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This work formally investigates the differential
evolution indicators as a tool for ultrasonic tracking
of elastic transformation and fracturing in randomly
heterogeneous solids. Within the framework of
periodic sensing, it is assumed that the background
at time f, contains (i) a multiply connected set of
viscoelastic, anisotropic and piecewise homogeneous
inclusions, and (ii) a union of possibly disjoint
fractures and pores. The support, material properties
and interfacial condition of scatterers in (i) and (ii)
are unknown, while elastic constants of the matrix
are provided. The domain undergoes progressive
variations of arbitrary chemo-mechanical origins such
that its geometric configuration and elastic properties
at future times are distinct. At every sensing step
to, t1,. .., multi-modal incidents are generated by a set
of boundary excitations, and the resulting scattered
fields are captured over the observation surface. The
test data are then used to construct a sequence of
wavefront densities by solving the spectral scattering
equation. The incident fields affiliated with distinct
pairs of obtained wavefronts are analysed over the
stationary and evolving scatterers for a suit of
geometric and elastic evolution scenarios entailing
both interfacial and volumetric transformations. The
main theorem establishes the invariance of pertinent
incident fields at the loci of static fractures and
inclusions between a given pair of time steps,
while certifying variation of the same fields over
the modified regions. These results furnish a basis
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for theoretical justification of differential evolution indicators for imaging in complex
composites which, in turn, enable the exclusive tomography of evolution in a background
endowed with many unknown features.

1. Introduction

Many critical components in aerospace structures and energy systems are comprised of highly
heterogeneous composites [1,2]. Examples include (a) single- and polycrystalline superalloys
deployed in aeroengine and gas turbine blades [3], (b) interpenetrating phase metamaterials
such as SiC-SiC composites used in accident-tolerant nuclear fuel claddings [4,5] and (c)
multifunctional polymer matrix composites with a wide spectrum of applications thanks to
their exceptional mechanical properties [6,7]. The topology and characteristics of such materials
at micro- and meso-scales are often unknown, or only known to a limited extent because of
variabilities in the manufacturing process [8,9] and/or ageing [10]. In addition, mechanisms of
deterioration via corrosion, fatigue, irradiation and thermal cycling are yet to be fully understood.
These processes, however, are responsible for continuous microstructural evolution leading to
inevitable development of micro/macro cracks and volumetric damage zones which may result
in the loss of functional performance in key components [11,12] (table 1).

Recent developments in sensing technology have resulted in a suite of imaging solutions
germane to complex environments [13-20]. State-of-the-art examples include: penetrating-
radar techniques [13], infrared thermography [14], laser shearography [15], X-ray computed
tomography [16], acoustic tomography [17], ultrasonic surface wave methods [18], nonlinear
ultrasound [19] and laser ultrasonic imaging [20]. Among which, ultrasonic sensing often emerges
as the preferred (or the only feasible) imaging modality in many applications. Laser ultrasonics
[21-23], in particular, has come under the spotlight for enabling non-contact actuation and
measurement that is crucial for high-fidelity in situ monitoring of fabrication processes and
advanced manufacturing [20,24,25].

Existing approaches to ultrasonic waveform inversion mostly rely on (a) distinct patterns in
the measured scattered field associated with certain modes of propagation, (b) specific sensing
configurations and (c) major postulates on the nature of wave motion in the background
which, by and large, forgo the uncertain (yet important) scattering signatures affiliated with the
specimen’s microstructure. Such attributes expedite the data processing, yet entail the following
impediments: (i) unstable reconstructions featuring many artefacts, (ii) significant errors in
heterogeneous and anisotropic backgrounds where multiple scattering generates remarkable
wave dispersion and attenuation, (iii) major restrictions on the geometry of incident and/or
measurement grids, (iv) limited scalability beyond the controlled laboratory environment. Thus,
there is a critical need for next-generation imaging solutions that carefully integrate state-of-the-
art instrumentation and advanced data analytic solutions to enable fast (yet robust) ultrasonic
tomography of complex processes in uncertain or unknown environments.

Ongoing efforts in this vein are mainly focused on (a) optimization-based full-waveform
inversion and (b) machine learning (ML). Inverse algorithms in (a) have so far been associated
with tardy reconstructions due to their high computational cost. Lately, a few studies showed that
the latter may be addressed by leveraging deep learning solutions pertinent to partial differential
equations such as physics-informed neural networks [26,27]. However, the majority of paradigms
in (b) make use of ML principles within the framework of existing logics for ultrasonic imaging so
that the above-mentioned barriers are not fundamentally resolved. Nonetheless, ML schemes are
shown to facilitate the implementation of various imaging solutions, and may serve as effective
post-processing tools for image enhancement [28-30].

In applied mathematics, in parallel, over two decades of research in inverse scattering and
transmission eigenvalues has given rise to a suite of rigorous algorithms for non-iterative
waveform inversion [31-35]. Recently, sampling-based approaches to inverse scattering have
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been applied to laser-ultrasonic test data [36]. The results demonstrate superior reconstructions in
terms of quality and resolution compared to conventional methods. In addition, introduction of
the differential evolution indicators [37] as a tool for waveform tomography in unknown media
showcases a unique opportunity to achieve the above-mentioned goal of real-time laser-based
monitoring. The differential indicators have so far been theoretically established for (i) acoustic
imaging of obstacles in periodic and random media [38,39], and (ii) elastic-wave imaging of
fractures in monolithic solids [40,41]. A rigorous justification of this imaging modality for its
potentially dominant field of application i.e. ultrasonic tomography in complex composites—
where the background features a random distribution of heterogeneities and discontinuities of
unknown support and material characteristics which are subject to both interfacial and volumetric
evolution—is still lacking. The present study is an effort towards establishing the differential
evolution indicators in the general case of solids. In this vein, special attention is paid to pose
the forward scattering problem in a broad sense by taking advantage of contributions on the
nature of transmission eigenvalues in elastodynamics [42-48].

More specifically, the direct problem formulates sequential experiments conducted on a
randomly structured composite such that at every sensing step t., 1, ..., the specimen features
an arbitrary networks of pores and fractures along with a set of viscoelastic, anisotropic and
heterogeneous inclusions embedded in an elastic matrix. Properties of the binder are assumed
to be known, while the support, material properties and interfacial condition of scatterers are
a priori unknown and subject to spatio-temporal evolution. In this setting, boundary excitations
at every time step give rise to distinct scattering footprints on the measurement surface. The
idea is to use the sequence of scattered field measurements to design an imaging functional
endowed with appropriate invariance with respect to stationary scatterers between any pairs of
time steps such that the associated reconstructions uniquely expose the support of mechanical
evolution in a given timeframe without the need to image the entire domain which may be
insurmountable. To this end, the conditions for well-posedness of the forward problem are
identified. The set of spectral scattering equations is then defined for waveform inversion.
At every time step, the affiliated scattering operator and its related properties are carefully
analysed in order to construct a sequence of approximate solutions to the scattering equation
with strong convergence characteristics under a certain condition. The obtained solutions, i.e.
wavefront densities, are then used to specify a set of incident fields over a generic model of
the background, which forms the basis for differential imaging indicators. Next, the incidents
corresponding to distinct pairs of wavefronts are analysed over the stationary and evolving
scatterers for a suite of geometric and elastic evolution configurations. In the general case of solids,
the latter involves a number of novel scenarios including (a) fracturing at bimaterial interfaces,
(b) elastic transformation and/or expansion of fractured inclusions and (c) elastic conversion of
microcracked damage zones. The main theorem establishes the invariance of incident fields at the
loci of stationary fractures and inclusions, while certifying variation of the same fields over the
evolved regions. These results pave the way for differential tomography of evolution in unknown
backgrounds.

In the sequel, table 1 provides the list of main symbols, §2 provides the geometric and
mechanistic description of the direct scattering problem and §§3 and 4 specify the fundamental
properties of scattering operators. The main theorems in §5 establish the behaviour of differential
indicators in the case of composites. Section 6 is dedicated to a numerical implementation and
discussion of the results.

