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Abstract

Portland cement-based nanocomposites were successfully fabricated with low volume
fractions of hexagonal boron nitride (hBN) nanoplatelets, exfoliated and functionalized using
a combination of ball milling and sonicated-assisted dispersion. Surface topography, thickness,
lateral dimension, and number of layers of the hBN nanoplatelets were evaluated by AFM and
Raman analysis. The identification of functional groups attached onto the functionalized hBN
was performed through FTIR. The results show that the functionalization successfully
exfoliates the hBN nanoplatelets to few-layer thicknesses, resulting in suspensions with high
colloidal stability. The grafted hydroxyl and carboxyl groups on the hBN surface interact with
the Ca®" ions of calcium silicate hydrates (CSH), improving the load-transfer efficiency from
the cement matrix to the hBN nanoplatelets. Overall, the hBN reinforced cementitious
composites demonstrated significant enhancement in flexural strength by ~50%, compressive

strength by ~17%, Young’s modulus by ~56%, and fracture energy by ~76%.
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Nomenclature

Symbols

2D
Oc¢

of

Acronyms

AFM
C-S-H
CVD
FWHM

FTIR

hBN

hBN-AR
hBN-BM
hBN-BM-U
hBN-BM-Usrc

hBN-U
hBN-Usrc

OPC
SFC
UV-vis
CMOD
LEFM

Two-Dimensional
Compressive Strength
Flexural Strength
Fracture Energy

Zeta potential
Young's Modulus

Intensity Ratio of Boron-Nitrogen Bonding
Intensity Ratio of Hydroxyl Groups

Number of Layers

Atomic Force Microscopy
Calcium Silicate Hydrates
Chemical Vapor Deposition

Full-Width at Half-Maximum
Fourier Transform Infrared

Hexagonal Boron Nitride

“As received” bulk Hexagonal Boron Nitride

Ball milled Hexagonal Boron Nitride

Ball milled Hexagonal Boron Nitride after ultrasonication

Ball milled Hexagonal Boron Nitride after ultrasonication with the use
of surfactant (SFC)
Bulk Hexagonal Boron Nitride after ultrasonication

Bulk Hexagonal Boron Nitride after ultrasonication with the use of
surfactant (SFC)
ordinary Portland cement

Surfactant
Ultraviolet-Visible
Crack Mouth Opening Displacement

Linear Elastic Fracture Mechanics
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Introduction

Recently, two-dimensional (2D) nanomaterials have demonstrated outstanding potential as
reinforcing materials for high-performance nanocomposites. Hexagonal boron nitride (hBN),
a dielectric isomorph of graphene, has drawn attention due to its unique combination of high
intrinsic thermal conductivity and stability [1], electrically insulating behavior [2], and
extraordinary mechanical properties including a Young’s modulus of ~1 TPa [3]. Chemical
functionalization can further enhance the synergistic advantages of few-layer hBN
nanoplatelets [4-5]. Various physical and chemical methods have been reported to exfoliate
hBN nanoplatelets including ball milling [6-8], intercalation-oxidation [9], chemical vapor
deposition (CVD) [10], and liquid exfoliation [11-19]. Among these methods, sodium
hydroxide (NaOH)-assisted ball milling has been found to be effective at functionalizing hBN
nanoplatelets without significantly disrupting the crystal structure of the hBN [7]. In previous
work from our laboratory, we have shown that functionalized hBN can improve gelation with
ionic liquids, resulting in concurrently high ionic conductivity and mechanical stiffness, which
is of high interest for rechargeable battery applications [20]. Similarly, functionalized hBN can
improve interactions with polymer matrices to impart high thermal conductivity and stability,
modulus of elasticity, and ionic conductivity, which have been successfully employed as
separators between the cathode and anode electrodes in battery assemblies [21]. This prior

work suggests that functionalized hBN can add value to additional nanocomposite materials.

A couple previous attempts have been made to implement hBN nanoplatelets in cementitious
matrices. For example, Rafiee et al. [22] employed high volumes (=2.0 vol%) of ball-milled
hBN nanosheets to increase the low compressive strength and toughness of porous
cementitious composites. Another recent study reported the effectiveness of ultrasonication for
enhancing the exfoliation state and colloidal stability of hBN nanosheets in suspension, which

is crucial for enhancing the mechanical properties of hBN-reinforced cementitious materials
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[19]. In this work, ultraviolet-visible (UV-vis) optical absorption spectroscopy indicated the

necessity of using surfactants to maintain the colloidal stability of the hBN suspensions.

Herein, functionalized hBN nanoplatelets were produced from bulk hBN powders. A two-step
method was implemented to synergistically functionalize and exfoliate the hBN nanoplatelets
using ball milling and sonication. The functionalization degree was quantitatively assessed by
evaluating the intensity ratio of hydroxyl groups (Ion) to boron-nitrogen (Is-n) bonding through
Fourier transform infrared (FTIR) spectroscopy. In addition, atomic force microscopy (AFM),
Raman analysis, and zeta potential measurements were used to determine the number of hBN
layers, thickness, lateral dimension, and charge transfer kinetic rates of the hBN nanoplatelets
after exfoliation. An important first reporting step of this ongoing research is the impact of the
degree of hBN’s functionalization and exfoliation on the strength, stiffness and fracture energy
of hBN-reinforced cementitious composites. The functionalized hBN nanoplatelets were
employed in cementitious nanocomposites, resulting in significant enhancement of flexural
strength by ~50%, compressive strength by ~17%, Young’s modulus by ~ 56%, and fracture

energy by ~76%.

