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Abstract  41 

Patterns of collective motion in bird flocks, fish schools, and human crowds are believed to emerge from 42 
local interactions between individuals. Most ‘flocking’ models attribute these local interactions to 43 
hypothetical rules or metaphorical forces and assume an omniscient 3rd-person view of the positions and 44 
velocities of all individuals in space. We develop a visual model of collective motion in human crowds 45 
based on the visual coupling that governs pedestrian interactions from a 1st-person embedded viewpoint. 46 
Specifically, humans control their walking speed and direction by canceling the average angular velocity 47 
and optical expansion/contraction of their neighbors, weighted by visibility (inverse of occlusion). We test 48 
the model by simulating data from experiments with virtual crowds and real human ‘swarms’. The visual 49 
model outperforms our previous omniscient model and explains basic properties of interaction: ‘repulsion’ 50 
forces reduce to canceling optical expansion, ‘attraction’ forces to canceling optical contraction, and 51 
‘alignment’ to canceling the combination of expansion/contraction and angular velocity. Moreover, the 52 
neighborhood of interaction follows from Euclid’s Law of perspective and the geometry of occlusion. We 53 
conclude that the local interactions underlying human flocking are a natural consequence of the laws of 54 
optics. Similar perceptual principles may apply to collective motion in other species.  55 
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Background 56 

Human crowds exhibit patterns of collective motion in many public settings, from train stations and 57 
shopping plazas to – sometimes catastrophically – mass events [1, 2]. Similar patterns of coordinated 58 
motion are observed in bird flocks, fish schools, and animal herds, suggesting that diverse systems obey 59 
common principles of self-organization [3, 4]. It is generally believed that these global ‘flocking’ patterns 60 
emerge from local interactions between individuals [3-5]. The crux of the problem thus lies in 61 
understanding the nature of the local interactions.  62 

Most models of collective motion ascribe these interactions to hypothetical rules or metaphorical forces, 63 
often inspired by physical systems, and assume an omniscient, 3rd-person view of the positions and 64 
velocities of all individuals in space [6, 7]. Such phenomenological models – including our own [8] – 65 
describe relations between individuals without offering an underlying mechanism. But humans and 66 
animals are embedded in groups and coupled to their neighbors by sensory information. Here we develop 67 
a visual model of collective motion that explains local interactions in terms of the visual coupling, based 68 
on optical variables. Not only does the visual model outperform our previous omniscient model, but basic 69 
properties of interaction follow from the laws of optics. 70 

Understanding local interactions involves, first, identifying the rules of engagement that govern how an 71 
individual responds to a neighbor, and second, characterizing the neighborhood of interaction over which 72 
the rules operate and the influences of multiple neighbors are combined. Classical “zonal” models [9-11] 73 
posit three local rules or forces in concentric zones: (i) repulsion from neighbors in a near zone to avoid 74 
collisions, (ii) alignment with the velocity of neighbors in an intermediate zone to generate common 75 
motion, and (iii) attraction to neighbors in a far zone to ensure group cohesion. Influences are combined 76 
by averaging neighbors within a zone, sometimes weighted by their distance [12, 13]. An alignment rule 77 
by itself is theoretically sufficient to generate collective motion [14], as is the combination of attraction and 78 
repulsion [15]. In humans, the prominent Social Force model [16, 17] also assumes attraction and 79 
repulsion, successfully simulates key crowd scenarios [18, 19], and can produce collective motion under 80 
certain boundary conditions [20, 21]. However, it does not generate realistic individual trajectories [22] or 81 
generalize between situations without re-parameterization [17, 23].  82 

The strength of such physics-inspired models is that they capture generic properties of collective motion, 83 
yet the same global patterns can be generated by different sets of local rules [5, 24]. To infer the actual 84 
rules, researchers have turned to behavioral experiments on local interactions [25-28]. We believe that 85 
such a ‘bottom-up’ approach should be grounded in the sensory coupling that actually governs these 86 
interactions. The coupling incorporates limits on the sensory range and field of view [10, 29] as well as 87 
the visibility of individual neighbors [30, 31]. Moreover, local interactions strongly depend on the visual 88 
information that controls locomotion [32, 33]. This insight has inspired recent ‘vision-based’ models [34-89 
36], but the effective optical variables remains to be determined.    90 

