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This paper concerns the representation of angular momentum operators in the Born-
Oppenheimer theory of polyatomic molecules and the various forms of the associated
conservation laws. Topics addressed include the question of whether these conservation
laws are exactly equivalent or only to some order of the Born-Oppenheimer parameter k
= (m/M)1/4, and what the correlation is between angular momentum quantum numbers in
the various representations. These questions are addressed both in problems involving a
single potential energy surface, and those with multiple, strongly coupled surfaces; and
both in the electrostatic model and those for which fine structure and electron spin are im-
portant. The analysis leads to an examination of the transformation laws under rotations of
the electronic Hamiltonian; of the basis states, both adiabatic and diabatic, along with their
phase conventions; of the potential energy matrix; and of the derivative couplings. These
transformation laws are placed in the geometrical context of the structures in the nuclear
configuration space that are induced by rotations, which include the rotational orbits or
fibers, the surfaces upon which the orientation of the molecule changes but not its shape;
and the section, an initial value surface that cuts transversally through the fibers. Finally, it is
suggested that the usual Born-Oppenheimer approximation can be replaced by a dress-ing
transformation, that is, a sequence of unitary transformations that block-diagonalize the
Hamiltonian. When the dressing transformation is carried out, we find that the angular mo-
mentum operator does not change. This is a part of a system of exact equivalences among
various representations of angular momentum operators in Born-Oppenheimer theory. Our
analysis accommodates large-amplitude motions, and is not dependent on small-amplitude
expansions about an equilibrium position. Our analysis applies to the noncollinear configu-
rations of a polyatomic molecule; this covers all but a subset of measure zero (the collinear

configurations) in the nuclear configuration space.



I. INTRODUCTION

This article concerns angular momentum and rotations in the Born-Oppenheimer theory of
polyatomic molecules. Topics addressed include the relationship among the various representa-
tions of angular momentum operators and the corresponding conservation laws, as well as the
equivalence among them, and whether that is approximate or exact. We also address the correla-
tion between angular momentum quantum numbers in the various representations. We treat both
single-surface and multi-surface problems, and we treat both the simple electrostatic model for
the electronic Hamiltonian as well as models that incorporate fine structure and electron spin. We
assume the molecule is isolated, so that the Hamiltonian commutes with both rotations and time

reversal.

This article relies on basic Born-Oppenheimer theory (Born and Oppenheimer (1927); Born
and Huang (1954); Ballhausen and Hansen (1972); Mead (1988); Cederbaum (2004)) and its
application to multisurface problems with conical intersections (Herzberg and Longuet-Higgins
(1963); Longuet-Higgins (1975); Mead (1979, 1983); Thompson and Mead (1985); and Yarkony
(1996, 1997b,a); Gordon, Glezaku, and Yarkony (1998); Yarkony (2001); Adhikari and Billing
(2002); Kuppermann and Abrol (2002); Domcke (2004); Yarkony (2004b,a); Jasper et al.
(2006); Schuurman and Yarkony (2006); Faraji, Gomez-Carrasco, and Képpel (2012); Mat-
sika (2012); Yarkony (2012); Zhu and Yarkony (2016); Gonon et al. (2017); Kendrick (2018);
Fedorov and Levine (2019); Choi and Vani¢ek (2020); Bian et al. (2021); Wu and Subotnik
(2021)). An important role is played by diabatic bases (Smith (1969); Baer (1975); Thomp-son,
Truhlar, and Mead (1985); Pacher, Cederbaum, and Képpel (1988); Cederbaum, Schirmer, and
Meyer (1989); and Pacher et al. (1989); Pacher, Cederbaum, and Képpel (1993); Atchity and
Ruedenberg (1997); Matsunaga and Yarkony (1998); Thiel and Koppel (1999); Yarkony (1999,
2000); Abrol and Kuppermann (2002); Koppel (2004); Subotnik et al. (2008, 2009); Richings
and Worth (2015); Zhu and Yarkony (2015); Venghaus and Eisfeld (2016); Wang, Guan, and
Yarkony (2019); Richings and Habershon (2020); Littlejohn, Rawlinson, and Subot-nik (2022)).
Extensive attention is devoted to the derivative couplings, which are the components of a Mead-
Truhlar-Berry vector potential or connection, part of one of the two gauge theories that appear in
molecular Born-Oppenheimer theory (Mead and Truhlar (1979); Mead (1980b); Berry (1984);
Moody, Shapere, and Wilczek (1989); Bohm, Boya, and Kendrick (1991); and Bohm et al.
(1992); Bohm, Kendrick, and Loewe (1992); Mead (1992); Kendrick and Mead (1995);



Kendrick, Mead, and Truhlar (2002); Child (2002); Kendrick (2004); Juanes-Marcos, Althorpe,
and Wrede (2005); Althorpe (2006, 2012); Wittig (2012); Choi and Vanicek (2021)). Finally, we
treat electron dynamics both in the electrostatic model and also when fine structure and electron
spin are important (Mead (1980a, 1987); Yarkony (1992); Koizumi and Sugano (1995); Schon
and Koéppel (1998); and Matsika and Yarkony (2001, 2002b,a); Wu, Miao, and Subotnik (2020);
Sadovskii and Zhilinskii (2022)).

Our analysis requires a careful treatment of the phase and frame conventions of the electronic
basis states, both adiabatic and diabatic. We emphasize that the Born-Oppenheimer treatment is
not well defined without phase conventions. This analysis takes place within a context that
provides geometrical interpretations of our procedures and of the resulting formulas, and that
involves geometrical structures in the nuclear configuration space. These include the rotational
orbits or fibers, which are the surfaces upon which the orientation of the molecule changes but not
its shape, and the section, a kind of initial-value surface that cuts transversally through the fibers.
We use rotation operators for assigning phase and frame conventions when moving along the
rotational fibers, and other algorithms when moving transversally (along the section). This
distinction has appeared between the lines in existing literature but it has not been addressed
explicitly, as far as we know, nor has the geometrical context been brought to light.

In the case of fine-structure models with an odd number of electrons, the method of assigning
phase and frame conventions by means of rotation operators must be modified, in that an extra
spin rotation, applied to the two elements of a Kramers doublet (what we call “pseudo-spin”), is
necessary to create a single-valued set of basis states. This observation seems to be new, and it has
an important impact down the line on the form of the Born-Oppenheimer Hamiltonian and of
the angular momentum. The basic idea is this. If a molecule with an odd number of electrons is
subjected to a rigid rotation about some axis by 360°, then the spatial part of the electronic
eigenfunctions returns to itself but the spin part suffers a change in sign. Therefore assigning
phase conventions purely by rotation operators introduces a discontinuity in the basis states. The
situation bears some similarity to the —1 phase shift that real electronic eigenfunctions suffer in
the electrostatic model when being continuously carried around a conical intersection. In that
case, Mead and Truhlar (1979) suggested introducing a complex phase factor (a U(1) rotation) to
smooth out the discontinuity. Similarly, in our case, we suggest introducing an extra spin rotation to
remove the discontinuity encountered when rotating the molecule by 360°.

The establishment of phase and frame conventions leads to the derivation of a number of trans-
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formation laws of objects under rotations, including the electronic Hamiltonian, its matrix ele-
ments, the basis states and the derivative couplings. We have done this in several different models of
the electronic Hamiltonian. The resulting explicit formulas seem to be mostly new, although some
of them are quite clear intuitively and Yarkony (2001) has derived some closely related re-sults in
the case of nondegenerate, adiabatic basis states. Nevertheless, the careful derivation of these
results involves some subtleties, for example, some of the results are only valid under certain
circumstances which we specify. These transformation laws are necessary to establish the rela-
tionship among the various forms of angular momentum operators. We believe our transformation
laws for the derivative couplings are new; they are necessary for showing the invariance of the
Born-Oppenheimer Hamiltonians (in their various versions) under rotations.

In this article we wish to accommodate large amplitude motions, that is, ones in which the
nuclear displacements are of the order of an atomic unit or larger. Such motions occur in isomer-
ization, photoexcitation, scattering and other processes that are of current interest. Therefore we
require an understanding of angular momentum and its conservation that allows such motions and
that is not dependent on small-amplitude expansions about an equilibrium position.

Although the results presented below are most directly related to the determination of stationary
states, many of the lessons derived have implications for time-dependent quantum mechanical
simulations as well. There are also semiclassical implications with regards to surface hopping
calculations, as will be described in Sec. VIII.

In this article we do not consider the construction of kinetic energy operators in internal or shape
coordinates, but several of our results, such as the treatment of phase conventions of electronic ba-sis
states by means of rotation operators, the transformation laws of the derivative couplings under
rotations, and the derivation of the rotational components of the derivative couplings, are neces-
sary preliminaries for the construction of such operators when multiple surfaces, geometric phases,
and/or fine structure are important. The subject of kinetic energy operators is a large one; we just
mention Wang and Tucker Carrington (2000); Kendrick (2018), of which the latter reference is
notable for its treatment of multiple potential energy surfaces in scattering calculations.

In this article for simplicity we ignore nuclear spin, effectively treating the nuclei as spinless,
distinguishable particles.

We turn now to an outline of the paper. The purpose of Sec. Il is to place some of the questions
raised by this paper into a simple context, as a way of making a hopefully painless introduction to

the subject before treating it in all generality. In addition, Sec. Il establishes terminology and



notation.

Section |l treats a polyatomic molecule in the electrostatic model for which motion on a single
potential energy surface is a good approximation. There are two descriptions of the dynamics,
one, the “molecular,” which explicitly incorporates the interactions of all the charged particles,
electrons and nuclei; and the other, the “Born-Oppenheimer,” in which the electron dynamics is
incorporated into the potential energy function. The Hamiltonian in the molecular representation
commutes with the total orbital angular momentum of the molecule, nuclear plus electronic, what
we write as L, + L., while the Hamiltonian in the Born-Oppenheimer representation commutes
with the nuclear orbital angular momentum L,, alone. These two conservation laws are presumably
equivalent somehow, but we may ask whether this equivalence is exact or only valid to some order in
the Born-Oppenheimer ordering parameter k = (m/M)* (Born and Oppenheimer (1927)). In
addition there is the question of the correlation between angular momentum quantum numbers in
the two representations.

Section |l presents an overview of the answers to these questions, first in the electrostatic
model and then generalizing to models that include fine structure and electron spin. Finally,
Sec. Il presents an overview of the dressing transformation that block-diagonalizes the Born-
Oppenheimer Hamiltonian, and its effect on angular momentum operators.

After this overview the paper presents a more detailed and rigorous analysis of questions sur-
rounding angular momentum in Born-Oppenheimer theory. Although the problems addressed in
Sec. Il concern motion on a single surface, the rest of the paper, starting with Sec. Ill, treats multi-
ple, strongly interacting surfaces; naturally, single-surface problems are covered as a special case.
Multi-surface problems require that diabatic bases be incorporated into the discussion of basis
states.

Sections I11-V deal with the electrostatic model, presenting results that are later generalized
to various fine-structure models. Section Il treats phase and frame conventions for the electronic
basis states, a necessary topic since the form of operators in the Born-Oppenheimer representation
depends on these conventions. The subject of phase and frame conventions is not as well developed
in the literature as it might be, perhaps because in simple (single-surface, electrostatic) problems
the choice of a phase for the one electronic eigenstate of interest can be reduced to a + sign,
which seems trivial. It is not, actually, even in this case, but when degeneracies, multiple surfaces,
diabatic bases and spin are taken into account, phase and frame conventions become a more serious

matter.



In Sec. IV, continuing with the electrostatic model, we consider the transformation properties
of the basis states under rotations. The basis states can be either adiabatic or diabatic. This leads to
a collection of transformation laws under rotations, including (47) for the electronic Hamiltonian,
(56) for the basis states and (70) for the derivative couplings. An important consequence of these
is (62), which says that the electronic basis functions, with our phase conventions, are invariant
under simultaneous rotations of the electronic and nuclear coordinates. In the context of nonde-
generate, adiabatic basis states this formula is only a small step away from the results of Yarkony
(2001), but the formula is notable for its simplicity and in our treatment it incorporates degenera-
cies and diabatic bases (and later it is generalized to include spin). This formula is consequential,
being important in the establishment of the equivalence of various representations of the angular
momentum.

In Sec. V we provide careful definitions of what we call the “molecular representation” and the
“Born-Oppenheimer representation” of molecular dynamics, which have been mentioned previ-
ously. We discuss the invertible mapping between these two and the corresponding map between
linear operators in the two representations. Several operators are considered, including the Hamil-
tonian and the angular momentum. As far as the latter is concerned, we are able to show, using
(62), that L,, + L. in the molecular representation is exactly equivalent to L, alone in the Born-
Oppenheimer representation, that is, in the Born-Oppenheimer representation, the operator that
looks like the nuclear orbital angular momentum actually includes the electronic orbital angular
momentum.

In Sec. VI we cover the same territory as in Sections I11-V but with the fine-structure model for
the electronic Hamiltonian. The cases of even and odd numbers of electrons are treated sepa-rately.
The case of an even number of electrons is broadly similar to the electrostatic model, with some
notable differences such as the fact that the nominal, nuclear orbital angular momentum L, in the
Born-Oppenheimer representation now includes, from a physical standpoint, not only the
electronic orbital angular momentum but also the electron spin. The case of an odd number of elec-
trons presents many new features, such as the extra spin rotation required in the phase conventions
for the basis states (see (116)) in order to make the basis single-valued.

In Sec. VIl we provide a more detailed treatment of the dressing transformation that removes
off-block-diagonal terms in the Born-Oppenheimer Hamiltonian. A principal conclusion is that
the dressing transformation does not change the form of angular momentum operators. This holds to

all orders of the Born-Oppenheimer perturbation parameter k.
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FIG. 1. The nuclear configuration space in the center-of-mass frame is R3V=3, where N is the number of
nuclei. This space is indicated schematically by the axes labeled Xy, o = 1,...,N-1. The notation x

stands for a point of configuration space, or, equivalently, the coordinates (X1, ..., Xy-1) of that point.

Finally, in Sec. VIII, we present some conclusions.

II. OVERVIEW OF MAIN RESULTS IN A SIMPLE CONTEXT

In this section we discuss the equivalence of different angular momentum operators in a simple
context, in order to highlight the issues before getting into a detailed or general analysis. We also

establish some notation.

A. Nuclear Configuration Space

We assume our molecule has N 2 3 nuclei. To describe the configuration of the nuclei in the
center-of-mass frame we require N - 1 translationally invariant vectors, Xq, a = 1,...,N-1, the
components of which are coordinates on the nuclear configuration space. Each component ranges
from —oo to +o0, so the nuclear configuration space is R3V=3. This is the parameter space for the
electronic Hamiltonian; it is topologically trivial. For brevity we denote the nuclear coordinates

collectively by x, so that

x= (Xq,...,Xn-1). (1)

We also use the symbol x to stand geometrically for a point of the nuclear configuration space, as
illustrated in Fig. 1.

We choose the vectors Xy to be Jacobi vectors (Delves (1960); Aquilanti and Cavalli (1986);

8



Gatti et al. (1998)), which cause the nuclear kinetic energy K, to be diagonal,

N-1 PZ
Kn = a ’ (2)
21 M

where Po, a =1, ..., N-1 are the momenta conjugate to Jacobi vectors X, and where the My > 0

are reduced nuclear masses.