2. Materials and Experimental Procedure

2.1 Materials and Specimen Preparation

A ball milling process was used to produce hBN nanoplatelets from “as-received” bulk hBN
(hBN-AR) [7]. 8 g of bulk hBN (Sigma Aldrich, 1 pum) was mixed with 120 g of 2 M NaOH
and 400 g of stainless-steel balls (6 mm) in a 150 mL stainless-steel ball milling container. The
mixture was ball milled (Micronano Tools, PBM-2) at 200 rpm for 24 h before the NaOH
solution was filtered, and the recovered powder was bath sonicated with 300 mL of 1 M HCI
solution. The resulting slurry was filtered and washed with deionized water until the pH was

neutral. The powder was then dispersed in isopropyl alcohol at a concentration of 2 mg/mL via
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bath sonication, after which the dispersion was centrifuged (Beckman Coulter, JLA-16.250) at
5,000 rpm before the supernatant was decanted. The supernatant was then filtered to collect the

functionalized hBN nanoplatelets ((BN-BM).

As-received bulk hBN (hBN-AR) and ball-milled hydroxylated hBN (hBN-BM) at a volume
fraction of 0.18 vol% were used to produce aqueous suspensions using a sonication-assisted
dispersion method. In particular, a previously reported one-step ultrasonication procedure that
employs a commercially available polycarboxylate based surfactant [23-25] was implemented
to further assist the hydroxylation and exfoliation and promote dispersion of the hBN samples
in water. Ultrasonication energy was applied to the aqueous samples using a 750 W cup-horn
high-intensity ultrasonic processor with a 19 mm diameter probe. Using the developed
dispersion method, the effect of the addition of the surfactant, at a fixed surfactant to hBN ratio,
on the stability of the hBN suspensions was evaluated. It should be noted that the 0.18 vol%
hBN loading was selected as the optimum volume fraction used to maximize the mechanical

and thermal properties of hBN reinforced epoxy nanocomposites [26].

Type I ordinary Portland cement (OPC) was used as the binding material. Standard sand as per
the ASTM C778-17 was used as the fine aggregate for casting mortars with water to cement
ratio of 0.485 and sand to cement ratio of 2.75. The hBN-AR and hBN-BM suspensions were
added to OPC and sand, with the subsequent mixing being performed according to the
procedure outlined by ASTM 305 — 20 using a standard robust mixer capable of operating from
140 + 5 rpm to 285 = 10 rpm. The mixture was then cast in 40 x 40 x 160 mm? oiled molds.
After 24 hours of curing, specimens were demolded and stored in a curing room (20 °C, 99.5%

humidity) until testing.
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2.2 Characterization Methods

An AFM operating in tapping mode was used to measure the thickness and lateral size of the
hBN nanoplatelets following deposition onto silicon substrates under ambient conditions.
Information regarding the morphology of the sample was obtained using the height sensor with
ScanAsyst tips with a nominal radius of 2 nm. The spring constant of the AFM cantilevers was
0.4 N/m, and the scan rate was 0.5 Hz. The peak amplitude was fixed at 150 nm, and data from

256 points were collected along both the horizontal and vertical axes.

FTIR spectroscopy was performed to identify the functional groups on the hBN nanoplatelets.
The experiments were performed with 32 scans at a resolution of 4 cm™ ranging from 4000 to
525 cm™'. An ambient background scan was taken before each sample acquisition. 0.05 g of
hBN (powder) was used to obtain the FTIR spectra. Raman spectroscopy was carried out with
a 532 nm excitation laser in air under ambient conditions. 0.05g of hBN (powder) was used to
obtain the Raman spectra. After averaging, the spectra were baseline corrected in the region
1300—1440 cm ! and peaks were fit to Lorentzians. For the hBN dispersions, the samples were
capped loosely and kept in an oven at 50 °C until the water was evaporated. Then, the dry hBN

samples were collected and FTIR and Raman analyses were performed.

Zeta potential measurements were used to evaluate colloidal stability of the suspensions and
the level of charge attraction/repulsion between the hBN nanoplatelets [27]. The zeta potential
was determined by measuring the electrophoretic mobility of the suspensions using the
Zetasizer Nano ZS system. Prior to electrophoretic mobility measurements, all samples were
diluted in distilled water at a constant factor. Following dilution, 1.0 ml of each sample was
loaded into a Malvern DTS 1070 disposable folded capillary cells to perform the zeta potential
measurements as per the instructions of the Zetasizer Nano ZS system manufacturer. The zeta

potential ({) was then calculated by the Helmotz-Smoluchowski equation:
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¢=u(=) (1)

where u is the electrophoretic mobility, # is the viscosity of the dispersion medium (water =

0.8904 cp), and ¢ is the dielectric constant of the solvent (water = 78.54).