We take a bottom-up, experiment-driven approach called ‘behavioral dynamics’ [27, 37]. Our initial 91 
experiments on following in pedestrian dyads [38, 39] revealed that humans obey an alignment rule: the 92 
follower tends to match the walking direction (heading) and speed of the leader. To infer the 93 
neighborhood of interaction, we immersed walking participants in a virtual crowd and manipulated the 94 
motions of the avatars; we also analyzed observational data on human ‘swarms’ [8]. The results showed 95 
that pedestrians follow a crowd by averaging the heading directions and speeds of neighbors within a 96 
180˚ field of view, with weights that decay exponentially with distance to zero at 4-5m. The findings led to 97 
an omniscient model of collective motion [8] based on the weighted average of neighbor headings and 98 
speeds (Figure 1a; see SM). The model successfully predicts individual trajectories in both virtual crowd 99 
experiments and real crowd data [8, 40], and the ‘soft metric’ neighborhood generates robust collective 100 
motion in simulation [13, 41]. 101 

Like its predecessors, however, our omniscient model relied on metaphorical forces, assumed physical 102 
variables as input, and did not account for the neighborhood of interaction. In this article we report new 103 
experiments that lead to an embedded visual model (Figure 1b), predicated on the optical variables that 104 
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control pedestrian following [42, 43]. This new model explains the rules of engagement and the form of 105 
the neighborhood as natural consequences of the laws of optics.  106 

Experimental Methods 107 

Human subjects: Twelve subjects (7F, 5M) participated in Experiment 1, and ten different subjects (6F, 108 
4M) in Experiment 2. A power analysis determined that a sample size of 8 per experiment was sufficient 109 
to achieve a power of 0.85 with 𝛼 =.05 and an effect size of 0.5 (𝜂! =	0.2) [44]. All participants gave 110 
informed consent and were compensated for their time. The research protocol was approved by Brown 111 
University’s Institutional Review Board in accordance with the principles expressed in the Declaration of 112 
Helsinki.  113 

Equipment: Participants walked freely in a 12m x 14m tracking area while viewing a virtual environment in 114 
a wireless, stereoscopic head-mounted display (Oculus Rift DK1, 90°H x 65°V field of view, 640 x 800 115 
pixels per eye, 60 Hz refresh rate). Head position and orientation were recorded with an inertial/ultrasonic 116 
tracking system (Intersense IS-900; 60 Hz sampling rate) and used to update the display with a latency of 117 
50-67 ms. 118 

Displays: The virtual environment (WorldViz software) consisted of a green start pole and a gray 119 
orientation pole 12.73 m apart on a granite-textured ground plane, with a blue sky. The virtual crowd 120 
consisted of animated 3D human models (WorldViz Complete Characters). These virtual humans were 121 
initially positioned on arcs with the start pole at the center, at randomly assigned eccentricities (±6˚, ±19˚, 122 
±32˚, ±45˚) about the direction to the orientation pole, then randomly jittered.  123 

Procedure: To elicit collective-motion responses, participants were instructed to “walk with the group of 124 
virtual humans” and “treat them as if they were real people.” On each trial, the participant walked to the 125 
start pole and faced the orientation pole. The virtual crowd appeared with their backs to the participant, 126 
“Begin” was played over headphones, and the crowd began walking forward (1.0 m/s). After 5s the 127 
walking direction of some or all virtual humans was perturbed by ±10˚ (right or left); the display continued 128 
for another 7s, then “End” was played. Test trials were preceded by two practice trials to familiarize the 129 
participant with walking in a virtual environment. 130 

Data processing: The time series of head position in the horizontal (X-Y) plane were low-pass filtered 131 
(Matlab) to reduce tracker error and oscillations due to the step cycle, then time series of heading 132 
direction and walking speed were computed. The dependent measure was final heading, the average 133 
heading direction during the last two seconds of each trial. Left and right perturbation trials were 134 
collapsed by multiplying the left turn heading by -1. Statistical analyses were performed in Microsoft Excel 135 
and JASP. (See SM for details.) 136 