2. Preliminaries

Consider periodic illumination of mechanical evolution in a randomly structured composite
shown in figure 1. At the first sensing step t = f., the specimen B C R3 is comprised of (i) a linear,
elastic, isotropic and homogeneous binder of mass density p € R and Lamé parameters u, » € R,
(ii) a union of bounded inclusions D} U DJ =D, C B with Lipschitz boundaries composed of
penetrable D} and impenetrable DI components where in the former case, the inclusions may
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Table 1. Nomenclature

(Continued.)
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Table 1. (Continued.)

be viscoelastic, anisotropic and multiply connected, and (iii) a network of discontinuity surfaces
I, C B characterized by the complex-valued and heterogeneous interfacial stiffness matrix K, (&)
where & € I, is the position vector. The specimen may be exposed to irradiation or chemical
reactions as common producers of interfacial damage [49], and/or subject to thermal cycling,
fatigue and shock-waves which are mostly responsible for volumetric degradation [50] so that
at any future sensing steps t =t; > t,, i € N, the domain B features an evolved set of inclusions
D; U D] =D; C Band interfaces I'; C B such that D;_; C D;and I};_ \DT” C I, Vi e N. For further
clarity, let pe = p(§) >0 and C, = C((§), k =0o,1,..., designate the mass density and (complex-
valued) viscoelasticity tensor associated with the penetrable obstacles D} at f.. Here, (Cy, o)
are understood in a piecewise-constant sense i.e., Dj can be decomposed into N} open, simply
connected and non-overlapping subsets D}! C Dy (of Lipschitz boundaries) where both p, and C,
are constants V£ € D", and D = Un 1 Di. It should be noted that Vt,, Dy and D¢ are assumed to
be disjoint, i.e. D N DY =¢. In addition, the support of I, may be decomposed into N, smooth
opensubsets I, C I, n=1,...,N,, such that I, = Uijkzl I'y. The support of I, may be arbitrarily
extended to a closed Lipschitz surface dD;, of a bounded simply connected domain D, so that
the unit normal vector n to I}, coincides with the outward normal vector to dD,,. We assume that
I'; is an open set (relative to dD,;) with a positive surface measure.

In this setting, let £ U & and [} UT;, respectively, specify the support of volumetric and
interfacial evolution within [t;_1, t;] for i € N such that

[i=T\T, i={Eehi\D': Ki1(§) # Ki(§)},

E:=D\D? ,, & :=supp(Ci— Ci1) Usupp(p; — pi-1), i€N. (2.1)

At t=t,, Specimen’s external boundary 83 and the binder’s constants (%, i, p) are known
which may be used to define a baseline model of the background. On the other hand, the support
of pre-existing scatterers D, U I', and their designated properties (Co, po, Ko )(§) are unknown.
Given sequential sensory data at ¢;_1 and ¢; for i € N, the objective is to reconstruct the support of
volumetric and interfacial evolution £ U £/ U [ U I defined by (2.1).

Assumption 2.1. Let I} C I, denote the union of traction-free cracks at ¢, such that

r:={terl:Kc§) =0}, k=o,1,...,
then B\ D¢ U I'? remains connected V.

Assumption 2.2. Let 9i(-) and J(-), respectively, denote the real and imaginary parts of a
complex-valued quantity, and recall that the fourth-order tensor C, (§) represents the viscoelastic
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Figure 1. Ultrasonic sensing of evolution in a heterogeneous composite featuring a network of arbitrary inclusions, fractures
and pores of unknown distribution, elastic properties and interfacial conditions: (a) primary experiments conducted at t = t,,
when a set of boundary excitations, interacting with the unknown pre-existing scatterers D, U I, induce the scattered field
v, on the observation surface, and (b) secondary experiments performed sequentially at later times t; = {t;, t,, . . .} when
new and evolved scatterers D, U I, lead to distinct waveform measurements v, °%.

and anisotropic behaviour of inclusions Dy at t,.. Then, the real part of C, is bounded by
piecewise-constant and strictly positive functions ¢, and (., while the magnitude of its imaginary
part is constrained by piecewise-constant and non-negative functions v, and V, such that V® e
C(D* )3><3

K 7

«|P> <R :C:P)<(|P> inD:
- , Kk=o,1,.... (2.2)
Ve | @ < —3(® : C : @) <V, |®|*> inD}:

Also, the interfacial stiffness matrix K, € L(I¢)**3 is symmetric Yk, while satisfying ¢ - IK,(£) -
¢ <0,Vp € C(L)*.

Assumption 2.3. Let C=21Ir ® I, + 2uly denote the binder’s fourth-order elasticity tensor,
wherein I, (m =2,4) designates the mth-order symmetric identity tensor. Then, given Poisson’s
ratio v=A/2(A + u) and B := B\D, U I, observe that V¥ € (C(B;)3X3,

1
2 1 - 2
2P <N C: W) <@L+ 20 forO<v<s oG

GL+2W)| PR <KW :C: W) <2u|¥|> for —1<v<0

Next, invoke D} C Dy with constant (Cy, o), and let ¢, (!, v and V! represent the respective

K’ “K’7 K

values of ¢, (¢, v and Ve ineach D, ne{1,...,N;} and « € {o,1,...}. Then, in light of [46], Vk

(0 < pe A max{3i+2u,2u} <min{((}) V (p > pc A min{3 + 2,21} > max{c;}).

(a) Experiments

The domain B is subject to periodic inspections at time steps t, = {t,, t1,...}. At every t,, the
specimen is excited by a combination of ultrasonic sources on its external boundary a5; so that
the corresponding incident field uf € H!(5)? in the baseline model is governed by

V - C:Viul(€) + po’uf(€) =0, £eB,
n- C:Vu(€)=1(), £ciB, (2.3)
u'(€)=0, £caB\ IB;.
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Here, the illumination frequency >0 is selected such that the shear wavelength
ks =27/ i/ (pw?) is sufficiently smaller than the characteristic length scale of the sought-for
objects; n is the unit outward normal to the sample’s boundary 35; 7(§) represents the external
traction on the Neumann part of the boundary 953; C 38 which includes the source input. It
is assumed that supp(dB \ 3B¢) =, i.e. a set of fixed boundary points of zero surface measure
prevent the rigid body motion. Henceforth, the homogeneous Dirichlet part of the boundary will
be implicitly indicated. At every sensing step t,, the interaction of uf with the hidden scatterers
I U D, gives rise to the total field (u, w*) e H(B;)? x HY(D}: \ Ty )? satisfying

V- C:Vu(§) + pou*(§) =0, £eB,,
V- [Cel®) : Vr 1(€) + pe(€) *w (§) =0, & eDi\ Ty,
tu*1(8) = tHw* 1(§), u* (&) =w* (&), EcoD\ T, ”
t{u](€) = K (&)[ull (&), [t[u]l() =0, el
t{u*1() =0, £ecoDy,
tu*1(€) =1(&), EcoB.
Here,
tHu 1) =n(€) - C:Vu (&), £ €0B;UDD,

Hw*](§) =n(§) - Cc(§) : Vw*(§), § €Dy ’

where n is the unit outward normal to 353 and 9D,. In addition, [u]l (resp. [t[u]]]) denotes the jump
in displacement u (resp. traction £[u]) across I, such that

[T on I, \ Df [tHu1] :=[n- C: Vu“] on I, \ Df
[ull = { [w*] on [, ND; , [tHu]ll={ [tw ]]:=[n-Cc: VW] onl,ND; ,
u“ —w“ onIl,NID; n-(C: Vu¥ — C,: Vw") on I, N D}

where

FI=F"=F" FF®= lim fE+mm@®), &<k

Keep in mind that the unit normal vector n to I is specified earlier. Also, the second
of (2.4) should be understood as a shorthand for the set of Ni governing equations over
the respective homogeneous regions D}!(n=1,...,Ny), supplemented by the continuity and
interfacial conditions for displacement and traction across 3D} as applicable.

Assumption 2.4. » > 0 is not an eigenvalue of the homogeneous form of (2.3) and (2.4).

Given (2.3) and (2.4), the scattered field v* € H (B U Dx \ T, )3 is governed by

V. C:VU(€) + po™* (&) + (DI \TOIf + V- 0,](§)=0, &eB UDI\Ty,
Hv 1) + 1(DE N Lon - 0 (€) = K (&) [v*1(E) — £(8), Eery,
[£[v*]+ LD} N Fon - 0, (E)]E) = LOD; N Ti)n - 0, (&), el oy
[t 1) =1 - 0. (§), [v*1(&) =0, EcoDi\ Ty,
to 1) = —t'(§), £coDy,
tv“1(€) =0, EciB,

where tf :=n - C: Vuf; t{v*]=t"[v"] :=n - C:Vv* ;and,

fo®):=(pc(§) — p)*W* (&), 04(§):=(Cc(§) — C) : V' (§), EeDi\ T
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(b) Dimensional platform

In what follows, all quantities are rendered dimensionless by taking p, i and ¢,—denoting the
minimum length-scale attributed to the hidden scatterers, as the respective reference scales for
mass density, elastic modulus and length—which amounts to setting p = u =€, =1 [51].