An isothermal conduction calorimeter was used to measure the heat of hydration of freshly
mixed cement paste samples with a w/c of 0.485. The raw materials were pre-conditioned at a
temperature of 23°C and then mixed thoroughly inside the vial at a speed of 200 = 10 r/min for
180 s, in accordance with the ASTM C1679-17. Readings were recorded for every 15 sec

during the first hour of hydration, and then for every 1 min until 40 hours of hydration period.

Three-point bending tests were conducted to assess the flexural strength of the cementitious
nanocomposites. 4 x 4 x 16 cm® prismatic specimens were tested in three-point bending at the
age of 3, 7, and 28 days according to ASTM C348-21. The test was performed using a 30 kN
MTS Criterion Electromechanical Testing system under displacement control. The rate of
displacement was held constant at 0.1 mm/min [28]. An average value was calculated from

three specimens for each curing age.

The compressive strength of the hBN reinforced mortars was determined on the two halves of
the prism that resulted from the fracture of the three-point bending specimen according to
ASTM (C349-18. Prior to subjecting them to a uniaxial compression test, the two halves were
examined for the presence of cracks that might have been generated during the three-point
bending test. The test was performed using a 500 kN MTS Servohydraulic Testing system

under displacement control. The rate of displacement was held constant at 0.3 mm/s.

The Young’s modulus, E, was calculated from 2 different experimental procedures. First, the
Young’s modulus was determined from the stress — strain curves of the uniaxial compression

tests following the ASTM C 469/C469M-14. The Young’s modulus was also calculated by the
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three point bending experiments following the ACI 544 Report on Fiber Reinforced Concrete

[28-29].

According to ASTM C348, ASTM C349 and ASTM C469 specimens that result in strengths
differing by more than 10% from the average value of all test specimens made from the same
sample and tested at the same period were not considered in determining the flexural and

compressive strength, and the modulus of elasticity.

Furthermore, fracture mechanics tests on notched 10 x 10 x 84 cm® specimens were employed
to evaluate the fracture energy, Gy, following the Linear Elastic Fracture Mechanics according
to the RILEM FMC-50 [30]. A 42 cm notch was introduced into the prismatic specimens using
a water-cooled band saw machine. The length of the notch was calculated based on the RILEM
standard which requires a notch a notch to depth ratio of close to 1/2 [30]. The specimens were
then tested at the age of 28 d, following the aforementioned three point bending procedure. The
test was performed using the 30 kN MTS Electromechanical Testing system. A Crack Mouth
Opening Displacement (CMOD) extensometer was used as the feedback signal to produce

stable crack propagation at the rate of 0.015 mm/sec, is reached about 1 min.

The microstructural analysis of the samples was carried out using a Scanning Electron
Microscopy (SEM) system Hitachi SU 3800 operating in in high vacuum mode. Prior to SEM,
the sample was sputter-coated with a thin layer of gold—platinum, Au/Pt, to eliminate charging
effects. The acceleration voltage was kept at 7.5 kV and spot size of 12.5 was considered for

SEM operations.

3. Results and Discussion
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3.1 hBN Functionalization, Exfoliation, and Stability

Representative AFM images for the hBN-AR and hBN-BM samples both before and after
ultrasonication are displayed in Figure 1. Figure 1a shows the hBN-AR sample in water having
lateral particle sizes in the range of 1-10 um and thicknesses up to 120 nm. It should be noted
that the AFM-measured thickness of monolayer hBN has been previously reported in the
literature as ~1 nm [31]. The measured thickness for the hBN-AR suspension is about 2.4 times
higher than that of hBN bulk material, indicating the presence of agglomerated hBN particles.
hBN-BM was observed to have a thickness of ~63 nm, which is lower than that of hBN-AR.
After ultrasonication, the thickness of the hBN nanoplatelets was further reduced. In particular,
ultrasonication of the hBN-AR sample (i.e., hBN-U sample) results in a thickness of ~8 nm.
The lowest average thickness of ~5 nm was observed for the hBN-BM sample after
ultrasonication (i.e., hBN-BM-U) with some hBN-BM-U nanoplatelets being as thin as 3-4