B. Molecular and Electronic Hamiltonians

We write the Hamiltonian for the molecule as

N-1 2
Hmol = @ +He(x;1,p,8), (3)
otz=1 Mot

where H, = H.(x) = He(x;r,p,S) is the electronic Hamiltonian and wherer = (ry,...,15,), p =
(p1,.--,pn,), and S = (S1,...,Sn,) are the electron positions, momenta and spins, respectively.
Here N, is the number of electrons, the electron positionsr;, i= 1,...,N,, are measured relative to
the nuclear center of mass, and the electron momenta p; are conjugate to the positions r;. The
parametric dependence of the electronic Hamiltonian on the nuclear configuration x is set off by a
semicolon from the electronic operators (r, p, S) upon which it depends.

The molecular Hamiltonian Hy,o depends on both nuclear and electronic operators,
Hmol = Hmol(X,P,1,p,8S), (4)

where X = (X1,...,Xy-1)and P= (P3,...,Py-1). The notation X is essentially the same as x, the
only difference being one of emphasis (X being used for the Jacobi vectors upon which Hnl or a
wave function depends, while x stands either for those vectors or a point of nuclear configuration

space).

C. Models of the Electronic Hamiltonian

We consider the electronic Hamiltonian in various models. The most basic is the electrostatic,

for which the electronic Hamiltonian is

2 Ne
Pi 5§ PPy (Xt 5
Zme i’]zz:l 2Mn COU|( ’ )r ( )

N
H.(x;t,p) = Z
=1

9



where m, is the electron mass, M, is the total nuclear mass and where the potential Vo, contains all
the Coulomb interactions among all the particles (electrons and nuclei). The second major term is
the mass-polarization term, which is due to the fact that the nuclear center of mass, to which the
electron coordinates r; are referred, is not fixed in an inertial frame. In the electrostatic model the
electronic Hamiltonian H.= H,(x; 1, p) is independent of the electron spin, and so can be regarded as
an operator acting on the space of purely spatial electronic wave functions ¢ (r), that is, with no
dependence on spin quantum numbers m.

Other models are obtained by adding fine structure terms to (5) (Bethe and Salpeter (1957);
Howard and Moss (1970); Yarkony (1992); Hess and Marian (2000)). In the resulting fine
structure models the electronic Hamiltonian H, = H,(x;r,p,S) does depend on the spin and the

electronic wave function ¢ (r, m) depends on the electron spin quantum numbers,
m= (mi,...,mn,), (6)

where m; = +1/2, i= 1,...,N.. There is some latitude in how relativistic corrections are treated,
but in fact the only assumptions we shall make about the fine structure model are the symmetries of
the electronic Hamiltonian, which apply in all cases.

In the following we use the symbol ¢ for a purely electronic wave function (that is, ¢ (r) in the
electrostatic model or ¢ (r, m) if electron spin is included); § for a purely nuclear wave function
(thatis, U (X)); and W for a molecular wave function (that is, W(X, r) in the electrostatic model or

W(X, r, m) if electron spin is included).

D. Two Conservation Laws

We now pose a set of questions regarding angular momentum conservation in Born-Oppenheimer
theory. For simplicity we do this initially in the electrostatic model, generalizing later (in Sec. 11 G)
to the fine structure model. Also, for simplicity, we present our questions in the context of mo-
tion on a single potential energy surface, generalizing later (starting in Sec. Ill) to multisurface
problems.

Suppose we wish to find energy eigenfunctions for the whole molecule, that is, wave functions
W(X, r) such that

Hpot(X, P, 1, p)W(X, 1) = EW(X,1), (7)

either bound or unbound (see, for example, Cafiero and Adamowicz (2004)). The molecular
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Hamiltonian in the electrostatic model (5) commutes with the total orbital angular momentum

of the molecule,

N-1 Ne
L=L,+L, = X Pq + 1, Xpi, (8)
ig:l lZl

which we have broken into the nuclear and electronic contributions. It does not commute with L,, or
L. separately. Therefore it is possible to organize the energy eigenfunctions (by forming linear
combinations of degenerate energy eigenfunctions, if necessary) to be also eigenfunctions of the
operators L2 and L.

Instead of (7) one often solves the Born-Oppenheimer version of the Schrédinger equation,
Hpo(X, P)Y(X) = Ed(X), (9)

where Y = (X)) is a function of the nuclear coordinates alone. The Born-Oppenheimer version

of the Hamiltonian is

N-1 2
Hgo(X,P) = —+e(X), (10)
(IZ=1 zMa

where €;(X) = €(x) is the k-th eigenvalue of H.(x). This Hamiltonian describes motion on a
single potential energy surface k; in practice this is often the ground state. The Born-Oppenheimer
Hamiltonian (10) is like the molecular one (3) except that the electronic Hamiltonian H.(x) has
been replaced by one of its eigenvalues €;(x).

The Born-Oppenheimer Hamiltonian (10) commutes with the nuclear orbital angular momen-

tum,
N-1
L,= Z XaXPq, (11)

a=1

because the electronic eigenvalues are invariant under rotations,
€r(x) = g1(Rx), SO(3), (12)
where Rx indicates a rigid rotation of the nuclei about the center of mass,
Rx= R(X41,...,Xn-1) = (RX41,...,RXN-1). (13)

This is because the electronic eigenvalues do not change if the nuclei are subjected to a rigid
rotation, that is, one that changes the orientation of the nuclei but not their shape.

Therefore the energy eigenfunctions  (X) of (9) can be organized (by forming linear combi-
nations of degenerate eigenfunctions, if necessary) to be simultaneous eigenfunctions of energy, L,

afd L, the latter of which refer to the nuclear orbital angular momentum L,,.
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E. Questions About the Two Conservation Laws

Thus it would appear that the Born-Oppenheimer approximation has replaced one exact conser-
vation law (that of L = L, + L) with another (that of just L,). This leads us to ask, are these con-
servation laws just approximate versions of one another, or are they somehow exactly equivalent?
And how does this come about in detail? There is also the question of the physical interpretation of
the solutions of the Born-Oppenheimer equation (9). If we find such a solution {(X) that is an

eigenfunction of energy, L, dnd L,. with quantum numbers (E,[,m;), then presumably (as is

standard in Born-Oppenheimer theory) the corresponding solution of (7) will be approximately
W(X,r) = U(X)dr(X;1), (14)

where ¢4 (X; 1) is the k-th energy eigenfunction of the electronic Hamiltonian H,(x). Is this W then an
eigenfunction of L2 and L. (which refer to the total orbital angular momentum, L= L, +L,)? If so,
is it exactly so or only to some order of the Born-Oppenheimer expansion? And are the
angular momentum quantum numbers of the solution W(X, r) the same as those of Y (X), what we
have called (/, m;), even though the operators appear to be different?

Finally, how do the answers to these questions change when fine structure effects are included

or when multiple potential energy surfaces are strongly coupled?

F. Overview of Some Answers in the Electrostatic Model

It is convenient to introduce ket language for the eigenfunctions ¢;(X;r) of the electronic

Hamiltonian H,(x) in the electrostatic model. We denote these eigenkets by |x;ki, so that
He(x) |x; ki = gx(x) |x; ki, (15)
and so that the relation between the kets and wave functions is given by
&i(X;1) = hr|x;ki. (16)
We must also address the derivative couplings, which are defined by
Fori(x) = hx kB |x; i, (17)

where By = 0/0 Xq. If we write simply Fq (x), we refer to the infinite-dimensional matrix (really

a 3-vector of matrices for each value of a) whose k/-th component is Fy.4;(x). It follows from the
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orthonormality of the basis, hx; k|x;li = &;, that the matrix F is anti-Hermitian,
Four = ~Fo.ii. (18)

The questions posed can only be answered relative to the phase conventions for the electronic
eigenstates |x;ki. In the electrostatic model we will require that the energy eigenfunctions ¢(X;r)
be real, that is, invariant under time reversal. This reduces the phase convention to a choice of a £
sign, a subject that we address more carefully in Sec. Ill. The reality of the basis functions means
that the derivative couplings F.4; are real, which, combined with (18), implies that the matrix Fq is
real and antisymmetric. This in turn implies that the derivative couplings vanish on the diagonal,
Fa.x = 0, which is why those couplings do not appear in our single-surface, Born-Oppenheimer

version (10) of the Hamiltonian.

To answer one of our questions in the electrostatic model, it turns out that the two conservation
laws are exactly equivalent to one another. We can state the matter by recalling that in quantum
mechanics, physical observables are represented by linear operators, but the linear operator rep-
resenting a given physical observable depends on the representation of the quantum states. If the
physical observable is the total orbital angular momentum of the molecule, nuclear plus electronic,
then, when acting on molecular wave functions W(X, r), the linear operatoris L = L, + L, asin
(8). But when acting on wave functions { (X) in the Born-Oppenheimer representation, the same
physical observable is represented by L,, alone. Thus, what appears to be the nuclear orbital angu-lar
momentum, when acting on (X), actually includes physically the electronic orbital angular

momentum. We emphasize that this is exact.

To answer another of our questions, suppose that { (X) is a solution of (9), a simultaneous
eigenfunction of (Hgo, L%, L,;) with quantum numbers (E, 1, m;). Also, let W(X, ) be defined by
(14). Then it turns out that W is automatically an eigenfunction of (L2, L.) with the same quantum
numbers (/,m;); and this is exact. (It is, however, only approximately an eigenfunction of the

molecular Hamiltonian Hmol.)

One may wonder how we can claim something is exact when the Born-Oppenheimer approxi-
mation is only an approximation. The brief answer is that the Born-Oppenheimer approximation
approximates the Hamiltonian but not the angular momentum. A more sophisticated point of view, in
which the Born-Oppenheimer approximation is replaced by a sequence of unitary transforma-

tions, will be discussed in Sec. || H and in greater detail in Sec. VII.
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G. Answers in the Fine Structure Model

When fine structure effects are included these results generalize in interesting ways. Time
reversal plays an important role in this case (see, for example, Mead (1979)). Time reversal T is
an antiunitary operator that acts on electronic wave functions ¢ (r, m) according to (A2) or (A4). It

commutes with the electronic Hamiltonian,
TTHo(x)T = He(x), (19)

since our molecule is isolated and not interacting with external fields. The properties of time
reversal that we will need are summarized in Appendix A.
In the fine structure model the electronic and molecular Hamiltonians depend on electron spin

S, and the molecular Schrodinger equation (7) of the electrostatic model must be replaced by
HmoI(X;P,r;p; S)LIJ(XIrlm) = ELIJ(XIrlm)I (20)

where now the molecular wave function W(X, r, m) depends on the electron spin quantum numbers
m. The molecular Hamiltonian no longer commutes with L but it does commute with the total
angular momentum of the molecule,

N-1 Ne Ne
J=L+S=L1L,+L.+S = XaxPo+ S rixpi+ § S; (21)
azzl ZZ]. zzl

that is, including the electron spin. This is one exact conservation law in the case of the fine
structure model. Now energy eigenfunctions of the molecule, W(X, r, m), solutions of (20), can be

organized to be also eigenfunctions of J2 and J,.

1. Even Number of Electrons

We treat first the case of an even number of electrons. We denote the electronic energy eigen-
states in ket language as |x;ki, as in the electrostatic model, so that (15) is still valid, but the

electronic eigenfunctions (16) must be replaced by
&x(X;1,m) = hr,m|x;ki, (22)
that is, with an m-dependence. We choose the eigenstates |x; ki to be invariant under time reversal,
T|x;ki= |x;ki (23)

14



(see Sec. A 2 for a proof that this can be done). In the case of a nondegenerate energy level thisis a
matter of a phase convention, which is determined to within a £ sign, as in the electrostatic model.
For a single-surface problem, as here, the relevant level is nondegenerate.

The condition (23) is enough to make the derivative couplings vanish on the diagonal, as in the
electrostatic model, so the Born-Oppenheimer Hamiltonian is still given by (10), that is, with no
derivative couplings. The only difference is that the electronic eigenvalue €;(x) now includes fine
structure contributions. This Hamiltonian still commutes with L,, the nominal, nuclear orbital
angular momentum (see (11)). Also, the Born-Oppenheimer wave function is still { (X).

Now the operator representing the total angular momentum of the molecule, nuclear orbital,
electronic orbital, and electronic spin, when acting on molecular wave functions W(X, r, m), isJ,
given by (21); while the operator representing the same physical observable, when acting on Born-
Oppenheimer wave functions Y (X), is L, alone, given by (11); and this is exact. In other words,
L,, when acting on Born-Oppenheimer wave functions  (X) in the fine structure model with N,
= even, includes physically the electronic angular momentum, both orbital and spin.

In addition, suppose we solve the Born-Oppenheimer version of the Schrédinger equation (9)

for a wave function { (X) that is a simultaneous eigenfunction of energy, qu and L,; with quantum

numbers (£, 1, m;), and then we define a molecular wave function by
W(X,r,m) = Q(X)Pp(X;r,m), (24)

a generalization of (14), where k is the surface in question. Then W(X,r,m) is exactly an eigen-
function of J2 and J, with the same quantum numbers (, m;), and approximately an eigenfunction of
energy. Notice that with an even number of electrons the quantum number of J? must be an

integer, as is the quantum number / of the nuclear orbital angular momentum L2 (otherwise our

statements would not make sense).

2. Odd Number of Electrons

In the fine structure model with an odd number of electrons the electronic energy eigenstates
are Kramers doublets (Messiah (1966)), that is, they come in pairs |x;kui, u = 1,2, such that

He(x) | x; kpi = gx(x) | x; kui, (25)

in which the energy €;(x) does not depend on . We shall think of a Kramers doublet as cor-

responding to a single potential energy surface, so that £ labels the surfaces and each surface
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corresponds to two degenerate levels. For now for simplicity we treat the problem of a single
surface. This is realistic, for example, when fine structure effects are added to a system in a spin
doublet state.

Since H.(x) commutes with time reversal it is possible to choose the eigenstates |x; kpi so that

T|x;k1i = |x;k2i, T |x;k2i = —|x; k1i, or, equivalently,

T |x;kpi= z |x; kvityy, (26)
\"

where T is given by (A3), as we shall do. Such a basis is said to be guaternionic (see Sec. A3 a). To
say that the basis is quaternionic only determines that basis to within an SU(2) transformation
(Mead (1987)). We choose the basis so that it transforms under rotations according to (116).

The electronic energy eigenfunction corresponding to |x; ki now has a double index,
Sip(X;1,m) = hr,m|x; ki, (27)

which replaces (22). The Born-Oppenheimer wave function {4, (X) carries the same double index,

and the molecular wave function is given by

LU(XI rlm) = zl'bku(x) d)kl.l(Xl rlm)l (28)
M

that is, with a sum over u. There is no sum on k because we are working on a single surface.
In the fine structure model with N, = odd the Born-Oppenheimer Hamiltonian contains deriva-
tive couplings, even for a single surface, because there is always more than one level (two, for a

single surface). Now the derivative couplings also carry doubled indices,
Fokp, v (x) = hx; kp|By | x; 2V, (29)

which we can break up into minor, 2 x 2 matrices as in Sec. A3 a. That is, in the context of an odd
number of electrons, when we write Fy.;; we mean the minor (2 x 2) matrix whose (uv) com-
ponent is Fq .1, ,v. Because of the orthonormality relations, hx; ku |x;/vi= &4 6yv, the derivative
couplings satisfy

Fa;ku,lv = _Fa;lv;ku' (30)

a generalization of (18), which in the language of minor matrices becomes
For = —(Fa;n)" (31)

16



As for the Born-Oppenheimer Hamiltonian, a standard way of deriving it is to project the
molecular Hamiltonian onto a subspace of chosen energy levels (Yarkony (1996); Cederbaum
(2004)), which in this case is the subspace spanned by |x;kui for fixed k£ and p = 1,2. Doing this

we obtain the Born-Oppenheimer version of the Schrodinger equation,

2 hv-1 1
v_l a_1 2Mq i
+€,(X) by Uiy (X) = Epyu(X), (32)

which replaces (9) and (10) in the electrostatic model. Here we define
Gakp,iv = hxku |§ | x; Ivi, (33)

which gives us minor matrices Gq.1; (and note that only the diagonal elements k= / of F and G
appear in the Hamiltonian in (32)). This notation is close to that used by Cederbaum (2004) in the
electrostatic model.