 137 
Experiment 1: Range of interaction 138 

Based on crowd data, the omniscient model holds that neighbor influence decays to zero at a fixed radius 139 
of 4-5m [8]. But it seems likely that interactions with visible neighbors can occur at greater distances. To 140 
test the range of interaction, we manipulated the initial distance (1.8, 3.0, 4.0, 6.0 or 8.0 m) of a single row 141 
of virtual humans (crowd size 2, 4, or 8), with no occlusion (Figure 2a). On each trial, their headings were 142 
all perturbed in same direction (±10˚), and participants were asked to walk with the group.  143 

Results 144 

We observed a very gradual decay in neighbor influence over a much longer distance (Figure 2b). Final 145 
heading decreased from a maximum at 1.8m (mean M=9.55˚) to just half that value at 8m (M=5.16˚), (F 146 
(4, 44)=14.93, p<0.001, 𝜂"!=0.290). Simple linear extrapolation suggests an interaction range of at least 147 
15m (y = -0.722x + 10.8, r (14) = -0.95). Consistent with averaging of neighbors, there was no effect of 148 
crowd size on final heading (F (2, 22)=0.77, p=0.476, 𝜂"!=0.010) and no distance x size interaction (F 149 
(8,88)=0.83 p=0.575, 𝜂"!=0.033). 150 
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These results clearly show that the neighborhood of interaction does not have a fixed radius of 4-5m, for 151 
pedestrians may be influenced by neighbors at three times that distance – if they are fully visible. This 152 
finding suggests that there may be two decay processes at work: a gradual decay to visible neighbors, 153 
and a more rapid decay within a partially occluded crowd.  154 

 155 

Experiment 2: The double-decay hypothesis 156 

The second experiment tested this ‘double-decay’ hypothesis that there are two decay processes that 157 
depend on distance. We manipulated a virtual crowd of 12 neighbors, randomly positioned in three rows 158 
spaced 2m apart (Figure 3a). To check the decay rate to fully visible neighbors, we varied the distance of 159 
the near row (2, 4, or 6 m).  To probe the decay rate within the partially occluded crowd, we selectively 160 
perturbed the near, middle, or far row, so all neighbors in one row turned in the same direction (±10˚). 161 
Farther neighbors were thus dynamically occluded by nearer neighbors.  162 

Results 163 

Final heading is plotted as a function of distance to the perturbed row in Figure 3b, where each curve 164 
represents a crowd distance. Two decay rates are immediately apparent. First, the heading response 165 
decreases with the distance of the crowd (F (2,18)=26.68, p<0.001, 𝜂"!=0.229). In particular, the response 166 
to perturbations of the near row (diamonds) decays gradually with distance (simple effect test, F 167 
(2,18)=48.46, p<0.001), replicating Experiment 1. Linear extrapolation suggests an interaction range of at 168 
least 9m (y = -.81x + 7.33, r (2) = -.99). The decay rate (slope) is slightly steeper and responses are 169 
weaker than in Experiment 1, due to the presence of unperturbed neighbors; together they are 170 
responsible for the shorter interaction range.  171 

Second, in each curve the heading response decreases more rapidly within the crowd (F (2,18)=86.98, 172 
p<0.001, 𝜂"!=0.760), steeply from the near row to the middle row (t (9)=10.82, p<0.001, Cohen’s d=3.42) 173 
and the far row (t (9)=11.95, p<0.001, Cohen’s d=3.77). This finding implies that dynamic occlusion by 174 
near neighbors weakened responses to the middle and far rows, almost to the floor of zero. 175 

The evidence thus reveals that the neighborhood of interaction results from two decay processes. We 176 
propose, first, that the gradual decay to visible neighbors follows from Euclid’s Law of perspective, which 177 
states that the visual angle subtended by an object (or motion) with frontal extent x diminishes with 178 
distance z as 𝑡𝑎𝑛#$(𝑥/𝑧). Note that this predicts a larger range of interaction than simple linear 179 
extrapolation. Second, the more rapid decay within the crowd is due to the additional effect of occlusion. 180 
These findings led us to formulate a new visual model. 181 

Visual model 182 

To build a visual model of collective motion from the bottom up, we begin with the visual coupling 183 
between a pedestrian and a single neighbor [38, 42, 43]. 184 

