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This paper concerns the representation of angular momentum operators in the Born-

Oppenheimer theory of polyatomic molecules and the various forms of the associated

conservation laws. Topics addressed include the question of whether these conservation

laws are exactly equivalent or only to some order of the Born-Oppenheimer parameter κ

=  (m/M)1/4, and what the correlation is between angular momentum quantum numbers in

the various representations. These questions are addressed both in problems involving a

single potential energy surface, and those with multiple, strongly coupled surfaces; and

both in the electrostatic model and those for which fine structure and electron spin are im-

portant. The analysis leads to an examination of the transformation laws under rotations of

the electronic Hamiltonian; of the basis states, both adiabatic and diabatic, along with their

phase conventions; of the potential energy matrix; and of the derivative couplings. These

transformation laws are placed in the geometrical context of the structures in the nuclear

configuration space that are induced by rotations, which include the rotational orbits or

fibers, the surfaces upon which the orientation of the molecule changes but not its shape;

and the section, an initial value surface that cuts transversally through the fibers. Finally, it is

suggested that the usual Born-Oppenheimer approximation can be replaced by a dress-ing

transformation, that is, a sequence of unitary transformations that block-diagonalize the

Hamiltonian. When the dressing transformation is carried out, we find that the angular mo-

mentum operator does not change. This is a part of a system of exact equivalences among

various representations of angular momentum operators in Born-Oppenheimer theory. Our

analysis accommodates large-amplitude motions, and is not dependent on small-amplitude

expansions about an equilibrium position. Our analysis applies to the noncollinear configu-

rations of a polyatomic molecule; this covers all but a subset of measure zero (the collinear

configurations) in the nuclear configuration space.
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I. INTRODUCTION

This article concerns angular momentum and rotations in the Born-Oppenheimer theory of

polyatomic molecules. Topics addressed include the relationship among the various representa-

tions of angular momentum operators and the corresponding conservation laws, as well as the

equivalence among them, and whether that is approximate or exact. We also address the correla-

tion between angular momentum quantum numbers in the various representations. We treat both

single-surface and multi-surface problems, and we treat both the simple electrostatic model for

the electronic Hamiltonian as well as models that incorporate fine structure and electron spin. We

assume the molecule is isolated, so that the Hamiltonian commutes with both rotations and time

reversal.

This article relies on basic Born-Oppenheimer theory (Born and Oppenheimer (1927); Born

and Huang (1954); Ballhausen and Hansen (1972); Mead (1988); Cederbaum (2004)) and its

application to multisurface problems with conical intersections (Herzberg and Longuet-Higgins

(1963); Longuet-Higgins (1975); Mead (1979, 1983); Thompson and Mead (1985); and Yarkony

(1996, 1997b,a); Gordon, Glezaku, and Yarkony (1998); Yarkony (2001); Adhikari and Billing

(2002); Kuppermann and Abrol (2002); Domcke (2004); Yarkony (2004b,a); Jasper et al.

(2006); Schuurman and Yarkony (2006); Faraji, Gómez-Carrasco, and Köppel (2012); Mat-

sika (2012); Yarkony (2012); Zhu and Yarkony (2016); Gonon et al. (2017); Kendrick (2018);

Fedorov and Levine (2019); Choi and Vanicek (2020); Bian et al. (2021); Wu and Subotnik

(2021)). An important role is played by diabatic bases (Smith (1969); Baer (1975); Thomp-son,

Truhlar, and Mead (1985); Pacher, Cederbaum, and Köppel (1988); Cederbaum, Schirmer, and

Meyer (1989); and Pacher et al. (1989); Pacher, Cederbaum, and Köppel (1993); Atchity and

Ruedenberg (1997); Matsunaga and Yarkony (1998); Thiel and Köppel (1999); Yarkony (1999,

2000); Abrol and Kuppermann (2002); Köppel (2004); Subotnik et al. (2008, 2009); Richings

and Worth (2015); Zhu and Yarkony (2015); Venghaus and Eisfeld (2016); Wang, Guan, and

Yarkony (2019); Richings and Habershon (2020); Littlejohn, Rawlinson, and Subot-nik (2022)).

Extensive attention is devoted to the derivative couplings, which are the components of a Mead-

Truhlar-Berry vector potential or connection, part of one of the two gauge theories that appear in

molecular Born-Oppenheimer theory (Mead and Truhlar (1979); Mead (1980b); Berry (1984);

Moody, Shapere, and Wilczek (1989); Bohm, Boya, and Kendrick (1991); and Bohm et al.

(1992); Bohm, Kendrick, and Loewe (1992); Mead (1992); Kendrick and Mead (1995);

3
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Kendrick, Mead, and Truhlar (2002); Child (2002); Kendrick (2004); Juanes-Marcos, Althorpe,

and Wrede (2005); Althorpe (2006, 2012); Wittig (2012); Choi and Vanicek (2021)). Finally, we

treat electron dynamics both in the electrostatic model and also when fine structure and electron

spin are important (Mead (1980a, 1987); Yarkony (1992); Koizumi and Sugano (1995); Schön

and Köppel (1998); and Matsika and Yarkony (2001, 2002b,a); Wu, Miao, and Subotnik (2020);

Sadovskii and Zhilinskii (2022)).

Our analysis requires a careful treatment of the phase and frame conventions of the electronic

basis states, both adiabatic and diabatic. We emphasize that the Born-Oppenheimer treatment is

not well defined without phase conventions. This analysis takes place within a context that

provides geometrical interpretations of our procedures and of the resulting formulas, and that

involves geometrical structures in the nuclear configuration space. These include the rotational

orbits or fibers, which are the surfaces upon which the orientation of the molecule changes but not

its shape, and the section, a kind of initial-value surface that cuts transversally through the fibers.

We use rotation operators for assigning phase and frame conventions when moving along the

rotational fibers, and other algorithms when moving transversally (along the section). This

distinction has appeared between the lines in existing literature but it has not been addressed

explicitly, as far as we know, nor has the geometrical context been brought to light.

In the case of fine-structure models with an odd number of electrons, the method of assigning

phase and frame conventions by means of rotation operators must be modified, in that an extra

spin rotation, applied to the two elements of a Kramers doublet (what we call “pseudo-spin”), is

necessary to create a single-valued set of basis states. This observation seems to be new, and it has

an important impact down the line on the form of the Born-Oppenheimer Hamiltonian and of

the angular momentum. The basic idea is this. If a molecule with an odd number of electrons is

subjected to a rigid rotation about some axis by 360◦, then the spatial part of the electronic

eigenfunctions returns to itself but the spin part suffers a change in sign. Therefore assigning

phase conventions purely by rotation operators introduces a discontinuity in the basis states. The

situation bears some similarity to the −1  phase shift that real electronic eigenfunctions suffer in

the electrostatic model when being continuously carried around a conical intersection. In that

case, Mead and Truhlar (1979) suggested introducing a complex phase factor (a U (1) rotation) to

smooth out the discontinuity. Similarly, in our case, we suggest introducing an extra spin rotation to

remove the discontinuity encountered when rotating the molecule by 360◦.

The establishment of phase and frame conventions leads to the derivation of a number of trans-

4
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formation laws of objects under rotations, including the electronic Hamiltonian, its matrix ele-

ments, the basis states and the derivative couplings. We have done this in several different models of

the electronic Hamiltonian. The resulting explicit formulas seem to be mostly new, although some

of them are quite clear intuitively and Yarkony (2001) has derived some closely related re-sults in

the case of nondegenerate, adiabatic basis states. Nevertheless, the careful derivation of these

results involves some subtleties, for example, some of the results are only valid under certain

circumstances which we specify. These transformation laws are necessary to establish the rela-

tionship among the various forms of angular momentum operators. We believe our transformation

laws for the derivative couplings are new; they are necessary for showing the invariance of the

Born-Oppenheimer Hamiltonians (in their various versions) under rotations.

In this article we wish to accommodate large amplitude motions, that is, ones in which the

nuclear displacements are of the order of an atomic unit or larger. Such motions occur in isomer-

ization, photoexcitation, scattering and other processes that are of current interest. Therefore we

require an understanding of angular momentum and its conservation that allows such motions and

that is not dependent on small-amplitude expansions about an equilibrium position.

Although the results presented below are most directly related to the determination of stationary

states, many of the lessons derived have implications for time-dependent quantum mechanical

simulations as well. There are also semiclassical implications with regards to surface hopping

calculations, as will be described in Sec. VIII .

In this article we do not consider the construction of kinetic energy operators in internal or shape

coordinates, but several of our results, such as the treatment of phase conventions of electronic ba-sis

states by means of rotation operators, the transformation laws of the derivative couplings under

rotations, and the derivation of the rotational components of the derivative couplings, are neces-

sary preliminaries for the construction of such operators when multiple surfaces, geometric phases,

and/or fine structure are important. The subject of kinetic energy operators is a large one; we just

mention Wang and Tucker Carrington (2000); Kendrick (2018), of which the latter reference is

notable for its treatment of multiple potential energy surfaces in scattering calculations.

In this article for simplicity we ignore nuclear spin, effectively treating the nuclei as spinless,

distinguishable particles.

We turn now to an outline of the paper. The purpose of Sec. I I  is to place some of the questions

raised by this paper into a simple context, as a way of making a hopefully painless introduction to

the subject before treating it in all generality. In addition, Sec. I I  establishes terminology and

5
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notation.

Section II  treats a polyatomic molecule in the electrostatic model for which motion on a single

potential energy surface is a good approximation. There are two descriptions of the dynamics,

one, the “molecular,” which explicitly incorporates the interactions of all the charged particles,

electrons and nuclei; and the other, the “Born-Oppenheimer,” in which the electron dynamics is

incorporated into the potential energy function. The Hamiltonian in the molecular representation

commutes with the total orbital angular momentum of the molecule, nuclear plus electronic, what

we write as Ln + Le , while the Hamiltonian in the Born-Oppenheimer representation commutes

with the nuclear orbital angular momentum Ln alone. These two conservation laws are presumably

equivalent somehow, but we may ask whether this equivalence is exact or only valid to some order in

the Born-Oppenheimer ordering parameter κ  =  (m/M)1/4 (Born and Oppenheimer (1927)). In

addition there is the question of the correlation between angular momentum quantum numbers in

the two representations.

Section II  presents an overview of the answers to these questions, first in the electrostatic

model and then generalizing to models that include fine structure and electron spin. Finally,

Sec. I I  presents an overview of the dressing transformation that block-diagonalizes the Born-

Oppenheimer Hamiltonian, and its effect on angular momentum operators.

After this overview the paper presents a more detailed and rigorous analysis of questions sur-

rounding angular momentum in Born-Oppenheimer theory. Although the problems addressed in

Sec. I I  concern motion on a single surface, the rest of the paper, starting with Sec. III, treats multi-

ple, strongly interacting surfaces; naturally, single-surface problems are covered as a special case.

Multi-surface problems require that diabatic bases be incorporated into the discussion of basis

states.

Sections III–V deal with the electrostatic model, presenting results that are later generalized

to various fine-structure models. Section III  treats phase and frame conventions for the electronic

basis states, a necessary topic since the form of operators in the Born-Oppenheimer representation

depends on these conventions. The subject of phase and frame conventions is not as well developed

in the literature as it might be, perhaps because in simple (single-surface, electrostatic) problems

the choice of a phase for the one electronic eigenstate of interest can be reduced to a ±  sign,

which seems trivial. It is not, actually, even in this case, but when degeneracies, multiple surfaces,

diabatic bases and spin are taken into account, phase and frame conventions become a more serious

matter.

6
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In Sec. IV, continuing with the electrostatic model, we consider the transformation properties

of the basis states under rotations. The basis states can be either adiabatic or diabatic. This leads to

a collection of transformation laws under rotations, including (47) for the electronic Hamiltonian,

(56) for the basis states and (70) for the derivative couplings. An important consequence of these

is (62), which says that the electronic basis functions, with our phase conventions, are invariant

under simultaneous rotations of the electronic and nuclear coordinates. In the context of nonde-

generate, adiabatic basis states this formula is only a small step away from the results of Yarkony

(2001), but the formula is notable for its simplicity and in our treatment it incorporates degenera-

cies and diabatic bases (and later it is generalized to include spin). This formula is consequential,

being important in the establishment of the equivalence of various representations of the angular

momentum.

In Sec. V  we provide careful definitions of what we call the “molecular representation” and the

“Born-Oppenheimer representation” of molecular dynamics, which have been mentioned previ-

ously. We discuss the invertible mapping between these two and the corresponding map between

linear operators in the two representations. Several operators are considered, including the Hamil-

tonian and the angular momentum. As far as the latter is concerned, we are able to show, using

(62), that Ln + Le  in the molecular representation is exactly equivalent to Ln alone in the Born-

Oppenheimer representation, that is, in the Born-Oppenheimer representation, the operator that

looks like the nuclear orbital angular momentum actually includes the electronic orbital angular

momentum.

In Sec. V I  we cover the same territory as in Sections III–V but with the fine-structure model for

the electronic Hamiltonian. The cases of even and odd numbers of electrons are treated sepa-rately.

The case of an even number of electrons is broadly similar to the electrostatic model, with some

notable differences such as the fact that the nominal, nuclear orbital angular momentum Ln in the

Born-Oppenheimer representation now includes, from a physical standpoint, not only the

electronic orbital angular momentum but also the electron spin. The case of an odd number of elec-

trons presents many new features, such as the extra spin rotation required in the phase conventions

for the basis states (see (116)) in order to make the basis single-valued.

In Sec. V I I  we provide a more detailed treatment of the dressing transformation that removes

off-block-diagonal terms in the Born-Oppenheimer Hamiltonian. A  principal conclusion is that

the dressing transformation does not change the form of angular momentum operators. This holds to

all orders of the Born-Oppenheimer perturbation parameter κ .

7
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X 3       · · · X N − 1

x

X 2

X 1

FIG. 1. The nuclear configuration space in the center-of-mass frame is R3N−3 , where N is the number of

nuclei. This space is indicated schematically by the axes labeled Xα , α =  1, . . . ,N − 1.  The notation x

stands for a point of configuration space, or, equivalently, the coordinates (X1, . . . , XN−1) of that point.

Finally, in Sec. VIII ,  we present some conclusions.

II. OVERVIEW OF MAIN RESULTS IN A SIMPLE CONTEXT

In this section we discuss the equivalence of different angular momentum operators in a simple

context, in order to highlight the issues before getting into a detailed or general analysis. We also

establish some notation.

A. Nuclear Configuration Space

We assume our molecule has N ≥  3 nuclei. To describe the configuration of the nuclei in the

center-of-mass frame we require N − 1 translationally invariant vectors, Xα , α =  1, . . . , N − 1, the

components of which are coordinates on the nuclear configuration space. Each component ranges

from −∞  to +∞ ,  so the nuclear configuration space is R3N−3 . This is the parameter space for the

electronic Hamiltonian; it is topologically trivial. For brevity we denote the nuclear coordinates

collectively by x, so that

x =  (X1, . . . , XN−1). (1)

We also use the symbol x to stand geometrically for a point of the nuclear configuration space, as

illustrated in Fig. 1.

We choose the vectors Xα to be Jacobi vectors (Delves (1960); Aquilanti and Cavalli (1986);

8
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Gatti et al. (1998)), which cause the nuclear kinetic energy Kn to be diagonal,

N−1 2
Kn =  

α =1 2Mα 
, (2)

where Pα , α = 1, . . . , N −1 are the momenta conjugate to Jacobi vectors Xα , and where the Mα > 0

are reduced nuclear masses.

B. Molecular and Electronic Hamiltonians

We write the Hamiltonian for the molecule as

N−1 2
Hmol = + He(x; r, p, S), (3)

α =1

where He =  He(x) =  He(x; r, p, S) is the electronic Hamiltonian and where r  =  (r1, . . . , rNe ), p =

(p1, . . . ,pNe), and S =  (S1, . . . , SNe) are the electron positions, momenta and spins, respectively.

Here Ne is the number of electrons, the electron positions ri , i =  1, . . . ,Ne, are measured relative to

the nuclear center of mass, and the electron momenta pi are conjugate to the positions ri . The

parametric dependence of the electronic Hamiltonian on the nuclear configuration x is set off by a

semicolon from the electronic operators (r, p, S) upon which it depends.