(c) Function spaces

It is known that stress singularities at the branch points of multiple intersecting fractures in an
isotropic and homogeneous background is weaker than the classical crack-tip singularity [52,53].
The latter is also the case for delamination cracks propagating along bi-material interfaces [54].
High-order singularities may occur when a crack tip meets a bi-material interface in an angle
[55,56], in which case it is shown that the contact laws in the vicinity of the crack tip may be
modified such that the usual asymptotic forms for stress still applies [57]. In light of this, it will
be assumed that [u] € H/2(I})? where

HVX(1)* = {f|, :f e HT'/*3D)*}, 06
HX2(1)3 = {f e HFY2(9D)? : supp(f) C T }. .

Here, D = UnNian is a multiply connected Lipschitz domain of bounded support such that
I CdD. Recall that D, is an arbitrary extension of I}, defined in the above. On invoking
H=Y2(r,)® and H-Y2(I)3 as the respective dual spaces of HY2(r)® and HY2(13,)3, it follows
that

A2 () c Ha (L) CLIA(R)? c H (1) ¢ Ho 3 ()P 2.7)
In this setting, t[u] € H~Y2(I;)3. For future reference, let us also define

S(D! U T UdDY) = LA(D: \ Te)? x LAD:\To)3 x H 2(I)® x H 2(9DLY?,
] B B ) ) (2.8)
S(D! U T UDY) i=LA(D: \ T)® x LAD:\ T)>3 x H2(I)? x H2(9D2)3.

(d) Well-posedness

Under assumptions 2.1 and 2.2, observe that the direct scattering problem (2.5) is of Fredholm
type, and thus, its well-posedness may be established by drawing from the unique continuation
principles. See Appendix A for details.

(e) Scattering signatures

By deploying Betti’s reciprocal theorem, one obtains the following integral representation for the
scattered fields v* :=u* — uf, k ={0,1,2,...}, on the specimen’s boundary.

30°6) = o7 [(pe W) — P*w () - G(&, )
~VG(E,y) 1 (Ce(y) — O): Vur (y)]dVy

(2.9)
+ fype W) - T, ) dSy + [1; [ullw) - T, y) dSy,
TE y):=n(y) 2Ey), &cob.
Here, G(§,y) is Green’s displacement tensor solving
Vy: C:VyGE, ) +pe’GEy) +3y — =0,  yeB\ (&}, .10

n-C:VyG(,y)=0, yeab,

and X(§,y) :=C : VyG(£,y) is the associated Green's stress tensor.
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3. Scattering operators
Let us define the scattering operator A, : L2(88;)° — L?(35;)° by
Ac(@) ="z, k=012, (3.1
where v* solves (2.5). Then, there exists the factorization
A =8¢ T S, (3.2)
such that S, : L?(38;)° — S(D} U I, U dDY) is defined by

Se(1):= (uf vt

f f
par Vi pa s 1]ty ), (33)
whose adjoint operator S; : S(D,j U I UdDY) — L2(3B;)° takes the form
S;(k(d)/ ¢/ ®, ¢) = v*(g)/ g € aBt/ (34)

where v* € HY(B\ T U 0D, )’ solves

V. C:Vv*(E) + po®v* ()

+ LD\ T)(D —V - 8)=0, £ €B\T, UdD,,

[tv*11(E) = —n - ®(&), [v*](E) =0, EcdD;\ Ty,

[v*1) = @, [[v*] - 1(D; N Ii)n - ST (E) (3.5)
=—10D; N )n - B(E), Eely,

[v*1¢) = ¢, [t[v*]1(E) =0 £coDy,

tv*](§)=0, £cdB,

wherein t{v*]:=#n- C: Vv*. This may be observed by (i) pre-multiplying the first of (3.5) by i
and (ii) post-multiplying the conjugated first of (2.3) by v*. Integration by parts over B\ I, U 3D,
followed by application of the contact condition over I', U 3D, and summation of the results yield

/ f~v*d55=f 7(ﬁf~¢+VﬁfZ¢)dV§
B, D\

K

- / tHu'l - 9 dSg + / tHu'l - ¢ dSe,
I Do
which substantiates (3.4) via (($p, @, ¢, ¢), Sc(7))D:ur,uspe = (v*, T)s5,- Here,
(-, )pruruape = (S(Df U I, UIDY),S(D} U I UIDY)), 56
(-, g, = (H (0B, H 2(0B:)%),

extend L? inner products. In this setting, the middle operator T, : S(Df U I, UdDY) — S(D: U
I, U DY) is given by

T (”f|D;\ﬁ' V”f|D;\ﬁ' t[”fHFK' t[”f]’;mg)

= ((pe — p)a)zwk‘D;\ﬁ, ~(Cc = O): V| Tull, | mg)‘ (3.7)

4. Properties of operators

Assumption 4.1. Given « €{o,1,...} and je{o,1,...,N¢}, suppose that (a) DI may be
decomposed into simply connected components Dg,j cD?, and (b) I consists of M, >1
(possibly disjoint) analytic surfaces S, C I,, m=1,...M,, with the unique continuation 9D,
identifying the ‘interior” domain D; C . Then for any j (resp. m), it is assumed that w > 0 is not a
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‘Neumann’ eigenfrequency of the Navier equation in Dg’j (resp. D), i.e. as long as u; € H! (Dz’j)3

and u,, € HL(D,)? satisfying

V- (C: VW) + pouj=0 in DY . V- (Ce : Vluy) + pe0®uy =0 in Dy,

4.1
n-C:Vu;=0 ona’Dz,j n-Ce :Vuy, =0 on aD,, ” @1

vanish identically in ij y and Dy, respectively. If D, is bounded, the real eigenfrequencies of (4.1)
form a discrete set [46,47].

Lemma 4.2. In light of the unique continuation principle, the operator S : L*(3B;)* — S(DE U I U
9D?) is injective at all t.

Lemma 4.3. Let
Ha=[ie H(D})?|V - C:Vii+ poi=0inD}},
and define the map (S1,52,53) : Ha — LA(Df \ Ti)? x L2(D2 \ T )>*3 x LA(I, N'D#)? such that

(51,52, 83)(i) = (i Vi

'D;\FK’ 'D;\FK’ t[ﬁ] FKanz), t[ﬁ] =n - C N Vfl,
then S(Ha):=S1(Ha) x Sa(Ha) x (S3(Ha) ® H™V2(I \ D2)?) x H-V2(9D2)% = R(S,) where the

latter denotes the closure of the range of Si.

Proof. Observe that the restriction of uf e HY(B)3, satisfying (2.3), to Dy belongs to Ha, hence
R(S¢) C G(Ha). To prove the claim, it is then sufficient to establish that S} : G(Ha) — L*(3B;)°
given by

1
78* /¢/ 7 =
e eeve=| |

K

by - GE,y) + D(y) : VG, y)|dVy,
+ /P O T s, ¢ /F YO TE s,
+ /3 L $OTE DS, (42)

is injective on G(Hp). Suppose that there exists (b, @, ¢ ® ¥, ¢) = (ul, v, t{u'] @ ¥, p)—with v’ €
HY(D?)? satisfying V - C: Vul + po’ul =0 in D* while (,¢) e HY/2(I} \ Dr)® x H/2(3D%)°—
such that S,f(ui, vu', t{u'] ® ¥, ¢) = 0. Since by construction v*(§) =S (-) on § € 9B;, it is evident
from (2.5) that v* has trivial Dirichlet and Neumann traces on 93;, and thus, the unique
continuation principle reads v =0 in B\l U D,. From (a) properties of the layer potentials, i.e.
¢ =u* and ¥ = [v*], (b) fifth of (2.5) which reads #f = 0 on 9D?, and (c) assumption 4.1 indicating
that @ > 0 is not a Neumann eigenfrequency of the Navier equation affiliated with any simply
connected subset of D¢, one may conclude that ¢ = ¢ = 0. Now, on denoting I'! = I, N D2 and
B*=B\T}UdD;, let VE e B\ T,

V)= [ [Y0)- Gy + W) Ve ylavy

K

4 / Hu(y) - T(&, y) dS,. (43)
1"[

K

From the regularity of volume potentials, one may infer that Vv € H L(B*), v e HY(3*) satisfies
/ [pwzv’ -v—VV:C:Vv]dV; —/ [VT-(n-[C:Vv — Vui])d5§
* 1")([

= —/ BE ul +Vv’:Vui] dVve. (4.4)
DIk
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Note that v= S;‘(ui, vul, tlul] & 0, 0) on 883, then S}(-) = 0 implies that v=0 in B* \D7;. Then
by setting v/ =, (4.4) may be recast as

Doi ol i 2 -
-/D;\ﬁ[pwu v—Viu':C:Vv]dV; ||u”H1(D;\11)3' (4.5)

Also, on recalling V - C: Vu' + po?u =0in Dy, it follows that
/D - [P @ - v— Vi : C:Vv]dVe = [Hu] I ey - (4.6)
T :

Combining (4.5) and (4.6) reads (¢, ®, ¢) = 0 which completes the proof. |

Lemma 4.4. Under assumption 2.2, the operator S : S(Dx U I, UdDC) — L*(3By)° is compact and
has a dense range.