Since the operators By and az commute with T, the minor matrices Fq.x; and Gq.4; are quater-
nions (see (A18); Bl and B, 4re not linear operators in the usual sense but the proof goes through just

the same). In the language of quaternions (31) becomes
Fo;u0 = =Fo;ik- (34)

For our single-surface problem we need only the diagonal elements (k = [) of the derivative cou-
plings, which satisfy Fq .11 = —m, that is, they are quaternions whose real part (the a-part of
(B1)) vanishes. We see that the derivative couplings for a single surface in the case of an odd
number of electrons can be written as a purely imaginary, linear combination of the Pauli matrices
(see also Mead (1987)).

We write the i-th component of Fq, fori= 1,2, 3, as Fiu, and then define coefficients 4 o1 by

Fiokk = —

N | o~

3
> 0 Ajiokis (35)
j=1

where o are the Pauli matrices. In this formula we have split off a factor of —i as in the b-part of

(B1), which makes the coefficients 4 ;o real, and introduced a factor of 1/2 for convenience.
The Born-Oppenheimer wave function Y, for fixed k and p = 1, 2 looks like the wave function

of a pseudo-particle with spin 1/2, moving on a multidimensional potential energy surface given

by €;(x). We define the pseudo-spin operator,
h

K= —o, 36
50 (36)
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so that the Born-Oppenheimer Hamiltonian can be written as
N-1
Hyo = (§o 3K RasiscPa- h Gagr) ¥er(X), (37)
a=1 ZMOL

where Aqii is a real, 3 x 3 tensor whose ji-component is Aok This is written in the style
common with the Pauli equation, in which all operators are understood to be 2 x 2 matrices, and
scalars are understood to be multiplied by the unit matrix.

Now we can state the main result. The total, physical angular momentum of the molecule,
nuclear orbital, electronic orbital plus electronic spin, is represented by the operator J (see (21))

when acting on molecular wave functions W(X, r, m); and it is represented by I, defined by
I= L,+K, (38)

when acting on Born-Oppenheimer wave functions {4, (X). The latter is the nominal, nuclear
orbital angular momentum plus the pseudo-spin; and this result is exact.

The angular momentum I commutes with the Born-Oppenheimer Hamiltonian (37). We defer
the proof of this since it involves the transformation properties of the derivative couplings under
rotations, a topic that we take up in Sec. VIB5. But it means that when we solve the Born-
Oppenheimer version of the Schrédinger equation in the case of an odd number of electrons, we
can organize the energy eigenfunctions to be also eigenfunctions of the operators /2 and L, with
(say) quantum numbers (i, m;). If we then define a molecular wave function by (28), it turns out be
an exact eigenfunction of J2 and J, with the same quantum numbers (i, m;). Notice that both I and J

are half-integral (otherwise our statements would not make sense).

H. Dressed Variables

In this article we are drawing a distinction between what we are calling the molecular repre-
sentation of wave functions and the Born-Oppenheimer representation (for example, in the case of
the electrostatic model, this means wave functions W(X, r) and { (X), respectively). Cederbaum
(2004) has referred what we call the Born-Oppenheimer representation as a “dressed” represen-
tation. The notion of dressing has been used in a different sense by Martinazzo and Burghardt
(2022), in connection with electronic friction. We prefer to reserve the term “dressed” for rep-
resentations that are obtained from the Born-Oppenheimer representation by a sequence of uni-

tary transformations, the purpose of which is to remove the off-diagonal terms in the molecular
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Hamiltonian. These unitary transformations take the place of what is usually called the “Born-
Oppenheimer approximation,” which means simply neglecting those terms on the grounds that
they are small.

If we take the point of view that the Born-Oppenheimer version of the Schrédinger equation
(for example, (9) and (10) or (32)) is obtained, not by throwing away terms that couple the various
levels, but by transforming them away, then the operators that appear in the Born-Oppenheimer
Hamiltonian must be interpreted as dressed variables. In particular, the operator X, no longer
represents a Jacobi vector of the nuclei, but rather it has higher order corrections in the Born-
Oppenheimer parameter k. Another consequence is that | (X)|? no longer represents the proba-
bility distribution of the nuclei in nuclear configuration space, not exactly, anyway, since there are
higher order corrections in k. Similar statements can be made about the electric current. Such dis-
tinctions can be important in the analysis of matrix elements involved in radiative transitions (see,
for example, Mead and Moscowitz (1967); Scherrer et al. (2015); Schaupp and Engel (2020)).

These unitary transformations, which diagonalize the molecular Hamiltonian leaving Born-
Oppenheimer Hamiltonians for the various surfaces on the diagonal, then create an infinite se-
guence of dressed representations, as the off-diagonal coupling terms are removed order by order.
The question then arises as to what happens to our exact representations of angular momentum
operators as the variables are dressed.

The answer is that nothing happens to them, for example, in the electrostatic model the total
orbital angular momentum of the molecule, nuclear plus electronic, is represented in each of these
dressed representations by the same linear operator L,, given by (11), and this is exact. This is
because the generators of the unitary transformations that carry out the diagonalization are scalars,
and commute with L, and therefore so do the unitary transformations themselves. The dressing of
L, just reproduces L,. Similar statements hold in the fine structure models.

This concludes the overview of our main results. We turn now to a more detailed development.

III. PHASE AND FRAME CONVENTIONS OF ELECTRONIC BASIS STATES

Energy eigenstates are only determined to within a phase (when nondegenerate) or to within
an orthonormal frame in the eigenspace (when degenerate), and these must be carefully specified
as our main results depend on them. Notice that a frame in a one-dimensional space is the same

as a phase, so phase and frame conventions are the same thing. Similar issues apply to other basis
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states (diabatic, etc.) that are not energy eigenstates. In this section we explain how phase and
frame conventions are related to the geometry of orientation and shape in configuration space. We
work in the electrostatic model, deferring fine structure effects until Sec. VI. For generality we

treat multisurface problems, which include single surface problems as a special case.

A. Electronic Rotation Operators and the Electronic Hamiltonian

See Appendix C for basic facts about the rotation groups SO(3) and SU(2). Electronic orbital
rotation operators, denoted U,,(R), are parameterized by rotations R B SO(3) and are defined by

their action on electronic wave functions,
Ueo(R)D (r) = & R7'r, (39)
where R™1r means (R™1r1, ..., R71ry,). We also write Ueo(n, 0) = Uep R(n, 0) for these opera-

tors in axis-angle form. They are given in terms of their generators by

Ueo(1h,0) = exp - %eﬁ-Le . (40)
It follows from (39) that the operators Ue,(R) form a representation of SO(3),

Ueo(R1)Ueo(R2) = Ueo(R1R?). (41)

The electrostatic, electronic Hamiltonian H.(x) = H.(x;r,p), given by (5), is a function of the
dot products of the vectors Xq, r; and p;, and is therefore invariant if each of these is rotated by the

same rotation,

H.(x;r,p) = H.(Rx;Rr,Rp), SO(3), (42)

where Rx is given by (13) and where
Rr = R(r1,...,tn,) = (Rr1,...,Rry,), (43)
Rp= R(p1,...,pn,) = (Rp1,...,RpN,), (44)

Equation (42) is a statement about the functional form of the electronic Hamiltonian in the elec-
trostatic model.
On the other hand, the electronic position and momentum operators transform under conjuga-

tion by rotations according to
Ueo(R)1; ljeo(R).r = R_lri; er(R)piUveo(R).r = R_lpi; (45)
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X1

FIG. 2. A proper rotation R acts on a point x of nuclear configuration space and maps it tox = Rx. The set
F of all such points x* swept out as R runs over SO(3) is the orbit of x under the action of SO(3). If x is

noncollinear, F' is a fiber in the rotational fiber bundle.

which is a statement that r; and p; are vector operators (Messiah (1966); Varshalovich, Moskalev,

and Khersonskii (1988)). Therefore
Ueo(R) He(x;1,p) Ueo(R)" = He x;R™'r,R"'p = H,(Rx;T,p), (46)

where in the first step the conjugation does nothing to the parameters x which are just c-numbers as
far as the rotation operators U, (R) are concerned, and where in the second step we have multiplied
all arguments by R, which according to (42) does not change the answer. Now simplifying the

notation by making the replacement H,(x;r, p) = H.(x), we can summarize the result by writing
Ueo(R) He(x) Ueo(R)" = He(Rx). (47)

This is the transformation law for the electrostatic, electronic Hamiltonian under proper rotations.

B. Rotational Orbits and Fibers

The formula (47) has a geometrical interpretation in the nuclear configuration space, which
is illustrated in Fig. 2. Given a configuration x as illustrated, the rotated configuration x' = Rx
is one with the same shape as x but a different orientation. Equation (47) relates the electronic
Hamiltonians at the original point x and the rotated point x .

Figure 2 calls attention to the surface F, which is the set swept out by x = Rx for fixed x as R
runs over SO(3). This is otherwise the orbit of x under the action of SO(3) on the nuclear config-

uration space. It is the set of all configurations of the same shape as x but different orientations.
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FIG. 3. The action of rotations R B SO(3) on nuclear configuration space decomposes that space into a

disjoint set of orbits.

Other configurations of different shapes have their own orbits, as illustrated in Fig. 3. Two
configurations x, x' belong to the same orbit if and only if there exists R @ SO(3) such thatx = Rx.
Configurations such as x1, x2 and x3 in Fig. 3, which do not belong to the same orbit, have different
shapes. The action of SO(3) decomposes nuclear configuration space R3¥~3 into a disjoint set of

orbits, each with its own shape.

The orbits F or F; illustrated in Figs. 2 and 3 are drawn as if they were one-dimensional, but
actually their dimensionality is either 0, 2 or 3. If the configuration is the N-body collision, in
which all nuclei are on top of one another, then rotations do nothing to the configuration and the
orbit consists of a single point, a zero-dimensional set. If the configuration is collinear but not the NV-
body collision, then the orientation is specified by a unit vector along the line of collinearity and
the orbit is diffeomorphic (see Appendix C) to the 2-sphere S2, the space of such unit vectors.
Finally, if the configuration is noncollinear, then the orbit is diffeomorphic to SO(3) which in turn is
diffeomorphic to RP3 (see Appendix C). This is because two noncollinear configurations of the

same shape are related by a unique R B SO(3).

In polyatomic molecules most configurations are noncollinear (they form a subset of full di-
mensionality, that is, 3N - 3), while the collinear configurations (and the N-body collision, which
we count as collinear) form a subset of measure zero. In this article we ignore the collinear con-
figurations, and work only in regions where all configurations are noncollinear. We do this for
simplicity; the collinear configurations are the setting for the Renner-Teller effect (with an exten-
sive literature, including Peri¢ and Peyerimhoff (2002); Jungen (2019); Gamallo, Gonzélez, and

Petrongolo (2021)), which is outside the scope of this article. For the same reason we restrict
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consideration to polyatomic molecules; all diatomics are collinear, and in some ways are more
complicated than polyatomics.

Thus, in the noncollinear subset of nuclear configuration space all orbits are 3-dimensional.
This subset is decomposed by rotations into a (3N - 6)-parameter family of 3-dimensional orbits,
each of which is diffeomorphic to SO(3). This gives this subset the structure of a principal fiber
bundle (Nakahara (2003); Frankel (1997)), in which the fibers are the rotational orbits. For the
noncollinear shapes, the fibers and the rotational orbits are the same thing; in this article we shall

usually refer to them as the “rotational fibers.”

C. The Strongly Coupled Subspace

A pair of adjacent electronic energy levels is considered strongly coupled if the corresponding
energy eigenvalues are degenerate or nearly degenerate. This statement is made more quantitative in
Sec. VII. We consider a region of nuclear configuration space in which a chosen subset I of N
adjacent energy levels,

I={ko,...,ko+N; -1}, (48)

is not strongly coupled to levels outside of the set /, that is, level kg is not strongly coupled to
level ko— 1 and level ko+ N;- 1 is not strongly coupled to level ko + N;. (Note that if kg is the
ground state, then there is no level ko — 1.) Since the energy levels are a function of the nuclear
configuration x, these conditions can normally hold only over some region of the nuclear
configuration space.

Levels within the set I, however, are allowed to be strongly coupled among themselves, at least
somewhere in the region in question. These are the conditions that allow a theoretical treatment of
the levels k@7 in isolation from the levels kI 1. In other words, degeneracies or near degeneracies
that cross the boundaries of I are not allowed, while internal degeneracies or near degeneracies,
those that take place among the levels k2 7, are allowed.

As a special case, in a single-surface problem, N; = 1 and 7 contains the single level ko. Then
internal degeneracies do not occur, and the condition on the region is that kg is not degenerate or
nearly degenerate with levels ko £ 1.

These restrictions on the region may cause it to be topologically nontrivial, either not simply

connected or noncontractible, which has implications for the existence of smooth fields of frames.

We define the strongly coupled subspace S (x) as the subspace of the electronic Hilbert space
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spanned by energy eigenstates for £ @/, and we denote the complementary, orthogonal subspace

by S Z(x).

D. The Adiabatic Basis

It is customary to call the energy eigenbasis the “adiabatic basis” but for reasons discussed
in Littlejohn, Rawlinson, and Subotnik (2022) we prefer not to work with energy eigenstates for
kP 1. Therefore we define a set of basis states |ax; ki that are energy eigenstates when k[ 7, while
for k[ 1 we simply require the states |ax; ki to form a discrete, orthonormal set that spans S 2(x).
We will call the set {|ax; ki} for all k the “adiabatic basis” (hence the a), but we must remember

that these are energy eigenstates only for k& 1.

In addition, we require the basis states to be invariant under time-reversal, T |ax; ki = |ax;ki.
In the electrostatic model, this just means that the wave functions corresponding to |ax; ki are real
(see (A1)). The energy eigenspaces for kB[ are T-invariant, as is S (x), the sum of such spaces,
asis S Z(x), the orthogonal space (see Appendix A). According to Sec. A 2, this guarantees the
existence of a T-invariant basis |ax;ki. A simpler argument that works in the electrostatic model
is that a real Hamiltonian has real eigenfunctions, but the argument as given generalizes to cases
involving spin.

The freedom in phase and frame conventions that remains after time-reversal invariance is
imposed is the following. For k B /, nondegenerate energy eigenstates |ax;ki are determined to
within a + sign; for n-fold degeneracies inside the strongly coupled subspace the choices are
labeled by elements of the orthogonal group O(n); and for k I I the choices are labeled by the
infinite-dimensional orthogonal group. (Note that in the case n = 1, that is, the nondegenerate

case, the group O(1) consists of two matrices, (1) and (-1), containing the relevant + sign.)