The molecular Hamiltonian Hmol depends on both nuclear and electronic operators,

Hmol =  Hmol(X, P, r,p, S), (4)

where X =  (X1, . . . , XN−1) and P =  (P1, . . . , PN−1). The notation X is essentially the same as x, the

only difference being one of emphasis (X being used for the Jacobi vectors upon which Hmol or a

wave function depends, while x stands either for those vectors or a point of nuclear configuration

space).

C. Models of the Electronic Hamiltonian

We consider the electronic Hamiltonian in various models. The most basic is the electrostatic,

for which the electronic Hamiltonian is

He(x; r, p) =  
i

N

=

e

1 

pi 

e 
+

i ,

N

j=

e  

1 

pi · p

n

j + VCoul (X, r), (5)

9
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where me is the electron mass, Mn is the total nuclear mass and where the potential VCoul contains all

the Coulomb interactions among all the particles (electrons and nuclei). The second major term is

the mass-polarization term, which is due to the fact that the nuclear center of mass, to which the

electron coordinates ri are referred, is not fixed in an inertial frame. In the electrostatic model the

electronic Hamiltonian He =  He(x; r, p) is independent of the electron spin, and so can be regarded as

an operator acting on the space of purely spatial electronic wave functions φ (r), that is, with no

dependence on spin quantum numbers m.

Other models are obtained by adding fine structure terms to (5) (Bethe and Salpeter (1957);

Howard and Moss (1970); Yarkony (1992); Hess and Marian (2000)). In the resulting fine

structure models the electronic Hamiltonian He =  He(x; r, p, S) does depend on the spin and the

electronic wave function φ (r, m) depends on the electron spin quantum numbers,

m =  (m1, . . . , mNe), (6)

where mi =  ±1/2, i =  1, . . . ,Ne. There is some latitude in how relativistic corrections are treated,

but in fact the only assumptions we shall make about the fine structure model are the symmetries of

the electronic Hamiltonian, which apply in all cases.

In the following we use the symbol φ for a purely electronic wave function (that is, φ (r) in the

electrostatic model or φ (r, m) if electron spin is included); ψ for a purely nuclear wave function

(that is, ψ (X)); and Ψ for a molecular wave function (that is, Ψ(X, r) in the electrostatic model or

Ψ(X, r, m) if electron spin is included).

D. Two Conservation Laws

We now pose a set of questions regarding angular momentum conservation in Born-Oppenheimer

theory. For simplicity we do this initially in the electrostatic model, generalizing later (in Sec. II G)

to the fine structure model. Also, for simplicity, we present our questions in the context of mo-

tion on a single potential energy surface, generalizing later (starting in Sec. III) to multisurface

problems.

Suppose we wish to find energy eigenfunctions for the whole molecule, that is, wave functions

Ψ(X, r) such that

Hmol(X, P, r, p)Ψ(X, r) =  E Ψ(X, r),

either bound or unbound (see, for example, Cafiero and Adamowicz (2004)).

(7)

The molecular

10
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Hamiltonian in the electrostatic model (5) commutes with the total orbital angular momentum

of the molecule,
N−1 Ne

L =  Ln + Le  = Xα × Pα  + ri × p i , (8)
α =1                            i=1

which we have broken into the nuclear and electronic contributions. It does not commute with Ln or

Le separately. Therefore it is possible to organize the energy eigenfunctions (by forming linear

combinations of degenerate energy eigenfunctions, if necessary) to be also eigenfunctions of the

operators L2 and Lz.

Instead of (7) one often solves the Born-Oppenheimer version of the Schrödinger equation,

HBO(X, P)ψ (X) =  E ψ (X), (9)

where ψ =  ψ (X) is a function of the nuclear coordinates alone. The Born-Oppenheimer version

of the Hamiltonian is
N−1 2

HBO(X, P) = + εk (X), (10)
α =1

where εk (X) =  εk(x) is the k-th eigenvalue of He(x). This Hamiltonian describes motion on a

single potential energy surface k; in practice this is often the ground state. The Born-Oppenheimer

Hamiltonian (10) is like the molecular one (3) except that the electronic Hamiltonian He(x) has

been replaced by one of its eigenvalues εk(x).

The Born-Oppenheimer Hamiltonian (10) commutes with the nuclear orbital angular momen-

tum,
N−1

Ln = Xα × Pα , (11)
α =1

because the electronic eigenvalues are invariant under rotations,

εk (x) =  εk(Rx), �R � SO(3), (12)

where Rx indicates a rigid rotation of the nuclei about the center of mass,

Rx =  R(X1, . . . , XN−1) =  (RX1, . . . , RXN−1). (13)

This is because the electronic eigenvalues do not change if the nuclei are subjected to a rigid

rotation, that is, one that changes the orientation of the nuclei but not their shape.

Therefore the energy eigenfunctions ψ (X) of (9) can be organized (by forming linear combi-

nations of degenerate eigenfunctions, if necessary) to be simultaneous eigenfunctions of energy, Ln

and Lnz, the latter of which refer to the nuclear orbital angular momentum Ln.

11
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E. Questions About the Two Conservation Laws

Thus it would appear that the Born-Oppenheimer approximation has replaced one exact conser-

vation law (that of L =  Ln + Le ) with another (that of just Ln). This leads us to ask, are these con-

servation laws just approximate versions of one another, or are they somehow exactly equivalent?

And how does this come about in detail? There is also the question of the physical interpretation of

the solutions of the Born-Oppenheimer equation (9). If we find such a solution ψ (X) that is an

eigenfunction of energy, Ln and Lnz with quantum numbers (E , l, ml), then presumably (as is

standard in Born-Oppenheimer theory) the corresponding solution of (7) will be approximately

Ψ(X, r) =  ψ (X)φk(X; r), (14)

where φk(X; r) is the k-th energy eigenfunction of the electronic Hamiltonian He(x). Is this Ψ then an

eigenfunction of L2 and Lz (which refer to the total orbital angular momentum, L =  Ln + Le )? If so,

is it exactly so or only to some order of the Born-Oppenheimer expansion? And are the

angular momentum quantum numbers of the solution Ψ(X, r) the same as those of ψ (X), what we

have called (l, ml ), even though the operators appear to be different?

Finally, how do the answers to these questions change when fine structure effects are included

or when multiple potential energy surfaces are strongly coupled?

F. Overview of Some Answers in the Electrostatic Model

It is convenient to introduce ket language for the eigenfunctions φk(X; r) of the electronic

Hamiltonian He(x) in the electrostatic model. We denote these eigenkets by |x;ki, so that

He(x) |x; ki =  εk(x) |x; ki, (15)

and so that the relation between the kets and wave functions is given by

φk(X; r) =  hr|x;ki. (16)

We must also address the derivative couplings, which are defined by

Fα ;kl (x) =  hx;k|�α|x; li, (17)

where �α =  ∂ /∂Xα . If we write simply Fα (x), we refer to the infinite-dimensional matrix (really

a 3-vector of matrices for each value of α) whose kl-th component is Fα ;kl (x). It follows from the

12
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orthonormality of the basis, hx;k|x; li =  δkl , that the matrix Fα is anti-Hermitian,

Fα;kl =  −Fα ;lk . (18)

The questions posed can only be answered relative to the phase conventions for the electronic

eigenstates |x;ki. In the electrostatic model we will require that the energy eigenfunctions φk(X; r)

be real, that is, invariant under time reversal. This reduces the phase convention to a choice of a ±

sign, a subject that we address more carefully in Sec. III. The reality of the basis functions means

that the derivative couplings Fα;kl are real, which, combined with (18), implies that the matrix Fα is

real and antisymmetric. This in turn implies that the derivative couplings vanish on the diagonal,

Fα;kk =  0, which is why those couplings do not appear in our single-surface, Born-Oppenheimer

version (10) of the Hamiltonian.

To answer one of our questions in the electrostatic model, it turns out that the two conservation

laws are exactly equivalent to one another. We can state the matter by recalling that in quantum

mechanics, physical observables are represented by linear operators, but the linear operator rep-

resenting a given physical observable depends on the representation of the quantum states. If the

physical observable is the total orbital angular momentum of the molecule, nuclear plus electronic,

then, when acting on molecular wave functions Ψ(X, r), the linear operator is L =  Ln + Le , as in

(8). But when acting on wave functions ψ (X) in the Born-Oppenheimer representation, the same

physical observable is represented by Ln alone. Thus, what appears to be the nuclear orbital angu-lar

momentum, when acting on ψ (X), actually includes physically the electronic orbital angular

momentum. We emphasize that this is exact.

To answer another of our questions, suppose that ψ (X) is a solution of (9), a simultaneous

eigenfunction of (HBO, Ln, Lnz) with quantum numbers (E , l, ml). Also, let Ψ(X, r) be defined by

(14). Then it turns out that Ψ is automatically an eigenfunction of (L2, Lz) with the same quantum

numbers (l, ml); and this is exact. (It is, however, only approximately an eigenfunction of the

molecular Hamiltonian Hmol.)

One may wonder how we can claim something is exact when the Born-Oppenheimer approxi-

mation is only an approximation. The brief answer is that the Born-Oppenheimer approximation

approximates the Hamiltonian but not the angular momentum. A  more sophisticated point of view, in

which the Born-Oppenheimer approximation is replaced by a sequence of unitary transforma-

tions, will be discussed in Sec. II H and in greater detail in Sec. VII.

13
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G. Answers in the Fine Structure Model

When fine structure effects are included these results generalize in interesting ways. Time

reversal plays an important role in this case (see, for example, Mead (1979)). Time reversal T is

an antiunitary operator that acts on electronic wave functions φ (r, m) according to (A2) or (A4). It

commutes with the electronic Hamiltonian,

T †He(x)T =  He(x),

since our molecule is isolated and not interacting with external fields.

reversal that we will need are summarized in Appendix A.

(19)

The properties of time

In the fine structure model the electronic and molecular Hamiltonians depend on electron spin

S, and the molecular Schrödinger equation (7) of the electrostatic model must be replaced by

Hmol(X, P, r, p, S)Ψ(X, r, m) =  E Ψ(X, r, m), (20)

where now the molecular wave function Ψ(X, r, m) depends on the electron spin quantum numbers

m. The molecular Hamiltonian no longer commutes with L but it does commute with the total

angular momentum of the molecule,

N−1 Ne Ne

J  =  L + S =  Ln + Le  + S  = Xα × Pα  + ri × p i  + Si, (21)
α =1                            i=1                      i=1

that is, including the electron spin. This is one exact conservation law in the case of the fine

structure model. Now energy eigenfunctions of the molecule, Ψ(X, r, m), solutions of (20), can be

organized to be also eigenfunctions of J2 and Jz.

1. Even Number of Electrons

We treat first the case of an even number of electrons. We denote the electronic energy eigen-

states in ket language as |x;ki, as in the electrostatic model, so that (15) is still valid, but the

electronic eigenfunctions (16) must be replaced by

φk(X; r, m) =  hr,m|x;ki, (22)

that is, with an m-dependence. We choose the eigenstates |x;ki to be invariant under time reversal,

T|x;ki =  |x;ki (23)

14
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(see Sec. A 2 for a proof that this can be done). In the case of a nondegenerate energy level this is a

matter of a phase convention, which is determined to within a ±  sign, as in the electrostatic model.

For a single-surface problem, as here, the relevant level is nondegenerate.

The condition (23) is enough to make the derivative couplings vanish on the diagonal, as in the

electrostatic model, so the Born-Oppenheimer Hamiltonian is still given by (10), that is, with no

derivative couplings. The only difference is that the electronic eigenvalue εk (x) now includes fine

structure contributions. This Hamiltonian still commutes with Ln, the nominal, nuclear orbital

angular momentum (see (11)). Also, the Born-Oppenheimer wave function is still ψ (X).

Now the operator representing the total angular momentum of the molecule, nuclear orbital,

electronic orbital, and electronic spin, when acting on molecular wave functions Ψ(X, r, m), is J,

given by (21); while the operator representing the same physical observable, when acting on Born-

Oppenheimer wave functions ψ (X), is Ln alone, given by (11); and this is exact. In other words,

Ln, when acting on Born-Oppenheimer wave functions ψ (X) in the fine structure model with Ne

=  even, includes physically the electronic angular momentum, both orbital and spin.

In addition, suppose we solve the Born-Oppenheimer version of the Schrödinger equation (9)

for a wave function ψ (X) that is a simultaneous eigenfunction of energy, Ln and Lnz with quantum

numbers (E , l, ml ), and then we define a molecular wave function by

Ψ(X, r, m) =  ψ (X)φk(X; r, m), (24)

a generalization of (14), where k is the surface in question. Then Ψ(X, r, m) is exactly an eigen-

function of J2 and Jz with the same quantum numbers (l, ml), and approximately an eigenfunction of

energy. Notice that with an even number of electrons the quantum number of J2 must be an

integer, as is the quantum number l of the nuclear orbital angular momentum Ln (otherwise our

statements would not make sense).

2. Odd Number of Electrons

In the fine structure model with an odd number of electrons the electronic energy eigenstates

are Kramers doublets (Messiah (1966)), that is, they come in pairs |x;kμ i, μ =  1,2, such that

He(x)|x; kμ i =  εk(x)|x; kμ i, (25)

in which the energy εk(x) does not depend on μ . We shall think of a Kramers doublet as cor-

responding to a single potential energy surface, so that k labels the surfaces and each surface

15
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corresponds to two degenerate levels. For now for simplicity we treat the problem of a single

surface. This is realistic, for example, when fine structure effects are added to a system in a spin

doublet state.

Since He(x) commutes with time reversal it is possible to choose the eigenstates |x;kμ i so that

T |x;k1i =  |x;k2i, T |x;k2i =  −|x; k1i, or, equivalently,

T |x;kμ i =  ∑|x; kν i τνμ , (26)
ν

where τ is given by (A3), as we shall do. Such a basis is said to be quaternionic (see Sec. A 3 a). To

say that the basis is quaternionic only determines that basis to within an SU (2) transformation

(Mead (1987)). We choose the basis so that it transforms under rotations according to (116).

The electronic energy eigenfunction corresponding to |x;kμ i now has a double index,

φkμ (X; r, m) =  hr,m|x;kμ i, (27)

which replaces (22). The Born-Oppenheimer wave function ψkμ (X) carries the same double index,

and the molecular wave function is given by

Ψ(X, r, m) =  ∑ψkμ (X)φkμ (X; r, m), (28)
μ

that is, with a sum over μ . There is no sum on k because we are working on a single surface.

In the fine structure model with Ne =  odd the Born-Oppenheimer Hamiltonian contains deriva-

tive couplings, even for a single surface, because there is always more than one level (two, for a

single surface). Now the derivative couplings also carry doubled indices,

Fα ;kμ ,lν (x) =  hx;kμ|�α|x;lνi, (29)

which we can break up into minor, 2 × 2 matrices as in Sec. A 3 a. That is, in the context of an odd

number of electrons, when we write Fα;kl we mean the minor (2 × 2) matrix whose (μν ) com-

ponent is Fα;kμ ,lν . Because of the orthonormality relations, hx;kμ|x; lνi =  δkl δμν , the derivative

couplings satisfy

Fα;kμ,lν =  −Fα ;lν ;kμ , (30)

a generalization of (18), which in the language of minor matrices becomes

Fα;kl =  −(Fα ;l k )† . (31)

16
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As for the Born-Oppenheimer Hamiltonian, a standard way of deriving it is to project the

molecular Hamiltonian onto a subspace of chosen energy levels (Yarkony (1996); Cederbaum

(2004)), which in this case is the subspace spanned by |x;kμ i for fixed k and μ =  1,2. Doing this

we obtain the Born-Oppenheimer version of the Schrödinger equation,
2 hN−1

Pα δμν − 2ih Fα ;kμ ,kν · Pα − h  Gα;kμ,kν
ν=1 α=1 i

+ εk (X) δμν ψkν (X) =  E ψkμ (X), (32)

which replaces (9) and (10) in the electrostatic model. Here we define

Gα;kμ,lν =  hx;kμ|�α|x;lνi, (33)

which gives us minor matrices Gα;kl (and note that only the diagonal elements k =  l of F and G

appear in the Hamiltonian in (32)). This notation is close to that used by Cederbaum (2004) in the

electrostatic model.