Proof. The compactness of S} is established by the smooth kernels in its integral form (4.2), and
its dense range results from the injectivity of S, per lemma 4.2. |

Assumption 4.5. Under assumptions 2.1-2.3, given (f*,g°)e H-/2(dD})3 x H/2(3D})?,
consider the solution (u*,w¥) € H! (D,’;)3 x H1 (D T:)® to the interior transmission problem (ITP)

ITP(D;/FK/ {C/p}/ {CK/pK}/KK;fK/gK)

V- [Ce(®) : VWE](E) + pi(§) 0®WE () =0, £ eDi\ T,

V .- C:VUE(€) 4+ po?u¥(§) = 0, & Dy,

tw ] (&) — t{u ](&) =1(§), [w —u*](&)=g“(é), §€dD\ I, (4.7)
tw](§) = K (§)[w1(&), [t[w<]1(§) =0, ¢el,NDy,

tw ](§) — t{u ](&) =1 (§), t{w](§) = K (§)[9" +u —w ](§), &l NIDy,

wherein

Hu](§) =n(§) - C:Vu(§), tw ](§)=mn(§) - Cc(§) : VW (§), §el, UIDL.

It is assumed that Vt,, w is such that (4.7) remains well-posed, i.e. for (f,¢*) =0, the ITP
does not admit a nontrivial solution (u*,w*). For I, =, the elastodynamics ITP, with varying
restrictions on C and C, (§), is analysed in [42,46-48] following the variational method introduced
by Hahner [58]. In the most general case, under assumptions 2.2 and 2.3, (4.7) with I, =@ is well-
posed when » does not belong to (at most) a countable set of transmission eigenvalues [46]. The
latter is also concluded in a recent study of acoustic ITP for penetrable obstacles with sound-hard
cracks [39]. Similar analysis could be applied to (4.7) which is beyond the scope of the present
study.

Lemma 4.6. Operator T, : G(Ha) — E(D; U I UdDY) in (3.7) is bounded and satisfies
S(TKE/E)'D;UFKUBDg > 0, (48)

VE e 6(Ha): E #0. Consequently, T is also injective provided that w is not a transmission eigenvalue
of (4.7) per assumption 4.5.

Proof. The well-posedness of (2.5) establishes the boundedness of T.. Now, consider v*
satisfying (A 1) with (uf DT vuf DT t[uf]’ o t[uf]|3D£) = E. Taking v/ =" in B, and v/ =
w* —ufin D} \ T, observe from (A1) that

ST E, E)peuruape = =3 (/ V" :Cy : Vw* dV +/ [#1 .K,([[v"]]d55>, (4.9)
) ) DT, I

whereby (4.8) follows immediately from assumption 2.2. Now, let T & = 0, then (4.9), second of
(2.4), the unique continuation principle, and (2.9) imply that ST Z =0. Then, lemma 4.7 reads
E =0 which proves the injectivity of T. |
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Lemma 4.7. Under assumption 4.5, the operator Vi = S;T, : &(Ha) — L?(0B)® is compact and
injective with dense range.

Proof. Compactness of V. follows immediately from lemmas 4.4 and 4.6 which respectively
establish the compactness of S; and the boundedness of T,.. To demonstrate the injectivity of V,
let

(@ Vi
such that VK(“'D*\F , VuID.\F , ta ull np: ® ¥, ¢) =0. Since by definition v =V, (:) on 35, one
may observe that v* satisfying (2.5) has trivial Dirichlet and Neumann traces on 35; so that by
the unique continuation principle v =0 in B, . Now, from (a) second and fifth of (2.5), and (b)
assumption 4.1 indicating that w > 0 is not a Neumann eigenfrequency of the Navier equation
affiliated with any simply connected subset of D¢, one may conclude that ¥ = ¢ =0. Next, let
us define w* such that w* =i+ v* in D}, then the pair (4, w*) satisfies the ITP (4.7) with trivial
boundary potentials i.e., (f<,¢*) = 0. Since w is not a transmission eigenvalue as per assumption
4.5, one may deduce that i = 0in D} \ T. Subsequently, Vii = 0in D \ T}, and ¢[a] =0on I, N D}
which proves the injectivity of V.

Denseness of the range of V, may be established by showing that the adjoint operator V; is
injective. In this vein, from definition, V¥ : L?(83;)3 — (D2 U I, U 9DY) is given by

V:(T) = ((pK - p)a)zur 'D;\FK’ _(Cik - C) : vul' D;\FK’ [[u.[]”["(/ ul’ |6'D,‘<’ )/ (410)

where u” € H'(By U D} \ T)? solves

pogy Vilpa o il s @9, ) € S(Ha), (¥,8) € H VAL D)’ x HV2(0DY),

V. CiVIT(E) + poPut(§) + LD\ TOIF +V-071(§)=0, § B, UD;\Ty,
Hu1(§) + L(DE N T - o™ (§) = Ke(§) [ 1(8), fel,
[t{u"] + 1(D; N Tl - o7 (€)](E) = L(@DL N Loy - 07 (8), sl
[t T0E) = - 07 (&), [u71(§) =0, §aDI\ T,
Hu"1(§) =0, EeoD?
1) =, EeoB,

where t{u"] :=n - C : Vu’, and
(&)= (o (&) — p)*u’(§),  o"(§):=(Cc(€)—C):Vu'(§), EeDi\Ty.

This may be observed by (i) pre-multiplying the first of (2.5) by u7, and (ii) post-multiplying the
conjugated first of (4.11) by v*. Integration by parts over By U D} \ I followed by application of
the contact condition over I', U 8D, and summation of the results yield

e (AR

(o

substantiating (4.11) as the adjoint operator. Next, let 7 € L2(3B;)° and assume that Vi(r)=0,ie.
(" DT, II”T]”rKf u’ |3Dg) =0.

In this setting, the unique continuation reads u* =0, and thus, T =0 which concludes the proof.
|

PAT —(C = C):Vu* DT L1l ”T’apg)'

vuf

DT DT t[”f”r/ t[”f]’apg»p;u ruaDe

vu®

DL

Assumption 4.8. Under assumptions 2.2 and 2.3, one of the following applies:

— R(Cy — C) — a(Cy) is positive definite on D} \ T for some constant o > 0.
— For some constants «, n > 0,
X:R(C—Co): X >alX? X:RC):X=nX1% 1|3(Ce) e < Jan,

on D} \ T for all X in C3*3,
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Lemma 4.9. Under assumptions 2.1, 2.2, 2.3, 4.5 and 4.8, the operator T, : G(Ha) — S(D; ur,u
dDY) is coercive, i.e. there exists a constant ¢ > 0 independent of E such that

(TeE, B =l E 3prunuamey ¥ E € S(Ha). (4.12)

Proof. We adopt a contradiction argument as follows. Suppose (4.12) does not hold, then one
may find a sequence (&),eny C S(Ha) such that

I Evlls:uruepe) =1, Tk &n, En)l — 0asn— oco. (413)
Denote by v"* € H'(B; UD: \ Ty)? the solution to (2.5) with

(uf|D;\ﬁ/ qup;\ﬁ/ t[uf”I‘K/ t[uf]laDg) =Ey

= (”nlD;\ﬁ' Vu”|p;\ﬁr t[un]lrkm D ev",¢"),
V.C:Vu'"+po®u"=0inD, (", ¢") e H V(I \DF)® x HV2(5D0)>.

Elliptic regularity implies that || v" [|p2(5.)s is bounded uniformly with respect to n. Then, up
to changing the initial sequence, one may assume that Z, weakly converges to some & in
S(D: U T, UdDY) and v" converges weakly in H?(By)3 N HY(D: \ Ty)® to some v € H>(B7)3 N
H! (D;, \ T,)?. Now, observe that v satisfies (2.5) for

E = (ulpy\ Vitlpo g, Hull 5 @ ¥, 9),  (¥,6) e H VA1 \ D)° x H2(0DY)°,

whereinV - C : Vu + pw?u=0in Dy In this setting, (4.9) along with [(T &, £)| — 0imply that
[v"]— 0on Iy and V(" + v"") — 0 in D} \ T}, whereby the first of (2.5) reads that #" + v" — 0 in
Dy \ T. One may then deduce from the unique continuation principle that the total field 1" + v"
also vanishes in B . In which case, (2.9) indicates that v — 0, and thus v =0, on 35;. This implies
that (a) ¥ = ¢ = 0 by virtue of the second and fifth of (2.5) and the unique continuation, and (b)
u = v = 0 which follows from assumption 4.5.