Heading control 185 

Consider a pedestrian following a neighbor who turns left (Figure 4, top row). If the neighbor is directly 186 
ahead (𝛽 = 0˚ eccentricity, with positive angles to the right and negative angles to the left), this generates 187 
a leftward angular velocity (negative 𝜓̇) in the pedestrian’s field of view (Figure 4a). Canceling 𝜓̇ would 188 
cause the pedestrian to steer left and approximately match the neighbor’s heading. On the other hand, if 189 
the neighbor is on the pedestrian’s right (𝛽 = 90˚), this generates an optical expansion (𝜃̇) in the field of 190 
view (Figure 4b). In this case, canceling 𝜃̇ would also cause the pedestrian to steer left and match the 191 
neighbor’s heading. Critically, optical velocities (𝜓̇, 𝜃̇) decrease with neighbor distance in accordance with 192 
Euclid’s Law. 193 
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These two optical variables thus trade off as a function of the neighbor’s eccentricity (Figure 4c). For a left 194 
turn, angular velocity 𝜓̇ (blue curve) is a cosine function of eccentricity with a minimum (leftward motion) 195 
at 𝛽 = 0˚; whereas expansion rate 𝜃̇ (red curve) is a sine function with a minimum (contraction) at 𝛽 =196 
−90˚ and a maximum (expansion) at 𝛽 = 90˚. For a right turn, these functions flip about the horizontal 197 
axis.  198 

The visual coupling for controlling heading (𝜙) can thus be formalized as a second-order control law, 199 

 𝜙̈! = −	𝑐"(𝑐𝑜𝑠 𝛽#)𝜓$̇ + 𝑐%(𝑠𝑖𝑛 𝛽#)𝜃̇#  (1) 200 

in which pedestrian p steers (angular acceleration 𝜙̈) so as to cancel the combined angular velocity (𝜓̇) 201 
and expansion rate (𝜃̇) of neighbor i. Their dependence on 𝛽 acts as a filter so the pedestrian is only 202 
influenced by variables that specify a turn at that eccentricity. The free parameters (𝑐$ = 14.38, 𝑐! = 59.71) 203 
were fit to our previous data on pedestrian following [42] and held constant. 204 

Speed control 205 

The control of walking speed is complementary to the control of heading (Figure 4, bottom row). If a 206 
neighbor directly ahead (𝛽 = 0˚) slows down, this generates an optical expansion (𝜃̇) in the pedestrian’s 207 
field of view (Figure 4d). Canceling the expansion would cause the pedestrian to slow down and 208 
approximately match the neighbor’s speed. But if a neighbor to the pedestrian’s right (𝛽 = 90˚) slows 209 
down, this generates a rightward angular velocity (positive 𝜓̇) in the field of view (Figure 4e); canceling it 210 
would also lead the pedestrian to slow to the neighbor’s speed. These two optical variables again trade 211 
off as a function of eccentricity, but with the opposite sine and cosine functions (Figure 4f). If the neighbor 212 
speeds up, the curves flip about the horizontal axis. 213 

The visual coupling for control of radial speed (𝑟̇) is thus based on the same two optical variables as in 214 
Equation 1, but the sine and cosine functions are reversed: 215 

 𝑟̈! = −	𝑐&(𝑠𝑖𝑛 𝛽#)𝜓̇# − 𝑐'(𝑐𝑜𝑠 𝛽#)𝜃̇#  (2) 216 

Pedestrian p thus linearly accelerates or decelerates (𝑟̈) so as to cancel the combined angular velocity 217 
(𝜓̇) and expansion rate (𝜃̇) of neighbor i.  But now the pedestrian is only influenced by combinations that 218 
specify a speed change at a given eccentricity. The free parameters (𝑐% = 0.18, 𝑐& = 0.72) were fit to our 219 
data on pedestrian following [42] and held fixed. To normalize for variation in neighbor size, the relative 220 
rate of expansion (𝜃̇ 𝜃⁄ ) can be substituted for expansion rate (𝜃̇) [43]. 221 

Collective motion 222 

To formulate a model of collective motion, we substitute the visual control laws for local interactions 223 
(Equations 1 and 2) into a neighborhood function that averages the influences of multiple neighbors 224 
(Equation S1): 225 