Since the operators �α and �α commute with T , the minor matrices Fα;kl and Gα;kl are quater-

nions (see (A18); �α and �α are not linear operators in the usual sense but the proof goes through just

the same). In the language of quaternions (31) becomes

Fα;kl =  −Fα ;lk . (34)

For our single-surface problem we need only the diagonal elements (k =  l ) of the derivative cou-

plings, which satisfy Fα;kk =  −Fα ;kk , that is, they are quaternions whose real part (the a-part of

(B1)) vanishes. We see that the derivative couplings for a single surface in the case of an odd

number of electrons can be written as a purely imaginary, linear combination of the Pauli matrices

(see also Mead (1987)).

We write the i-th component of Fα , for i =  1,2,3, as Fα , and then define coefficients Ajiα;kk by

iα;kk =  −  
i 
∑ σ j  A jiα;kk, (35)
j=1

where σ j are the Pauli matrices. In this formula we have split off a factor of − i  as in the b-part of

(B1), which makes the coefficients A jiα;kk real, and introduced a factor of 1/2 for convenience.

The Born-Oppenheimer wave function ψkμ for fixed k and μ = 1, 2 looks like the wave function

of a pseudo-particle with spin 1/2, moving on a multidimensional potential energy surface given

by εk(x). We define the pseudo-spin operator,

K =  
2
σ , (36)

17
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so that the Born-Oppenheimer Hamiltonian can be written as

N−1
HBO = (Pα − 2K · Aα ;kk · Pα − h  Gα ;kk ) + εk(X), (37)

α =1

where Aα;kk is a real, 3 × 3  tensor whose ji-component is Ajiα;kk. This is written in the style

common with the Pauli equation, in which all operators are understood to be 2 × 2 matrices, and

scalars are understood to be multiplied by the unit matrix.

Now we can state the main result. The total, physical angular momentum of the molecule,

nuclear orbital, electronic orbital plus electronic spin, is represented by the operator J  (see (21))

when acting on molecular wave functions Ψ(X, r, m); and it is represented by I, defined by

I =  Ln + K ,

when acting on Born-Oppenheimer wave functions ψkμ (X).

(38)

The latter is the nominal, nuclear

orbital angular momentum plus the pseudo-spin; and this result is exact.

The angular momentum I commutes with the Born-Oppenheimer Hamiltonian (37). We defer

the proof of this since it involves the transformation properties of the derivative couplings under

rotations, a topic that we take up in Sec. VI B 5. But it means that when we solve the Born-

Oppenheimer version of the Schrödinger equation in the case of an odd number of electrons, we

can organize the energy eigenfunctions to be also eigenfunctions of the operators I2 and Iz, with

(say) quantum numbers (i, mi). If we then define a molecular wave function by (28), it turns out be

an exact eigenfunction of J2 and Jz with the same quantum numbers (i, mi). Notice that both I and J

are half-integral (otherwise our statements would not make sense).

H. Dressed Variables

In this article we are drawing a distinction between what we are calling the molecular repre-

sentation of wave functions and the Born-Oppenheimer representation (for example, in the case of

the electrostatic model, this means wave functions Ψ(X, r) and ψ (X), respectively). Cederbaum

(2004) has referred what we call the Born-Oppenheimer representation as a “dressed” represen-

tation. The notion of dressing has been used in a different sense by Martinazzo and Burghardt

(2022), in connection with electronic friction. We prefer to reserve the term “dressed” for rep-

resentations that are obtained from the Born-Oppenheimer representation by a sequence of uni-

tary transformations, the purpose of which is to remove the off-diagonal terms in the molecular

18
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Hamiltonian. These unitary transformations take the place of what is usually called the “Born-

Oppenheimer approximation,” which means simply neglecting those terms on the grounds that

they are small.

If we take the point of view that the Born-Oppenheimer version of the Schrödinger equation

(for example, (9) and (10) or (32)) is obtained, not by throwing away terms that couple the various

levels, but by transforming them away, then the operators that appear in the Born-Oppenheimer

Hamiltonian must be interpreted as dressed variables. In particular, the operator Xα no longer

represents a Jacobi vector of the nuclei, but rather it has higher order corrections in the Born-

Oppenheimer parameter κ . Another consequence is that |ψ(X)|2 no longer represents the proba-

bility distribution of the nuclei in nuclear configuration space, not exactly, anyway, since there are

higher order corrections in κ . Similar statements can be made about the electric current. Such dis-

tinctions can be important in the analysis of matrix elements involved in radiative transitions (see,

for example, Mead and Moscowitz (1967); Scherrer et al. (2015); Schaupp and Engel (2020)).

These unitary transformations, which diagonalize the molecular Hamiltonian leaving Born-

Oppenheimer Hamiltonians for the various surfaces on the diagonal, then create an infinite se-

quence of dressed representations, as the off-diagonal coupling terms are removed order by order.

The question then arises as to what happens to our exact representations of angular momentum

operators as the variables are dressed.

The answer is that nothing happens to them, for example, in the electrostatic model the total

orbital angular momentum of the molecule, nuclear plus electronic, is represented in each of these

dressed representations by the same linear operator Ln given by (11), and this is exact. This is

because the generators of the unitary transformations that carry out the diagonalization are scalars,

and commute with Ln, and therefore so do the unitary transformations themselves. The dressing of

Ln just reproduces Ln. Similar statements hold in the fine structure models.

This concludes the overview of our main results. We turn now to a more detailed development.

III. PHASE AND FRAME CONVENTIONS OF ELECTRONIC BASIS STATES

Energy eigenstates are only determined to within a phase (when nondegenerate) or to within

an orthonormal frame in the eigenspace (when degenerate), and these must be carefully specified

as our main results depend on them. Notice that a frame in a one-dimensional space is the same

as a phase, so phase and frame conventions are the same thing. Similar issues apply to other basis

19
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states (diabatic, etc.) that are not energy eigenstates. In this section we explain how phase and

frame conventions are related to the geometry of orientation and shape in configuration space. We

work in the electrostatic model, deferring fine structure effects until Sec. VI.  For generality we

treat multisurface problems, which include single surface problems as a special case.

A. Electronic Rotation Operators and the Electronic Hamiltonian

See Appendix C  for basic facts about the rotation groups SO(3) and SU (2). Electronic orbital

rotation operators, denoted Ueo(R), are parameterized by rotations R � SO(3) and are defined by

their action on electronic wave functions,
 
Ueo(R)φ (r) =  φ

 
R−1 r, (39)

where R−1 r means (R−1r1, . . . , R−1rNe ). We also write Ueo(n,θ ) = Ueo
 
R(n,θ )

 
for these opera-

tors in axis-angle form. They are given in terms of their generators by

Ueo(n,θ ) =  exp −
¯  
θn · Le . (40)

It follows from (39) that the operators Ueo(R) form a representation of SO(3),

Ueo(R1)Ueo(R2) = Ueo(R1R2). (41)

The electrostatic, electronic Hamiltonian He(x) =  He(x; r, p), given by (5), is a function of the

dot products of the vectors Xα , ri and pi, and is therefore invariant if each of these is rotated by the

same rotation,

He(x; r, p) =  He(Rx; Rr, Rp), �R � SO(3), (42)

where Rx is given by (13) and where

Rr =  R(r1, . . . , rNe ) =  (Rr1, . . . , RrNe ), (43)

Rp =  R(p1, . . . ,pNe) =  (Rp1, . . . , RpNe), (44)

Equation (42) is a statement about the functional form of the electronic Hamiltonian in the elec-

trostatic model.

On the other hand, the electronic position and momentum operators transform under conjuga-

tion by rotations according to

Ueo(R) ri Ueo(R)† =  R−1ri , Ueo(R) piUeo(R)† =  R−1pi , (45)

20
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X 3       · · · X N − 1 F

x ′  =  R x
R

x

X 2

X 1

FIG. 2. A  proper rotation R acts on a point x of nuclear configuration space and maps it to x′ =  Rx. The set

F of all such points x′ swept out as R runs over SO(3) is the orbit of x under the action of SO(3). If x is

noncollinear, F is a fiber in the rotational fiber bundle.

which is a statement that ri and pi are vector operators (Messiah (1966); Varshalovich, Moskalev,

and Khersonskii (1988)). Therefore

Ueo(R) He(x; r, p)Ueo(R)† =  He
 
x; R−1r, R−1p

 
=  He(Rx; r, p), (46)

where in the first step the conjugation does nothing to the parameters x which are just c-numbers as

far as the rotation operators Ueo(R) are concerned, and where in the second step we have multiplied

all arguments by R, which according to (42) does not change the answer. Now simplifying the

notation by making the replacement He(x; r, p) → He(x), we can summarize the result by writing

Ueo(R) He(x)Ueo(R)† =  He(Rx). (47)

This is the transformation law for the electrostatic, electronic Hamiltonian under proper rotations.

B. Rotational Orbits and Fibers

The formula (47) has a geometrical interpretation in the nuclear configuration space, which

is illustrated in Fig. 2. Given a configuration x as illustrated, the rotated configuration x′ =  Rx

is one with the same shape as x but a different orientation. Equation (47) relates the electronic

Hamiltonians at the original point x and the rotated point x′.

Figure 2 calls attention to the surface F , which is the set swept out by x′ =  Rx for fixed x as R

runs over SO(3). This is otherwise the orbit of x under the action of SO(3) on the nuclear config-

uration space. It is the set of all configurations of the same shape as x but different orientations.
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X 3       · · · X N − 1 F1 F2 F3

x2

x1
x3

X 2

X 1

FIG. 3. The action of rotations R � SO(3) on nuclear configuration space decomposes that space into a

disjoint set of orbits.

Other configurations of different shapes have their own orbits, as illustrated in Fig. 3. Two

configurations x, x′ belong to the same orbit if and only if there exists R � SO(3) such that x′ =  Rx.

Configurations such as x1, x2 and x3 in Fig. 3, which do not belong to the same orbit, have different

shapes. The action of SO(3) decomposes nuclear configuration space R3N −3 into a disjoint set of

orbits, each with its own shape.

The orbits F or F illustrated in Figs. 2 and 3 are drawn as if they were one-dimensional, but

actually their dimensionality is either 0, 2 or 3. If the configuration is the N-body collision, in

which all nuclei are on top of one another, then rotations do nothing to the configuration and the

orbit consists of a single point, a zero-dimensional set. If the configuration is collinear but not the N-

body collision, then the orientation is specified by a unit vector along the line of collinearity and

the orbit is diffeomorphic (see Appendix C) to the 2-sphere S2, the space of such unit vectors.

Finally, if the configuration is noncollinear, then the orbit is diffeomorphic to SO(3) which in turn is

diffeomorphic to RP3 (see Appendix C). This is because two noncollinear configurations of the

same shape are related by a unique R � SO(3).

In polyatomic molecules most configurations are noncollinear (they form a subset of full di-

mensionality, that is, 3N − 3), while the collinear configurations (and the N-body collision, which

we count as collinear) form a subset of measure zero. In this article we ignore the collinear con-

figurations, and work only in regions where all configurations are noncollinear. We do this for

simplicity; the collinear configurations are the setting for the Renner-Teller effect (with an exten-

sive literature, including Peric and Peyerimhoff (2002); Jungen (2019); Gamallo, González, and

Petrongolo (2021)), which is outside the scope of this article. For the same reason we restrict
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consideration to polyatomic molecules; all diatomics are collinear, and in some ways are more

complicated than polyatomics.

Thus, in the noncollinear subset of nuclear configuration space all orbits are 3-dimensional.

This subset is decomposed by rotations into a (3N − 6)-parameter family of 3-dimensional orbits,

each of which is diffeomorphic to SO(3). This gives this subset the structure of a principal fiber

bundle (Nakahara (2003); Frankel (1997)), in which the fibers are the rotational orbits. For the

noncollinear shapes, the fibers and the rotational orbits are the same thing; in this article we shall

usually refer to them as the “rotational fibers.”

C. The Strongly Coupled Subspace

A  pair of adjacent electronic energy levels is considered strongly coupled if the corresponding

energy eigenvalues are degenerate or nearly degenerate. This statement is made more quantitative in

Sec. VII.  We consider a region of nuclear configuration space in which a chosen subset I of Nl

adjacent energy levels,

I =  {k0, . . . , k0 + Nl − 1 } , (48)

is not strongly coupled to levels outside of the set I, that is, level k0 is not strongly coupled to

level k0 −  1 and level k0 +  Nl −  1 is not strongly coupled to level k0 +  Nl . (Note that if k0 is the

ground state, then there is no level k0 −  1.) Since the energy levels are a function of the nuclear

configuration x, these conditions can normally hold only over some region of the nuclear

configuration space.

Levels within the set I, however, are allowed to be strongly coupled among themselves, at least

somewhere in the region in question. These are the conditions that allow a theoretical treatment of

the levels k � I in isolation from the levels k �/ I. In other words, degeneracies or near degeneracies

that cross the boundaries of I are not allowed, while internal degeneracies or near degeneracies,

those that take place among the levels k � I, are allowed.

As a special case, in a single-surface problem, Nl =  1 and I contains the single level k0. Then

internal degeneracies do not occur, and the condition on the region is that k0 is not degenerate or

nearly degenerate with levels k0 ± 1.

These restrictions on the region may cause it to be topologically nontrivial, either not simply

connected or noncontractible, which has implications for the existence of smooth fields of frames.

We define the strongly coupled subspace S  (x) as the subspace of the electronic Hilbert space

23
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spanned by energy eigenstates for k � I, and we denote the complementary, orthogonal subspace

by S  �(x).

D. The Adiabatic Basis

It is customary to call the energy eigenbasis the “adiabatic basis” but for reasons discussed

in Littlejohn, Rawlinson, and Subotnik (2022) we prefer not to work with energy eigenstates for

k �/ I. Therefore we define a set of basis states |ax;ki that are energy eigenstates when k � I, while

for k �/ I we simply require the states |ax;ki to form a discrete, orthonormal set that spans S  �(x).

We will call the set {|ax; ki} for all k the “adiabatic basis” (hence the a), but we must remember

that these are energy eigenstates only for k � I.

In addition, we require the basis states to be invariant under time-reversal, T |ax;ki =  |ax;ki.

In the electrostatic model, this just means that the wave functions corresponding to |ax;ki are real

(see (A1)). The energy eigenspaces for k � I are T -invariant, as is S  (x), the sum of such spaces,

as is S  �(x), the orthogonal space (see Appendix A). According to Sec. A 2, this guarantees the

existence of a T -invariant basis |ax;ki. A  simpler argument that works in the electrostatic model

is that a real Hamiltonian has real eigenfunctions, but the argument as given generalizes to cases

involving spin.

The freedom in phase and frame conventions that remains after time-reversal invariance is

imposed is the following. For k � I, nondegenerate energy eigenstates |ax;ki are determined to

within a ±  sign; for n-fold degeneracies inside the strongly coupled subspace the choices are

labeled by elements of the orthogonal group O(n); and for k �/ I the choices are labeled by the

infinite-dimensional orthogonal group. (Note that in the case n =  1, that is, the nondegenerate

case, the group O(1) consists of two matrices, (1) and (−1),  containing the relevant ±  sign.)

Some such choice can be made at each point x of nuclear configuration space, and is implied

in the use of the notation |ax;ki. We must ask whether these choices can be made in a smooth

manner as x is varied, because discontinuities in the basis produce divergences in the derivative

couplings, which appear in the Hamiltonian. In addition, perturbation theory generates derivatives

of the basis states that must be defined and that must have magnitudes that are under control. This

question can be decomposed into what happens when we vary the just the orientation, holding the

shape fixed, and what happens when we vary the shape as well.
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E. How Phase Conventions Depend on Orientation

Let x0 be a noncollinear configuration and let us choose definite phase and frame conventions

for the basis vectors |ax0;ki, which we assume are T -invariant. Thus we have the adiabatic basis

|ax0;ki at the one point x0.

Now let x =  Rx0 for some R � SO(3), so that x has the same shape but a different orientation

from x0, and define |bi =  Ueo(R)|ax0; ki. We note first that since time reversal commutes with

rotations, T|bi =  |bi. Next, if k � I, then

He(x)|bi = Ueo(R) He(x0)Ueo(R)†Ueo(R) |ax0; ki

= Ueo(R) εk(x0) |ax0; ki =  εk(x0) |bi, (49)

where in the first step we use (47). Thus, Ueo(R) maps energy eigenstates at x0 into those at x =

Rx0, without changing the eigenvalues. More generally, since Ueo(R) is unitary, it maps or-

thonormal eigenbases inside eigenspaces (degenerate or not) at x0 into other such bases at x. The

fact that the eigenvalues do not change means that they are invariant under rotations, as already

noted (see (12)). As for the vectors k �/ I, Ueo(R) maps the orthonormal, T -invariant frame in S
�(x0) into another such frame in S  �(x).