Some such choice can be made at each point x of nuclear configuration space, and is implied
in the use of the notation |ax;ki. We must ask whether these choices can be made in a smooth
manner as x is varied, because discontinuities in the basis produce divergences in the derivative
couplings, which appear in the Hamiltonian. In addition, perturbation theory generates derivatives
of the basis states that must be defined and that must have magnitudes that are under control. This
question can be decomposed into what happens when we vary the just the orientation, holding the

shape fixed, and what happens when we vary the shape as well.
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E. How Phase Conventions Depend on Orientation

Let xo be a noncollinear configuration and let us choose definite phase and frame conventions
for the basis vectors |axp; ki, which we assume are T'-invariant. Thus we have the adiabatic basis
| axo; ki at the one point xp.

Now let x = Rxo for some R & .SO(3), so that x has the same shape but a different orientation
from xo, and define |bi = Ugy(R)|axo; ki. We note first that since time reversal commutes with

rotations, T'| bi = |bi. Next, if k1, then

H,(x) | bi = Ueo(R) He(x0) Ueo(R) " Ueo(R) | axo; ki
= Ueo(R) g (x0) | axo; ki = €x(xo) | bi, (49)

where in the first step we use (47). Thus, U.o(R) maps energy eigenstates at xp into those atx =

Rxp, without changing the eigenvalues. More generally, since Ug,(R) is unitary, it maps or-
thonormal eigenbases inside eigenspaces (degenerate or not) at xp into other such bases at x. The
fact that the eigenvalues do not change means that they are invariant under rotations, as already
noted (see (12)). As for the vectors ki I, U,,(R) maps the orthonormal, T'-invariant frame in S

®(xo) into another such frame in S ¥(x).

We can think of xg as an initial condition on the fiber passing through xg. Since xp is non-
collinear, if x lies on this fiber then there is a unique R 2 .SO(3) such that x = Rxg, and point x can
be parameterized by R. This allows us to define basis vectors at x, including their phase
conventions, by

|ax; ki = Ueo(R) | axo; ki, (50)

where x = Rxg. The arbitrarily chosen phase conventions at xg are propagated along the rotational
fiber by means of rotation operators.

This approach does not work for collinear shapes, for which there is more than one R that maps
a configuration xp into another one x of the same shape. Phase conventions for collinear shapes
are a more complicated matter, which we do not cover in this article.

There are other ways of extending phase conventions from a given point. In the nondegenerate
case a T-invariant energy eigenstate |ax;ki for k@ [ is determined to within a £ sign, a discrete
choice, and the obvious way to extend the phase convention away from a given point xg is to
demand continuity of the wave function as x is continuously varied along a path. We will call this

method, “extension by continuity.” It leads to the question of whether the result depends
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FIG. 4. Initial points xo over a family of rotational fibers sweep out a surface S, a section of the rotational

fiber bundle.

on the path. The answer can be developed in terms of the fundamental group of the region in
guestion (also called the first homotopy group), as explained by Juanes-Marcos, Althorpe, and
Wrede (2005); Althorpe (2006, 2012). If the region is simply connected then the fundamental
group is trivial and extension by continuity gives a unique answer that is a smooth function of the
final position x. If it is not simply connected then the result may be path-dependent. (A region is
simply connected if all loops can be smoothly contracted to a point.)

In fact, SO(3) is not simply connected (its fundamental group is Z,), so there is a question as to
whether extension of phase conventions by continuity gives an answer over a rotational fiber that is
path-dependent. This question is answered, however, by our formula (50). Along a noncollinear
rotational fiber, for fixed xg and variable x = Rxp, R is a smooth function of x, so (50) gives phase
conventions over the fiber that are single-valued, smooth functions of x. Since they are smooth,
they are the same as the conventions obtained by extension by continuity; and since they are
single-valued, the latter method is path-independent.

The method of extension by continuity only works when the choices are discrete, but for de-
generate eigenvalues k@ / the choices are continuous, as are the choices for the orthogonal space S
(which is infinite-dimensional). Equation (50) works in all cases and gives phase and frame

conventions that are smooth and single-valued over a rotational fiber.

F. How Phase Conventions Depend on Shape

Now we extend the phase conventions for the basis states to a region in which both shape and

orientation are variable. We choose some region of nuclear configuration space consisting of a
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family of rotational fibers, as illustrated in Fig. 4, and we choose initial points xg on each fiber. If
the assignment of the initial points xp is made in a smooth manner, these points sweep out a
smooth surface called a section of the fiber bundle, which is denoted S'in Fig. 4. If we can make a
smooth assignment of phase and frame conventions for our basis along S, then we can use (50) to
smoothly extend those conventions along the rotational fibers.

The section should have dimensionality 3N - 6 so that, taken with the 3-dimensional fibers, it
covers a region of nuclear configuration space of full dimensionality 3N -3. As we move along S
the shape of the molecule changes, so coordinates on S can be taken to be shape coordinates. These
are collections of 3N - 6 rotationally invariant functions of the Jacobi vectors Xy. In practice,
bond lengths and angles are common choices for shape coordinates. We require that the section be
transverse (not tangent) to the rotational fibers, so that first order displacements along S produce
first order changes in shape (this condition makes certain Jacobian matrices well behaved).

Let us now arbitrarily choose phase and frame conventions for the basis states |axp; ki at one
point xo on the section, as in Fig. 4, and ask if those conventions can be extended in a smooth
manner to neighboring points on the section such as x jand x'; in the figure.

For simplicity let us begin with a single surface problem, for which I contains the single,
nondegenerate level kp. Then the choice of phase convention for |ax;koi is that of a + sign, a
discrete choice, and the method of extension by continuity can be applied. This shows that it is
possible to make a smooth assignment of phase conventions for the adiabatic basis vector k= kgin
simply connected regions of S.

In some cases, however, the region of interest is not simply connected, as when it encircles
a conical intersection. Then it turns out that the nondegenerate energy eigenstate |ax;koi, when
carried continuously as x encircles the conical intersection, undergoes a sign change on returning
to its initial point. In this case one can break the region into subregions that are simply connected,
with transition rules in the overlaps to connect them together. In practice an equivalent method is
preferred, one that employs a single region with an enforced discontinuity (a change in sign) along
a boundary surface. This situation is well known and well understood (Herzberg and Longuet-
Higgins (1963); Longuet-Higgins (1975); Mead and Truhlar (1979); Mead (1992); Yarkony
(1996); and Kuppermann and Abrol (2002); Althorpe (2006)), but the usual discussions pay no
attention to the geometry of the rotational orbits and the section, or to the fact that SO(3) is not
simply connected.

Given an initial point xg on a rotational fiber, other points x on the same fiber can be parame-
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terized by the rotation R @ SO(3) such that x = Rxg, or, equivalently, by the Euler angles of that
rotation. Thus Euler angles become coordinates along a rotational fiber. We denote the Euler
angles by 8/, i = 1,2,3, or just 8 for short. Shape or internal coordinates, on the other hand, are
rotationally invariant functions of x or X. We denote these by g*, u= 1,...,3N -6, or just g for
short. These can be taken to be coordinates along the section §, but, since they are rotationally in-
variant, they are defined elsewhere in nuclear configuration space by the fact that they are constant

along rotational fibers.

G. Diabatic Bases

In multisurface problems the region of interest may include internal degeneracies, usually con-
ical intersections, and we may choose xp to lie on one of these in order to study frames in a
corresponding neighborhood. Then small changes in shape as we move along S away from the
conical intersection will break the degeneracy and produce an eigenframe (an adiabatic basis) that is
well defined but discontinuous. (The frame is smooth as x = xg and the limit exists, but the limit
depends on the direction of approach.) In such cases the adiabatic basis has singularities regard-
less of phase or frame conventions, and a smooth assignment of those conventions over a section is
impossible. Therefore we must accept that an adiabatic basis can be defined over a section S and
extended along rotational fibers by (50), but that it will have discontinuities as we vary the shape. It

will, however, be smooth as we vary the orientation, holding the shape fixed.

The discontinuities in the adiabatic basis at degeneracies cause the derivative couplings to di-
verge, and are the major drawback of this basis. To avoid these we may switch to a diabatic basis, an
orthonormal basis denoted |dx;ki with d for “diabatic.” The diabatic basis vectors for k & [ are
required to span the subspace S (x), and to span' S @(x) for kI 1. In addition, a diabatic basis is
required to be smooth over its domain of definition, something that can be achieved if we do not
require the basis vectors | dx; ki to be energy eigenstates for k@ /. Finally, we shall require diabatic

bases to be invariant under time reversal.

To construct a diabatic basis we begin with points xg on a section. (In the following we use xq for
a variable point in §.) We assume that a T'-invariant, adiabatic basis |axo; ki, including phase and
frame conventions, has been established for all xg in some region in S. As explained, this basis will

have discontinuities, in general. Since sets of basis vectors, |axp; ki and |dxo; ki for k@1, are
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required to span the same subspace S (x), they must be related by

|dxo;ki= 5 |axo; [iVy, (51)
e

where Vj; is an N;x Nj, unitary matrix that depends on xo. Also, since |dxo;ki is required to
be smooth, the matrix V;; must compensate for the singularities of the basis |axo; ki and cannot be
smooth itself. Similar statements can be made for the subset £ fl / and the complementary

subspace S 2(x).

There are many ways to find the matrix ' so that the diabatic basis is smooth. Two of these, the
singular-value basis and the parallel-transported basis, have been discussed by us recently
(Littlejohn, Rawlinson, and Subotnik (2022)). The construction of both bases takes place in a
neighborhood of a fixed reference point xgp on S. The construction is most interesting when xgglies
on a degeneracy (a seam or conical intersection) but this is not required. The adiabatic and
diabatic bases are required to agree at xopo, |a,x00;ki = |d,xp0;ki. The singular value diabatic
basis is due to Pacher, Cederbaum, and Koppel (1988, 1993); it chooses an orthonormal frame
inside S (xo) for each xg in the region of S that is as close as possible to the adiabatic frame in S
(x00), in the space of such frames. The resulting field of frames on S is unique and smooth in a
neighborhood of xgp and defines the singular-value diabatic basis. The parallel-transported
diabatic basis involves radial lines extending out from xgg to points xg @S, along which the basis is
carried by parallel transport. This minimizes the distance in the space of frames between the bases

at xo and xg + dxg for each infinitesimal step along the curve.

Both the singular-value basis and the parallel-transported basis have the property that if the
adiabatic frame at xgg is T-invariant, as we assume, then so is the diabatic frame at all points xg in its
domain. We omit the proofs but they involve the fact the projection operator onto the strongly
coupled subspace commutes with 7', which follows since that subspace is invariant under 7. Thus,

for these diabatic bases, the matrix V}; in (51) is real and orthogonal.

Once the diabatic basis has been defined for xo @ S, we extend the definition along rotational
fibers by means of rotation operators, as in (50). Since we are assuming that the adiabatic basis
transforms by those same rotation operators, (51) shows that the matrix V}; is independent of
position along a rotational fiber, that is, Vy;(x) = V;(x0), where x = Rxp. Equivalently, the matrix

Vi is a function of shape coordinates only and is independent of orientation.
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IV. TRANSFORMATION OF BASIS AND DERIVATIVE COUPLINGS UNDER
ROTATIONS

In this section we introduce the “working basis,” which is either the adiabatic basis or a dia-
batic basis, whichever meets the smoothness criteria. It is the basis we will use for subsequent
calculations. We continue with the electrostatic model. We accumulate a set of transformation
laws for various quantities under rotations, which supplement the transformation law (47) for the
electronic Hamiltonian and (12) for its eigenvalues, which we have already worked out. The new
transformation laws include that for the basis vectors, (56), that for the matrix elements of the
Hamiltonian, (54), and that for the derivative couplings, (70). These are required for subsequent

work.

A. The Working Basis and its Properties

In the following we write simply |x;ki for a basis that is either the adiabatic basis, in cases
where that is smooth (for example, in single-surface problems over a simply connected region),
otherwise a diabatic basis. We will call this the “working basis.” We assume that it spans S (x) for
kB 1and S ®(x) for k P ; that it is smooth over a section S or a chosen region thereof; that it is

propagated along rotational fibers by
| Rxo; ki = Ueo(R) | x0; ki; (52)

and that it is T-invariant, T'|x; ki = |x;ki.

Some authors, for example, Kendrick (2018), have used a notation in which the basis states are
given as functions of the shape coordinates alone, and not the Euler angles. We believe it is worth
clarifying this, since it is obvious that the electronic eigenstates do depend on orientation, and,
with our phase conventions, (52) shows explicitly how they do. On the other hand, points xp on
the section are determined by the shape coordinates, that is, xo = xo(g), so the basis states on the
section can be regarded as functions of shape coordinates alone. We believe this is the correct
interpretation of something that in our notation would look like |g; i, that is, it means |xo(g); &i.
There are objects that really are constant along rotational fibers, for example, the energy eigenvalues,
which satisfy €;(x) = €x(Rxo) = €r(x0) = € xo(q) = €r(q). These are functions of the shape

coordinates alone everywhere in nuclear configuration space, not just on the section.
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We write the matrix elements of the electronic Hamiltonian in the working basis for &k, /B [ as
hx; k| He(x) | x; li = Wi (x). (53)

If the working basis is the adiabatic basis then Wj;(x) = €i(x) 6;;, while in the diabatic basis W};is a
full matrix. In view of the T-invariance of the basis states |x; ki the matrix W, is real (hence, real
and symmetric). In view of the dependence (52) of the basis states along rotational fibers and the

transformation law (47) of the Hamiltonian, the matrix W}, is independent of orientation,
Wii(Rxo) = Wii(xo), (54)

that is, W}; depends only on the shape coordinates.
We turn now to the transformation properties of the working basis under rotations. Let xo &S

be an initial point on a rotational fiber, let R1, R, B SO(3), and let x;1 = R1ixp and x, = Ryx1. Then

|x2;ki= |Ryx1;ki= |RaR1xo; ki = Ueo(R2R1) | x0; ki
= er(RZ) er(Rl) |xO;ki = er(RZ) |)C1,'ki, (55)

where we use (52) and the representation property (41). Making the notational changes, x1 = x,
R> = R, we can write this as

| Rx; ki = Ueo(R) | x; ki (56)

This is the transformation law of the working basis |x; i under rotations. It is the same as (52)
with xo replaced by x, but the meaning is quite different. That is, (52) defines the working basis
along the rotational fibers, including the phase and frame conventions, given such a definition at an
initial point xo @.S; whereas (56) is a property of those basis vectors, once defined, at any point x on a
rotational fiber. (Of course, (52) is a special case of (56).)

Let us now specialize R in (56) to an infinitesimal rotation, that is, one for which the angle 0 is
infinitesimal, so that

R= R(n,0)=I+01x. (57)
If we let such an R act on a configuration x, then we can write Rx = x+ 6 x, where
dx=0(nxXq,...,hixXy-1). (58)
On the other hand, when 6 is small, (40) implies

Uso(R) = 1 - %eﬁ-Le. (59)
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For such rotations (56) becomes

N-1 .
|Rx;ki= |x+6x;ki= |x;ki+ z O(NxXqy) B |x;ki= |x;ki- %Gﬁ-Le | x; &i. (60)
a=1

In this we write (1 x Xy ) :Bq = 0+ (Xq xBy ), we cancel leading terms, the factor 6 and the factor

n (which is an arbitrary unit vector). The result can be written as

N-1 #
-ih Z (XaxBlg)+Le |x;ki= 0, (61)
a=1
or,
(Lp+Le)|x;ki= 0, (62)

where L, is the usual differential operator for the nuclear orbital angular momentum, here acting
on the parametric dependence x of the working basis states.