Next, on recalling (3.6) and (3.7), (4.13) may be recast as

(T En Ep) = —[ _[Va": (Ce = O): V(" + ") + o*(p — p )" - " + v")]dV
DT

+/FKHD’:t[u ]HU ]]ds-i—f 71& [[v ]]dS—I—/(;Dg(I) .(u¢_|_v )ds’ (414)

r\D;
where ug) solves

V. C:Vul(€) + po’uly(§)=0,  EeDY,

(4.15)
n- CiVuly(§)=¢" (), § oDy,
In addition, the variational form (A 1) with v* = v" = v reads
/ [V (Ce = O : VW +0") + 0 (o — pe)" - (" +0")]dV
D\l
—/ 7t[u”]-|[fz”]]d5—/ Y [9"]dS - ¢"-v"dS
LND; FA\D; D0
= —/ [Vt VY - po? " v”]dV—/ [#"1 - K [v"] dS. (4.16)
B;UD;\T I

Since (T Ey, Ey)| — 0 as 1 — o0, (4.14) in light of the Rellich compact embedding theorem
along with the regularity of the trace operator implies that

f Vi (Ce — C): V(" +v")dV >0 asn— oco. (4.17)
D\l
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Similarly, the compact embedding and trace theorems applied to (4.16) read

/ 7V5":(CK—C):V(u”+v")dV+/ V9" C: V" dV =0, (4.18)
Di\I BoUD\T

as 1 — 00. On superimposing (4.17) and (4.18), one finds
/ V@' + ") (Ce — CO): VU +")dV + / VY C: V' dV =0
Di\Ik BrUD\T

as n— oco. Now, following the first of assumption 4.8, where R(C, — C) — aJ(Cy) is positive
definite on D} \ T, for some constant « > 0, observe that

/ V(ﬁ”—f—i”):(CK—C):V(u"—i—v”)dV—i—/ Vo':C:Vo'dV
Di\I. BoUD\T
> e(/ V@t + o) Pav + / v dV) (4.19)
Di\TI BoUDA\ T

for some 6 > 0 independent of 7. This implies that v — 0 strongly in H'(By U D} \ T )® which
is a contradiction. Given (4.17) and (4.18), the argument for establishing (4.12) for the second case
of assumption 4.8 directly follows the proof of theorem 2.42 in [32]. |

Lemma 4.10. Under assumptions 4.5 and 4.8, the real part of operator T, : S(Ha) — S(DX U I U
dD2) may be decomposed on &(H,) into a coercive part T and a compact part Te.

Proof. See Appendix B. |

Lemma 4.11. The scattering operator A, : L*(3B)> — L2(dBy)? is injective, compact and has a dense
range.

Proof. The injectivity (resp. compactness) of A, =V, S, results from the injectivity (resp.
compactness) of V. and S, as per lemmas 4.9 and 4.3. Now, according to lemmas 4.4 and 4.9,
the adjoint operators S, Vi and thus A} =S}V are injective which establish the denseness of
the range of A,. |

5. Design of imaging functionals

Let us generate a set of sampling points x, € B in the baseline model designating the loci of
(monopole and dipole) trial scatterers. Monopole signatures are created via point sources applied
along a set of trial directions n, while dipole patterns are constructed by nucleating dislocations
L:=x, + RL C Bin the baseline model wherein L is a smooth arbitrary-shaped discontinuity whose
orientation is given by the unitary rotation matrix R € U(3). In this setting, the scattering pattern
v HY2(L)? — L*(38;) is defined by

voE) =(1—-o)n - G, x) + o/; a(y)-T(,y)dSy, o0e{0,1}, §coB;, 5.1

for any admissible density a € HY2(L). Keep in mind that Green’s dyadic G satisfies (2.10) and
its affiliated traction T on L is specified in (2.9).

To construct a sampling-based imaging functional, we deploy ¥° to explore the range of A,
by minimizing the below sequence of cost functions

WD) =14t =¥ T8 +7 (T, 46,T) 2o,y T ELPOB, v >0, (5.2)

where A, (L2(0B:)° — L2(0B:)° is given by

1 1
A= 51 A+ AT+ (A = AD). (5.3)
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Remark 5.1. Lemmas 4.4, 4.6, 4.7, 4.10 establish the premises of ([59], theorem 2.15) which
concludes that operator A, is positive and has the following factorization

Ay, =SITy, S, (5.4)

where the middle operator Ty, is self-adjoint and positively coercive, i.e. there exists a constant
¢ > 0 independent of E so that

(T, E) 2 cll & Igpeur,usmy) ¥ E € S(Ha): (5.5)

Moreover, the range of S} coincides with that of A,1<j/ 2,

Assumptions and lemmas of §B furnish all the necessary conditions for the fundamental
theorems of GLSM [37,40] to apply. These results are required for the differential imaging
indicators which for future reference are included in the following.

Theorem 5.2 ([37,40]). Consider the minimizing sequence ¥ € L2(dBy)3 for J¥ such that
I <) + (), v >0, (5.6)

where n(y)/y — 0as y — 0 and

(W)= inf JL(W%1).
Tel2(3B,)
Then,
e R(Ve)= lim0 (ry, A, TV ) < 00,
y—
(5.7)
W0 ¢ R(Ve) = liminf (17, A, 7" ) = o0.
y—0
Moreover, when V¢ E = W°, the sequence StV strongly converges to & € S(Ha) as y — 0.
Corollary 5.3. Under assumptions 2.4 and 4.5,
Vo e R(V,) & x.€D, UTy.
In addition, if
— X, € D then there exists a unique solution (u, wy) to
ITP, :=ITP(D}, I'c;; {C, p}, {Cx, pc}, K;n - C: VW, W°). (5.8)
— X, € DY then there exists a unique field v, satisfying
V(C:VUW) + pwul =0 in DY, 659
n-C:VU +¥°) =0 on 9. '

— L C I \ D} then there exists a unique [v.] € HY/*(I; \ Dz)3 such that S}[v, ] =¥". In this
setting, the affiliated free-field traction t{u!.] may be obtained from the second of (2.5),

t{ul 1(6) = K (§)[ve [(§) —n - C: VWL(E), &e T\ Dy (5.10)

Now, let us recall from (2.1) that (a) £ C B,i€{1,2,.. .}, is the support of (volumetric) elastic
transformation where by assumption 2.3 supp(C; — C;_1) =supp(p; — pi-1), and Df =& U D} |
since D} ; C Dj, (b) £ designates the evolution of pore volume which is disjoint from £ since

ﬁ;ﬂﬁf: ¥, and (c) Ul represents the support of (geometric I and elastic I} interfacial

evolution. On denoting by D;:l i j=1,2,...,N;_q (resp. Dy i j=1,2,...,N;) the simply connected
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components of Dy, (resp. Dy), one may define the set of stationary inclusions

75;_1=UD;_1J, ={jI3x D}, =D}, AD;Umg UL Ul =9}, (5.11)

jet

which remain unchanged between [t;_; t;]. By adopting a similar notation, the stationary pores
are identified by

D), =D, «={il3xD},; =D} (5.12)

jet

In this setting, 151.’71 = DI 4 \D 1 T={x0}, signifies the evolved subset of D 4 within the
same timeframe. Further, one may introduce

UD = |Dr me L # 0} T=1{x0}, (5.13)

jet

so that £7 may be decomposed into disjoint subsets E:?f N E and &7 =D \ {DF_, UDT}.
Based on this, let us in addition define

1=l \[JUD;UE UE. (5.14)
While our objective is to design imaging functionals to reconstruct £ U &7 U [} UT; given
sequential sensory data at t;_; and ;, one may observe in what follows that the proposed indicator

is capable of recovering either D e D ne I;or Erueu [;Ulu D e D "

Assumption 5.4. Let us define (C, 5) in D} by

(Ci—1,pi-1)(E), & €Dr

€)=y o (515)
then w > 0 is not a transmission eigenvalue solving
ITP, (&7, Ii-1, 154G, ), {Ci, i), K-, K))
V - [Cil6) : Vol 16) + pi(6) ?w} () =0, §ENT;,
V - [C&) : VT 1) + 5(§) @] (§) =0, § €&\,
tlw;](§) — t[@;1(§) =0, [w; — w](§)=0, Ecder \ﬁ' ur;,
_ 16 = Ki@®)lw; 1), el 116) =0, §ernés, 516
t{@;](§) = K;_1(&)[@; 1(8), [t[@;11E) = felianég,
t{w;](§) — t@;1(§) = 0, f[wf](E) =Ki(€)[ﬁ7? —wil(§), §edgi NI,
w7 )®) — 1) = o
(I-K; K )f[w*](E) = z‘(é’)[ﬁﬂ? —wr(§), §eadgrniy,

Note that special cases such as elastic transformation or growth of intact inclusions are also
included in (5.16) and may be obtained by setting I;_; =¥ and/or Ii=r=¢in (5.16). Further,
in the case of I;_1 N 52* # (), pertinent to the transformation of microcracked zones, it is assumed
that w > 0 does not satisfy ITPL(éi*, I_1,T;{C, p}, {Cj, pi}, Ki_1,Kj).