We can think of x0 as an initial condition on the fiber passing through x0. Since x0 is non-

collinear, if x lies on this fiber then there is a unique R � SO(3) such that x =  Rx0, and point x can

be parameterized by R. This allows us to define basis vectors at x, including their phase

conventions, by

|ax;ki = Ueo(R) |ax0; ki, (50)

where x =  Rx0. The arbitrarily chosen phase conventions at x0 are propagated along the rotational

fiber by means of rotation operators.

This approach does not work for collinear shapes, for which there is more than one R that maps

a configuration x0 into another one x of the same shape. Phase conventions for collinear shapes

are a more complicated matter, which we do not cover in this article.

There are other ways of extending phase conventions from a given point. In the nondegenerate

case a T -invariant energy eigenstate |ax;ki for k � I is determined to within a ±  sign, a discrete

choice, and the obvious way to extend the phase convention away from a given point x0 is to

demand continuity of the wave function as x is continuously varied along a path. We will call this

method, “extension by continuity.” It leads to the question of whether the result depends

25
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F ′ F F ′ ′

X 3       · · · X N − 1

x0

x0
x ′ ′

S

X 2

X 1

FIG. 4. Initial points x0 over a family of rotational fibers sweep out a surface S, a section of the rotational

fiber bundle.

on the path. The answer can be developed in terms of the fundamental group of the region in

question (also called the first homotopy group), as explained by Juanes-Marcos, Althorpe, and

Wrede (2005); Althorpe (2006, 2012). If the region is simply connected then the fundamental

group is trivial and extension by continuity gives a unique answer that is a smooth function of the

final position x. If it is not simply connected then the result may be path-dependent. (A region is

simply connected if all loops can be smoothly contracted to a point.)

In fact, SO(3) is not simply connected (its fundamental group is Z2), so there is a question as to

whether extension of phase conventions by continuity gives an answer over a rotational fiber that is

path-dependent. This question is answered, however, by our formula (50). Along a noncollinear

rotational fiber, for fixed x0 and variable x =  Rx0, R is a smooth function of x, so (50) gives phase

conventions over the fiber that are single-valued, smooth functions of x. Since they are smooth,

they are the same as the conventions obtained by extension by continuity; and since they are

single-valued, the latter method is path-independent.

The method of extension by continuity only works when the choices are discrete, but for de-

generate eigenvalues k � I the choices are continuous, as are the choices for the orthogonal space S
� (which is infinite-dimensional). Equation (50) works in all cases and gives phase and frame

conventions that are smooth and single-valued over a rotational fiber.

F. How Phase Conventions Depend on Shape

Now we extend the phase conventions for the basis states to a region in which both shape and

orientation are variable. We choose some region of nuclear configuration space consisting of a

26
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family of rotational fibers, as illustrated in Fig. 4, and we choose initial points x0 on each fiber. If

the assignment of the initial points x0 is made in a smooth manner, these points sweep out a

smooth surface called a section of the fiber bundle, which is denoted S in Fig. 4. If we can make a

smooth assignment of phase and frame conventions for our basis along S, then we can use (50) to

smoothly extend those conventions along the rotational fibers.

The section should have dimensionality 3N − 6  so that, taken with the 3-dimensional fibers, it

covers a region of nuclear configuration space of full dimensionality 3N − 3. As we move along S

the shape of the molecule changes, so coordinates on S can be taken to be shape coordinates. These

are collections of 3N − 6  rotationally invariant functions of the Jacobi vectors Xα . In practice,

bond lengths and angles are common choices for shape coordinates. We require that the section be

transverse (not tangent) to the rotational fibers, so that first order displacements along S produce

first order changes in shape (this condition makes certain Jacobian matrices well behaved).

Let us now arbitrarily choose phase and frame conventions for the basis states |ax0;ki at one

point x0 on the section, as in Fig. 4, and ask if those conventions can be extended in a smooth

manner to neighboring points on the section such as x′ and x′′ in the figure.

For simplicity let us begin with a single surface problem, for which I contains the single,

nondegenerate level k0. Then the choice of phase convention for |ax;k0i is that of a ±  sign, a

discrete choice, and the method of extension by continuity can be applied. This shows that it is

possible to make a smooth assignment of phase conventions for the adiabatic basis vector k =  k0 in

simply connected regions of S.

In some cases, however, the region of interest is not simply connected, as when it encircles

a conical intersection. Then it turns out that the nondegenerate energy eigenstate |ax;k0i, when

carried continuously as x encircles the conical intersection, undergoes a sign change on returning

to its initial point. In this case one can break the region into subregions that are simply connected,

with transition rules in the overlaps to connect them together. In practice an equivalent method is

preferred, one that employs a single region with an enforced discontinuity (a change in sign) along

a boundary surface. This situation is well known and well understood (Herzberg and Longuet-

Higgins (1963); Longuet-Higgins (1975); Mead and Truhlar (1979); Mead (1992); Yarkony

(1996); and Kuppermann and Abrol (2002); Althorpe (2006)), but the usual discussions pay no

attention to the geometry of the rotational orbits and the section, or to the fact that SO(3) is not

simply connected.

Given an initial point x0 on a rotational fiber, other points x on the same fiber can be parame-

27



Th
is

 is
 th

e 
au

th
or
’s

 p
ee

r r
ev

ie
w

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 re

co
rd

 w
ill 

be
 d

iff
er

en
t f

ro
m

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
R

TI
C

LE
 A

S 
D

O
I: 

10
.1

06
3/

5.
01

43
80

9

Accepted to J. Chem. Phys. 10.1063/5.0143809

terized by the rotation R � SO(3) such that x =  Rx0, or, equivalently, by the Euler angles of that

rotation. Thus Euler angles become coordinates along a rotational fiber. We denote the Euler

angles by θ i, i =  1,2,3, or just θ for short. Shape or internal coordinates, on the other hand, are

rotationally invariant functions of x or X. We denote these by qμ , μ =  1, . . . , 3N − 6, or just q for

short. These can be taken to be coordinates along the section S, but, since they are rotationally in-

variant, they are defined elsewhere in nuclear configuration space by the fact that they are constant

along rotational fibers.

G. Diabatic Bases

In multisurface problems the region of interest may include internal degeneracies, usually con-

ical intersections, and we may choose x0 to lie on one of these in order to study frames in a

corresponding neighborhood. Then small changes in shape as we move along S away from the

conical intersection will break the degeneracy and produce an eigenframe (an adiabatic basis) that is

well defined but discontinuous. (The frame is smooth as x → x0 and the limit exists, but the limit

depends on the direction of approach.) In such cases the adiabatic basis has singularities regard-

less of phase or frame conventions, and a smooth assignment of those conventions over a section is

impossible. Therefore we must accept that an adiabatic basis can be defined over a section S and

extended along rotational fibers by (50), but that it will have discontinuities as we vary the shape. It

will, however, be smooth as we vary the orientation, holding the shape fixed.

The discontinuities in the adiabatic basis at degeneracies cause the derivative couplings to di-

verge, and are the major drawback of this basis. To avoid these we may switch to a diabatic basis, an

orthonormal basis denoted |dx;ki with d for “diabatic.” The diabatic basis vectors for k � I are

required to span the subspace S  (x), and to span S  �(x) for k �/ I. In addition, a diabatic basis is

required to be smooth over its domain of definition, something that can be achieved if we do not

require the basis vectors |dx;ki to be energy eigenstates for k � I. Finally, we shall require diabatic

bases to be invariant under time reversal.

To construct a diabatic basis we begin with points x0 on a section. (In the following we use x0 for

a variable point in S.) We assume that a T -invariant, adiabatic basis |ax0;ki, including phase and

frame conventions, has been established for all x0 in some region in S. As explained, this basis will

have discontinuities, in general. Since sets of basis vectors, |ax0;ki and |dx0;ki for k � I, are

28
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required to span the same subspace S  (x), they must be related by

|dx0;ki =  ∑|ax0; l iV k,
l�I

where Vkl is an Nl ×  Nl , unitary matrix that depends on x0.

(51)

Also, since |dx0;ki is required to

be smooth, the matrix Vkl must compensate for the singularities of the basis |ax0;ki and cannot be

smooth itself. Similar statements can be made for the subset k �/ I and the complementary

subspace S  �(x).

There are many ways to find the matrix V so that the diabatic basis is smooth. Two of these, the

singular-value basis and the parallel-transported basis, have been discussed by us recently

(Littlejohn, Rawlinson, and Subotnik (2022)). The construction of both bases takes place in a

neighborhood of a fixed reference point x00 on S. The construction is most interesting when x00 lies

on a degeneracy (a seam or conical intersection) but this is not required. The adiabatic and

diabatic bases are required to agree at x00, |a,x00;ki =  |d,x00;ki. The singular value diabatic

basis is due to Pacher, Cederbaum, and Köppel (1988, 1993); it chooses an orthonormal frame

inside S  (x0) for each x0 in the region of S that is as close as possible to the adiabatic frame in S

(x00), in the space of such frames. The resulting field of frames on S is unique and smooth in a

neighborhood of x00 and defines the singular-value diabatic basis. The parallel-transported

diabatic basis involves radial lines extending out from x00 to points x0 � S, along which the basis is

carried by parallel transport. This minimizes the distance in the space of frames between the bases

at x0 and x0 + dx0 for each infinitesimal step along the curve.

Both the singular-value basis and the parallel-transported basis have the property that if the

adiabatic frame at x00 is T -invariant, as we assume, then so is the diabatic frame at all points x0 in its

domain. We omit the proofs but they involve the fact the projection operator onto the strongly

coupled subspace commutes with T , which follows since that subspace is invariant under T . Thus,

for these diabatic bases, the matrix Vkl in (51) is real and orthogonal.

Once the diabatic basis has been defined for x0 � S, we extend the definition along rotational

fibers by means of rotation operators, as in (50). Since we are assuming that the adiabatic basis

transforms by those same rotation operators, (51) shows that the matrix Vkl is independent of

position along a rotational fiber, that is, Vkl (x) = Vkl (x0), where x =  Rx0. Equivalently, the matrix

Vkl is a function of shape coordinates only and is independent of orientation.
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IV. TRANSFORMATION OF BASIS AND DERIVATIVE COUPLINGS UNDER

ROTATIONS

In this section we introduce the “working basis,” which is either the adiabatic basis or a dia-

batic basis, whichever meets the smoothness criteria. It is the basis we will use for subsequent

calculations. We continue with the electrostatic model. We accumulate a set of transformation

laws for various quantities under rotations, which supplement the transformation law (47) for the

electronic Hamiltonian and (12) for its eigenvalues, which we have already worked out. The new

transformation laws include that for the basis vectors, (56), that for the matrix elements of the

Hamiltonian, (54), and that for the derivative couplings, (70). These are required for subsequent

work.

A. The Working Basis and its Properties

In the following we write simply |x;ki for a basis that is either the adiabatic basis, in cases

where that is smooth (for example, in single-surface problems over a simply connected region),

otherwise a diabatic basis. We will call this the “working basis.” We assume that it spans S  (x) for

k � I and S  �(x) for k �/ I; that it is smooth over a section S or a chosen region thereof; that it is

propagated along rotational fibers by

|Rx0;ki = Ueo(R) |x0; ki; (52)

and that it is T -invariant, T |x;ki =  |x;ki.

Some authors, for example, Kendrick (2018), have used a notation in which the basis states are

given as functions of the shape coordinates alone, and not the Euler angles. We believe it is worth

clarifying this, since it is obvious that the electronic eigenstates do depend on orientation, and,

with our phase conventions, (52) shows explicitly how they do. On the other hand, points x0 on

the section are determined by the shape coordinates, that is, x0 =  x0(q), so the basis states on the

section can be regarded as functions of shape coordinates alone. We believe this is the correct

interpretation of something that in our notation would look like |q;ki, that is, it means |x0(q); ki.

There are objects that really are constant along rotational fibers, for example, the energy eigenvalues,

which satisfy εk(x) =  εk(Rx0) =  εk(x0) =  εk x0(q) =  εk(q). These are functions of the shape

coordinates alone everywhere in nuclear configuration space, not just on the section.
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We write the matrix elements of the electronic Hamiltonian in the working basis for k, l � I as

hx;k|He(x)|x; li = Wkl (x). (53)

If the working basis is the adiabatic basis then Wkl (x) =  εk(x)δkl , while in the diabatic basis Wkl is a

full matrix. In view of the T -invariance of the basis states |x;ki the matrix Wkl is real (hence, real

and symmetric). In view of the dependence (52) of the basis states along rotational fibers and the

transformation law (47) of the Hamiltonian, the matrix Wkl is independent of orientation,

Wkl (Rx0) = Wkl (x0), (54)

that is, Wkl depends only on the shape coordinates.

We turn now to the transformation properties of the working basis under rotations. Let x0 � S

be an initial point on a rotational fiber, let R1,R2 � SO(3), and let x1 =  R1x0 and x2 =  R2x1. Then

|x2;ki =  |R2x1;ki =  |R2R1x0;ki = Ueo(R2R1) |x0; ki

= Ueo(R2)Ueo(R1) |x0; ki = Ueo(R2) |x1; ki, (55)

where we use (52) and the representation property (41). Making the notational changes, x1 → x,

R2 → R, we can write this as

|Rx;ki = Ueo(R) |x; ki. (56)

This is the transformation law of the working basis |x;ki under rotations. It is the same as (52)

with x0 replaced by x, but the meaning is quite different. That is, (52) defines the working basis

along the rotational fibers, including the phase and frame conventions, given such a definition at an

initial point x0 � S; whereas (56) is a property of those basis vectors, once defined, at any point x on a

rotational fiber. (Of course, (52) is a special case of (56).)

Let us now specialize R in (56) to an infinitesimal rotation, that is, one for which the angle θ is

infinitesimal, so that

R =  R(n,θ ) =  I + θ n × . (57)

If we let such an R act on a configuration x, then we can write Rx =  x + δ x, where

δx =  θ (n × X1, . . . , n × XN−1). (58)

On the other hand, when θ is small, (40) implies

Ueo(R) =  1 −  
¯ 
θn · Le. (59)
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For such rotations (56) becomes

N−1
|Rx;ki =  |x + δ x; ki =  |x; ki + θ (n × Xα ) ·�α|x; ki =  |x; ki − θn · Le |x;ki. (60)

α =1

In this we write (n × Xα ) ·�α =  n · (Xα ×�α ), we cancel leading terms, the factor θ and the factor

n (which is an arbitrary unit vector). The result can be written as
"

N−1
#

− ih (Xα × �α ) + Le  |x;ki =  0, (61)
α =1

or,

(Ln + Le)|x; ki =  0, (62)

where Ln is the usual differential operator for the nuclear orbital angular momentum, here acting

on the parametric dependence x of the working basis states.

In the case of nondegenerate adiabatic basis states, Yarkony (2001) has shown that the off-

diagonal matrix elements of Ln + Le  vanish (see Eq. (19abc) of that article). Because of the time-

reversal invariance of the basis states, the diagonal elements vanish, too, and Yarkony’s results are

equivalent to (62). With our phase and frame conventions, however, (62) applies also in the case of

degeneracies or diabatic bases.

B. Transformation Properties of Derivative Couplings

We wish to find how the derivative couplings, defined by (17), transform along rotational fibers,

that is, how Fα ;kl (Rx) depends on Fα ;kl (x). The obvious strategy is to work with Fα ;kl (Rx) =

hRx;k|�α|Rx;li, but this is notationally awkward (do we rotate first and then differentiate, or the

other way around?)