layers.
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Figure 2 compares the FTIR spectra of the hBN-AR and hBN-U samples with and without
surfactants. The two characteristic absorption peaks of hBN at about 1340 and 770 cm ™! are
assigned to the stretching vibration of the B-N bond (in-plane) and bending vibration of B-N—
B (out-of-plane) [32], respectively, and are observed in the FTIR spectra of all hBN samples.
The presence of the two characteristic peaks around 1340 and 770 cm™ confirms that the hBN
lattice remains intact after the application of ultrasonication energy for both the samples with
(hBN-Uskc) and without surfactants (hBN-U). The weak peak observed at ~3393 cm™! (shown
in the insert of the figure for all hBN samples) is attributed to the stretching vibration of
hydroxyl groups (~OH) on the hBN surface. The peak at ~2520 cm! is likely resulting from
B-H bonds [33]. The absence of new peaks for the hBN-U spectra confirms that there are no
additional functional groups induced during the ultrasonication procedure. Two additional
peaks can be observed in the hBN-Usrc spectra at wavenumbers near 2870 and 1710 cm’!,
which are attributed to the C-H and -COOH stretching vibrations. These additional peaks along
with the O-H stretching of carboxylate groups and C-O stretching at wavenumbers between
1340 and 816 cm™ suggest that the use of surfactants during the ultrasonication procedure
(hBN-Usrc) resulted in functionalization with carboxyl groups. In addition, a shift towards
higher wavenumber was observed for the two characteristic hBN peaks (Table 1) of the hBN-
U and hBN-Usrc spectra, indicating that exfoliation of hBN enhances the stretching vibration
and especially bending vibration of B-N bonds [34]. Overall, these results show the importance

of adding surfactants to the ultrasonicated suspensions for improving the exfoliation and

functionalization of the hBN nanoplatelets.
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Figure 3 compares the FTIR spectra of the hBN-BM and hBN-BM-U samples with and without
surfactants (i.e., hBN-BM-Usrc and hBN-BM-U, respectively). Compared to hBN-AR, hBN-
BM does not exhibit any additional peaks in the FTIR spectra, which indicates that there are
no deleterious functional groups grafted onto the hBN surface during ball milling. Comparing
the FTIR spectra of hBN-BM and hBN-AR, a shift from 768 cm™ to 773 cm™ is observed for
the B-N bending vibration [34]. This shift along with the increase of the intensity of the B-N—
B out-of-plane bending vibration relative to the peak of B-N in-plane transverse optical mode
[9] for hBN-BM can be attributed to the exfoliation and thinning of the hBN nanoplatelets
during ball milling. The spectra of hBN-BM-U and hBN-BM-Uskc are similar to that of hBN-
U and hBN-Usrc indicating successful exfoliation and functionalization, especially for the

ultrasonicated case with surfactants.

The intensity ratio of the peaks at ~3393 cm™ and ~1340 cm™ can be used to evaluate the
degree of functionalization with hydroxyl groups for hBN-AR and hBN-BM, as shown in
Tables 1 and 2, respectively. The increase in the lon/Is-n stretching ratio for hBN-BM compared
to hBN-AR confirms the improved functionalization of hBN with hydroxyl groups during ball
milling [32]. Similarly, hBN-U and hBN-BM-U have slightly higher lon/Is-~ stretching ratios,
which can be attributed to ultrasonication fracturing the hBN nanoplatelets, resulting in
hydroxyl groups attaching to the edges [35]. The lon/Is-N stretching values further revealed a
higher functionalization degree for the hBN-Usrc and hBN-BM-Usrc cases. Overall, the FTIR
results reveal that the combination of ball-milling and surfactant-assisted ultrasonication yields

the highest degree of hBN exfoliation and functionalization.

14



256  Table 1. FTIR bands of hBN-AR, hBN-U, and hBN-Usrc in addition to intensity peak ratios
257  that allow quantification of the degree of functionalization with hydroxyl groups.

hBN-AR hBN-U hBN-Uskc
OH Wavenumber (cm™) 3393.2 3393.7 3393.2
Ion (%) 89.13 85.5 84.6
. Wavenumber (cm™) 1340.3 1340.3 1360.1
B-N stretching
IsN stretching (%) 41.05 19.4 12.4
- Wavenumber (cm™) 768.5 768.5 752.6
B-N bending
IsN bending (%) 27.6 7.9 13.6
Intensity Ratio 217 4.4 73

Ton/IB-N stretching

258

259  Table 2. FTIR bands of hBN-BM, hBN-BM-U, and hBN-BM-Usrc in addition to intensity
260  peak ratios that allow quantification of the degree of functionalization with hydroxyl groups.

hBN-BM hBN-BM-U hBN-BM-Usrc

OH Wavenumber (cm™) 3393.7 3393.7 3394.7
Ton (%) 89.77 90.95 84.09
. Wavenumber (cm™) 1339.8 1361.04 1366.82
B-N stretching
IsN stretching (%) 36.39 14.24 11.31
- Wavenumber (cm™) 772.36 772.36 776.7
B-N bending
IB-N bending (%0) 16.7 32.30 5.86
Intensity Ratio 2 46 6.4 14.8

Ton/IB-N stretching

261

262  Raman spectroscopy provides further insight into the characteristics of the hBN nanoplatelets.
263 A typical hBN Raman spectrum, shown in Figure 4, contains a single vibrational peak denoted
264  as Eagat 1366 cm™! [34]. This peak represents the high-frequency inter-layer Raman active Ezg
265  mode of hBN. The variations in the G-band peak width were used to estimate the number of
266 layers of the hBN samples. In particular, the full-width at half-maximum (FWHMGg-band) of the
267  hBN G-band extracted from Lorentzian fits allows the number of layers (N) to be calculated

268  using Eq. (5) [32].