 𝜙̈! =
"
(∑ 𝑣#7−	𝑐"(𝑐𝑜𝑠 𝛽#)𝜓$̇ + 𝑐%(𝑠𝑖𝑛 𝛽#)𝜃̇#8

(
#)"   (3) 226 

 𝑟̈! =
"
(∑ 𝑣#7−	𝑐&(𝑠𝑖𝑛 𝛽#)𝜓̇# − 𝑐'(𝑐𝑜𝑠 𝛽#)𝜃̇#8

(
#)"   (4) 227 

Pedestrian p’s heading and speed are thus controlled by canceling the mean angular velocity (𝜓$̇ ) and 228 
rate of expansion (𝜃̇#) of all visible neighbors (𝑖 = 1…𝑛), depending on their eccentricities (𝛽#). The field of 229 
view is centered on the heading direction, as people tend to face in the direction they’re walking [45]. 230 

Partial occlusion is incorporated by weighting each neighbor in proportion to their visibility [46], ranging 231 
from 𝑣' = 0 (fully occluded) to 𝑣' = 1 (fully visible). Visibility is set to 0 if its value falls below a threshold 232 
(𝑣( = 0.15), thus n is the number of visible neighbors above threshold. Importantly, the occluded region 233 
behind a near neighbor grows with distance, so the visibility of far neighbors tends to decrease with their 234 
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separation in depth from near neighbors (Figure 1b). Consequently, the range of interaction depends on 235 
the crowd’s opacity [47] and is limited by the complete occlusion of far neighbors. 236 

Basic properties of physics-inspired models fall out naturally from the visual model. First, canceling optical 237 
expansion yields collision avoidance without an explicit ‘repulsion’ force. Second, canceling optical 238 
contraction maintains group cohesion without an explicit ‘attraction’ force. Third, canceling the combined 239 
angular velocity and expansion/contraction generates collective motion without an explicit ‘alignment’ rule. 240 
Finally, the laws of optics account for the form of the neighborhood without an explicit decay function: 241 
Euclid’s Law explains the gradual decay of influence to visible neighbors, and the added effect of 242 
occlusion explains the more rapid decay within a crowd. 243 

Model simulations 244 

We tested the visual model (Equations 3-4) by predicting human trajectories in virtual crowd experiments 245 
and real crowd data, and compared the results to our previous omniscient model (Equations S1-S4). We 246 
find that the visual model outperforms the omniscient model (and a motion model without occlusion, see 247 
SM) and generalizes to real crowds. 248 

To simulate each experimental trial, the models were initialized with the participant’s position, heading, 249 
and speed 2s before the perturbation. For the omniscient model, the input on each time step was the 250 
position, heading, and speed of all virtual neighbors in the HMD’s 90˚ field of view on that trial. For the 251 
visual model, the input was the angular velocity, expansion rate, eccentricity, and visibility of the same 252 
neighbors, calculated from their positions on each time step. The output of both models was the position, 253 
heading, and speed of the simulated agent on the next time step, represented as time series for each 254 
trial. As a measure of model performance, we computed the mean position error (ME) or root mean 255 
squared error (RMSE) between each participant’s mean time series in each condition and the 256 
corresponding mean time series for the model. 257 

Simulating Experiment 2 258 

First, we simulated the double-decay experiment. For the omniscient model, we added a gradual 259 
exponential term to the decay function (Equation S4), estimated from the data. Because crowd speed 260 
was not manipulated in this experiment, we used the participant’s recorded walking speed as input to the 261 
omniscient model. Mean final heading for the two models is plotted in Figure 3b, together with the human 262 
results. Although both models are close to the 95% confidence intervals for the human data (shaded 263 
regions), the visual model (dotted curves) lies entirely within them.  264 

Over the whole time series, the mean heading error for the visual model (RMSEV=2.47°) was significantly 265 
smaller than that for the omniscient model (RMSEO=3.45°) (t (9)=14.48, p<.001, Cohen’s d=1.460); a 266 
Bayes Factor indicated decisive evidence for the alternative hypothesis (BF10>>100). The mean position 267 
error for the visual model (MEV=0.241m) was also smaller than that for the omniscient model 268 
(MEO=0.309m) (t (9)=8.46, p<.001, Cohen’s d=0.294), decisive evidence (BF10>>100).  269 