Therefore we propose a different approach. Let ξ  be an infinitesimal displacement in nuclear

configuration space,

ξ  =  (ξ1, . . . , ξN−1). (63)

Then we have

which implies

N−1
|x + ξ ; l i =  |x; l i + ξα  ·�α|x; li, (64)

α =1

N−1
hx; k|x + ξ ; l i =  δkl + ξα  · Fα ;kl(x). (65)

α =1
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The x in this equation is a dummy variable, and one that is independent of ξ , so we can replace it

by Rx, obtaining
N−1

hRx; k|Rx + ξ ; li =  δkl + ξα  · Fα ;kl (Rx). (66)
α =1

On the other hand, we have

|Rx + ξ ; l i =  |R(x + R−1ξ ); l i = Ueo (R) |x + R−1ξ ; l i
N−1

= Ueo (R) |x; l i + (R ξα ) ·�α|x; l i , (67)
α =1

and

hRx;k| =  hx;k|Ueo(R)†, (68)

where we use (56). Upon taking the product of (68) and (67) the rotation operators cancel and we

obtain
N−1

hRx; k|Rx + ξ ; li =  δkl + ξα  · (RFα ;kl (x)), (69)
α =1

where we have used the fact that for any two vectors A and B and any rotation R, we have (R−1A) ·

B =  A · (RB). Comparing this with (66), we obtain finally

Fα ;kl (Rx) =  RFα ;kl (x), (70)

since the displacements ξα  are arbitrary.

Equation (70) is the transformation law of the derivative couplings under rotations; it says, in a

sense, that Fα;kl transforms as a vector field on nuclear configuration space under rotations. This

result is important for establishing the rotational invariance of the Born-Oppenheimer Hamiltonian

for multisurface, electrostatic problems.

Some authors, for example, Yarkony (2001), have used a notation in which the derivative cou-

plings are given as functions of the shape coordinates alone, with no dependence on the Euler

angles. It would be as if we wrote Fα ;kl (q) in our notation. We believe this means Fα;kl x0(q) ,

that is, it is the derivative couplings evaluated on the section, where qμ are coordinates. The

derivative couplings elsewhere do depend on the orientation, as shown explicitly by (70).

A  subtlety in this matter is that the derivative couplings are really the components of a differen-

tial form with respect to the Jacobi vectors, and if the components are taken instead with respect to

rotationally invariant vector fields, then those components will be rotationally invariant. This is an

issue in the construction of kinetic energy operators in the internal space that incorporate

geometric phase effects.
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C. Rotational Components of Derivative Couplings

Let R be an infinitesimal rotation with θ � 1, and let Rx =  x + δ x, as in (57) and (58). Then

the component of the derivative couplings in the direction δx is

N−1 N−1 N−1
δXα · Fα ;kl (x) =  θ hx;k|(n × Xα ) ·�α|x; li = θn · hx;k|Xα × Pα|x; l i

α =1                                              α =1                                                                              α =1

=  −  
i 
θn · hx;k|Le|x; li, (71)

where in the last step we use (62). Thus, the angular components of the derivative couplings (with

our phase and frame conventions) are proportional to the matrix elements of the electronic angular

momentum. This result is due to Yarkony (2001); it is important for the construction of kinetic

energy operators on the internal space.

V. MOLECULAR AND BORN-OPPENHEIMER REPRESENTATIONS

We now introduce the molecular and Born-Oppenheimer representations for the state space of

the molecule, which give us the setting within which our main results concerning angular momen-

tum can be stated. We continue with the electrostatic model, with possibly more than one strongly

coupled potential energy surface.

A. Two Representations

In what we call the “molecular representation,” the quantum state of the molecule is specified

by the wave function Ψ(X, r), which is just standard quantum mechanics on the standard Hilbert

space for the molecule. If Ψ is any such wave function, we expand the r  dependence in terms of

the x-dependent working basis vectors |x;ki, whose wave functions are denoted φk(X; r), as shown

in (16). That is, we write

Ψ(X, r) =  ∑ψk (X)φk(X; r), (72)
k

as is standard in Born-Oppenheimer theory. Here ψk(X) are the expansion coefficients; we imag-

ine them forming an infinite-dimensional vector of wave functions of X. Equation (72) gives the

wave function Ψ(X, r) in terms of the purely nuclear wave functions ψk(X); the inverse relation is
Z

ψk(X) = drφk(X; r)� Ψ(X, r). (73)
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We will refer to the infinite dimensional vector of nuclear wave functions ψk(X) as the “Born-

Oppenheimer representation” of the quantum state of the molecule, and abbreviate the relation-

ships (72) and (73) between them by writing

Ψ(X, r) ←→ ψk(X). (74)

The association is one-to-one, and no information is lost by using the Born-Oppenheimer repre-

sentation.

Similarly, let A be a linear operator that maps molecular wave functions Ψ(X, r) into new

such wave functions Ψ′(X, r), something we can write as Ψ′(X, r) =  (AΨ)(X, r). This is in the

molecular representation. In the Born-Oppenheimer representation, A is replaced by an infinite-

dimensional matrix Akl of linear operators, each of which acts on wave functions ψ (X), depending

on the nuclear coordinates alone. That is, if Ψ′ =  AΨ as shown, and if Ψ ←→ ψk and Ψ′ ←→ ψk,

then

This is equivalent to

ψk(X) =  ∑(Akl ψl )(X). (75)
l

(AΨ)(X, r) =  ∑φk (X; r)∑(Akl ψl )(X), (76)
k l

which gives A in terms of the matrix of operators Akl . The inverse is
Z

(Aklψ )(X) = drφk(X; r)� (AΦl )(X, r), (77)

where Φl (X, r) =  ψ (X)φl (X; r). We write ψ without a subscript in (77) because it is just a dummy

function of X that is used to define the operator Akl ; it may be the component of a wave function in

the Born-Oppenheimer representation, but it need not be. We will summarize the relations (76) and

(77) between the operators in the two representations by writing

A ←→ Akl . (78)

Then it is easy to prove some theorems. If B =  A† (in the molecular representation), then in the

Born-Oppenheimer representation we have

Bkl =  (Alk)†, (79)

where the parentheses make it clear that we form the transpose of the matrix Akl first, and then

take the Hermitian conjugate of the elements.
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Likewise, if A, B and C are operators in the molecular representation and C =  AB, then

Ckl =  ∑Ak p Bpl, (80)
p

that is, operator products are mapped into matrix products (but the matrix elements are themselves

operators, and their order of multiplication must be respected).

B. Examples of Operators in the Born-Oppenheimer Representation

We present some examples of the transformation of operators from the molecular represen-

tation to the Born-Oppenheimer representation. If A =  f (x) is a function of x in the molecular

representation, that is, a multiplicative operator on wave functions Ψ(x, r), then we find

f (x) ←→ f (x)δkl . (81)

In particular, this applies when f is one of the components of the Jacobi vectors Xα .

In the following we let Pα stand for the differential operator −ih�α . In the molecular rep-

resentation, this represents physically the kinetic momentum conjugate to the Jacobi vector Xα .

Transforming to the Born-Oppenheimer representation, we find

Pα ←→ Pα δkl − ih Fα ;kl (x). (82)

The Born-Oppenheimer version of this operator has a well known interpretation as a covariant

derivative (Bohm, Boya, and Kendrick (1991)).

For another example, consider a purely electronic operator, for example, Le. Then we find

Le ←→ hx;k|Le|x;li, (83)

that is, the matrix of nuclear operators representing Le in the Born-Oppenheimer representation

are purely multiplicative functions of x, which are otherwise the matrix elements of Le in the

working basis. Another purely electronic operator is the electronic Hamiltonian, which, however,

depends on x. We have

He(x) ←→Wkl (x), (84)

see (53) and (54).

Yet another such operator is the projector onto the strongly coupled subspace S  (x),

P(x) =  ∑ |x;kihx;k|. (85)
k�I
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This maps into its Born-Oppenheimer version, P(x) ←→ P l , where

�δkl , if k, l � I
kl

0, otherwise.
(86)

C. The Molecular Hamiltonian

The molecular Hamiltonian in the electrostatic model and in the molecular representation is
N−1 2

Hmol = + He (x). (87) α =1

Transforming this to the Born-Oppenheimer representation, Hmol ←→ Hmol,kl , we find
N−1

Hmol,kl = [Pα δkp − ih Fα ;k p(x)] · [Pα δpl − ih Fα ; pl (x)] + Wkl (x), (88)
α =1                     p

where we use the product rule (80), (82) and (84). This style of transforming to the Born-

Oppenheimer representation follows Kendrick (2018). The sum on p is the matrix multiplication

indicated by (80); notice that this sum runs over the entire Hilbert space, that is, both p � I and p �/

I.

In most physical circumstances of interest the nuclear momentum Pα is large when measured

in atomic units, because of the large nuclear mass, while Fα;kl (with our phase conventions and

smoothness assumptions) is of order unity in the same units. Therefore the terms of the kinetic

energy in (88) decrease in magnitude as the power of Pα decreases. Therefore the diagonal terms

k =  l are dominated by Pα while the off-diagonal terms k =  l are dominated by the terms linear in

Pα , which are therefore smaller than the diagonal terms.

We can decouple the strongly coupled levels k � I from the rest by simply throwing away the

off-diagonal terms (kl ) of (88) for k � I and l �/ I or k �/ I and l � I. This replaces the Hamiltonian

Hmol,kl by a new, block-diagonal, one that we will call Kmol,kl . The formula for the latter is the

same as (88) when k, l � I or k, l �/ I, and 0 otherwise. Alternatively, since we do not care about

dynamics outside the strongly coupled subspace, we can define Kmol,kl as the same as Hmol,kl when

k, l � I, and 0 otherwise. This is equivalent to

Kmol =  P(x)HmolP(x), (89)

that is, it is just the original molecular Hamiltonian, projected onto the strongly coupled subspace.

Most derivations of the Born-Oppenheimer Hamiltonian in the literature amount to carrying out

this projection.
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In the special case of a single surface problem, where I contains the single level k0, this pro-

cedure gives us the Born-Oppenheimer Hamiltonian (10) with k → k0. The latter would be writ-ten

in the present notation as Kmol,k0k0 . As noted, the derivative couplings Fα;kl vanish on the

diagonal (kl ) =  (k0k0). In this context the replacement of Hmol by Kmol is usually called “the

Born-Oppenheimer approximation.” Its obvious generalization to multisurface problems is given

by (89).

Actually, the “Born-Oppenheimer approximation” is often described (in the context of a single-

surface problem) as one in which the wave function is assumed to have the product form seen in

(14). But if the Hamiltonian is approximated by throwing away off-diagonal terms, then the new

Hamiltonian possesses solutions of the product form. Therefore we regard the usual Born-

Oppenheimer approximation as one of approximating the Hamiltonian.

The off-diagonal terms that we throw away to obtain Kmol,kl are indeed small compared to the

diagonal terms, but beyond this their neglect is ad hoc and it is hard to find a deeper justification for

the procedure in the literature, at least in the case of large-amplitude motions. This leaves open the

question of whether the Born-Oppenheimer Hamiltonians obtained by projection as in (89) are even

correct. They certainly are so to first order in small quantities, but it is not obvious that they are

correct to second order. In Sec. V I I  we will discuss Moyal perturbation theory, which is useful for

answering these questions. The issue is more important than the small, second order terms in the

Hamiltonian, as it involves the dressing of the nuclear variables, which has effects at first order.

D. The Angular Momentum

In the molecular representation the total orbital angular momentum of the molecule is rep-

resented by the operator L =  Ln +  Le, which is given by (8). To find the Born-Oppenheimer

representation we allow L to act on a molecular wave function,

LΨ(X, r) =  (Ln + Le )∑ψk (X)φk (X; r)
k

=  ∑[(Ln + Le )ψk (X)]φk(X; r) +∑ψk (X) [(Ln + Le)φk(X; r)], (90)
k k

where we distribute Ln +  Le using the product or Leibnitz rule, since it is a first-order, linear,

differential operator. Then the second major sum on the right vanishes due to (62), while in the

first sum on the right the term involving Le also vanishes, since ψk has no dependence on r. The
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result can be written,

L =  Ln + Le  ←→ Ln δkl . (91)

This justifies and makes precise our earlier statement that in the Born-Oppenheimer representation,

the nominal, nuclear orbital angular momentum includes physically both the nuclear and electronic

orbital angular momenta, and that this is exact.

The molecular Hamiltonian Hmol in the molecular representation commutes with L, due to the

overall rotational invariance of the molecule, so in the Born-Oppenheimer representation the

matrix Hmol,kl must commute with the matrix Ln δkl . But since the latter is a multiple of the

identity, this reduces to

[Ln,Hmol,kl ] =  0. (92)

This is the form that overall angular momentum conservation takes in the Born-Oppenheimer

representation; every component of the matrix Hmol,kl commutes with Ln, that is, it is a scalar

under nuclear orbital rotations.

Nuclear orbital rotations are generated by Ln and are implemented by the operators, 
Uno(R) = Uno(n,θ ) =  exp −

¯  
θn · Ln , (93)

which act on nuclear wave functions according to 
 
Uno(R)ψ (X) =  ψ

 
R−1X. Like the electronic

orbital rotation operators Ueo(R), nuclear orbital rotation operators form a representation of SO(3),

Uno(R1)Uno(R2) = Uno(R1R2). An operator commutes with nuclear orbital angular momentum Ln if

and only if it commutes with the rotations Uno(R) for all R � SO(3). Therefore to check (92) we can see

how Hmol,kl transforms under conjugation by Uno(R).

To begin we have

Uno(R) Xα Uno(R)† =  R−1Xα ,                                                     (94)

Uno(R) Pα Uno(R)† =  R−1Pα ,                                                     (95)

which is a statement that Xα and Pα are vector operators. This implies that Pα =  Pα · Pα is a

scalar. Next, we have

Uno(R) Fα ;kl (x)Uno(R)† =  Fα;kl
 
R−1x

 
=  R−1Fα ;kl (x), (96)

where in the first step we use (94) and in the second, (70). This shows that the derivative couplings,

with our choice of basis states and phase conventions, transform under nuclear rotations as a vector

39



2

2

2

Th
is

 is
 th

e 
au

th
or
’s

 p
ee

r r
ev

ie
w

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 re

co
rd

 w
ill 

be
 d

iff
er

en
t f

ro
m

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
R

TI
C

LE
 A

S 
D

O
I: 

10
.1

06
3/

5.
01

43
80

9

Accepted to J. Chem. Phys. 10.1063/5.0143809

operator. Thus, dot products such as Pα · Fα;kl are scalars. We see that the components Hmol,kl are

scalars, and that therefore they commute with Ln. The same is true for the components Kmol,kl ,

which are either equal to Hmol,kl or else are zero.

In single-surface problems it is obvious that the Born-Oppenheimer version of the Hamiltonian,

(10), commutes with Ln, because it has the simple kinetic-plus-potential form with a rotationally

invariant potential and there are no derivative couplings. This means that energy eigenfunctions

can be organized as eigenfunctions also of Ln and Lnz, as noted.

In multisurface problems, as we have just shown, the matrix Hamiltonian Kmol,kl commutes

with the matrix of angular momentum operators, Ln δkl . This means that the solutions of the

Born-Oppenheimer version of the Schrödinger equation, which now reads (for k � I),

∑Kmol,kl ψl (X) =  E ψk(X), (97)
l�I

can be organized as simultaneous eigenfunctions of the matrix Hamiltonian Kmol,kl and the matrix

angular momentum operators, Ln δkl and Lnz δkl . But to make the vector wave function ψk for k � I an

eigenfunction of those matrix angular momentum operators, each component ψk(X) must be an

eigenfunction of Ln and Lnz with the same quantum numbers. Call these (l, ml ).

We then transform the eigenfunction ψk(X), which is nonzero only for k � I, back to the molec-

ular representation, using (72) but only summing over k�I. The resulting molecular wave function

Ψ(X, r) is then an exact eigenfunction of L2 and Lz, where L =  Ln + Le , with the same quantum

numbers (l, ml). Thus we obtain an understanding of angular momentum conservation in multi-

surface problems.

VI. DETAILS IN FINE STRUCTURE MODELS

Some of the changes required on passing from the electrostatic model to the fine structure model

have been discussed at the beginning of Sec. II G. These include the facts that the electronic and

molecular wave functions, φ (r, m) and Ψ(X, r, m), respectively, acquire a dependence on the spin

quantum numbers m (see (6)); that the electronic and molecular Hamiltonians, He(x; r, p, S) and

Hmol(X,P, r,p, S), respectively, acquire a dependence on the electron spin S; and that the definition

of time reversal changes, from (A1) to (A4).