In the case of nondegenerate adiabatic basis states, Yarkony (2001) has shown that the off-
diagonal matrix elements of L, + L. vanish (see Eq. (19abc) of that article). Because of the time-
reversal invariance of the basis states, the diagonal elements vanish, too, and Yarkony’s results are
equivalent to (62). With our phase and frame conventions, however, (62) applies also in the case of

degeneracies or diabatic bases.

B. Transformation Properties of Derivative Couplings

We wish to find how the derivative couplings, defined by (17), transform along rotational fibers,
that is, how F.1/(Rx) depends on Fq.i/(x). The obvious strategy is to work with Fo.1/(Rx) =
hRx; k|Bly | Rx; i, but this is notationally awkward (do we rotate first and then differentiate, or the
other way around?)

Therefore we propose a different approach. Let € be an infinitesimal displacement in nuclear

configuration space,

€= (§1,...,8v-1). (63)
Then we have
N-1
|x+&;li= |x;li+ Z Ea ‘Bo |x; 10, (64)
a=1
which implies
N-1
hx;klx+&;01= 6+ 5 §a - Fasp(x). (65)
a=1
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The x in this equation is a dummy variable, and one that is independent of €, so we can replace it

by Rx, obtaining
N-1
hRx; k|Rx+€;li= &6+ Z €a ' Foki(Rx). (66)

a=1

On the other hand, we have

|Rx+€;1i= |R(x+1,e‘1£);zi=er(R)|x+R'16;g

N-1
=Ueo(R) |x;0i+ § (R"'6a) Balx;li (67)
a=1
and
hRx;k| = hx;k| Uso(R), (68)

where we use (56). Upon taking the product of (68) and (67) the rotation operators cancel and we

obtain

N-1
hRx; k| Rx+§;li= &p+ EE “(RF o;11(x)), (69)
a=1

where we have used the fact that for any two vectors A and B and any rotation R, we have (R™1A) -

B = A (RB). Comparing this with (66), we obtain finally
Fo;r(Rx) = RFo;1(x), (70)

since the displacements £y are arbitrary.

Equation (70) is the transformation law of the derivative couplings under rotations; it says, in a
sense, that Fy .4 transforms as a vector field on nuclear configuration space under rotations. This
result is important for establishing the rotational invariance of the Born-Oppenheimer Hamiltonian
for multisurface, electrostatic problems.

Some authors, for example, Yarkony (2001), have used a notation in which the derivative cou-
plings are given as functions of the shape coordinates alone, with no dependence on the Euler
angles. It would be as if we wrote Fq.4;(g) in our notation. We believe this means Fq .17 xo(q) ,
that is, it is the derivative couplings evaluated on the section, where g are coordinates. The
derivative couplings elsewhere do depend on the orientation, as shown explicitly by (70).

A subtlety in this matter is that the derivative couplings are really the components of a differen-
tial form with respect to the Jacobi vectors, and if the components are taken instead with respect to
rotationally invariant vector fields, then those components will be rotationally invariant. This is an
issue in the construction of kinetic energy operators in the internal space that incorporate

geometric phase effects.
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C. Rotational Components of Derivative Couplings

Let R be an infinitesimal rotation with 6 @1, and let Rx = x+6x, as in (57) and (58). Then
the component of the derivative couplings in the direction 6x is

N-1 N-1
z 6 Xa - Fo;rilx) = 6 Z hx; k| (nx Xo) - Bl | x; 1i =
a=1

a=1

N-1
on- z h; k| Xog x Pq | x; /i
a=1

SH| o~

= - %eﬂ-hx;leePC;li, (71)

where in the last step we use (62). Thus, the angular components of the derivative couplings (with
our phase and frame conventions) are proportional to the matrix elements of the electronic angular
momentum. This result is due to Yarkony (2001); it is important for the construction of kinetic

energy operators on the internal space.

V. MOLECULAR AND BORN-OPPENHEIMER REPRESENTATIONS

We now introduce the molecular and Born-Oppenheimer representations for the state space of
the molecule, which give us the setting within which our main results concerning angular momen-
tum can be stated. We continue with the electrostatic model, with possibly more than one strongly

coupled potential energy surface.

A. Two Representations

In what we call the “molecular representation,” the quantum state of the molecule is specified
by the wave function W(X, r), which is just standard quantum mechanics on the standard Hilbert
space for the molecule. If W is any such wave function, we expand the r dependence in terms of
the x-dependent working basis vectors |x; ki, whose wave functions are denoted ¢4(X; 1), as shown

in (16). That is, we write
W(X,1) = > Ui(X) di(X1), (72)
k

as is standard in Born-Oppenheimer theory. Here {;(X) are the expansion coefficients; we imag-
ine them forming an infinite-dimensional vector of wave functions of X. Equation (72) gives the

wave function W(X, r) in terms of the purely nuclear wave functions {4 (X); the inverse relation is
YA
e(X) = drdp(X;n)"W(X,r). (73)
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We will refer to the infinite dimensional vector of nuclear wave functions {;(X) as the “Born-
Oppenheimer representation” of the quantum state of the molecule, and abbreviate the relation-

ships (72) and (73) between them by writing
W(X,r) €<= bi(X). (74)

The association is one-to-one, and no information is lost by using the Born-Oppenheimer repre-
sentation.

Similarly, let 4 be a linear operator that maps molecular wave functions W(X,r) into new
such wave functions W'(X, 1), something we can write as W' (X, 1) = (4W)(X,r). This is in the
molecular representation. In the Born-Oppenheimer representation, A4 is replaced by an infinite-
dimensional matrix Ay; of linear operators, each of which acts on wave functions { (X), depending

on the nuclear coordinates alone. That is, if W' = AW as shown, and if ¥ <> ; and W' <> llJ}f,

then
i(X) = > (4 ¥ )(X). (75)
!

This is equivalent to

(AW)X, 1) = 5 &p(X51) S (Agy ¥ )(X), (76)

k I
which gives 4 in terms of the matrix of operators A;;. The inverse is
VA
(Ad)(X) = drdp(X;1)? (40;)(X, 1), (77)

where @;(X, 1) = P (X) d;(X;r). We write P without a subscript in (77) because it is just a dummy
function of X that is used to define the operator 4;; it may be the component of a wave function in
the Born-Oppenheimer representation, but it need not be. We will summarize the relations (76) and

(77) between the operators in the two representations by writing
A > Ay. (78)

Then it is easy to prove some theorems. If B= A" (in the molecular representation), then in the

Born-Oppenheimer representation we have
B = (Au)', (79)

where the parentheses make it clear that we form the transpose of the matrix A4;; first, and then

take the Hermitian conjugate of the elements.
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Likewise, if A, B and C are operators in the molecular representation and C = AB, then

Ckl= ZAkpol, (80)
p

that is, operator products are mapped into matrix products (but the matrix elements are themselves

operators, and their order of multiplication must be respected).

B. Examples of Operators in the Born-Oppenheimer Representation

We present some examples of the transformation of operators from the molecular represen-
tation to the Born-Oppenheimer representation. If 4 = f(x) is a function of x in the molecular

representation, that is, a multiplicative operator on wave functions W(x, r), then we find
f(x) €= f(x) 8y (81)

In particular, this applies when £ is one of the components of the Jacobi vectors Xg.
In the following we let Py stand for the differential operator —iZlBly. In the molecular rep-
resentation, this represents physically the kinetic momentum conjugate to the Jacobi vector Xg.

Transforming to the Born-Oppenheimer representation, we find
Py €— Pq Sk]—i]/l_Fa;k](x). (82)

The Born-Oppenheimer version of this operator has a well known interpretation as a covariant
derivative (Bohm, Boya, and Kendrick (1991)).

For another example, consider a purely electronic operator, for example, L.. Then we find
L. €= hx;k|Le|x; 1, (83)

that is, the matrix of nuclear operators representing L. in the Born-Oppenheimer representation
are purely multiplicative functions of x, which are otherwise the matrix elements of L. in the
working basis. Another purely electronic operator is the electronic Hamiltonian, which, however,
depends on x. We have

He(x) & Wi(x), (84)

see (53) and (54).

Yet another such operator is the projector onto the strongly coupled subspace S (x),

P(x) = Z |x; kihx; k| (85)
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This maps into its Born-Oppenheimer vers;on, P(x) €= Py, where

Bs,, ifkimrl

Py (86)

B 0, otherwise.

C. The Molecular Hamiltonian

The molecular Hamiltonian in the electrostatic model and in the molecular representation is

N-1 p2
Hr = 1eL3 (87) a-1
Transforming this to the Born-Oppenheimer represgntation, Hpmol € Hpmol k7, We find
N-1

Humol k1 =
otz=1 ZMOI

Z [Pq 6kp_ih-Fot;kp(x)] " [Pa 6pl_ ikFa;pl(x)] + Wi (x), (88)
p

where we use the product rule (80), (82) and (84). This style of transforming to the Born-
Oppenheimer representation follows Kendrick (2018). The sum on p is the matrix multiplication
indicated by (80); notice that this sum runs over the entire Hilbert space, that is, both p @/ and p
Il

In most physical circumstances of interest the nuclear momentum P, is large when measured
in atomic units, because of the large nuclear mass, while Fq.1; (with our phase conventions and
smoothness assumptions) is of order unity in the same units. Therefore the terms of the kinetic
energy in (88) decrease in magnitude as the power of Py decreases. Therefore the diagonal terms
k= [ are dominated by Pi while the off-diagonal terms k = [ are dominated by the terms linear in
Py, which are therefore smaller than the diagonal terms.

We can decouple the strongly coupled levels k£ & I from the rest by simply throwing away the
off-diagonal terms (k/) of (88) for k@ /and /Il or kBI] and [ @ I. This replaces the Hamiltonian
Hpol 11 by @ new, block-diagonal, one that we will call Kno 4. The formula for the latter is the
same as (88) when &,/ @1 or k,]l B I, and O otherwise. Alternatively, since we do not care about
dynamics outside the strongly coupled subspace, we can define Ko 1 as the same as Hpol 1 When

k,l @1, and 0 otherwise. This is equivalent to
Kol = P(x)HmolP(x), (89)

that is, it is just the original molecular Hamiltonian, projected onto the strongly coupled subspace.
Most derivations of the Born-Oppenheimer Hamiltonian in the literature amount to carrying out

this projection.
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In the special case of a single surface problem, where I contains the single level kg, this pro-
cedure gives us the Born-Oppenheimer Hamiltonian (10) with k£ = ko. The latter would be writ-ten
in the present notation as Kmol kok,- AS noted, the derivative couplings Fq..; vanish on the
diagonal (k) = (koko). In this context the replacement of Hp,o by Ko is usually called “the
Born-Oppenheimer approximation.” Its obvious generalization to multisurface problems is given
by (89).

Actually, the “Born-Oppenheimer approximation” is often described (in the context of a single-
surface problem) as one in which the wave function is assumed to have the product form seen in
(14). But if the Hamiltonian is approximated by throwing away off-diagonal terms, then the new
Hamiltonian possesses solutions of the product form. Therefore we regard the usual Born-
Oppenheimer approximation as one of approximating the Hamiltonian.

The off-diagonal terms that we throw away to obtain Ky, x; are indeed small compared to the
diagonal terms, but beyond this their neglect is ad hoc and it is hard to find a deeper justification for
the procedure in the literature, at least in the case of large-amplitude motions. This leaves open the
question of whether the Born-Oppenheimer Hamiltonians obtained by projection as in (89) are even
correct. They certainly are so to first order in small quantities, but it is not obvious that they are
correct to second order. In Sec. VII we will discuss Moyal perturbation theory, which is useful for
answering these questions. The issue is more important than the small, second order terms in the

Hamiltonian, as it involves the dressing of the nuclear variables, which has effects at first order.

D. The Angular Momentum

In the molecular representation the total orbital angular momentum of the molecule is rep-
resented by the operator L = L, + L., which is given by (8). To find the Born-Oppenheimer

representation we allow L to act on a molecular wave function,

LLIJ(X, r) = (Ln+Le)z¢k(X) d)k(X;r)
k
= STLy+ L) (X)] p(X51) + 5 i (X) [(Ly + Le) by (X 1), (90)
k k
where we distribute L, + L. using the product or Leibnitz rule, since it is a first-order, linear,

differential operator. Then the second major sum on the right vanishes due to (62), while in the

first sum on the right the term involving L. also vanishes, since y; has no dependence onr. The
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result can be written,

L= Ln+Le HLnGk[. (91)

This justifies and makes precise our earlier statement that in the Born-Oppenheimer representation,
the nominal, nuclear orbital angular momentum includes physically both the nuclear and electronic
orbital angular momenta, and that this is exact.

The molecular Hamiltonian Hy,o in the molecular representation commutes with L, due tothe
overall rotational invariance of the molecule, so in the Born-Oppenheimer representation the
matrix Hpmol iy must commute with the matrix L, 6. But since the latter is a multiple of the
identity, this reduces to

[Ln,HmoI,kl] = 0. (92)

This is the form that overall angular momentum conservation takes in the Born-Oppenheimer
representation; every component of the matrix Hpo 1y commutes with L, that is, it is a scalar
under nuclear orbital rotations.

Nuclear orbital rotations are generated by L, and are implemented by the operators,

Uno(R) = Uno(ﬁ:e) = exp - _EeﬁLn ’ (93)

which act on nuclear wave functions accordingto U,o(R)U(X) = ¢ R™1X. Like the electronic

orbital rotation operators U, (R), nuclear orbital rotation operators form a representation of SO(3),
Uno(R1) Upo(R2) = Uyo(R1R2). An operator commutes with nuclear orbital angular momentum L, if
and only if it commutes with the rotations Uy, (R) forall REISO(3). Therefore to check (92) we can see

how Hmol 47 transforms under conjugation by Uy (R).
To begin we have
Uno(R) Xa Uno(R)" = R Xq, (94)
Uno(R)Po Uno(R)" = R™'Pq, (95)

which is a statement that X, and Py are vector operators. This implies that Po% = Py Py is a

scalar. Next, we have

Uno(R)Fa;kl(x) Uno(R)Jr = Fa;kl R1x= R_lFa;kl(x)r (96)

where in the first step we use (94) and in the second, (70). This shows that the derivative couplings,

with our choice of basis states and phase conventions, transform under nuclear rotations as a vector
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operator. Thus, dot products such as Py - Fq.4; are scalars. We see that the components Hy| 4/ are
scalars, and that therefore they commute with L,,. The same is true for the components Kol 1/,
which are either equal to Hm, 4 OF else are zero.

In single-surface problems it is obvious that the Born-Oppenheimer version of the Hamiltonian,
(10), commutes with L, because it has the simple kinetic-plus-potential form with a rotationally
invariant potential and there are no derivative couplings. This means that energy eigenfunctions
can be organized as eigenfunctions also of L,f and L., as noted.

In multisurface problems, as we have just shown, the matrix Hamiltonian Ko x commutes
with the matrix of angular momentum operators, L, 8;;. This means that the solutions of the

Born-Oppenheimer version of the Schrédinger equation, which now reads (for £ & 1),

> Kmol, ki W1(X) = E Pi(X), (97)
17

can be organized as simultaneous eigenfunctions of the matrix Hamiltonian Ko s and the matrix
angular momentum operators, an&k; and L, 6;;. But to make the vector wave function {; for kB 7 an
eigenfunction of those matrix angular momentum operators, each component Y4 (X) must be an

eigenfunction of L, and L,> with the same quantum numbers. Call these (/, m;).