Theorem 5.5. Given assumptions 2.4, 4.1, 4.5, 4.8 and 5.4,

— Letx, € D}, (or LC D} _,), then denote by t[u(] (resp. t{u '1) the free-field traction on 3D (resp.
TI's) affiliated with the scattering pattern W° (or t¥), while (u, w}) uniquely solves ITPs at times
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ts, s € {i — 1,i}. In this setting,
IJ’xoelv)Ll (orLC 25;71) then
* f
(u; |DIZ1\H’ V”ﬂpil\ﬁ/ tHullr,, t[u?]|aD;’71)

= (u?_l |D‘r71\m/ Vu;_1 |D;’71\mr t[u§_1]|1'}71r t[u?,1]|aDi”_1)- (56.17)

I'fxoeﬁl-il (orLC ﬁﬂl) then
@ Ipe 7y Vif e oyt )
# Wiy lpe 7 Vi lpr tlul ]| ) (5.18)
— Provided that w is not a Neumann eigenvalue of (5.9) per assumption 4.1, then
Ifxoeﬁf_l (orLcC 25?_1) then (5.17) applies over D;_;UD{_; U I;_y.
Ifx.€D} | (or LC DY ,) then
tullape , # tHul 41lopy - (5.19)
— Moreover,

IfL C I;_q then (5.17) holds.
IfLC Iy \ [} UD! UD! then

tulllr, # tul i, (5.20)

Proof. Let x, € ﬁl.il (resp. L C 23;71), then observe that (a) ¥° (resp. w1 of (5.1) satisfies V - C :
VWOE) + pa?WO(E)=0in & € D; \ Iv)l?‘_l with 0 =1{0, 1}, and thus, the solution to ITPs of (5.8) in
Di\ 75;_1 is given by (u}, w}) = (-¥°,0) for s = {i,i — 1}, (b) t{ul]lype = —t[¥°]|ype in light of (a)
and (5.9), and (c) in corollary 5.3, [vs] =0 on I \ 131.*71 which with reference to the contact law per

the second of (2.5) implies t[ug]l —— = —t{¥°]| . <. Further, note from (5.8) and (5.11) that by
L\Dy, L\D;,

definition ITP;_; = ITP; in D} , so that

* * f 0

(”1'_1 |Di11\ﬁ' Vui—llpzll\m' t[ui_1]|1‘,-,1/ t[ui_1]|8’D;L1)
= (u* U . /L * L — D — o <
=il i @ —¥py  Viialp \rm @ -V In:
t[u;_l]‘

® ¥l . —t[¥]lape ),

I mb;,l 1\’51':1’
* * f 0 (g . N WO . .
(ui |D;’\f,-' Vu; |D;\7/ t[ui“ﬂ/ t[ui“an) = (uj_] |’Dx"—1\ri*1 o - |5;U’D;\I",-’

* . N oy, . * N 0 . 0700
Vui*ll,D;,l\Fx—l @ V'I’ |$"'U’Dl"\1—‘,’ t[ulilllr,‘,lﬁbii] @ t[w ]|Fl\’ﬁ;:1, t['II ]|6Di )/

establishing (5.17). When x, € ’5;’71 orLcC b?,y a similar argument leveraging (5.9) leads to

(u; |D;\Fs’ Vu;lpg\ﬁ/ t[”i]“}/ t[”g“aDg) = (_'I’O |D;\Fs’

= VU gt Dy | @ — 1] ) seli=1,

9DNIBL,

which confirms (5.17). The same argument as above along with the proof of theorem 4.5 in [40]
leads to (5.17) when L  I_1.
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(a) () (c)

’ S IS d oo

Figure 2. Twelve scenarios for microstructural transformation: (a) geometric expansion and/or elastic modification of
discontinuity surfaces in inclusions or the binder, (b) new or modified (fractured) inclusions intersecting with previous (cracked)
heterogeneities and (c) newborn inclusions masking the microcracked damage zones and expansion of cavities.

Letx, € 2514*71 (orLC 15;71), then in light of the above observe that

5 tul]|

— Vur =
S ’D:\D;U[‘L, uS'D;\'D;UFS/ F\D" t[u ]lBDa)

—(_w° I 0 . 0 . 0 . T
_( 'I’ |'D;\'ﬁ:u1—;/ V.II |'D:\'Z§:U1—;’ t[‘p ]lrs\,ﬁ;/ t['p ]|3'Ds)/ S€ {l 1/1}~

(u

Next, a contradiction argument is adopted to analyse u? in Df, s € {i — 1,i}, as the following.
Suppose that (5.18) does not hold, i.e.

* | - . f
(ui |D,-:1\Fi—l' Vuz |D;,1\1—‘i—1’ t[ul]lri—lmﬁf_1)
— (gg* . * . f -
- (uj_l |D;,1\Fi—1’ Vul_l |D;71\F,‘,1’ t[ul_l]lﬂ,q ”ﬁ,ll )/ (521)

and consider the 12 generic configurations shown in figure 2 for microstructural evolution. The
argument for similar or compound scenarios may be drawn from the following case studies. Keep
in mind that the ITPs of disconnected sets are independent. Based on this, D} ,, in each case,
should be understood as the simply connected domain x, € D} ;C D* ¥, (or D 1 D L) as defined
earlier.

Cases 1-3 (fracturing of inclusions). With reference to figure 24, consider the case where x,, (or
L)isin D ; where evolution occurs either by new internal /boundary fractures I or by elastically
modified interfaces Ij. Under the premise of (5.21), let us define w=w} — w7 ; in @Ll \ T:. On
recalling (4.7), observe that the Cauchy data of w vanishes on 875;_1 \ I; which implies by the
unique continuation principle that w=0 in @l‘f_l. In case 1—where @; is endowed with internal
I'—the contradiction arises from the discontinuity of w} across I while wj_, is continuous. The
only exception to the latter, according to the fourth of (4.7), is when #[w] = 0 on ﬁ so that [w;] =
0, which may not be the case per assumption 4.1. In case 2—where the contact’s elasticity Kj
with s € {i — 1,1} changes over [} i.e., K;_1 # K;—vanishing w in D} , implies (K; — K;_1)[w}] =
(Ki — Ki_1)[w; ;]=00n I, by the fourth of (4.7), which requires t[w}] = t{w} ;] =0 over I that
contradicts assumption 4.1. In case 3—where Iic 825; —the contradiction may be observed from
the fifth of (4.7) where w = 0 reads #[w}] = 0 on I; with similar contradiction to assumption 4.1.

Case 4 (evolution of elastic contacts). In this case where L C I;\ D} C I_1 \ I'}_1, the fracture
stiffness evolves within the matrix, as shown in figure 24, such that K; # K; 1 on I \ D}. Then,

(5.20) is directly concluded from theorem 4.5 and theorem 4.7 of [40]. This may also be observed
from (5.10).
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Cases 5 and 6 (volumetric growth or transformation of intact inclusions). The premise, as
depicted in figure 2b, is that 23;71 NnIr;= ﬁ;‘ N I;=4¢. In this case, the contradiction to (5.21) may
be argued similarly to the proof of theorem 4.2 in [37] which establishes (5.18).

Cases 7-9 (elastic transformation or expansion of fractured inclusions). Let us define @] in
f);* as the following;:

wi_(8), EeDr \Ii1
[uf +W°](§), & eD\D:

@W'(E) = ) (5.22)

Observe in light of (5.8) and (5.21) that @} solves
V. C:V@! + po’@! =0 inDI\Tq,

wherein (C’, p) is given by (5.15). In this setting, one may show that the Cauchy
data affiliated with W=} —w} vanish on 8D} \I; so that (w},@}) is the solution to
ITPL(ZND;, 1},1,~Fi; (C, 5}, {(Ci, pi}, Ki_1,K;). To continue, let us consid~er two configurations: (cases
7, 8) where Dy, is not included in any simply connected part Ei*j of &, and (case 9) where
75;'_1 C é:] Note that in cases 7, 8, Bﬁ;‘_l N 8@; is of non-zero surface measure, then owing to the

equality of Cauchy data associated with @} and w} and the fact that (C;, p;) = (C,p)=(Ci_1, pi_1)
on 3D} ; NID; one may conclude that @} =w; on D; ; \ &' Consequently, (w},@;)| & is
the solution to ITPL(&N';, iy, T;{C, 53, {Ci, pi}, Ki—1, K;). The latter according to assumption 5.4
implies that w} =@} =0 in 51* which by unique continuation reads w} =0 in ﬁi*. This requires
uy = —W¥’ in D7 | which is a contradiction since u is smooth by definition while ¥ features a
singularity at x.. In case 9, one may directly deduce from 51* D 51*] = ﬁi* and assumption 5.4 that

w; =0in ﬁi* which leads to the same contradiction.