The electronic Hamiltonian He(x; r, p, S) now depends on the dot products and triple products

40



ˆ

ˆ
 

ˆ
i
h

ˆ

Th
is

 is
 th

e 
au

th
or
’s

 p
ee

r r
ev

ie
w

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 re

co
rd

 w
ill 

be
 d

iff
er

en
t f

ro
m

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
R

TI
C

LE
 A

S 
D

O
I: 

10
.1

06
3/

5.
01

43
80

9

Accepted to J. Chem. Phys. 10.1063/5.0143809

of the vectors Xα , ri , pi and Si, so (42) is replaced by

He(x; r, p, S) =  He(Rx; Rr, Rp, RS) �R � SO(3), (98)

where RS = (RS1, . . . , RSNe ). This is a statement about the functional form of the electronic Hamil-

tonian.

To connect this with rotation operators we cannot use orbital rotations as in (47) but rather we

must introduce total electron rotation operators that include the spin. We denote these by Ue(u);

they are parameterized by an element u � SU (2) or by the equivalent axis and angle, Ue(n,θ ) =  Ue

u(n,θ ) , and are defined by their action on electronic wave functions,

 
Ue(u)φ (r, m) =  ∑(u . . . u)mm ′  φ

 
R−1r, m′ , (99)

m′

where the notation for the sum is the same as in (A4) and where R means R(u), defined by (C2).

It follows from (99) that the operators Ue(u) form a representation of SU (2),

Ue(u1)Ue(u2) = Ue(u1u2). (100)

These operators are given in terms of their generators by

Ue(u) = Ue(n, θ ) =  exp −
¯  
θn · (Le + S )  . (101)

Now all of r, p and S transform as vector operators under conjugation by Ue(u), for example,

we have

Ue(u) Si Ue(u)† =  R−1Si, (102)

where in formulas like this it is understood that R =  R(u). Therefore the electronic Hamiltonian

transforms according to

Ue(u) He(x; r, p, S)Ue(u)† =  He
 
x; R−1r, R−1p, R−1S

 
=  He(Rx; r, p, S), (103)

just as in the derivation of (46). With the abbreviation He(x; r, p, S) → He(x) this becomes

Ue(u) He(x)Ue(u)† =  He(Rx), (104)

which may be compared to its electrostatic counterpart, (47). They are the same except that Ueo(R)

has been replaced by Ue(u). This is the transformation law of the electronic Hamiltonian along

rotational fibers in the fine structure model.
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A. Fine Structure Details, Even Number of Electrons

Most of the results in the fine structure model with Ne =  even have the same form as in the

electrostatic model, since the main conclusions follow from T 2 =  + 1  which holds in both cases

(although the definitions of T are not the same). We begin with rotation operators.

The function R(u) (see (C2)) has the property R(u) =  R(−u )  and if the number of electrons is

even then the number of factors of u in (99) is also even. Thus Ue(u) =  Ue (−u) and Ue might as

well be parameterized by R =  R(u) � SO(3). Then the operators Ue(R) form a representation of

SO(3), Ue(R1)Ue(R2) = Ue(R1R2). The definition of Ue(R) is still (99), but with Ue(R) instead of

Ue(u) on the left hand side and with the understanding that u on the right hand side is one of the

two elements of SU (2) that correspond to the given R � SO(3) according to (C2). These differ by a

sign, which the answer does not depend on.

Thus, the transformation law for the Hamiltonian along rotational fibers in the fine structure

model with an even number of electrons is Ue(R) He(x)Ue(R)† =  He(Rx), which may be compared to

(47) in the electrostatic model (they are the same, except the rotation operator now includes spin).

As for the basis states, we still have T 2 =  + 1  as in the electrostatic model and T still commutes

with He(x), which together imply the existence of T -invariant bases (adiabatic first, and then

diabatic). These can be defined along a section S, smoothly, in the case of the diabatic basis, and

then propagated along noncollinear rotational fibers by

|Rx0;ki = Ue(R) |x0; ki. (105)

This may be compared to its electrostatic counterpart, (52); the only difference is that the rotation

operator now includes spin.

With these (smooth) phase and frame conventions we can define a smooth working basis, as in

the electrostatic model. This basis transforms under rotations according to

|Rx;ki = Ue(R) |x; ki, (106)

which is just like (56) and proved in the same way, except that the rotation now involves spin. By

making R infinitesimal in this, we obtain

(Ln + Le  + S)|x; ki =  0, (107)
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just like (62) except that now the spin is included. The operator that appears is the total angular

momentum J  of the molecule.

We then find that the derivative coupling transform under rotations according to (70), the same

formula as in the electrostatic model. As for the rotational components of the derivative couplings,

they are now given by

N−1
δXα · Fα ;kl (x) =  −  θn · hx;k|(Le + S)|x; l i, (108)

α =1

where δXα =  θn × Xα  and where the matrix elements of the total electronic angular momentum

appear (orbital plus spin).

The potential energy matrix Wkl (x) is defined by (53) and it is still rotationally invariant as

shown by (54), exactly as in the electrostatic model. The only difference is that Wkl now contains

contributions to the energy from the fine structure. Likewise, the molecular Hamiltonian in the

Born-Oppenheimer representation, Hmol,kl , is (88), the same as in the electrostatic model, as is the

projected Hamiltonian Kmol,kl .

As for the angular momentum, it is more interesting to work with J =  L + S than with L =  Ln +

Le alone. We follow the steps of (90) in converting J  to the Born-Oppenheimer representation,

JΨ(X, r, m) =  (Ln + Le  + S)∑ψk (X)φk(X; r, m) =  ∑[(Ln + Le)ψk (X)]φk(X; r, m)
k k

+∑ψk (X) [(Ln + Le  + S)φk(X; r, m)], (109)
k

where the differential operator Ln + Le  is distributed as before, while the operator S only acts on the

second factor (which depends on the spin quantum numbers m). But by (107) the second major sum

vanishes, as does the term involving Le in the first sum. The result is

J  =  L + S =  Ln + Le  + S  ←→ Ln δkl . (110)

Thus, in the fine structure model with Ne =  even, in the Born-Oppenheimer representation, the

nominal, orbital angular momentum of the nuclei alone represents physically the total angular

momentum of the molecule, both nuclear and electronic, including the electron spin. This is exact.

Thus conservation of angular momentum is represented in the Born-Oppenheimer represen-

tation by (92), exactly as in the electrostatic model. That is, the components of Hmol,kl must be

scalars under nuclear orbital rotations. That they are follows from the transformation property of

the derivative couplings, (96), which is the same as in the electrostatic model.
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Finally, consider a solution ψk for k � I of the Born-Oppenheimer version of the Schrödinger

equation, (97), that is also an eigenfunction of the matrix operators Ln δkl and Lnz δkl with quantum

numbers (l, ml ). Every component k � I of such a solution is an eigenfunction of Ln and Lnz with the

same quantum numbers. When this is converted to a molecular wave function by (72) it is

automatically an eigenfunction of J2 and Jz with the same quantum numbers, and this is exact.

B. Fine Structure Details, Odd Number of Electrons

1. Basis States

In the fine structure model with Ne =  odd the energy levels are Kramers doublets. See

Sec. II G 2 for terminology regarding “levels” and “surfaces.” We define a subset of strongly

coupled surfaces

I =  {k0, k0 + 1, . . . , k0 + Ns − 1 } , (111)

where Ns is the number of surfaces, which replaces (48). Now the number of levels is Nl =  2Ns.

We denote the adiabatic basis vectors by |ax;kμ i, μ =  1,2, which are energy eigenstates for k � I,

He(x) |ax; kμ i =  εk(x) |ax; kμ i, k � I, (112)

where the energy depends on k but not μ (this is the Kramers degeneracy). For k �/ I the vectors

|ax;kμ i form a discrete, orthonormal basis that spans S  �(x). Because He(x) commutes with T ,

these basis vectors can be chosen to be quaternionic, as we assume (see (A10)).

Initially we make some assignment of these vectors along a section S, that is, of phase and frame

conventions so that the basis is quaternionic. This assignment cannot be smooth when S contains a

degeneracy, that is, a crossing of two or more surfaces or Kramers doublets. The codimension of

such degeneracies is different from the case of the electrostatic model (generically 5 or sometimes 3

instead of 2, see Mead (1980a, 1987); Matsika and Yarkony (2001, 2002a)), but the fact remains that

in general a continuous assignment of adiabatic basis states on S is impossible. We accept the

discontinuities and extend the definitions of the basis vectors along rotational fibers by means of a

modified rule, see (115) below, which differs from the ones (52) or (105) used previously. This rule

guarantees that the adiabatic basis, so extended, remains quaternionic.

Given the adiabatic basis there are various algorithms for defining a diabatic basis, which is free

of the singularities of the adiabatic basis. We denote the diabatic basis by |dx;kμ i. If the adiabatic
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basis is quaternionic, we must ask whether the diabatic basis so constructed is too. The answer

depends on the algorithm, but we have checked both the singular-value diabatic basis, which is due to

Pacher, Cederbaum, and Köppel (1988, 1993), and the parallel-transported diabatic basis. These

bases were the subject of a recent study of ours (Littlejohn, Rawlinson, and Subotnik (2022)). It

turns out that if the adiabatic basis is quaternionic, then the diabatic basis, constructed by either of

these two algorithms, is also quaternionic. In this way we can construct a diabatic basis on S that is

quaternionic; this can then be propagated along rotation fibers by (115), giving us a smooth,

quaternionic, diabatic basis in a region of full dimensionality.

The two bases are connected by a unitary transformation,

|dx;kμ i =  ∑|ax; lν iV ν ,kμ (x) (113)
l,ν

the analog of (51) in the electrostatic model. Since the two bases are quaternionic, the matrix V ν,kμ is

both unitary and quaternionic, that is, the minor, 2 × 2 matrices V k, whose (νμ ) components are V

ν,kμ , are quaternions. See Appendix B. The Ns × Ns block of this matrix of quaternions cor-

responding to the strongly coupled subspace belongs to the unitary, quaternionic group U (Ns, H).

Unlike the electrostatic case, the matrix V ν,kμ is not constant along rotational fibers, but rather

satisfies

Vkl (Rx0) =  uVkl (x0) u−1, (114)

where R =  R(u). This is written in terms of the minor matrices or quaternions that make up V .

2. Working Basis and Its Properties

Thus we obtain a working basis, which we denote by simply |x;kμ i, which is either the adi-

abatic basis |ax;kμ i when that is smooth or else the diabatic basis |dx;kμ i. The vectors of the

working basis are propagated along rotational fibers by the rule,

|Rx0;kμ i =  
ν 

Ue(u) |x0; kν i
 
u−1

νμ . (115)

which gives the basis vectors at x =  Rx0 in terms of those at x0. In this equation, u on the right

hand side means one of the two elements of SU (2) that satisfies R =  R(u), which differ by a sign.

Because there is an odd number of factors of u contained in the operator Ue(u) and an extra one in

the factor of u−1, the total number is even and the right hand side does not depend on which of the

two u’s is chosen. This was one reason for introducing the factor of u−1 on the right hand side;
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without it, the formula would not define a single-valued basis set along a rotational fiber. This

factor evidently causes a mixing among the Kramers pair as the molecule is rotated.

The rule (115) has several important properties. The first is that if |x0;kμ i is quaternionic at x0,

then |Rx0;kμ i is quaternionic at x =  Rx0. The second is that if |x0;kμ i is an electronic eigenstate at

x0 (which is the case for k � I in the adiabatic basis), then |Rx0;kμ i is an electronic eigenstate at x =

Rx0, with the same eigenvalue. The proofs are given in Appendix D.

Another important property is the transformation law,

|Rx;kμ i =  
ν 

Ue(u) |x; kν i
 
u−1

νμ (116)

which is like (115) but with x0 replaced by x. Compare (52) and (56) in the electrostatic model,

and see the discussion below (56). In particular, notice that (115) defines the basis states along

a rotation fiber, and (116) is a property of those basis states, once defined. The proof of (116) is

given in Appendix D.

If we had chosen u instead of u−1 in (115) then we would have a single-valued definition of

phase and frame conventions along a rotational fiber, but (116) would not be valid, with either u or

u−1. This was the main reason we chose u−1 in (115), which we believe is the most satisfactory

definition of phase and frame conventions along rotational fibers in the fine structure model with Ne

=  odd. This choice leads to a simple interpretation of the wave function ψkμ (X) for fixed k and μ =

1,2 as belonging to a particle of pseudo-spin 1/2, moving on a multidimensional, potential energy

surface.

Given our basis states |x;kμ i we define basis wave functions φkμ (X; r, m) by (27), that is, with

the double index (kμ ). The transformation to the Born-Oppenheimer representation is given by

Ψ(X, r, m) =  ∑ψkμ (X)φkμ (X; r, m), (117)
kμ

which we can also write as

Ψ(X, r, m) ←→ ψkμ (X). (118)

Equation (117) involves a sum on both k and μ and is the exact representation of the wave functions

Ψ(X, r, m) (and is not to be confused with (28) which applies to a single-surface problem). Double

indices also appear in the Born-Oppenheimer representation of operators,

A ←→ Akμ,lν , (119)

where the right hand side can also be written in terms of minor matrices Akl .
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3. Representation of Angular Momentum

We now let R in (116) be infinitesimal, and proceed as in the derivation of (62) or (107). We

invoke the infinitesimal version of u−1 ,

u−1 =  1 +  
2 
θn · σ, (120)

and follow the steps leading to (62), finding

J|x; kμ i =  (Ln + Le  + S)|x; kμ i =  
¯ ∑ |x; kν i (σ)νμ , (121)

ν

which takes the place of (62) in the electrostatic model or (107) in the fine structure model with Ne

= even. The nonzero result on the right hand side comes from the factor of u−1 that was inserted into

the transformation law (115).

This allows us to find the total angular momentum of the molecule in the Born-Oppenheimer

representation. We proceed as in (109) using the expansion (117), finding

JΨ(X, r, m) =  (Ln + Le  + S)∑ψkμ (X)φkμ (X; r, m)
kμ

=  ∑[(Ln + Le)ψkμ (X)]φkμ (X; r, m)
kμ

+∑ψkμ (X) [(Ln + Le  + S)φkμ (X; r, m)]. (122)
kμ

In the first major sum on the right the contribution from Le vanishes as before but now in view of

(121) the second major sum is nonzero. Altogether we find

JΨ(X, r, m) =  ∑[Lnψkμ (X)]φkμ (X; r, m) + ∑ ψkμ (X)φkν (X; r, m)
¯ 
σ . (123)

kμ kμν νμ

Swapping μ and ν in the second term makes both sums a linear combination of φkμ (X; r, m), so

that the result can be written,

or, in terms of minor matrices,

J  ←→ Ln δkl δμν + δkl 
¯ 
σ , (124)

μν

J  ←→ δkl (Ln + K ) . (125)

Here K =  (h/2)σ  is a vector of minor matrices which act on a Born-Oppenheimer wave function

ψkμ just by matrix multiplication in the pseudo-spin index μ .
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This motivates the definition I =  Ln + K  made earlier (see (38)). The angular momentum I

is associated with rotation operators that are parameterized by u � SU (2) and that we denote by

Ui(u). They are defined by

Ui(u) = Ui(n, θ ) =  exp −
¯  
θn · I , (126)

and their action on wave functions ψμ (X) is given by

 
Ui(u)ψ

 
(X) =  ∑ uμ ν  ψν

 
R−1X. (127)

ν

This implies the representation property, Ui(u1)Ui(u2) = Ui(u1u2). In (127) we write ψμ (X) with-

out a k-index because it is useful to think of this as the wave function of a pseudoparticle of spin

1/2. The Born-Oppenheimer wave function ψkμ (X) can be thought of as an infinite-dimensional

vector of such wave functions, indexed by k.

4. Derivative Couplings

The fine structure derivative couplings when Ne =  odd have been defined in (29). They are

denoted Fα ;kμ ,lν (x), or, as minor matrices which turn out to be quaternions, as Fα ;kl (x). These

form an anti-Hermitian matrix of quaternions, as noted in (34).

These transform along rotational fibers according to

Fα ;kl (Rx) =  u[RFα ;kl (x)]u−1, (128)

where R =  R(u). This may be compared to (70), which applies both in the electrostatic model and

in the fine structure model with Ne =  even. The derivation is similar if slightly more complicated.