We then transform the eigenfunction {4 (X), which is nonzero only for k@ 7, back to the molec-
ular representation, using (72) but only summing over k& /. The resulting molecular wave function
W(X, 1) is then an exact eigenfunction of L? and L., where L = L, + L., with the same quantum
numbers (/,m;). Thus we obtain an understanding of angular momentum conservation in multi-

surface problems.

VI. DETAILS IN FINE STRUCTURE MODELS

Some of the changes required on passing from the electrostatic model to the fine structure model
have been discussed at the beginning of Sec. Il G. These include the facts that the electronic and
molecular wave functions, ¢ (r, m) and W(X, r, m), respectively, acquire a dependence on the spin
quantum numbers m (see (6)); that the electronic and molecular Hamiltonians, He(x;t,p,S) and
Hnol(X, P, 1,p, S), respectively, acquire a dependence on the electron spin S; and that the definition
of time reversal changes, from (A1) to (A4).

The electronic Hamiltonian H.(x;r,p,S) now depends on the dot products and triple products
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of the vectors Xq, 1;, pi and S;, so (42) is replaced by
He(x; r, p; S) = He(RX,RI',Rp,RS) SO(3)I (98)

where RS = (RS1,...,RSy,). This is a statement about the functional form of the electronic Hamil-
tonian.

To connect this with rotation operators we cannot use orbital rotations as in (47) but rather we
must introduce total electron rotation operators that include the spin. We denote these by U,(u);
they are parameterized by an element u 2 SU(2) or by the equivalent axis and angle, U.(n,8) = U,

u(n,0) , and are defined by their action on electronic wave functions,

Uel)b(r,m) = 5 (u...tt) e & R7Mr,m, (99)

where the notation for the sum is the same as in (A4) and where R means R(u), defined by (C2).

It follows from (99) that the operators U,.(u) form a representation of SU(2),
Ue(u1)Ue(uz) = Ue(uru3). (100)
These operators are given in terms of their generators by

Ua(tt) = U, (1, 0) = exp —%eﬁ-(Le+S) . (101)

Now all of r, p and S transform as vector operators under conjugation by U,(u), for example,

we have
Ue(u) Si Ue(u)" = RS, (102)

where in formulas like this it is understood that R = R(u). Therefore the electronic Hamiltonian

transforms according to

Ue(u) He(x;1,p, S)Ue(u)" = H, x;R7*r, R p, RS = H.(Rx;1,p,S), (103)
just as in the derivation of (46). With the abbreviation H.(x;1,p,S) = H.(x) this becomes
Ue(u) He(x) Ue(u)' = He(Rx), (104)

which may be compared to its electrostatic counterpart, (47). They are the same except that Uy (R)
has been replaced by U.(u). This is the transformation law of the electronic Hamiltonian along

rotational fibers in the fine structure model.
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A. Fine Structure Details, Even Number of Electrons

Most of the results in the fine structure model with N, = even have the same form as in the
electrostatic model, since the main conclusions follow from 72 = +1 which holds in both cases
(although the definitions of T are not the same). We begin with rotation operators.

The function R(u) (see (C2)) has the property R(u) = R(-u) and if the number of electrons is
even then the number of factors of u in (99) is also even. Thus Ug(u) = U.(-u) and U, might as
well be parameterized by R = R(u) @ SO(3). Then the operators U.(R) form a representation of
SO(3), Ue(R1)Ue(R2) = Us(R1R2). The definition of U.(R) is still (99), but with U.(R) instead of
U.(u) on the left hand side and with the understanding that u on the right hand side is one of the
two elements of SU(2) that correspond to the given R B1.SO(3) according to (C2). These differ by a
sign, which the answer does not depend on.

Thus, the transformation law for the Hamiltonian along rotational fibers in the fine structure
model with an even number of electrons is U.(R) He(x) Uo(R)" = H,(Rx), which may be compared to
(47) in the electrostatic model (they are the same, except the rotation operator now includes spin).

As for the basis states, we still have 72 = +1 as in the electrostatic model and T still commutes
with H.(x), which together imply the existence of T-invariant bases (adiabatic first, and then
diabatic). These can be defined along a section S, smoothly, in the case of the diabatic basis, and

then propagated along noncollinear rotational fibers by
| Rxo; ki = Ue(R) | x0; ki. (105)

This may be compared to its electrostatic counterpart, (52); the only difference is that the rotation
operator now includes spin.
With these (smooth) phase and frame conventions we can define a smooth working basis, as in

the electrostatic model. This basis transforms under rotations according to
| Rx; ki = Up(R) | x; ki, (106)

which is just like (56) and proved in the same way, except that the rotation now involves spin. By

making R infinitesimal in this, we obtain

(Ly+Le+S)|x;ki= 0, (107)
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just like (62) except that now the spin is included. The operator that appears is the total angular
momentum J of the molecule.

We then find that the derivative coupling transform under rotations according to (70), the same
formula as in the electrostatic model. As for the rotational components of the derivative couplings,

they are now given by
N_l l'
Z 8 Xa - Foukilx) = - £9ﬁ-hx;k|(Le+ S)|x; i, (108)
a=1

where § Xy = 61 x X and where the matrix elements of the total electronic angular momentum
appear (orbital plus spin).

The potential energy matrix Wy;(x) is defined by (53) and it is still rotationally invariant as
shown by (54), exactly as in the electrostatic model. The only difference is that W}; now contains
contributions to the energy from the fine structure. Likewise, the molecular Hamiltonian in the
Born-Oppenheimer representation, Hmo| 4/, is (88), the same as in the electrostatic model, as is the
projected Hamiltonian Knol 4/

As for the angular momentum, it is more interesting to work withJ = L+ S thanwithL = L, +

L. alone. We follow the steps of (90) in converting J to the Born-Oppenheimer representation,

JW(X,r,m)= (Ly+Le+8) Y Up(X) dp(X5r,m) = S [(Ly+Le)bi(X)] dp(X; 1, m)
k k

+ > Wp(X) [(Ly + Le +S)04(X;1,m)], (109)
J

where the differential operator L, + L. is distributed as before, while the operator S only acts on the
second factor (which depends on the spin quantum numbers m). But by (107) the second major sum

vanishes, as does the term involving L, in the first sum. The result is
J=L+S=L,+L.+S &> L,8. (110)

Thus, in the fine structure model with N, = even, in the Born-Oppenheimer representation, the
nominal, orbital angular momentum of the nuclei alone represents physically the total angular
momentum of the molecule, both nuclear and electronic, including the electron spin. This is exact.

Thus conservation of angular momentum is represented in the Born-Oppenheimer represen-
tation by (92), exactly as in the electrostatic model. That is, the components of Hpq x must be
scalars under nuclear orbital rotations. That they are follows from the transformation property of

the derivative couplings, (96), which is the same as in the electrostatic model.
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Finally, consider a solution Y for k@ I of the Born-Oppenheimer version of the Schrodinger
equation, (97), that is also an eigenfunction of the matrix operators Li 647 and Ly, & with quantum
numbers (/, m;). Every component k@7 of such a solution is an eigenfunction of L,, ahd L, with the
same quantum numbers. When this is converted to a molecular wave function by (72) it is

automatically an eigenfunction of J2 and J, with the same quantum numbers, and this is exact.

B. Fine Structure Details, Odd Number of Electrons

1. Basis States

In the fine structure model with N, = odd the energy levels are Kramers doublets. See
Sec. 11 G2 for terminology regarding “levels” and “surfaces.” We define a subset of strongly

coupled surfaces

I= {ko,ko+1,..., ko+Ng-1}, (111)

where N; is the number of surfaces, which replaces (48). Now the number of levels is N; = 2N;.

We denote the adiabatic basis vectors by |ax; kui, u = 1,2, which are energy eigenstates for k2 1,
Ho(x) |ax; kui = gi(x) |ax; kpi, kB, (112)

where the energy depends on & but not p (this is the Kramers degeneracy). For k [fi I the vectors
| ax; kpi form a discrete, orthonormal basis that spans S 2(x). Because H.(x) commutes with T,
these basis vectors can be chosen to be quaternionic, as we assume (see (A10)).

Initially we make some assignment of these vectors along a section §, that is, of phase and frame
conventions so that the basis is quaternionic. This assignment cannot be smooth when S contains a
degeneracy, that is, a crossing of two or more surfaces or Kramers doublets. The codimension of
such degeneracies is different from the case of the electrostatic model (generically 5 or sometimes 3
instead of 2, see Mead (1980a, 1987); Matsika and Yarkony (2001, 2002a)), but the fact remains that
in general a continuous assignment of adiabatic basis states on S is impossible. We accept the
discontinuities and extend the definitions of the basis vectors along rotational fibers by means of a
modified rule, see (115) below, which differs from the ones (52) or (105) used previously. This rule
guarantees that the adiabatic basis, so extended, remains quaternionic.

Given the adiabatic basis there are various algorithms for defining a diabatic basis, which is free

of the singularities of the adiabatic basis. We denote the diabatic basis by |dx;kpui. If the adiabatic
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basis is quaternionic, we must ask whether the diabatic basis so constructed is too. The answer
depends on the algorithm, but we have checked both the singular-value diabatic basis, which is due to
Pacher, Cederbaum, and Koppel (1988, 1993), and the parallel-transported diabatic basis. These
bases were the subject of a recent study of ours (Littlejohn, Rawlinson, and Subotnik (2022)). It
turns out that if the adiabatic basis is quaternionic, then the diabatic basis, constructed by either of
these two algorithms, is also quaternionic. In this way we can construct a diabatic basis on Sthatis
quaternionic; this can then be propagated along rotation fibers by (115), giving us a smooth,
quaternionic, diabatic basis in a region of full dimensionality.
The two bases are connected by a unitary transformation,
| dx; ki = Z | ax; IViVy i (x) (113)
Iv
the analog of (51) in the electrostatic model. Since the two bases are quaternionic, the matrix V' y; 4, is
both unitary and quaternionic, that is, the minor, 2 x 2 matrices V', whose (v 1) components are '
v,ku, 1are quaternions. See Appendix B. The Ny x Ny block of this matrix of quaternions cor-
responding to the strongly coupled subspace belongs to the unitary, quaternionic group U(Ns, H).
Unlike the electrostatic case, the matrix Vi, 4, is not constant along rotational fibers, but rather
satisfies

Via(Rxo) = uViy(xo)u™?, (114)

where R = R(u). This is written in terms of the minor matrices or quaternions that make up V.

2.  Working Basis and Its Properties

Thus we obtain a working basis, which we denote by simply |x;kui, which is either the adi-
abatic basis |ax; ki when that is smooth or else the diabatic basis |dx;kpi. The vectors of the

working basis are propagated along rotational fibers by the rule,

" (115)

| Rxo; kpi = 5 Ue(u) |x0; kvi u™?
which gives the basis vectors at x = Rxg in terms of those at xg. In this equation, u on the right
hand side means one of the two elements of SU(2) that satisfies R = R(u), which differ by a sign.
Because there is an odd number of factors of u contained in the operator U.(u) and an extra one in

the factor of u™1, the total number is even and the right hand side does not depend on which of the

two u’s is chosen. This was one reason for introducing the factor of #~1 on the right hand side;
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without it, the formula would not define a single-valued basis set along a rotational fiber. This
factor evidently causes a mixing among the Kramers pair as the molecule is rotated.

The rule (115) has several important properties. The first is that if | xp; ki is quaternionic at xo,
then | Rxo; kWi is quaternionic at x = Rxg. The second is that if |xg; kWi is an electronic eigenstate at
xo (which is the case for k@7 in the adiabatic basis), then | Rxp; ki is an electronic eigenstate at x =
Rxg, with the same eigenvalue. The proofs are given in Appendix D.

Another important property is the transformation law,

(116)

| Rx; ki = E Ue(u) | x; kvi u'lvH

which is like (115) but with xp replaced by x. Compare (52) and (56) in the electrostatic model,
and see the discussion below (56). In particular, notice that (115) defines the basis states along
a rotation fiber, and (116) is a property of those basis states, once defined. The proof of (116) is
given in Appendix D.

If we had chosen u instead of #~1 in (115) then we would have a single-valued definition of
phase and frame conventions along a rotational fiber, but (116) would not be valid, with either u or
u~L. This was the main reason we chose =1 in (115), which we believe is the most satisfactory
definition of phase and frame conventions along rotational fibers in the fine structure model with N,
= odd. This choice leads to a simple interpretation of the wave function ,, (X) for fixed k and u =
1,2 as belonging to a particle of pseudo-spin 1/2, moving on a multidimensional, potential energy
surface.

Given our basis states |x;kui we define basis wave functions ¢y, (X;r,m) by (27), that is, with

the double index (ku). The transformation to the Born-Oppenheimer representation is given by

LIJ(XIrIm) = quku(X)d)ku(X;rIm)l (117)
ku
which we can also write as
W(X,r,m) €<= g, (X). (118)

Equation (117) involves a sum on both £ and  and is the exact representation of the wave functions
W(X,r,m) (and is not to be confused with (28) which applies to a single-surface problem). Double

indices also appear in the Born-Oppenheimer representation of operators,
where the right hand side can also be written in terms of minor matrices Ay;.
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3. Representation of Angular Momentum

We now let R in (116) be infinitesimal, and proceed as in the derivation of (62) or (107). We

invoke the infinitesimal version of u~1,

ul = 1+%9ﬁ-0, (120)

and follow the steps leading to (62), finding

Jxki= (Ly+ Lo +8)Ixikni = 1S Ixikvi(o)y,, (121)
2 \Y)
which takes the place of (62) in the electrostatic model or (107) in the fine structure model with N,
= even. The nonzero result on the right hand side comes from the factor of u~1 that was inserted into
the transformation law (115).
This allows us to find the total angular momentum of the molecule in the Born-Oppenheimer
representation. We proceed as in (109) using the expansion (117), finding

JW(X,r,m)= (L,+L,+S) Z lbkp (X) ¢kp(X;r: m)
ku

- z[(L” +Le)'~bku(X)] Cbku(X,'r, m)
kp

+ > W (X) [(Ly + Lo +S) by (X5 1, m)]. (122)
kp

In the first major sum on the right the contribution from L, vanishes as before but now in view of

(121) the second major sum is nonzero. Altogether we find
JW(X,r,m) = Z[LnLleu(X)]d)ku(X;r;m)"' z LI-’lq.J.()()d)kv(X;r;m) 0& . (123)
ku kuv 2 Vi

Swapping K and v in the second term makes both sums a linear combination of ¢, (X;r, m), so

that the result can be written,

J <> L bibuv+di o , (124)
2w
or, in terms of minor matrices,
J Hék,(L,ﬁK). (125)

Here K = (4/2)0 is a vector of minor matrices which act on a Born-Oppenheimer wave function

Wiy just by matrix multiplication in the pseudo-spin index .
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This motivates the definition I = L, + K made earlier (see (38)). The angular momentum I

is associated with rotation operators that are parameterized by u B SU(2) and that we denote by

Ui(u). They are defined by
Us(u) = Ui(1i, 8) = exp - %eﬁ-l , (126)
and their action on wave functions , (X) is given by

Ui (X) = Suyy by RHX. (127)
. \Y

This implies the representation property, U;(u1)Ui(uz) = Ui(u1uz). In (127) we write $, (X) with-
out a k-index because it is useful to think of this as the wave function of a pseudoparticle of spin
1/2. The Born-Oppenheimer wave function 4, (X) can be thought of as an infinite-dimensional

vector of such wave functions, indexed by k.