Case 10 (elastic transformation of microcracked damage zones). With reference to figure 2c,
consider the case where L coincides with the binder’s fractures at f; 1 (L C I;_1) within a
neighbourhood that undergoes elastic evolution at ¢; such that L C I;_; N 51* Contrary to (5.20),
let

= t[uf.

*
t[ui] 1—1]|Fi7105,-"

rnané:

wherein both free fields ”571 and uj satisty V - C: V(-) +p ®*(-)=0in é;‘ Then observe that the

latter also governs u = uy — uLl such that H{u'] =0 on I}_y N é;, implying per assumption 4.1

at t;_1 that uj = ”Ll in f:'l* Based on which, one may define w; = uy + wlin é’l* and similar to
cases 7-9 conclude that (w},@}) is a solution to ITPL(S}*, I 1, I;{C, p},{Ci, pi}, Ki_1,K;), which
by assumption 5.4 reads @] = 0 requiring that u} = —wlin é’l* which is a contradiction since #; is
smooth by definition while ¥l hasa discontinuity across L.

Cases 11-12 (expansion of pores). Consider the case shown in figure 2c where x, (or L) is in
ﬁil where the evolution of cavities occurs. In contrast to (5.19), let

tufllapy , = tul 41lapp

whereu] |, u?,and thusu’ =uf —uf | satisfy V- C:V(-)+p w?(-)=0in D7 ,.Note that t{u’] =0
on D7 ; implying per assumption 4.1 that 4} =4} | in D] ;. Keep in mind that u] ;| (resp. u?)
solves (5.9) in Df_, (resp. D}). Then, observe that u} = —W° solves (5.9) within D \ D}_, provided
that uf =u? | in D{_,. In this setting, the continuity of #{ across du_; \ 9u along with the unique
continuation principle requires that # = —%° in D{_; which is a contradiction since #{ is smooth
according to (5.9) while ¥° has either a singularity at x,, or a discontinuity across L per (5.1). W

Theorem 5.5 furnishes the main results required to (a) identify the invariants of scattering
solutions according to theorem 5.6. which is directly obtained by drawing from ([37], theorem
4.3) and ([40], theorem 4.7), and (b) establish the validity of differential evolution indicators in
(5.24) following ([37], corollary 1).
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Figure 3. Differential imaging of evolution from sequential waveform data.
Theorem 5.6. Define
. 200\3
xi(Gi-1,Gi) == (Gi — Gi—1, Ai-1,(Gi — Gi—1)),  Gi—1,Gi € LY(2)°, (5.23)

where (G;_1, G;)(¥°; y) are the constructed minimizers of (3}:1,33/) in (5.2) according to (5.6). Then, in
light of factorization (3.2) and (3.3), theorem 5.5 reads

LcDr ,uD° Ul
I 1T =TT then lim x[Giq, Gil(WC; v) = 0.
o f XQED?_lUD?_l 7/1—>O xilGi—1, Gil( V)
LcD: UD?  UTi_q\ i1 .
I s o 0, then 0 < lim x[Gi_1, Gi1(¥°; :
° f onDZ'_lupf_l eny < ylino xilGi—1, Gil( y) < oo
LCEN\D: ,UEN\D? , UL\ D"
° If < ! \ — i—1 ! \ — i—1 l\ i-1 , then lim X,‘[gl’_l,gi](wo; ]/) = 0oQ.
€&\ Dy UEN\D] y—0

(a) Differential evolution indicators

Let us introduce the imaging functionals D; (L2(2%) x [2(2%) > Rand ®; : L2(2%) x [2(2%) > R
such that given 7;(G;) := (G, A4;,G)),

1
Di(Gi—1,Gi) = - ,
TG + TG %G1, )]
) (5.24)
Di(Gi-1,G):= - )
\/Ti—l(gi—l) + Yi(G)[1 + Yic1(Gim) X (Gie1,Gi)]
Then, it follows that

LCEUD: JUESUDY | UTT U\ T
R i ~ < lim D;(Gi_1,G)(¥’%y)>0
x.€€ UDF JUEY UDY | y—0

and
Lc D} UDY Ul \ T -
o N } — lim 9;(Gi_1,G)(¥’ y) > 0.
X, €D UDY .

In other words, ®; (resp. 9,) assumes near-zero values except at the loci of £ U 15;‘_1 Uy 751.“_1 U
[7U T\ [i—q (resp. Df , UD? | UTi_q1\ [i_1) where the indicator increases and remains finite
as y — 0. By building on ([37], theorem 4.4) and ([40], theorem 4.8), it is quite straightforward
to formulate pertinent results for noisy data which for brevity are not included in this paper. To
summarize, figure 3 provides the steps for the construction of evolution indicators from numerical
or laboratory test data.
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Figure 4. Microstructural geometry of a composite slab with evolving heterogeneities and discontinuities at four sensing
stepst, — 3. Elastic (in-plane) waves are periodically generated via boundary excitations on S, and the affiliated scattered
waveforms are computed over the observation surface 5°°S. Here, S = §°Ps js sampled at 10° points.

6. Synthetic experiments

The evolution indicators of (5.24) are put to the test in this section by a set of numerical
experiments. The primary focus is on a randomly heterogeneous and discontinuous background
with evolving microstructure due to elastic transformation and/or fracturing. The special cases
of monolithic solids endowed with crack or pore networks are reported in [40]. In this section, the
synthetic scattered fields v;?bs, i={o,1,2,3}, are simulated via the boundary element method [60],
see [61] for more on the computational platform.

With reference to figure 4, the testing configuration at ¢, i.e. the background domain entails
a composite slab of dimensions 2.5 x 2.5 x 0.01 comprised of an elastic binder endowed with
ellipsoidal inclusions of arbitrary distribution and size. The in-plane diameters of scatterers range
from one to five shear wavelengths 1s = 0.04, while their pairwise distances are greater than 2A;.
The normalized shear modulus, mass density and Poisson’s ratio of the matrix are taken as w,; =
1, py =1 and v, = 0.25, while those of the scatterers are us =2, ps = piy and vs = vy,. In this setting,
the shear and compressional wave speeds in the matrix are ¢, =1 and ¢}, = 1.73. The specimen’s
microstructural evolution in the following time steps t; — t3, according to figure 4, involves (a)
multi-step fracturing of the binder and inclusions and their coalescence, (b) elastic transformation
of pre-existing inclusions at t, and (c) emergence of new volumetric heterogeneities with shear
modulus py*" =1.5. Note the gradual increase in the evolution complexity, and in particular,
the density of scatterers such that at 3: (a) the pairwise distance between scatterers may reduce
to a small fraction of A, and (b) a subset of evolution support is deeply embedded within the
stationary scatterers.

Synthetic experiments are conducted at four time steps f, — t3 when the specimen assumes the
geometric configurations shown in figure 4. Every sensing step entails 2000 forward simulations
where in-plane harmonic waves of frequency @ =140 rads~! are generated at a point source
over the specimen’s external boundary. The resulting scattered fields v?bs, i={o,1,2,3}, are
then calculated on the same grid by solving the three-dimensional elastodynamics boundary
integral equations. Given that s is four times greater than the specimen thickness, the leading
contributions to scattered fields are the in-plane components which are then used for data
inversion.

The obtained scattered signatures are used to compute the synthetic wavefront densities G;,
i={o,1,2,3}, as approximate minimizers of the cost functionals in (5.2). The latter follows the
common three steps required for constructing any sampling-based indicator, namely: (i) forming
the discrete scattering operators A;, atevery t;, (i) assembling the trial signatures ¥ of (5.1) as the
right-hand side of the scattering equation and (iii) solving the latter by minimizing the discretized
cost function (5.2) by invoking the Morozov discrepancy principle. A detailed account of this
process is provided in [40]. Given A;, and G;, one may then evaluate the imaging functionals ®;
from (5.24) which is expected to achieve its highest values at the loci of new and evolved scatterers
in each sensing sequence.
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(a) (b) (©

sampling area la=h h—h L=l

Figure 5. Three-step reconstruction of elastic and interfacial transformations (a—c) of the initial configuration shown in
figure 4a: (top) evolution geometry in the sensing sequence [t;_; £;],i = {1, 2,3}, and (bottom) the affiliated indicator map

©; of (5.24) computed from the observed scattered field data v?ﬁ’f and v;’bs.

