exploited integral relationships that hold
between the connection and curvature in the parallel-transported basis, which are generalizations of
Poincaré gauge to a non-Abelian context and which provide a convenient means for computing the
derivative couplings. Our goal is to give analytic treatments of connection and curvature in the
neighborhood of degeneracy manifolds that will be useful for future work, including multi-

dimensional Landau-Zener normal forms.
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Appendix A: Mathematical Arguments and Proofs

1. P(x) Is Smooth

To show that the projection operator P(x), defined by (3), is a smooth function of x we may
show that it is a smooth function of the electronic Hamiltonian H(x), which we assume is smooth. In
this discussion we assume that x is restricted to a region of the nuclear configuration space in which
no degeneracies cross the boundaries of the set A, as in the main body of the paper. This region

need not be simply connected or contractible or otherwise topologically simple.
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We follow Kato (1949); Bloch (1958) in writing P(x) in terms of H(x),

z
P(x) = 1 dz

2pi cz H(x) (A1)

where C is a contour that surrounds the discrete energy eigenvalues e, (x) for k 2 A and no others
(that is, none for k 2 A). Since the energy eigenvalues move about as x changes, the contour C
must be a function of x and we must specify it. We let e; and e, be low and high energy values,
respectively. If ko (see (1)) is the ground state we let e be any fixed energy less than the lower
bound of eg(x) in the region in question, otherwise we let e; = (1=2)(ey, 1+ek,). Likewise we let ey
= (1=2)(eky+n; 1t €ko+n,). Then we let C(x) be a rectangular contour in the complex energy plane
bounded on the left and right by e; and e}, that encircles the eigenvalues for k 2 A. Now small changes
in x produce small changes in both C(x) and H(x), of which the former do not change

P(x) and the latter induce small changes in P(x). Therefore P(x) is a smooth function of x.

2. ldentities and Differential Equations Involving y (x), P(x) and Q(x)

Identities involving the projection operators P(x) and Q(x) include P+Q = 1,P2= P, Q%= Q,
QP = PQ= 0, P°= POP+PPY% and PP°P = 0, where prime means differentiation with respect to a
parameter | .

To prove (42) we assume (41) is true so that the left hand side of (42) can be written

%+PO (1 P)yl= P%+(1 P)°+P°%(1 P)y
=[ PP+(1 PP°+P°%(1 P)]y
= (P, PP PPOy=o0: (A2)

A similar proof is to show that if y satisfies (44) then Qy satisfies (42). We have

d 0

grtP Pyl

=[ PP+(1 P)(P°P PP%+P°(1 P)]y=0: (A3)

Next we show that if y satisfies (44) and Qy = 0theny? = POy. First, Qy = O impliesy = Py.
Next, we are given y? = POPy PPOy, of which the first term is P9y and the secondis PP°Py = 0.
Thus, y° = POy.
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3. Proof of Eq. (62)

We work in any basis for which the derivatives are defined, which we denote simply by jx; ki.

We are carrying out parallel transport along a curve x (| ) according to (44), where the prime means

d=dl.

First we define
m

Fi . = hx; kj_g_l_jX;li = Fm:k %>_<|_ = dtj'_hx;kj ix; li:

(A4)

Next we note that Pjx; ki = jx; ki if k2 A and 0 otherwise. This implies hx; kjPjx; li= dy if k;1 2 A,

and 0 otherwise. Then by differentiating this we obtain

8
ifk2 Aand| 2 A,
Fi;kl
hx; kjPo%jx;li= ~ +F ifk2 Aandl2 A,
Ikl
S .
%0 otherwise.

This then implies

Fi.y ifk2Aandl2 Aork2 Aandl 2 A,
hx; kj[P%; Pljx;li=
-0 otherwise.

Now we differentiate (61) and substitute into (44), obtaining

djyi . d d 0 .
. 3 7 jx;kiyg +ix; ki Vi 3[PY; Pljx; kiyy;
a1 @k g FIEEEELL
or,
d 0
Yo g kPPl F, v
dl L
Taking now the cases k 2 Aand k 2 A, we find
8
<> . :
dy arfa 1kl if k2 A,
dr . >, .
Yi : aifa 1.k ifk2 A

Yi

Comparing this with (60) we obtain (62).

4. Proof of (67)

(A5)

(A6)

(A7)

(A8)

(A9)

In this section we write simply jx; ki for the basis that was denoted jbx; ki in Sec. IVE. It

is a basis that is smooth and block-diagonalizes the Hamiltonian but is otherwise arbitrary. All
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matrices in this section are taken with respect to this basis. To begin we have

TP = Tmhxkj njx; li+hx; Kjfim Tnjx; 1i; (A10)
n
so that
MmFS TnFmk = Imhxkj fajx;li (mS n): (A11)
We also have
(F22F2) = @ hx;kjimjx; mihx; mjfinjx;li= 3 mhx;kjjx; mihx; mjfiajx;li
m2A m2A
= nhxki P Tajx;li : (A12)

Combining (A11) and (A12) we find

Ga’m;k| = ﬂmFm;kl n Fna;kl +[F3;F2% = Imhx;kjQ fnjx; ki (m$S n); (A13)

m n
where we use P + Q = 1. Similarly we find, for k;|1 2 A,

Gmﬁ;k| = ﬂth,' kJP Tlnjs,' ki (m S n): (A14)

The calculation so far has a history going back at least to Baer (1975).

Now by expanding fm hx; kjPjx;li = 0 we find that the matrix of P, in the basis jx; ki is given

by 0 1
ab
p-@ (b’ Ly (A15)
a
Fo 0
so that the product matrix is
0 1
ab ba
PP=@ '™™ ° A (A16)
0 F?F 20

This shows immediately that the off-diagonal blocks of the matrix of [P,; P,] vanish, confirming

these blocks of (67). As for the diagonal blocks, first let k;1 2 A, so that

hx; kjP_P_jx; li a hx; kjmix; mihx; mjq,jx; li
m2A

+ Q8  Inhxkj jx;mihx;mj 9,jx;li
m2A

Imhx ki Q Tnjx;li : (A17)

Antisymmetrizing this in (m;n) and combining with (A13) we obtain the aa-block of (67). We
derive the bb-block similarly.
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