We also require the transformation of the derivative couplings under conjugation by Ui(u). A

purely spatial vector like Xα transforms as a vector operator,

Ui(u) Xα Ui(u)† =  R−1Xα , (129)

since the pseudo-spin part of Ui(u) does nothing, while in the case of a minor matrix ω with no

spatial dependence we have

Ui(u)ωUi(u)† =  uωu−1, (130)

since the spatial part does nothing. Therefore

Ui(u) Fα ;kl (x)Ui(u)† =  uFα;kl
 
R−1xu−1 =  R−1Fα ;kl (x), (131)
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where in the last step we use a version of (128) with R→ R−1 and u→ u−1 . This may be compared

to (96) which applies both in the electrostatic model and in the fine structure model with Ne = even.

Finally, we compute the components of the derivative couplings in a purely rotational direction,

defining δx and δXα as in (57) and (58). Then we find
N−1

δXα · Fα ;kμ ,lν (x) = θn · −hx;kμ|(Le + S)|x; lν i + δkl σμν     , (132)
α =1

where we use (121). This may be compared to (71) in the electrostatic model or (108) in the fine

structure model with Ne =  even.

5. The Hamiltonian

When the electronic Hamiltonian He(x) is converted to the Born-Oppenheimer representation,

it becomes a matrix,

Wkμ ,lν (x) =  hx;kμ|He(x)|x; lν i, (133)

which can be interpreted in terms of minor matrices denoted Wkl (x). Since He(x) commutes with

time reversal, these minor matrices are quaternions; and since He(x) is Hermitian, these quater-

nions satisfy Wkl (x) = W  k(x). It then follows from (104) and (116) that

Wkl (Rx) =  uWkl (x)u−1. (134)

In the case of the fine structure model with Ne =  odd, the matrix Wkl (x) is not constant along

rotational fibers. An exception is the diagonal elements; these are real quaternions, Wkk =  Wkk,

that is, as minor matrices they are a multiple of the identity, so the factors of u and u−1 in (134)

cancel. In particular, for a single surface problem Wk0k0 (x) is the Kramers degenerate eigenvalue

εk0 (x).

To transform the molecular Hamiltonian to the Born-Oppenheimer representation we start with

the momentum, which transforms according to

Pα ←→ Pα δkl δμν − ihFα ;kμ ,lν (x). (135)

This simplifies in the language of minor matrices,

Pα ←→ Pα δkl − ihFα ;kl (x), (136)
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where now it is understood that Pα is multiplied by the unit minor matrix. The result (136) looks

exactly the same as (82) in the electrostatic model except that now the operator in the Born-

Oppenheimer representation is interpreted as a minor matrix.

Similarly, the molecular Hamiltonian Hmol becomes a matrix of minor matrices Hmol,kl in the

Born-Oppenheimer representation, the formula for which is (88), exactly as in the electrostatic

model but now reinterpreted as a relation among minor matrices. Of course, one must respect the

order of multiplication of minor matrices when expanding the products shown.

Since in the molecular representation Hmol commutes with J, in the Born-Oppenheimer rep-

resentation we expect the matrix Hmol,kl of minor matrices to commute with Iδkl =  (Ln + K)δkl ,

another such matrix. See (125). But since the latter matrix is a multiple of the identity δkl , we

expect

[I,Hmol,kl ] =  [Ln + K, Hmol,kl ] =  0, (137)

which takes the place of (92) in the electrostatic model or the fine structure model with an even

number of electrons. That is, there is now a contribution K to the angular momentum, and every-

thing is interpreted as minor matrices.

Equation (137) holds if and only if every component Hmol,kl of the Hamiltonian commutes with

Ui(u), defined by (126) or (127), that is, if every such component transforms as a scalar under

conjugation by Ui(u). To show that they do we start with the fact that Pα transforms as a vector

operator, just like Xα (see (129)), and so does Fα;kl (see (131)). Therefore dot products that look like

P · P, P · F or F · F are scalars. As for the potential energy matrix Wkl (x), we have

Ui(u)Wkl (x)Ui(u)† =  uWkl
 
R−1 xu−1 = Wkl (x), (138)

where in the last step we use (134) with R and u swapped with R−1 and u−1 . Thus we check (137).

In the Born-Oppenheimer approximation Hmol,kl is replaced by its projected version Kmol,kl ,

which is the same when k, l � I and zero otherwise. Therefore, just as in the other models, Kmol,kl

commutes with I since Hmol,kl does. The Born-Oppenheimer approximation to the Schrödinger

equation can be written exactly as in (97), except that now Kmol,kl is a minor matrix of opera-

tors and ψk must be understood as a 2-component pseudo-spinor with components ψkμ , μ =  1,2. A

solution of this equation will also be an eigenfunction of I2 δkl and Iz δkl with quantum num-bers

(i, mi) if each spinor component ψk is an eigenfunction of I2 and Iz with the same quantum

numbers. Such an eigenfunction, when converted to the molecular representation via (117), will

automatically be an eigenfunction of J2 and Jz with the same quantum numbers (i, mi).
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VII. THE DRESSING TRANSFORMATION

As explained, the Born-Oppenheimer approximation or its generalization to multisurface prob-

lems can be described as just throwing away off block-diagonal elements of Hmol,kl , that is, for k �

I and l �/ I or k �/ I and l � I. A  more satisfactory procedure, however, is to remove these off-

diagonal terms by means of unitary transformations. This is conveniently done in the Born-

Oppenheimer representation by mapping operators into their Weyl transforms (McDonald (1988)),

and using a version of the Moyal bracket (Moyal (1949)) for carrying out the perturbation expan-

sion. The main ideas of this approach are given by Littlejohn and Flynn (1991), and applied to the

Born-Oppenheimer approximation by Weigert and Littlejohn (1993). See also Panati, Spohn, and

Teufel (2002); Teufel (2003). In this section we shall briefly summarize the ideas and con-

clusions, enough to show their relevance to the subject of angular momentum. For simplicity we

shall describe the situation in the electrostatic model.

The method generates a power series in κ2, where κ  = (m/M )1/4 is the usual Born-Oppenheimer

ordering parameter. When we refer to “first order,” we shall mean, first order in κ 2, while “second

order” means order κ 4, etc.

In the first step we transform the molecular Hamiltonian,

Hmol,1 = U1  HmolU1 , (139)

where U1 is a unitary transformation that is designed make the off-diagonal terms of Hmol,1 vanish

to lowest order in κ 2. All  operators are expressed in the Born-Oppenheimer representation, that

is, as matrices (thus, for example, Hmol,1kl and U1,kl), but the subscripts are suppressed in (139).

The unitary operator U1 is expressed in terms of an anti-Hermitian generator G1, U1 =  exp(G1), so

that, for any operator A, we have

U1AU1 =  A + [G1, A] + 
2!

[G1, [G1, A]] + . . . (140)

This series of iterated commutators turns into a power series in κ 2.

A  single unitary transformation of the type shown in (139) is capable of removing the off-

diagonal terms only to first order, but there will remain second-order terms. We can apply a second

unitary transformation to remove these, leaving behind third-order, off-diagonal terms. Thus to

fully remove these terms we must contemplate an infinite number of unitary transformations, for

which we write, U =  . . .U3U2U1, where each Un has a generator Gn. The generators Gn turn out
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to be of order κ2n. In practice, the first generator G1 is the most important, and is responsible for

most of what is described in the literature as “nonadiabatic corrections” to the Born-Oppenheimer

approximation.

It turns out that G1 contains energy denominators of the form εk (x) − εl (x), where k � I and l

�/ I. Thus when this energy difference is of order κ 2 or smaller, the expansion (140) breaks down

and levels cannot be separated by adiabatic means. This gives some quantitative meaning to the

notion of “strongly coupled” levels, which were discussed in Sec. III C.

This sequence of unitary transformations produces Hamiltonians Hmol,1, Hmol,2, etc. We will

write simply Hmol for Hmol,∞, so that Hmol =  UHmolU†. We will refer to U as the “dressing

transformation” and Hmol as the “dressed Hamiltonian.” The latter is block-diagonal to all orders in

κ 2.

We can now distinguish what we will call the “original Born-Oppenheimer representation,”

what was called in Sec. V  simply the “Born-Oppenheimer representation,” from the “dressed

Born-Oppenheimer representation.” There is, of course, also the molecular representation, which

was described in Sec. V. Physical observables have different operators representing them in the

different representations. For example, the physical observables which are the Jacobi vectors are

represented by the operators Xα in the molecular representation, that is, the operators are multipli-

cation by Xα . As described in Sec. V, these physical observables are represented by the matrices

Xα δkl in the original Born-Oppenheimer representation, which we can write simply as Xα if we

remember that an identity matrix is implied. In the dressed Born-Oppenheimer representation,

however, they are represented by the operators Xα =  U Xα U†, which are not the same as Xα . In

fact, to first order in κ 2, we have

Xα =  Xα + [G1, Xα ] + . . . . (141)

Similar statements can be made about the nuclear momenta, which in the original Born-Oppenheimer

representation involve the derivative couplings (see (82)).

As for the total orbital angular momentum of the molecule, we have seen that it is represented

by L =  Ln + Le  in the molecular representation and Ln δkl in the original Born-Oppenheimer rep-

resentation, which we can abbreviate as simply Ln if we remember that it is multiplied by the

identity matrix. As for the dressed Born-Oppenheimer representation, the same physical observ-

52



† ∑ † ∑ ¯ ¯

¯

∑ ∑ ¯ ¯

¯

¯

Th
is

 is
 th

e 
au

th
or
’s

 p
ee

r r
ev

ie
w

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 re

co
rd

 w
ill 

be
 d

iff
er

en
t f

ro
m

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
R

TI
C

LE
 A

S 
D

O
I: 

10
.1

06
3/

5.
01

43
80

9

Accepted to J. Chem. Phys. 10.1063/5.0143809

able is represented by

N−1 N−1
U LnU = U Xα × Pα  U = Xα × Pα . (142)

α =1                                     α =1

But the dressing of Ln involves a series of commutators with the generators Gn, such as shown in

(140). The generators Gn are responsible for transforming the rotationally invariant Hamiltonian

Hmol to its diagonalized version, Hmol, which is also rotationally invariant. The generators Gn that do

this are themselves rotationally invariant, so they commute with angular momentum and all the

correction terms in power series like (140) vanish. Thus we have

N−1 N−1
Xα × Pα  = Xα × Pα , (143)

α =1                             α =1

to all orders of the Born-Oppenheimer expansion. The dressing does nothing to the angular mo-

mentum Ln, which represents physically the total angular momentum of the molecule in both the

original Born-Oppenheimer representation and the dressed version of it.

In the case of single-surface problems the dressing transformation creates a 1 × 1 block Hmol,k0k0

on the diagonal, that is decoupled from all other levels to all orders of κ . Thus in the dressed Born-

Oppenheimer representation the solution of the Schrödinger equation is a simple product form as

seen in (14), to all orders of κ 2. For this reason we suspect that there is a connection between

Moyal perturbation theory, as discussed here, and the method of “exact factorization” (Abedi,

Maitra, and Gross (2010, 2012); Cederbaum (2013); Scherrer et al. (2015); Schild, Agostini,

and Gross (2016); and Requist, Tandetzky, and Gross (2016); Martinazzo and Burghardt (2022)).

The possibility of such a connection is a project for the future.

The dressed Hamiltonian Hmol may be compared to Kmol, which was obtained in Sec. V C  by

throwing away off-diagonal terms. Both are block-diagonal, but they are not the same Hamiltoni-

ans. This is because the dressing transformation modifies the diagonal block, adding extra terms to

it. The first such term appears at second order. This term has evidently been discovered inde-

pendently several times (Moody, Shapere, and Wilczek (1989); Weigert and Littlejohn (1993);

Goldhaber (2005)), but it has had no impact on the chemical literature. It is of order κ 4 and is

therefore small, but it is of the same order as terms that are routinely discussed in connection with

Born-Oppenheimer theory. We will say more about this term in future publications.
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VIII. DISCUSSION AND CONCLUSIONS

We have presented an in-depth analysis of angular momentum in the Born-Oppenheimer theory

of polyatomic molecules, revealing exact equivalences among its various representations. We have

done this both in the electrostatic model and when fine structure effects and electron spin are

included. Several new results are reported regarding the transformation laws under rotations of

the Hamiltonian, basis states and derivative couplings. A  dressing transformation that replaces

the Born-Oppenheimer approximation reveals further exact equivalences among representations

of angular momentum.

These findings are general and should be applicable even when one does not have an exact

diagonalization of the electronic Hamiltonian, as is usual in practice. On the other hand, one

will need to use caution when applying some of the formalism above to non-Hermitian electronic

structure methods (e.g., coupled-cluster methods), where it is known that derivative couplings

must be calculated delicately because the Hellman-Feynman theorem is not easily applied (Ichino,

Gauss, and Stanton (2009); Tajti and Szalay (2009); Faraji, Matsika, and Krylov (2018)).

Finally, note that we have not made any semiclassical approximations above, and the exact

equivalences described above hold rigorously. That being said, the results do have clear impli-

cations for semiclassical calculations. In particular, within surface hopping calculations (Fatehi et

al. (2011)), there has been a long literature regarding questions of how to treat electronic mo-

mentum and how to conserve momentum with electron translation factors (Bates and McCarroll

(1958); Schneiderman and Russek (1969); Delos (1981); Illescas and Riera (1998)). These

questions arise because the electronic momentum is hidden in the phase conventions of the Born-

Oppenheimer representation. To that extent this article has pointed out that similar questions can

also be raised in the context of rotations and angular momentum. This line of study will be pursued in

a subsequent publication as well.
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CHE-2102402.

Appendix A: Time Reversal

Time reversal is covered in texts (Messiah (1966); Sakurai and Napolitano (2011)) and specif-

ically in molecular theory (Mead (1979, 1980a); Rösch (1983); Mead (1987); Koizumi and

Sugano (1995); and Johnsson and Aitchison (1997); Schön and Köppel (1998); Matsika and

Yarkony (2001, 2002b,a)). We prefer an approach based on invariant subspaces.

There are at least two distinct time reversal operators relevant to this article: the one that acts on

electronic wave functions φ (r), relevant in the electrostatic model, and the one that acts on wave

functions φ (r, m), relevant in the fine structure model. In the electrostatic model time reversal acts

on electronic wave functions according to

(Tφ )(r) =  φ (r)�, (A1)

that is, by simple complex conjugation, so T 2 =  +1.  In the fine structure model the wave function

φ (r, m) depends on spin and time reversal acts according to

(Tφ )(r, m) =  ∑
m 1  

. . .
m
∑
Ne 

τm1m′ . . .τmNem′      φ (r, m′)�, (A2)

where m′ is a primed version of (6), where each magnetic quantum number m′, i =  1, . . . ,Ne ranges

over ±1/2, and where τ is the matrix
� �

τ =  e−iπσy/2 =  � 0 −1  �. (A3)
1 0

The matrix τ is the spin rotation u(y,π ) in the notation (C1). We abbreviate an equation like (A2)

by writing

(Tφ )(r, m) =  ∑ (τ  . . .τ )mm′ φ (r, m′)�. (A4)
m′

1. Properties of T

Time reversal T is an antiunitary operator, T †T =  T T † =  1, that satisfies T 2 =  + 1  in the

electrostatic model or in the fine structure model with Ne =  even, and T 2 =  −1  in the fine structure

model with Ne =  odd. These are the only properties of T that are needed for the rest of this

appendix.
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If H  is a Hilbert space upon which T acts and S  � H  is a subspace, then we say that S

is invariant under T if for every |ψi � S  , T|ψi � S  (that is, T maps S  into itself). Important

examples of invariant subspaces include the entire Hilbert space ( S  =  H  ) and eigenspaces (pos-

sibly degenerate) of a Hamiltonian that commutes with T . Many other examples appear in this

article. As for energy eigenspaces, note that if H|ψi =  E|ψ i, T †HT =  H, and |φi =  T|ψ i, then

H|φi =  E|φ i. That is, T maps energy eigenstates into other energy eigenstates of the same energy.

This does not say whether |φi is linearly independent of |ψi.

Antiunitary operators map scalar products into their complex conjugates, that is, if |ψ′i =  T|ψi

and |φ′i =  T|φ i, then hφ′|ψ′i =  hφ|ψi� =  hψ|φi. This in turn means that time reversal maps

orthonormal frames into other orthonormal frames, that is, if {|ni, n = 1, . . . , N} is an orthonormal

frame, hn|mi =  δnm, and if |n′i =  T |ni, then hn′|m′i =  δnm. The frame {|ni} need not be complete (it

need not span the whole Hilbert space). This does not say whether the new frame {|n ′ i} is

linearly independent of the old one {|ni}.