15
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Upon functionalization, the Raman peak red shifts and full-width at half-maximum increases,
indicating the reduced inter-layer interaction of exfoliated products [31]. These results confirm
that the ball milling of hBN-AR to produce hBN-BM resulted in improved exfoliation of the
hBN nanoplatelets. The results shown in Table 3 indicate the estimated number of layers using
Raman analysis in addition to the calculated number of layers from AFM statistical analysis,

showing strong agreement between the two methods.
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Figure 4. Typical hBN Raman spectrum.
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Table 3. Estimated number of hBN layers using AFM measurements and Raman spectroscopy
analysis.

AFM Raman
) Theoretical
Number of  Raman ShiftG-band FWHMG-band
layers (cm™) (cm™) number of
layers
hBN-AR 12-16 1366.74 10.06 10
hBN-BM 6-9 1363.83 11.21 5
hBN-U 7-11 1364.79 10.81 6
hBN-Usrc 5-8 1362.87 11.35 5
hBN-BM-U 5-8 1361.91 11.61 4
hBN-BM-Usrc 3-4 1359.97 12.61 3

Zeta potential values were recorded throughout the ultrasonication procedure to identify the
optimum amount of applied ultrasonication energy for achieving stable suspensions. Figures
5a and 5b present the absolute zeta potential values at ultrasonication energies up to 2000 kJ/L.
Prior to sonication, suspensions exhibit values lower than 30 mV, which indicate unstable
hydrophobic suspensions [6]. The zeta potential of the hBN-AR and hBN-BM suspensions
increases with the application of ultrasonication energy up to 1800 kJ/L, indicating improved
suspension stability. The highest increase in zeta potential values occurs at 1800 kJ/L. For
higher ultrasonication energies, the absolute zeta potential values exhibit a plateau, indicating
that the stability of the suspensions is no longer improved. The stability of the hBN-BM-U and
hBN-BM-Usrc suspensions was found to be higher than that of hBN-U and hBN-Usrc at all
energies. This observation can be attributed to the hydroxyl groups grafted onto hBN-BM
increasing the hydrophilicity of the hBN nanosheets, resulting in increased dispersibility and
stability in aqueous suspensions. In addition, the use of surfactants during ultrasonication
results in a higher zeta potential, indicating a significantly improved colloidal stability, mainly

due to electrostatic and steric effects introduced by the surfactant [36].
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Figure 5 Absolute zeta potential of (a) hBN-U and hBN-Usrc and (b) hBN-BM-U and hBN-
BM-Usrc suspensions as a function of ultrasonication energy.

The values of absolute zeta potential of the hBN-AR and hBN-BM suspensions were
systematically measured over a period of 3 days with the results being presented in Figures 6a
and 6b. A decrease in zeta potential values with increasing shelf time ranging from 12 to 26%
was observed for the hBN-AR suspensions, whereas the hBN-BM suspensions exhibit
decreases in the range of 5-15%. Specifically, the stability of the hBN-BM-Usrc suspensions
was found to be only 15% lower compared to that shortly after the completion of the
ultrasonication procedure and remained higher than that of hBN-Usrc due to the hydroxyl

groups grafted on hBN-BM.
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Figure 7. Heat of hydration (solid lines) and cumulative heat released (dashed lines) curves of

plain and hBN-AR, hBN-BM, hBN-U and hBN-BM-U reinforced cement paste mixes

The isothermal calorimetry results in Figure 7 present the effect of the addition of as-received
(AR), ball-milled (BM), and ultrasonicated (U) hBN on cement hydration. The heat of
hydration — time curves show that compared to plain OPC paste the addition of 0.18 vol% hBN
marginally increases the heat of hydration, probably due to the high intrinsic thermal
conductivity of the boron nanoplatelets [1]. Comparing the cumulative heat released during
hydration also confirmed that cement paste mixes reinforced with the as-received, ball-milled
and ultrasonicated hBN exhibit almost the same hydration behavior to that of plain cement.
Zhang et al. [37] have also observed no changes in the degree of cement hydration with the

addition of boron nitride nanoplatelets, through X-ray diffraction (XRD) analysis.
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Figure 8. Heat of hydration curves of plain and hBN-Usrc, and hBN-BM-Uskc reinforced

cement paste mixes with the use of surfactant (SFC)

The isothermal calorimetry results of plain and hBN cement pastes with the use of surfactant
(SFC) are presented in Figure 8. It has long been recognized that the use of polycarboxylate
SFC may retard the hydration process of cement [38]. As depicted from the heat of hydration
— time curves in Figure 8, the CP + SFC mix exhibits an induction period (142 min) extended
by =25 min compared to the CP without the SFC addition (107 min). The addition of exfoliated
boron nanoplatelets (hBN-Usrc and hBN-BM-Usrc) led to a less extended induction period of
of CP+hBN-Usrc and CP+hBN+BM+Uskc, 127 min and 126 min, respectively. Assuming that
a good amount of SFC is adsorbed on the boron nanoplatelets surface, less amount of the
surfactant is available in the cementitious matrix to interact with cement, when compared with

the plain cement paste mix that contains the same amount of SFC [19, 39].
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3.3 Effects of hBN Functionalization and Exfoliation on the Mechanical Properties of
Nanoreinforced Mortars