4. Derivative Couplings

The fine structure derivative couplings when N, = odd have been defined in (29). They are
denoted Fqxp,v(x), or, as minor matrices which turn out to be quaternions, as Fq x/(x). These
form an anti-Hermitian matrix of quaternions, as noted in (34).

These transform along rotational fibers according to
Foii(Rx) = u[RF g1 (x)]u™?, (128)

where R = R(u). This may be compared to (70), which applies both in the electrostatic model and
in the fine structure model with N, = even. The derivation is similar if slightly more complicated.
We also require the transformation of the derivative couplings under conjugation by U;(u). A

purely spatial vector like Xy transforms as a vector operator,
Ui(u) Xa Ui(u)" = R Xq, (129)

since the pseudo-spin part of U;(u) does nothing, while in the case of a minor matrix w with no
spatial dependence we have

U(u) wUi(u)" = uwu™, (130)
since the spatial part does nothing. Therefore

Ui(u) Fo.u(x) Ui(u)" = uFqp R 1xu™t = RIF g p(x), (131)
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where in the last step we use a version of (128) with R > R~ and u => u~1. This may be compared
to (96) which applies both in the electrostatic model and in the fine structure model with N, = even.
Finally, we compute the components of the derivative couplings in a purely rotational direction,

defining 6x and 6 Xy as in (57) and (58). Then we find
N-1
6 X " Fokp,iv(x) = £08n- —hx;kp|[(Le+S) |x; Ivi+ é6k10w , (132)

021 h 2

where we use (121). This may be compared to (71) in the electrostatic model or (108) in the fine

structure model with N, = even.

5. The Hamiltonian

When the electronic Hamiltonian H,(x) is converted to the Born-Oppenheimer representation,

it becomes a matrix,

Wiw,iv (%) = hx; k| He(x) | x; Ivi, (133)

which can be interpreted in terms of minor matrices denoted Wj;(x). Since H.(x) commutes with
time reversal, these minor matrices are quaternions; and since H.(x) is Hermitian, these quater-

nions satisfy Wy (x) = Wy(x). It then follows from (104) and (116) that
Wii(Rx) = uWkl(x)u_l. (134)

In the case of the fine structure model with N, = odd, the matrix W;;(x) is not constant along
rotational fibers. An exception is the diagonal elements; these are real quaternions, Wi = Wix,
that is, as minor matrices they are a multiple of the identity, so the factors of u and u~1 in (134)
cancel. In particular, for a single surface problem W), (x) is the Kramers degenerate eigenvalue
€k, (X).

To transform the molecular Hamiltonian to the Born-Oppenheimer representation we start with

the momentum, which transforms according to
Py € Po 8y 6py = ihF oy, v (X). (135)
This simplifies in the language of minor matrices,

Pa > Pa le—ih'Fa;k;(x), (136)
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where now it is understood that Py is multiplied by the unit minor matrix. The result (136) looks
exactly the same as (82) in the electrostatic model except that now the operator in the Born-
Oppenheimer representation is interpreted as a minor matrix.

Similarly, the molecular Hamiltonian Hyo becomes a matrix of minor matrices Hyg| 4 in the
Born-Oppenheimer representation, the formula for which is (88), exactly as in the electrostatic
model but now reinterpreted as a relation among minor matrices. Of course, one must respect the
order of multiplication of minor matrices when expanding the products shown.

Since in the molecular representation Hy,, commutes with J, in the Born-Oppenheimer rep-
resentation we expect the matrix Hmo 47 of minor matrices to commute with 164, = (L, + K)8y,
another such matrix. See (125). But since the latter matrix is a multiple of the identity 6;;, we

expect

[I,Hmol,kl] = [Ln"'K;HmoI,kl] =0, (137)

which takes the place of (92) in the electrostatic model or the fine structure model with an even
number of electrons. That is, there is now a contribution K to the angular momentum, and every-
thing is interpreted as minor matrices.

Equation (137) holds if and only if every component Hpq 1 of the Hamiltonian commutes with
Ui(u), defined by (126) or (127), that is, if every such component transforms as a scalar under
conjugation by U;(u). To show that they do we start with the fact that P, transforms as a vector
operator, just like Xq (see (129)), and so does F .4/ (see (131)). Therefore dot products that look like

P-P,P-ForF-F arescalars. As for the potential energy matrix W};(x), we have

Ui(u) Wiy (x) Ui(u)" = uWy R™1xu™t = Wy (x), (138)

where in the last step we use (134) with R and u swapped with R=1 and #~1. Thus we check (137).
In the Born-Oppenheimer approximation Hme 4 is replaced by its projected version Kol ks,
which is the same when k,/ B/ and zero otherwise. Therefore, just as in the other models, Kmol
commutes with I since Hmo| s does. The Born-Oppenheimer approximation to the Schrédinger
equation can be written exactly as in (97), except that now K 47 is @ minor matrix of opera-
tors and Y, must be understood as a 2-component pseudo-spinor with components g, u = 1,2. A
solution of this equation will also be an eigenfunction of 12 §;; and L 6 with quantum num-bers
(i, m;) if each spinor component i is an eigenfunction of /2 and I with the same quantum
numbers. Such an eigenfunction, when converted to the molecular representation via (117), will

automatically be an eigenfunction of J2 and J, with the same quantum numbers (i, m;).
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VII. THE DRESSING TRANSFORMATION

As explained, the Born-Oppenheimer approximation or its generalization to multisurface prob-
lems can be described as just throwing away off block-diagonal elements of Hy 4/, that is, for kB
ITand [l orkPland /B I. A more satisfactory procedure, however, is to remove these off-
diagonal terms by means of unitary transformations. This is conveniently done in the Born-
Oppenheimer representation by mapping operators into their Weyl transforms (McDonald (1988)),
and using a version of the Moyal bracket (Moyal (1949)) for carrying out the perturbation expan-
sion. The main ideas of this approach are given by Littlejohn and Flynn (1991), and applied to the
Born-Oppenheimer approximation by Weigert and Littlejohn (1993). See also Panati, Spohn, and
Teufel (2002); Teufel (2003). In this section we shall briefly summarize the ideas and con-
clusions, enough to show their relevance to the subject of angular momentum. For simplicity we
shall describe the situation in the electrostatic model.

The method generates a power series in k2, where Kk = (m/M)/# is the usual Born-Oppenheimer
ordering parameter. When we refer to “first order,” we shall mean, first order in k2, while “second
order” means order k#, etc.

In the first step we transform the molecular Hamiltonian,
5 t
Hmol,l = U1 Hno Uy, (139)

where U is a unitary transformation that is designed make the off-diagonal terms of I:Imom vanish
to lowest order in k2. All operators are expressed in the Born-Oppenheimer representation, that
is, as matrices (thus, for example, Hmo|,1k1 and Uy ), but the subscripts are suppressed in (139).
The unitary operator U; is expressed in terms of an anti-Hermitian generator G1, U1 = exp(G1), so

that, for any operator 4, we have

ULAU] = 4 +[G1, 4]+ 2—1|[G1, (Go, Al +... (140)

This series of iterated commutators turns into a power series in k2.

A single unitary transformation of the type shown in (139) is capable of removing the off-
diagonal terms only to first order, but there will remain second-order terms. We can apply a second
unitary transformation to remove these, leaving behind third-order, off-diagonal terms. Thus to
fully remove these terms we must contemplate an infinite number of unitary transformations, for

which we write, U = ...UsU,U1, where each U, has a generator G,. The generators G, turn out
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to be of order k2. In practice, the first generator G1 is the most important, and is responsible for
most of what is described in the literature as “nonadiabatic corrections” to the Born-Oppenheimer

approximation.

It turns out that G'1 contains energy denominators of the form g;(x) - €;(x), where k&1 and /
1. Thus when this energy difference is of order k2 or smaller, the expansion (140) breaks down
and levels cannot be separated by adiabatic means. This gives some quantitative meaning to the

notion of “strongly coupled” levels, which were discussed in Sec. Il C.

This sequence of unitary transformations produces Hamiltonians Hyol 1, Hmol 2, €tc. We will

write simply Hpol for Hmol,es, 50 that Hmol = UHmoU'. We will refer to U as the “dressing
transformation” and Hy, as the “dressed Hamiltonian.” The latter is block-diagonal to all orders in

K2.

We can now distinguish what we will call the “original Born-Oppenheimer representation,”
what was called in Sec. V simply the “Born-Oppenheimer representation,” from the “dressed
Born-Oppenheimer representation.” There is, of course, also the molecular representation, which
was described in Sec. V. Physical observables have different operators representing them in the
different representations. For example, the physical observables which are the Jacobi vectors are
represented by the operators X in the molecular representation, that is, the operators are multipli-
cation by X. As described in Sec. V, these physical observables are represented by the matrices
Xo Oy7 in the original Born-Oppenheimer representation, which we can write simply as Xy if we
remember that an identity matrix is implied. In the dressed Born-Oppenheimer representation,

however, they are represented by the operators Xo = UXq U', which are not the same as Xq. In

fact, to first order in k2, we have
Xu_: Xa+[G1,Xa]+.... (141)

Similar statements can be made about the nuclear momenta, which in the original Born-Oppenheimer

representation involve the derivative couplings (see (82)).

As for the total orbital angular momentum of the molecule, we have seen that it is represented
by L= L, + L. inthe molecular representation and L, §;; in the original Born-Oppenheimer rep-
resentation, which we can abbreviate as simply L, if we remember that it is multiplied by the

identity matrix. As for the dressed Born-Oppenheimer representation, the same physical observ-
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able is represented by

N-1 N-1
ULnUTzUZ XQXPQU-'—: Z Xax]?-a. (142)
a=1 a=1

But the dressing of L, involves a series of commutators with the generators Gy, such as shown in
(140). The generators G, are responsible for transforming the rotationally invariant Hamiltonian
Hyol to its diagonalized version, Hinol, Which is also rotationally invariant. The generators G, that do
this are themselves rotationally invariant, so they commute with angular momentum and all the

correction terms in power series like (140) vanish. Thus we have

N-1 N-1 )
Z XqXPq = Xa xPq, (143)
a=1 a=1
to all orders of the Born-Oppenheimer expansion. The dressing does nothing to the angular mo-
mentum L,,, which represents physically the total angular momentum of the molecule in both the

original Born-Oppenheimer representation and the dressed version of it.

In the case of single-surface problems the dressing transformation creates a 1 x 1 block HmOLkoko
on the diagonal, that is decoupled from all other levels to all orders of k. Thus in the dressed Born-
Oppenheimer representation the solution of the Schrédinger equation is a simple product form as
seen in (14), to all orders of k2. For this reason we suspect that there is a connection between
Moyal perturbation theory, as discussed here, and the method of “exact factorization” (Abedi,
Maitra, and Gross (2010, 2012); Cederbaum (2013); Scherrer et al. (2015); Schild, Agostini,
and Gross (2016); and Requist, Tandetzky, and Gross (2016); Martinazzo and Burghardt (2022)).

The possibility of such a connection is a project for the future.

The dressed Hamiltonian Hmo may be compared to Kmol, which was obtained in Sec. V C by
throwing away off-diagonal terms. Both are block-diagonal, but they are not the same Hamiltoni-
ans. This is because the dressing transformation modifies the diagonal block, adding extra terms to
it. The first such term appears at second order. This term has evidently been discovered inde-
pendently several times (Moody, Shapere, and Wilczek (1989); Weigert and Littlejohn (1993);
Goldhaber (2005)), but it has had no impact on the chemical literature. It is of order k* and is
therefore small, but it is of the same order as terms that are routinely discussed in connection with

Born-Oppenheimer theory. We will say more about this term in future publications.
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VIII. DISCUSSION AND CONCLUSIONS

We have presented an in-depth analysis of angular momentum in the Born-Oppenheimer theory
of polyatomic molecules, revealing exact equivalences among its various representations. We have
done this both in the electrostatic model and when fine structure effects and electron spin are
included. Several new results are reported regarding the transformation laws under rotations of
the Hamiltonian, basis states and derivative couplings. A dressing transformation that replaces
the Born-Oppenheimer approximation reveals further exact equivalences among representations
of angular momentum.

These findings are general and should be applicable even when one does not have an exact
diagonalization of the electronic Hamiltonian, as is usual in practice. On the other hand, one
will need to use caution when applying some of the formalism above to non-Hermitian electronic
structure methods (e.g., coupled-cluster methods), where it is known that derivative couplings
must be calculated delicately because the Hellman-Feynman theorem is not easily applied (Ichino,
Gauss, and Stanton (2009); Tajti and Szalay (2009); Faraji, Matsika, and Krylov (2018)).

Finally, note that we have not made any semiclassical approximations above, and the exact
equivalences described above hold rigorously. That being said, the results do have clear impli-
cations for semiclassical calculations. In particular, within surface hopping calculations (Fatehi et
al. (2011)), there has been a long literature regarding questions of how to treat electronic mo-
mentum and how to conserve momentum with electron translation factors (Bates and McCarroll
(1958); Schneiderman and Russek (1969); Delos (1981); Illescas and Riera (1998)). These
questions arise because the electronic momentum is hidden in the phase conventions of the Born-
Oppenheimer representation. To that extent this article has pointed out that similar questions can
also be raised in the context of rotations and angular momentum. This line of study will be pursued in

a subsequent publication as well.
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Appendix A: Time Reversal

Time reversal is covered in texts (Messiah (1966); Sakurai and Napolitano (2011)) and specif-
ically in molecular theory (Mead (1979, 1980a); RdOsch (1983); Mead (1987); Koizumi and
Sugano (1995); and Johnsson and Aitchison (1997); Schon and Koppel (1998); Matsika and
Yarkony (2001, 2002b,a)). We prefer an approach based on invariant subspaces.

There are at least two distinct time reversal operators relevant to this article: the one that acts on
electronic wave functions ¢ (r), relevant in the electrostatic model, and the one that acts on wave
functions ¢ (r, m), relevant in the fine structure model. In the electrostatic model time reversal acts

on electronic wave functions according to

(Td)(r) = (r)? (A1)
that is, by simple complex conjugation, so 72 = +1. In the fine structure model the wave function
o (r, m) depends on spin and time reversal acts according to

(Td)(r,m)= Z Z Tmlm'l"'tmNem}ved)(r'm’)r (A2)
WNe

my

where m' is a primed version of (6), where each magnetic quantum number m; i = 1,..., N, ranges

over +1/2, and where T is the matrix

T= e imoy/2 = 0 -1 ER (A3)

10
The matrix T is the spin rotation u(y, ) in the notation (C1). We abbreviate an equation like (A2)

by writing
(To)r,m)= $ (T . Ty b (r,m )" (A4)

1. Properties of T’

Time reversal T is an antiunitary operator, T =TT = 1, that satisfies 72 = +1 in the
electrostatic model or in the fine structure model with N, = even, and 72 = -1 in the fine structure
model with N, = odd. These are the only properties of T that are needed for the rest of this

appendix.
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If H is a Hilbert space upon which T acts and S H is a subspace, then we say that S
is invariant under T if for every |QiBS , T|YiBS (thatis, 7 maps S into itself). Important
examples of invariant subspaces include the entire Hilbert space (S = H ) and eigenspaces (pos-
sibly degenerate) of a Hamiltonian that commutes with 7. Many other examples appear in this
article. As for energy eigenspaces, note that if H|Wi= E|yi, T"HT = H, and |pi= T|i, then
H|di= E|di. Thatis, T maps energy eigenstates into other energy eigenstates of the same energy.
This does not say whether | i is linearly independent of |i.