In the following we will take subspaces that are invariant under T and break them down into

smaller, mutually orthogonal subspaces that are also invariant under T . First we note that if S  is

invariant under T , then it is also invariant under T †, as follows from the fact that T † =  ± T  (the

same sign as in T 2 =  ±1).

Now let S  � H  be an invariant subspace under T , let A  � S  be a subspace of S  that is also

invariant under T , and let B  � S  be the space orthogonal to A  inside S  , so that

S  =  A  �B . (A5)

Then B  is invariant under T . To prove this we note that a vector |φi � B  if and only if |φi � S

and hφ|ψi =  0 for all |ψi � A  . Now let |φi � B  � S  and let |φ′i =  T|φ i, so that |φ′i � S  .

We wish to show that |φ′i is orthogonal to all |ψi � A  , hence |φ′i � B .  First we note that

hφ′|ψi =  (hφ|T†)|ψi =  [hφ|(T†|ψi)]� =  hφ|ψ′i�, where |ψ′i =  T †|ψi. But |ψ′i � A  since A

is invariant under T †, and therefore the scalar product vanishes. Therefore |φ′i � B ,  and B  is

invariant under T .

2. Case T 2 =  + 1

Now we specialize to the case T 2 =  +1.  Let S  be a subspace invariant under T , with d i m S  ≥

1. Then S  possesses a 1-dimensional, invariant subspace. To prove this let |ψi � S  be a nonzero
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vector and consider the two vectors |ψi and T |ψi. If these are linearly dependent, then |ψi spans a

1-dimensional, invariant subspace of S  . If they are linearly independent then |ψ i + T |ψ i is

nonzero and spans a 1-dimensional, invariant subspace.

Then the space inside S  , complementary and orthogonal to this 1-dimensional, invariant sub-

space, is also invariant under T , so, if its dimensionality is ≥  1, it also possesses an invariant, 1-

dimensional subspace. Proceeding by induction, we see that if S  is finite-dimensional, then it

can be decomposed into a set of mutually orthogonal, 1-dimensional subspaces, each invariant

under T . We will assume that the same holds when S  is infinite-dimensional.

Now let |ei be a unit vector inside a 1-dimensional, invariant subspace. Then T|ei =  eiα|ei for

some phase factor eiα , since both |ei and T|ei are bases inside the 1-dimensional subspace. Then

defining |φi =  eiα/2|ψ i, we have

T|φi =  e−iα /2 T|ψi =  |φi, (A6)

and |φi is invariant under T . That is, by a phase convention we can make the basis in a 1-

dimensional, invariant subspace invariant under time reversal. This applies to each of the sub-

spaces into which S  of the previous paragraph was decomposed, so we see that in the case T 2

=  +1,  a T -invariant subspace S  always possesses a T -invariant orthonormal basis.

In particular, bases can be chosen inside the eigenspaces of a Hamiltonian that commutes with T

that are T -invariant, that is, such a Hamiltonian always possesses a T -invariant energy eigenbasis.

It is easy to show that the matrix elements of a T -invariant operator such as the Hamiltonian in

a T -invariant basis are real.

Now let S  � H  be a subspace of a Hilbert space and let {|en i} and {| fn i} be two orthonormal

bases in S  . Then these bases are connected by a unitary transformation,

| fni =  ∑|emiUmn, (A7)
m

where U†U =  UU† =  1. If however S  is T -invariant, as are the two bases, T|eni =  |eni, | fni =

T | fni, then it is easy to show that Umn = Umn , that is, U is a real, orthogonal matrix. If N =  d i m S  ,

then U � O(N), the latter being the group that connects choices of T -invariant, orthonormal bases in

the case T 2 =  +1.  Conversely, if the basis |eni in (A7) is T -invariant and if U is real orthogonal, then

the basis | fni is also T -invariant.

As a special case, if N =  1, the group O(1) consists of just two matrices (+1 )  and (−1),  so the

choice of a T -invariant basis reduces to the choice of a ±  sign.
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3. Case T 2 =  −1

Now let T 2 =  −1  and, as before, let S  be a subspace invariant under T such that d i m S  ≥

1. Then S  does not possess any 1-dimensional, invariant subspaces but it does possess a 2-

dimensional invariant subspace. To prove this let |ψi =  0 be a vector in S  and notice that |φi =

T|ψi is also a nonzero vector in S  since S  is T -invariant and T preserves norms. These vectors

are orthogonal,

hφ|ψi =  (hψ|T†)|ψi =  [hψ|(T†|ψi)]� =  −[hψ|(T |ψ i)]� =  −hψ|φ i� =  −hφ|ψi =  0, (A8)

where we use T † =  −T ,  and therefore linearly independent. They span a 2-dimensional, invariant

subspace of S  , since

T (a|ψ i + b|φ i) =  a�|φ i−b�|ψ i, (A9)

where we use T|φi =  T 2|ψi =  −|ψ i.

Thus d i m S  ≥  2 and S  possesses a 2-dimensional, invariant subspace. If S  is the eigenspace

of a T -invariant Hamiltonian, then this implies that all eigenvalues are at least 2-fold degenerate

(the usual statement of Kramers degeneracy). But this means that the space inside S  that is

orthogonal and complementary to this 2-dimensional, invariant subspace is also invariant, so, by

induction, we can continue to split off 2-dimensional, invariant subspaces until S  is exhausted (if

ever). If S  is finite-dimensional, this implies that S  can be decomposed into a set of mutually

orthogonal, 2-dimensional, invariant subspaces; and we will assume that this can also be done

when S  is infinite-dimensional. If S  is finite-dimensional, then d i m S  =  2N is even.

a. Quaternionic bases

If the vector |ψi of the preceding paragraphs is a unit vector then we may call it |1i; and then |φi

=  T|ψi =  T |1i is also a unit vector, call it |2i. Then the set {|1i, |2i} forms an orthonormal basis

in the invariant subspace that they span, such that T|1i =  |2i and T|2i =  −|1i. Doing the same

for each of the 2-dimensional, invariant subspaces into which an invariant subspace S  is

decomposed, we obtain an orthonormal basis inside S  , {|kμ i, k =  1, . . . ,N,μ =  1, 2}, such that

T|kμ i =  ∑|kν i τνμ , (A10)
ν

where τ is given by (A3) and where d i m S  =  2N. We shall call such a basis quaternionic. (In

equations like this we label the rows and columns of τ by 1,2; in other places by 1/2, −1/2.)
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Now let |e;kμ i and | f ; lν i be two quaternionic bases on a T -invariant subspace S  . (The

symbols e and f just distinguish the two bases.) Since the bases are orthonormal, they must be

connected by a unitary matrix,

| f ; lν i =  ∑|e; kμ iUkμ ,lν , (A11)
kμ

where

nσ 
Ukμ,nσ Ulν ,nσ =  δkl δμν =  

nσ 
Unσ ,kμ Unσ ,lν . (A12)

In cases like this we shall view the matrix Ukμ,lν as a “major” matrix that is composed of 2 × 2

blocks that we will call “minor” matrices. If we write simply Ukl , we shall mean the minor matrix

whose (μν ) component is Ukμ,lν . With this understanding, (A12) can be written,

∑Ukn(Uln)† =  δkl =  ∑(Unk)†Unl , (A13)
n n

where we use parentheses to make it clear, for example, that (Unk)† is the Hermitian conjugate of

the minor matrix Unk, and where δkl is understood to be multiplied by the identity minor matrix.

Now applying T to both sides of (A11) we obtain

∑ | f ; lν ′i τν ′ν =  ∑  |e;kμ′iτμ′μ Ukμ ,lν . (A14)
ν′ kμμ′

We multiply this by (τ†)νσ and sum over ν , to obtain

| f ; lσ i =  ∑  |e;kμ′iτμ′μ Ukμ,lν (τ
†)νσ =  ∑ |e; kμ ′ i

 
τUklτ

† 
′       =  ∑ |e; kμ′ iUkμ′,lσ , (A15)

kμμ′ν kμ′ kμ′

where in the last step we have used (A11) again. Then, since the vectors |e;kμ′i are linearly

independent, we obtain Ukl =  τUklτ
†, an equation connecting minor matrices. Multiplying this on

the left by τ† and on the right by τ , we obtain

τ†Uklτ = Ukl , (A16)

showing that the minor matrices of U are quaternions (see (B3)).

Thus, U belongs to the group U (N , H), the set of N × N unitary matrices of quaternions. These

matrices satisfy

∑Ukn Uln =  δkl =  ∑Unk Unl , (A17)
n n

which is (A13) written in quaternionic language. Conversely we can show that if the basis |e;kμ i

is quaternionic and U �U (N , H), then the basis | f ; lν i defined by (A11) is also quaternionic.
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In the special case N =  1, which applies to a single surface problem with an odd number of

electrons (a single Kramers doublet), the group U (1, H) consists of unit quaternions, those for

which U11U11 =  1. As noted in Appendix B  this is the group SU (2). Its role in this context was

appreciated by Mead (1987).

b. Quaternionic matrix elements

Finally, let A be a linear operator that commutes with time reversal, T †AT =  A. Then the matrix

elements of A in a quaternionic basis form minor matrices that are quaternions. To prove this we

consider the matrix elements of A with respect to a quaternionic basis {|kμ i},

Akμ,lν =  hkμ|A|lνi =  hkμ|(T†AT|lνi) =  [(hkμ|T †)A(T|lν i)]�
� #�

= ∑ (hkμ′|τ�′μ )A(|lν′iτν′ν )
μ′ν ′

= ∑ (τ † )μ μ ′  Akμ′,lν′ τν′ν , (A18)
μ′ν ′

or, in terms of minor matrices, Akl =  (τ†Aklτ )�. Now taking the complex conjugate of both sides

and comparing to (B3) we see that Akl is a quaternion.

Appendix B: Quaternions

It is well known that the quantum mechanics of systems with an odd number of fermions is

conveniently described in terms of quaternions (Dyson (1962); Finkelstein et al. (1962); Rösch

(1983); Avron et al. (1988); Johnsson and Aitchison (1997); and Zhang (1997); Saue and Aa

Jensen (1999); De Leo and Scolarici (2000); Sadovskii and Zhilinskii (2022)). Quaternions also

play an important role in representation theory (Simon (1996)). In this appendix we summa-rize

what is needed for this article. Our treatment is similar to that of Rösch (1983).

For the purposes of this article a quaternion is a 2 × 2 matrix of the form

q =  a − ib · σ , (B1)

where a and b =  (b1, b2, b3) are real. We denote the set of quaternions by H. Hamilton’s unit

quaternions i, j, k are identified with the matrices −iσi , i =  1,2,3. By this definition the matrices

(B1) form a representation of the algebra of quaternions (matrix multiplication and inversion are

equivalent to the same operations on quaternions, etc).
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The quaternion conjugate to q, denoted q̄, is obtained from q by the replacement b → −b .

Interpreted as a matrix, this is the same as forming the Hermitian conjugate; therefore we will

write q̄ =  q†, and note that q1q2 =  q2 q1. A  quaternion q is said to be real if b =  0, that is, q̄ =  q. The

square magnitude of a quaternion is

|q|2 =  q̄q =  qq̄ =  a2 + b2  + b2  + b2  =  det q. (B2)

As for complex conjugation, by q� we mean the complex conjugate of the 2 × 2 matrix (B1).

A  2 × 2 matrix q is a quaternion, according to (B1), if and only if

τ†qτ =  q�, (B3)

where τ is given by (A3). Notice that τ is the basis quaternion j.

A  unit quaternion q is one for which |q|2 =  1. The set of unit quaternions, interpreted as

matrices, is the group SU (2). An arbitrary quaternion can be written as q =  ρu, where ρ ≥  0 is real

and u is an element of SU (2), which is unique if ρ >  0.

Appendix C: Rotation Groups SO(3) and SU (2)

We let R � SO(3) be a proper rotation, which we parameterize in axis-angle form, R =  R(n,θ ),

where the unit vector n is the axis of the rotation and θ is the angle. All  proper rotations are covered if

n runs over the unit sphere and 0 ≤  θ ≤  π . If 0 <  θ <  π the axis-angle representation is unique, but if

θ =  0 then R(n, 0) =  I (the identity) for all axes n, and if θ =  π then R(n,π ) =  R(−n,π ). This

shows that the space of proper rotations, the group manifold SO(3), is diffeomorphic to the real

projective space RP3. (Two spaces are diffeomorphic if their points can be placed in a one-to-one

correspondence in a smooth manner. It means that the spaces are identical from a differentiable or

topological standpoint. The space RP3 is the 3-sphere S3 with antipodal points identified.)

The group SU (2) consists of matrices that can be parameterized in axis-angle form,

u(n,θ ) =  e−iθ n·σ/2 =  cos(θ /2) − in · σ sin(θ /2), (C1)

where σ  is the vector of Pauli matrices. All  of SU (2) is covered if the axis n runs over the unit

sphere and 0 ≤  θ ≤  2π . The representation is unique if 0 <  θ <  2π but when θ =  0, u(n, 0) =  1 for

all n, and when θ =  2π , u(n, 2π ) =  −1  for all n. This means that the group manifold SU (2) is

diffeomorphic to the 3-sphere S3.
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The projection from SU (2) to SO(3) is given by

Ri j =  
2

tr(u†σiuσ j). (C2)

One can show that the matrix R defined by this equation belongs to SO(3) if u � SU (2), so it

defines a map or function : SU (2) → SO(3). We will denote the function by R(u); it is a group

homomorphism,

R(u1)R(u2) =  R(u1u2), (C3)

and thus SO(3) forms a representation of SU (2). The map (C3) is two-to-one, since R(u) = R(−u).

The map preserves the axis and angle, that is, R u(n,θ ) =  R(n,θ ).

Sometimes it is desirable to invert (C2), that is, given R � SO(3) we wish to find u. The answer

can be given by using the axis-angle parameterization; if we write R =  R(n,θ ), then the two

elements of SU (2) that satisfy (C2) are ±u(n, θ ).

Appendix D: Some Proofs

We prove the statements made below (115), which concern the consequences of that formula.

First, suppose a basis is quaternionic at x0,

T |x0;kμ i =  ∑|x0; kν i τνμ , (D1)
ν

see (A10), and suppose that |Rx0;kμ i is given by (115). Then we have

T |Rx0;kμ i =  ∑Ue (u)
 
T |x0;kν i

 
u−1)ν μ =  ∑Ue(u) |x0; kσ i τσν 

 
u−1)ν μ

ν νσ

=  
σ 

Ue(u) |x0; kσ i τu−1� 
σμ , (D2)

where in the first step we use the fact that T commutes with rotations. But since u−1 � SU (2) it is

a quaternion and satisfies u−1� =  τ† u−1 τ , see (B3). Thus τ u−1� =  u−1 τ , and (D2) becomes

∑Ue(u) |x0; kσ i
 
u−1)σν τνμ =  ∑|Rx0; kν iτνμ . (D3)

νσ ν

Thus, the basis |Rx0;kμ i at the rotated point x =  Rx0 is also quaternionic.

Next, suppose a basis vector at x0 is an energy eigenvector,

He(x0) |x0; kμ i =  εk(x0) |x0; kμ i, (D4)
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where the energy does not depend on μ as indicated. Then

He(Rx0) |Rx0; kμ i = Ue(u)He(x0)Ue(u)† ∑Ue(u) |x0; kν i
 
u−1

νμ

=  εk(x0) 
ν 

Ue(u) |x0; kν i
 
u−1

νμ =  εk(x0) |Rx0; kμ i, (D5)

where in the first step we use (104) and (115). Thus, the rule (115) maps energy eigenbases at x0

into those at x =  Rx0, without changing the eigenvalues.

To prove (116) we let R1,R2 � SO(3), corresponding to u1,u2 � SU (2), and we write x1 =  R1x0

and x2 =  R2x1. Then we have

|x2;kμ i =  |R2x1;kμ i =  |R2R1x0;kμ i =  ∑Ue(u2u1) |x0; kν i (u2u1)νμ
ν

=  
νσ 

Ue(u2)Ue(u1) |x0; kν i u−1 
νσ     u

−1 
σμ

=  ∑Ue(u2) |x1; kσ i u−1 
σμ . (D6)

Now making the replacements x1 → x, R2 → R and u2 → u, we obtain (116). The proof would not

work if we had used u instead of u−1 in (116).
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