Since effective exfoliation and functionalization allows better interfacial bonding between
nanomaterials and cementitious matrices, the hBN suspensions were used to develop
cementitious nanocomposites and study the impact of hBN exfoliation and functionalization
on the strength and stiffness of hBN-cement nanocomposites. Figure 9 presents the rate of
flexural strength development of the 28d mortar nanocomposites reinforced with as-received
(AR), ball-milled (BM), and ultrasonicated (U) hBN at 0.18 % volume fraction. All hBN-
reinforced mortars exhibit higher flexural strength than the plain mortar at all ages. Mortars
reinforced with hBN-AR or hBN-BM show relatively minor increases in the 28d flexural
strength of about 12%. hBN-U and hBN-BM-U reinforced mortars exhibited a 17.6% and
24.2% increase in flexural strength, respectively. Addition of hBN-BM-Usrc yields the highest
ability to carry flexural loads with an increase of 51.3% in flexural strength compared to plain

mortar specimens.
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Figure 9. Flexural strength, of, of mortars reinforced with 0.18 vol% hBN at the age of 3, 7,

and 28 days.
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The enhanced load bearing capacity of hBN-BM-Usrc reinforced mortars can be attributed to
the increased surface area and homogeneous distribution of thin, functionalized hBN
nanoplatelets, which can induce strong interactions with the cementitious products, resulting
in crack inhibition of the mortar matrix. hBN nanoplatelets with hydroxyl and carboxyl groups
grafted on their surface exhibit similar behavior to that of carbon-based functionalized
nanomaterials [40]. The Ca*" ions present in the calcium silicate hydrates (C-S-H) undergo
covalent reactions with the functional groups attached to the surface of hBN [41]. Due to this
interaction, hydration products are formed between interlocking hBN sheets , establishing a
strong bond at the interface between the hBN and C-S-H that promotes efficient load transfer.
Compared to the mortars reinforced with hBN after ball milling and ultrasonication (hBN-BM-
Uskc), the composites with sonicated hBN-AR (hBN-U and hBN-Uskc) exhibit 13-28% lower
flexural strength. As shown in Figure 1 and Table 3, boron nanoplatelets after ultrasonication
exhibit a thickness of 8 nm while hBN after ball milling and ultrasonication (hBN-BM-U) show
a thickness of 5 nm, which is consistent with the mechanical testing results. The effective
exfoliation process through ball milling and ultrasonication significantly increases the surface
area of the functionalized hBN network available for reactions with Ca®* ions, thus enhancing
more effectively the interfacial bond strength between the hBN and the cementitious matrix
[41-42]. The intrinsic strength of the hBN depends on their thickness, where the 5 nm thick
hBN exhibit strength values of 250 MPa, 25% higher than the strength (200 MPa) of the 8 nm
thick hBN [43-44]. The enhanced interfacial bonding between the thinner hBN and
cementitious matrix may also lead to a more effective load transfer mechanism increasing the

nanocomposite’s flexural strength.
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Table 4. Tensile and Compressive Young's modulus, E, of mortars reinforced with 0.18 vol%
hBN at the age of 3, 7, and 28 days.

Age (d) Young's modulus, E (GPa) Young's modulus, E (GPa)

3 point bending Compression
40x40x160 mm® 40x40x80 mm>
9.23+0.24 0.46 + 0.44
Mortar 11.15+0.81 11.57+£0.58
28 1430+ 1.28 14.10 £0.25
10.23 £0.75 11.00 £0.25
hBN-AR 7 12.42 +0.98 12.12+£0.30
28 17.22+£1.16 17.73 £1.06
10.43 £0.76 11.40 £ 0.41
hBN-BM 7 12.98 £1.00 12.53 £0.60
28 1751 £1.11 17.55+£0.53
9.45 +0.60 9.22+0.42
hBN-U 7 11.61 £0.94 11.87 £0.34
28 14.64 +1.30 14.29 £ 0.34
12.40 £ 1.00 12.90 £ 0.44
hBN-Uskc 7 1538 £0.81 15.76 £0.20
28 2142 +1.33 21.37+£0.32
10.86 £ 0.89 11.23 £0.46
hBN-BM-U 7 13.95+0.99 13.41 £ 0.60
28 19.10 £ 0.93 19.47 £0.58
13.25+0.90 13.05+0.80
hBN-BM-Usrc 7 16.57 £ 1.14 16.84 +£0.57
28 22.31+£0.57 2298 £0.42

The Young's modulus results for plain mortar and 0.18 vol% hBN reinforced mortars are
presented in Table 4. Similar to the flexural strength results, the Young's modulus increases
with the addition of hBN to the cementitious matrix. Compared to plain mortars, relatively
minor increases in the Young’s modulus were observed for the hBN-AR and hBN-BM mortars.
The 28-day hBN-U and hBN-BM-U nanoreinforced mortars exhibit a 27.3% and 33.6%
increase in Young's modulus, respectively. Results from the Young’s modulus using hBN-BM-