Antiunitary operators map scalar products into their complex conjugates, that is, if |[{'i= T | i
and |d'i= T|di, then hd'|[P'i= hd|Pi® = hP|di. This in turn means that time reversal maps
orthonormal frames into other orthonormal frames, that is, if {|ni,n=1,..., N} is an orthonormal
frame, hn|mi= 8,,, andif |n'i= T |ni,then hn'|m'i= 8,,. The frame {| ni} need not be complete (it
need not span the whole Hilbert space). This does not say whether the new frame {|#’i} is
linearly independent of the old one {| ni}.

In the following we will take subspaces that are invariant under 7" and break them down into
smaller, mutually orthogonal subspaces that are also invariant under 7. First we note that if S is
invariant under T, then it is also invariant under T, as follows from the fact that 7V = + 7 (the
same sign as in 72 = +1).

Now letS BH beaninvariant subspaceunder T, let A @S be asubspace of S thatis also

invariant under 7', and let B @S be the space orthogonal to A inside S , so that
S = A BB. (A5)

Then B is invariant under 7. To prove this we note that a vector |pi@ B if and only if |¢piES
and hd |pi= 0 forall |PiBA . Now let |dpi@B @S andlet |pi= T|di, so that |diBS .
We wish to show that |¢'i is orthogonal to all |PiE A , hence |¢iEB. First we note that
ho'|Wi= (hd |TT)|Yi= [h [(TTY)E = hd P2, where |Pp'i= TT|pi. But [P iBA since A
is invariant under T, and therefore the scalar product vanishes. Therefore |¢iE B, and B is

invariant under 7.

2. CaseT?= +1

Now we specialize to the case 72 = +1. Let S be a subspace invariant under 7, withdim S >

1. Then S possesses a 1-dimensional, invariant subspace. To prove this let [piE@S be a nonzero
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vector and consider the two vectors | i and 7| i. If these are linearly dependent, then | i spans a
1-dimensional, invariant subspace of S . If they are linearly independent then |i+ T | i is
nonzero and spans a 1-dimensional, invariant subspace.

Then the space inside S , complementary and orthogonal to this 1-dimensional, invariant sub-
space, is also invariant under T, so, if its dimensionality is 2 1, it also possesses an invariant, 1-
dimensional subspace. Proceeding by induction, we see that if S is finite-dimensional, then it
can be decomposed into a set of mutually orthogonal, 1-dimensional subspaces, each invariant
under 7. We will assume that the same holds when S is infinite-dimensional.

Now let |ei be a unit vector inside a 1-dimensional, invariant subspace. Then T |ei = €/®|ei for

some phase factor €/, since both |ei and T |ei are bases inside the 1-dimensional subspace. Then

defining |pi= /2| i, we have
Tlgi= e 2 T|bi= |¢i (A6)

and |&i is invariant under 7. That is, by a phase convention we can make the basis in a 1-
dimensional, invariant subspace invariant under time reversal. This applies to each of the sub-
spaces into which S of the previous paragraph was decomposed, so we see that in the case 72
= +1, a T-invariant subspace S always possesses a T-invariant orthonormal basis.

In particular, bases can be chosen inside the eigenspaces of a Hamiltonian that commutes with T
that are T-invariant, that is, such a Hamiltonian always possesses a T-invariant energy eigenbasis.

It is easy to show that the matrix elements of a T'-invariant operator such as the Hamiltonian in
a T-invariant basis are real.

Now letS BIH be asubspace of a Hilbert space and let {|e,i} and {| f,i} be two orthonormal

basesin S . Then these bases are connected by a unitary transformation,

| fui = Z|emiUmnr (A7)

where UTU = UU" = 1. If however S is T-invariant, as are the two bases, T |e,i = |e4i, | fni =

T'| f»i, then it is easy to show that Uy, = U2

nns thatis, U is a real, orthogonal matrix. If N= dimS,

then U B O(N), the latter being the group that connects choices of T-invariant, orthonormal bases in
the case T2 = +1. Conversely, if the basis |e,iin (A7) is T-invariant and if U is real orthogonal, then
the basis | f,i is also T-invariant.

As a special case, if N = 1, the group O(1) consists of just two matrices (+1) and (-1), so the

choice of a T-invariant basis reduces to the choice of a + sign.
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3. CaseT?=-1

Now let 72 = -1 and, as before, let S be a subspace invariant under T such that dimS >
1. Then S does not possess any 1-dimensional, invariant subspaces but it does possess a 2-
dimensional invariant subspace. To prove this let |[{i= 0 be a vector in S and notice that |¢pi=
T| i is also a nonzero vectorin S since S is T-invariant and T preserves norms. These vectors

are orthogonal,
ho [pi= (M [TT) | pi= [ [(TTIODE = ~[hd [(T1PD)]"= -hd [P = -hd |Pi= 0, (A8)

where we use 77 = —T, and therefore linearly independent. They span a 2-dimensional, invariant
subspace of S , since

T(alQi+b|di)= a”|di-b"|Yi, (A9)
where we use T|di= T2|pi= —|i.

Thusdim$S > 2andS possesses a 2-dimensional, invariant subspace. If S is the eigenspace
of a T-invariant Hamiltonian, then this implies that all eigenvalues are at least 2-fold degenerate
(the usual statement of Kramers degeneracy). But this means that the space inside S that is
orthogonal and complementary to this 2-dimensional, invariant subspace is also invariant, so, by
induction, we can continue to split off 2-dimensional, invariant subspaces until S is exhausted (if
ever). If S s finite-dimensional, this implies that S can be decomposed into a set of mutually
orthogonal, 2-dimensional, invariant subspaces; and we will assume that this can also be done

when S is infinite-dimensional. If S is finite-dimensional, then dim S = 2N is even.

a. Quaternionic bases

If the vector | i of the preceding paragraphs is a unit vector then we may call it | 1i; and then | i
= T|gi= T|1iis also a unit vector, call it |2i. Then the set {| 1i, | 2i} forms an orthonormal basis
in the invariant subspace that they span, such that 7|1i = |2i and T'|2i= —|1i. Doing the same
for each of the 2-dimensional, invariant subspaces into which an invariant subspace S s

decomposed, we obtain an orthonormal basis inside S , {|kui, k= 1,...,N,u = 1,2}, such that

Tlkui= S [kvity, (A10)
Vv

where T is given by (A3) and where dimS = 2N. We shall call such a basis quaternionic. (In

equations like this we label the rows and columns of T by 1, 2; in other places by 1/2,-1/2.)
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Now let |e;kui and | f;Ivi be two quaternionic bases on a T-invariant subspace S . (The
symbols e and f just distinguish the two bases.) Since the bases are orthonormal, they must be

connected by a unitary matrix,

|filvi= S e kiU o, (A11)
ku
where
_ _
Z Uku,no Ulv,no - 6kl 6P.V - Z Unc,ku Unc,lv- (Alz)
no no

In cases like this we shall view the matrix Uy, ;v as a “major” matrix that is composed of 2 x 2

III

blocks that we will call “minor” matrices. If we write simply Uy;, we shall mean the minor matrix

whose (uv) component is Uy, y. With this understanding, (A12) can be written,

S Uin(Unn)' = 1= S (Uni)" Uni, (A13)

where we use parentheses to make it clear, for example, that (U,)" is the Hermitian conjugate of
the minor matrix U,;;, and where §;; is understood to be multiplied by the identity minor matrix.
Now applying T to both sides of (A11) we obtain

SIfivity = S lekwitg, U, . (A14)
v’ k'

We multiply this by (t7)vs and sum over v, to obtain

[filoi= 3 lekuitg, Up (tve = 3 lekui tUgt’ . = 5 |e kiU o, (A15)
o
kup'v kn' " ku'

where in the last step we have used (A11) again. Then, since the vectors |e;ku'i are linearly

independent, we obtain Uy, = rUkt*, an equation connecting minor matrices. Multiplying this on

the left by t* and on the right by T, we obtain
Uyt =U%, (A16)

showing that the minor matrices of U are quaternions (see (B3)).
Thus, U belongs to the group U (N, H), the set of N x N unitary matrices of quaternions. These

matrices satisfy
SUin Ui = 810 = 5 Uk Unss (A17)
n n

which is (A13) written in quaternionic language. Conversely we can show that if the basis |e; kpi

is quaternionic and U B U(N, H), then the basis | f;Ivi defined by (A11) is also quaternionic.
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In the special case N = 1, which applies to a single surface problem with an odd number of
electrons (a single Kramers doublet), the group U(1, H) consists of unit quaternions, those for
which U11U11 = 1. As noted in Appendix B this is the group SU(2). Its role in this context was
appreciated by Mead (1987).

b. Quaternionic matrix elements

Finally, let 4 be a linear operator that commutes with time reversal, T*AT = A. Then the matrix
elements of 4 in a quaternionic basis form minor matrices that are quaternions. To prove this we

consider the matrix elements of 4 with respect to a quaternionic basis {| kui},

Apuiv = hkpld|lvi= hku | (TTAT | Ivi) = [(th|T+)A(T|lVi)]
= Z(hkullt’u)A(llvlitv'v) = Z (T*)p.p.'Akp.',lv'Tv'v , (A18)
u'v' TR

or, in terms of minor matrices, 4y = (t74;;t)%. Now taking the complex conjugate of both sides

and comparing to (B3) we see that 4y; is a quaternion.

Appendix B: Quaternions

It is well known that the quantum mechanics of systems with an odd number of fermions is
conveniently described in terms of quaternions (Dyson (1962); Finkelstein et al. (1962); Rosch
(1983); Avron et al. (1988); Johnsson and Aitchison (1997); and Zhang (1997); Saue and Aa
Jensen (1999); De Leo and Scolarici (2000); Sadovskii and Zhilinskii (2022)). Quaternions also
play an important role in representation theory (Simon (1996)). In this appendix we summa-rize
what is needed for this article. Our treatment is similar to that of Rosch (1983).

For the purposes of this article a quaternion is a 2 x 2 matrix of the form
g= a-ib-o, (B1)

where a and b = (b1, b2, b3) are real. We denote the set of quaternions by H. Hamilton’s unit
quaternions i, j, k are identified with the matrices -io;, i = 1,2,3. By this definition the matrices
(B1) form a representation of the algebra of quaternions (matrix multiplication and inversion are

equivalent to the same operations on quaternions, etc).
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The quaternion conjugate to ¢, denoted ¢, is obtained from g by the replacement b - -b.
Interpreted as a matrix, this is the same as forming the Hermitian conjugate; therefore we will
write §= ¢', and note that g1g2 = ¢3¢1. A quaternion ¢ is said to be real if b= 0, thatis, §= ¢.The

square magnitude of a quaternion is
lgl?= Gg= qG= a®+b%+b%+b%= detq. (B2)

As for complex conjugation, by ¢” we mean the complex conjugate of the 2 x 2 matrix (B1).

A 2 x 2 matrix ¢ is a quaternion, according to (B1), if and only if
tgt= ¢, (B3)

where T is given by (A3). Notice that T is the basis quaternion j.
A unit quaternion g is one for which |g|> = 1. The set of unit quaternions, interpreted as
matrices, is the group SU(2). An arbitrary quaternion can be written as ¢ = pu, where p > 0 is real

and u is an element of SU(2), which is unique if p > 0.

Appendix C: Rotation Groups SO(3) and SU(2)

We let R B SO(3) be a proper rotation, which we parameterize in axis-angle form, R = R(n,0),
where the unit vector 1l is the axis of the rotation and 0 is the angle. All proper rotations are covered if
n runs over the unit sphereand 0< 8 < m. If 0< 6 < 1 the axis-angle representation is unique, but if
6 = 0 then R(n,0) = I (the identity) for all axes n, and if 8 = m then R(n, )= R(-n,n)."This
shows that the space of proper rotations, the group manifold SO(3), is diffeomorphic to the real
projective space RP3. (Two spaces are diffeomorphic if their points can be placed in a one-to-one
correspondence in a smooth manner. It means that the spaces are identical from a differentiable or
topological standpoint. The space RP3 is the 3-sphere S3 with antipodal points identified.)

The group SU(2) consists of matrices that can be parameterized in axis-angle form,
u(n, )= ¢7019/2 = co5(6/2)-iri- osin(8/2), (C1)

where o is the vector of Pauli matrices. All of SU(2) is covered if the axis 1 runs over the unit
sphereand 0< 06 < 2m. The representation is unique if 0< 0 < 2m but when 6 = 0, u(n,0) = 1 for
all n, ahd when 6 = 2m, u(n,2n) = -1 for all n’ This means that the group manifold SU(2) is

diffeomorphic to the 3-sphere S3.
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The projection from SU(2) to SO(3) is given by
1
Rl’j = Etr(u 0,‘140']'). (C2)

One can show that the matrix R defined by this equation belongs to SO(3) if u & SU(2), so it
defines a map or function : SU(2) = SO(3). We will denote the function by R(u); it is a group
homomorphism,

R(u1)R(u2) = R(uiuz), (C3)

and thus SO(3) forms a representation of SU(2). The map (C3) is two-to-one, since R(u) = R(-u).
The map preserves the axis and angle, that is, R u(1i,0) = R(1,0).

Sometimes it is desirable to invert (C2), that is, given R B SO(3) we wish to find u. The answer
can be given by using the axis-angle parameterization; if we write R = R(f,0), then the two

elements of SU(2) that satisfy (C2) are zu(n,0).

Appendix D: Some Proofs

We prove the statements made below (115), which concern the consequences of that formula.
First, suppose a basis is quaternionic at xg,

T | xo; kpi = z | x0; kVityy, (D1)

\Y

see (A10), and suppose that | Rxo; kpi is given by (115). Then we have

T|Rxo;kpi= 3 Ue(u) Tlxoskvi u™t)y@ = 5 Uelu) |xo;k0iToy u7")y @
Vv VO

= S Ue(u) |x0;koi tut? (D2)

ou’

where in the first step we use the fact that 7 commutes with rotations. But since u=1 B SU(2) it is

a quaternion and satisfies ¥ 1% = t¥4 11, see (B3). Thus tu 12 = 1 v, and (D2) becomes

S Uelu) |1x0;k0i u™ )y typ = § | Rxo; kvity,. (D3)

\4e) \%

Thus, the basis | Rxg; kui at the rotated point x = Rxg is also quaternionic.

Next, suppose a basis vector at xg is an energy eigenvector,

He(xo) | xo0; kui = g(xo) |xo; ki, (D4)
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where the energy does not depend on p as indicated. Then
He(Rxo) | Rxo; ki = U (u) He(x0) Ue(u)' > Ue(u) | xo; kvi u‘l\,H

= ex(xo) < Uelu) Ixo;hwi u™ = exlxo) | Rxo; ki, (D5)

where in the first step we use (104) and (115). Thus, the rule (115) maps energy eigenbases at xg
into those at x = Rxg, without changing the eigenvalues.
To prove (116) we let R1, Ry B SO(3), corresponding to u1,uz B SU(2), and we write x1 = Rixg
and x = Ryx1. Then we have
|2 ki = [Roxy; kpi = [RoRaxo; ki = 5 Ueluaua) [x0; kvi(uzus)yij

Vv

S Ue(uz) Ue(ua) [xo; kvi ui’t vo uy? ou
\Ve)

> Ueluz) |x1; ko uy?
o

(D6)

op’
Now making the replacements x; = x, R» = R and u; = u, we obtain (116). The proof would not

work if we had used u instead of #~1 in (116).
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