(a) (c)
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Figure 6. Multi-step reconstruction of elastic and geometric variations: (a,c) true evolution support between [ty t;] and [ty &3],
respectively, and (b,d) the associated (superimposed) differential maps.

Figure 5 illustrates the successive evolution indicators © i j=1{1,2,3}, over the sampling area.
For each time window #;_1 — t;, the “true’ support of elastic variations is provided in the top row.
Keep in mind that in any sequence, D; is by design insensitive to the scatterers at ¢; 1 provided
that they remain unchanged by ¢;. The differential maps within ¢, —t; feature relatively sharp
localizations with minimal artefacts which, given the shear wavelength, may be attributed to the
rather sparse distribution of scatterers in this timeframe. Some artefacts emerge in the ©3 map,
however, since the elastic variations between t; — t3 occur within a densely packed network of
fractures and inclusions which are assumed to be unknown. To recover the evolution support
over an extended timeframe as the microstructure becomes progressively complex, one may
superimpose the consecutive reconstructions (of figure 5) as in figure 6.
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7. Conclusion

This study furnishes the theoretical foundation for differential evolution indicators for ultrasonic
imaging of elastic variations within a heterogeneous and discontinuous background of
random structure. In this vein, the well-posedness conditions for the forward and inverse
scattering problems are established; in light of which, the pairwise relation between scattering
solutions—associated with distinct datasets—is determined. For this purpose, 12 scenarios for
microstructural transitions are investigated including (a) fracturing of inclusions, (b) evolution
of discontinuity surfaces within each material component or at bimaterial interfaces, (c) elastic
transformation and/or expansion of fractured inclusions, (d) conversion of microcracked damage
zones and (e) expansion of pores. In all cases, it is shown that certain measures of the synthetic
incident fields constructed based on the scattering solutions are, in the limit, equivalent at the loci
of unknown scatterers which remain both geometrically and mechanically invariant between a
given pair of time steps. This allows for exclusive reconstruction of evolved features without the
knowledge (or need for recovery) of stationary components in the background. This is particularly
useful in uncertain environments as showcased by the synthetic experiments—provided that the
illuminating wavelength is sufficiently smaller than the relevant microstructural length scales,
e.g. pairwise distance between the scatterers. Relaxing such constraints may be possible through
time-domain inversion as a potential direction in future studies.
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Appendix A. Well-posedness of the direct scattering problem

Observe that Vv' € H 1(6,(_ UDg\ T)3, the variational form of (2.5) reads

J

+/ —[Vf/:CK:Vv”—pszﬁ“vk]dVF/ vt dsg

[Vf/:C:VvK Y vK]dVE+/ I[E/]]~KK|[vK]]dSE
I

K

+/ (e — p)*V - ut = VT (Cc — C) : V'] AV +/ [9']- £ dSe. (A1)
Di\T I

The sesquilinear form on the left-hand side of (A 1) may be decomposed as A(v*, v') + B(v*, v’)
where
A(v",v/)zf [V GV 0] AV +/ [VV':C: Vv + 0 v¥]dVg,
Di\T B:
B, v)=—1+pe0®) | - vdVe—(1+ pa)z)/ Vv dVg
DT B;
+/ [v']- Ke[v1dSg, Vo' e HY(B; UD;\ Te)°. (A2)
I

In light of the Korn inequality [61], observe that A(v¥, v’) is coercive. Moreover, the antilinear
form B(v*,v’) is compact by the application of Cauchy-Schwarz inequality to |B(v*,v’)|, the
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compact embedding of H'(By UD; \ T)® into L*(B; U D} \ Tx)?, and the compactness of the
trace operator v — [v*]] as a map from H 1(8; uUD;\ T)? to L2(I)? owing to the compact
embedding of H Y2(1)3 into L2(I)3. As a result, (2.5) is of Fredholm type, and thus, is well-posed
as soon as the uniqueness of a solution is guaranteed. Let (ule; N v lpa\T tuf]|r,, tuf]| aDe) =
0, then on setting v" = v¥, observe from (A 1) that

3(/ 7V1‘)":CK:Vv"dV§+v/ [[iK]].KK[[v"]]dSS>=0,
D\l I

implying that [v] =0 on I, and v* =0in D} \ I, owing to assumption 2.2 and the first of (2.5).
Note that the jump in v* vanishes not only on the intersection I', N 3D, but also on the perfectly
continuous interface 3D} \ T according to the fourth of (2.5). Thus, Holmgren's theorem implies
that the scattered field v* vanishes in an open neighbourhood of 9D which by virtue of the
unique continuation theorem leads to v*(£§) =0 in & € B\D?. This completes the proof for the
uniqueness of a scattering solution in By U D \ T, and thus, substantiates the well-posedness of
the forward problem.

Appendix B. Proof of lemma 4.10
Let ¥ (resp. V') satisfy (2.5) for
X = (il pe 7, Vil po 7, HAll 57 @ ¥, 9), (F,6) € H V(I \ D)) x HV2(0DY)°,
(resp.
X' =Wl po 7, VW po 75 | 5 @8, (8, ¢) e HV2(D A\ D)) x H2(0DR)),

wherein V - C: Vii+ pa2i =0 (resp. V - C : VU + p o2t = 0) in D?, then
P «

(TeX, X') = — /D MO R Ao — po)ii - @+ 9]dV

+/FK 7t[u]«ﬂvﬂd5+ﬁk\ﬁ;¢ «[[v]]dS+/8D2¢ (8 +¥)dS, (B1)

NnD;

where lig satisfies (4.15) with ¢" = ¢. In addition, the variational form (A 1) with v* =V and v’ =V’
reads

/ [V (e — O V(i) + (o — p) - @+ 9]V
Di\TIk

—/ t[ﬁ].[m]ds—f ¢ [V]dS - ¢ -VdS=
r.ND; TA\D}

a2
—/ 7[V\7/:C:V\7—pw2\7/-\7]dV—/ [V]- K.[v] dS. (B2)
B;UD:\T I
Subtracting (B 1) from (B2), one finds

—(TX, X') =/

7V(ﬁ’+\7’):(CK—C):V(ﬁ+\?)dV+/ ViV:C:VidV
DT

By UD\T

_/rmD; [tal 190+ Hw] 0] ds — [ ¥ 190+ ¥ - [1]ds

L\D;

—/ [¢.v’+$’-0+$’-ﬁ¢]ds+/ [V]-K.[9]dsS
DY I

+/ P — p)@ V) (@+0)dV — f  patV - dV. (B3)
DI, B UD\ T
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On the other hand, adding (B1) to (B2), the result can be recast as

(T,(X,X/):‘/D 7Vl‘l’:(C—C,():VﬁdV+/D WG vidV
A\ A\

+/ 7[Vﬁ’:(C—CK):VGdV—V\?’:(C—CK):Vﬁ]dV+/ Vv :C:vidV
D\l ’

K

#f o B i as s [y 1) as

D; L\D;

+/ [$/~(ﬁ¢+\7)—¢-\7’]d5+/ [V]-K,[v]dS
D2 I

—/ wz(p—p,()(ﬁ’—\_l/)~(ﬁ+\7)dV—/ pw* ¥ - dV. (B4)
DT, B UD\T

In light of (B3) and (B4), define T+:6(Hp) — g(D,’; U I U 9dDY) such that

—(T7X, X)) =/ V@ +V):(Cc—0): V(i +9)dV

D[‘(’\FK
—|—/ V\‘/:C:V\?dV—F/ u-adv,
B;UD\T. DT
(TjX,X/):/ 7Vﬁ/:(C—CK):VﬁdV+/ WG vidV (B5)
DT, DT,

+/ [V (C=C):VIAV — VW 1 (C - C,): Vi]dV
Di\TI'e

o

V\'/:C:V\?dV+/ - adv.
D\

K

Given assumption 4.5, it is evident that R(et? T7) is coercive on &(Ha) for 8 =[01/2) provided
that the first of assumption 4.8 holds. In the second case of the latter, however, one may show
that R(T) is coercive on G(H,) by following the argument used in the proof of ([32], theorem
2.47). Now, by deploying the Rellich compact embeddings along with the regularity of the trace
operator, one concludes that

Te:=R(T, — T): S(Hp) — S(D: U T, UDY)

is compact.
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