Usrc show the significance of the addition of the surfactant towards modulus enhancement, as
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397  anincrease of 56% was observed. This is attributed to the attachment of carboxyl and hydroxyl
398  groups from the surfactant used for the exfoliation process onto the hBN surface [40] resulting
399  inincreased covalent reactions with the Ca®" ions from C-S-H that promote a much higher load
400  bearing capacity of the hBN-BM-Usrc cementitious composites at the elastic stage [41, 44].
401  Therefore, the hBN-BM-Usrc nanocomposites exhibit a =1.6x higher Young’s modulus than

402  the mortars reinforced with the hBN-BM-U, exfoliated without the use of surfactant.
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404  Figure 10. Compressive strength, oc, of mortars reinforced with 0.18 vol% hBN at the age of

405 3,7, and 28 days.
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Figure 11. Compressive stress-strain curves of 28 d plain mortar and mortars reinforced with

0.18 vol% hBN

The compressive strength, oc, of the plain mortar and mortars reinforced with 0.18 vol% hBN
is depicted in Figure 10. A modest improvement in compressive strength was observed with
the 28-day hBN mortars exhibiting slight increases in compressive strength ranging from 3%
to 17%. The compressive stress-strain curves of 28 d plain and 0.18 vol% hBN reinforced
mortars are presented in Figure 11. The compressive modulus values of all mortars are
calculated by the initial compliance of each curve according to the ASTM C 469 and presented
in Table 4. Despite the modest increase of the compressive strength, the use of effectively
exfoliated and functionalized hBN significantly increases the stiffness. It should be noted here
that the compressive modulus values (Table 4) perfectly agree with the values determined from

the three-point bending tests.
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Such enhancements in the flexural strength and Young’s modulus indicate strong interactions
between thin, functionalized hBN nanoplatelets and cementitious products that may increase
the demand of strain energy for crack propagation. The amount of strain energy necessary for
the crack initiation and propagation in a cementitious material is represented by the fracture
energy, Gr [30]. The fracture energy can be calculated from the load to crack mouth opening
displacement (CMOD) response of notched specimens subjected to Linear Elastic Fracture

Mechanics tests (LEFM) following the RILEM 50-FMC equation [30]:

__ Wp+mgCMODg

Gy = HotmOcioh 3)

Where, m is the self weight of the specimen, g gravitational acceleration constant (9.81 m/s?),
A the reduced cross sectional area in the notch region, CMODo the CMOD value at failure and
Wo the area under the load — CMOD curve (work). Load — CMOD curves of 28-day plain
mortar and mortar reinforced with the ball milled hBN after ultrasonication with the use of

surfactant (h(BN-BM-Usrc) are shown in Figure 12.

2,000 T
28d w/c/s=0.485/1.0/2.75
LEFM ® -
1,600 -
—=— Mortar
——hBN-BM-U
~ 1,200 - e
Z
=
g
S 800
400 -
O T T T T T
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
CMOD (mm)

Figure 12. Load - CMOD curves of 28 d plain mortar and mortar reinforced with 0.18 vol%

hBN-BM-Usrc
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Figure 13. Fracture Energy, Gt, of 28-day mortars reinforced with 0.18 vol% hBN.

Load — CMOD curves of both the plain and hBN-BM-Uskc reinforced mortars in Figure 12
exhibit the same pattern, consisting of a linear elastic stage before crack initiation, nonlinear
stage of stable crack propagation, preceding unstable failure and unstable extension stage after
the peak load. It is observed however, that the total area under the load — CMOD curve (work,
Wy) of the hBN-BM-Usrc reinforced mortar is much higher compared to the plain mortar,
therefore the fracture energy is expected to be increased. The fracture energy results of the 28-
day plain and hBN reinforced mortars calculated from Eq. 3 are presented in Figure 13. The
nanocomposites reinforced with hBN-BM-Usrc yielded the highest increase in fracture energy
of 76% over the plain mortar. Relatively moderate increases in the fracture energy ranging
from 27 — 40% were observed for the 28-day hBN-AR, hBN-BM, hBN-U, hBN-Usrc and hBN-
BM-U mortars. This is in accordance with the trend already observed for the flexural strength
(Figure 9) and Young’s modulus (Table 4). Generally, the improvement of the fracture energy
indicates that a significantly higher amount of energy is required for crack initiation and

propagation in a cementitious system reinforced with nanomaterials.
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Table 5. Summary of Flexural strength, Compressive strength, Young's modulus and fracture

energy results of 28-day plain and hBN reinforced mortars

Flexural Compressive Young's Fracture

Energy

strength strength modulus (N/mm)

(MPa) (MPa) (GPa)

Mortar 591+0.11 3131 £1.27 1430+ 1.28 36.1 £ 0.81
hBN-AR 6.31+0.11 32.29+1.26 17.22 £1.16 46.2 +0.80
hBN-BM 6.66 £0.11 32.62+£1.26 1751 £ 1.11 46.7 +0.81
hBN-U 6.95+0.10 33.48 £ 1.08 14.64 £1.30 46.3 +0.81
hBN-Usrc 7.92+0.08 36.16 £ 0.93 2142 +1.33 51.4+£0.62
hBN-BM-U 7.34£0.08 3441 +£0.97 19.10 £0.93 47.8+0.71
hBN-BM-Usrc ~ 8.94+0.07 36.70 £ 091 22.31 +£0.57 63.5+0.52

Overall, it is clear that increased surface functionalization and exfoliation of hBN nanoplatelets
within the cementitious matrix holds great potential for improving the mechanical properties
of cementitious nanocomposites [41-44]. The 28-day cementitious composites reinforced with
the thin, functionalized hBN after ball milling and ultrasonication (hBN-BM-Uskc)
outperformed all other mixes, exhibiting the highest increases in flexural strength (50%),

compressive strength (17%), Young’s modulus (56%) and fracture energy (76%) over the plain

mortar as shown in Table 5.

Figure 14 (a) and (b). SEM images of the fracture surface of cement nanocomposites

reinforced with hBN-BM-Usrc
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Figures 14 a and b show SEM images of fracture surfaces of the samples reinforced with hBN-
BM-Uskc at a scale of 50 nm. Thin hBN after ball milling and ultrasonication (hBN-BM-Uskc)
with a typical plate-like structure [45] are observed. The plate-like structure of individual hBN
layers after the ball milling and ultrasonication process was also identified in AFM images in
Figure 1. It is revealed from the SEM images in Figures. 14 a and b that the surface of hBN is
covered with C-S-H. The observations suggest that not only an effective exfoliation of hBN
into the cementitious matrix was achieved; also the hBN layers themselves are intercalated
within the matrix, which enhances the interfacial bonding and enables an effective load transfer

between the matrix and hBN, resulting in the improvement of the overall mechanical properties

of the nanocomposite.

Figure 15. Typical SEM images showing the crack pathways on the fracture surfaces of (a)

hBN-BM-U mortar and (b) hBN-BM-Usrc mortar

The plate-like structure of the thin hBN after ball milling and ultrasonication with the use of
surfactant (hBN-BM-Uskc) may also contribute to the development of more articulated crack
paths resulting in a more effective stress redistribution into the matrix [46]. SEM images of the
micro-cracks on the fracture surface of hBN-BM-U and hBN-BM-Usrc reinforced mortars at
a 200 pm resolution are presented in Figure 15 a and b, respectively. It is observed that the

pathway of the micro-crack on the fracture surface of hBN-BM-Usrc mortars appears more
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tortuous with multiple crack branching, while the micro-crack on the surface of hBN-BM-U
mortars follows a more linear pathway. The formation of multiple and tortuous microcracks in
cementitious matrices is indicative of a controlled crack growth process that allows the
nanocomposite to greatly improve its strain energy demands for crack initiation and
propagation greatly improving the overall strength, stiffness and strain energy capacity of the

nanocomposites.

4. Conclusions

Well-exfoliated and functionalized hBN nanoplatelets were successfully produced from bulk
hBN using a combination of ball-milling and ultrasonication. The hBN suspensions were
characterized by a series of spectroscopic and microscopic experiments to assess the stability,
exfoliation quality, and functionalization degree. FTIR and zeta potential data revealed that
functionalization of hBN through ball milling and ultrasonication, particularly with the use of
a cementitious materials surfactant, resulted in the presence of hydroxyl and carboxyl groups,
which in turn led to increased hydrophilicity of hBN and steric or electrostatic repulsions that
enhance the stability of the aqueous suspensions. The degree of exfoliation was also confirmed
by atomic force microscopy. AFM imaging was used to characterize the thickness of the hBN
nanoplatelets, confirming reduced thickness after exfoliation and functionalization. The
theoretical number of hBN layers was determined through Raman spectroscopy. The results

are in perfect agreement with the number of layers identified through AFM analysis.

High-performance hBN cementitious nanocomposites are ideally suited to attaining improved
mechanical properties as a result of their high surface area and -OH and -COOH grafted onto
the hBN surface. The attached functional groups on the hBN surface undergo covalent
reactions with the Ca?" ions in C-S-H. Due to this interaction, a strong bond at the interface

between the hBN and C-S-H is established that improves the load transfer efficiency from the
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cementitious matrix to the hBN nanoplatelets. The enhanced load bearing capacity of the hBN
reinforced mortars is demonstrated by improvements in flexural strength, 50%, compressive

strength, 17%, Young’s modulus, 56%, and fracture energy, 76%.

The exceptional properties of high-performance hBN cementitious nanocomposites render
them an ideal candidate for multifunctional applications, due to the unique intrinsic properties,
the very small thickness, and grafted hydroxyl and carboxyl groups functional groups on the
hBN surface that enhance the interfacial interactions between the hBN nanoplatelets and the
matrix. The authors of this work will further evaluate the properties of cementitious
nanocomposites with highly functionalized tri-layered hBN in future work, paving new

pathways toward the use of hBN cementitious nanocomposites in energy related applications.
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