In sum, the visual model predicted the neighborhood better than the omniscient model because the decay 270 
rate is not a constant function of distance, but depends on the amount of occlusion. The visual model thus 271 
accounts for the form of the neighborhood without an explicit decay function. 272 

Re-simulating Rio, Dachner & Warren [8]  273 

As a further test of the models, we re-simulated Rio, et al.’s [8] Experiment 2, which perturbed heading or 274 
speed and manipulated the number and distance of perturbed neighbors (Figure 5a). The virtual crowd 275 
contained 5 neighbors in the near row (1.5m) and 7 in the far row (3.5m). On each trial, a subset of 276 
neighbors, predominantly in one row, either turned ±10˚ or changed speed by ±0.3 m/s (from 1.0 m/s). 277 
Mean final heading and mean final speed appear in Figure 5b,c (solid curves). Responses were larger 278 
when near neighbors were perturbed (blue) than when far neighbors were perturbed (red), indicating a 279 
decay of influence with distance.  280 
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Simulations of the visual model (dotted curves) and the original omniscient model (dashed curves; 281 
Equation S1-S3) appear in Figure 5b,c. Both are close to the human data (solid curves), falling within the 282 
95% confidence intervals in nearly all conditions. Over time, the mean heading error was significantly 283 
smaller for the visual model (RMSEV=1.97°, RMSEO=2.08°), (t (9)=6.94, p<.001, Cohen’s d=0.871, 284 
BF10>100), although there was no difference for the mean speed error (RMSEV=0.0627 m/s, 285 
RMSEO=0.0640 m/s), (t (9)=1.15, p=0.281, Cohen’s d=0.208; BF01=1.91, anecdotal evidence for the null 286 
hypothesis), or the mean position error (MEV=0.193m, MEO=0.199m), (t (9)=1.112, p=0.295, Cohen’s 287 
d=0.082; BF01=1.96, anecdotal). Both models thus capture the human data quite well, although the visual 288 
model performs better on heading.  289 

The comparatively good performance of the omniscient model in this experiment stems from the fact that 290 
the decay function was originally fit to human swarms that had nearest-neighbor distances (1-3m) and 291 
densities similar to those of the virtual crowd. However, this empirical decay term did not generalize to 292 
larger distances in the double-decay experiment, whereas the visual model did so.  293 

In sum, the visual model accounts for Rio, et al.’s [8] experiment as well or better than the omniscient 294 
model. Whereas the latter assumes physical variables as input, the former is based on optical variables 295 
available to an embedded pedestrian: far neighbors exert less influence because they have lower optical 296 
velocities and are partially occluded by near neighbors. 297 

Human swarm simulations 298 

To test whether our findings for virtual crowds apply to real crowds, we simulated walking trajectories in 299 
previously recorded data on ‘human swarms’ [8]. We attempted to predict the trajectory of an individual 300 
pedestrian from the movements of their neighbors using both models. 301 

Three different groups of participants (n=10, 16, 20) were instructed to walk about a large tracking area 302 
(14m x 20m), veering left and right while staying together as a group, for a total of twelve 2-min trials. 303 
Head-mounted markers were recorded with 16 motion-capture cameras (Qualisys) at 60 Hz, and time 304 
series of head position, heading and speed were computed as before.  We identified thirty 10s segments 305 
of data in which ≥75% of the participants were continuously tracked. For each segment, we simulated a 306 
focal participant at the back of the group and treated the tracked neighbors as input. For the visual model, 307 
we computed optical variables from neighbor positions and velocities. The omniscient model used the 308 
original decay function (Equation S3).  309 

Two segments of simulated swarm data appear in Figure 6. The heading time series (column b) for the 310 
focal participant (red) is more closely captured by the visual model (blue) than the omniscient model 311 
(green) in both segments, whereas the speed time series (column c) is better approximated by the 312 
omniscient model in Segment 1 (top) and the visual model in Segment 10 (bottom). Over all 30 segments, 313 
the mean heading error was significantly lower for the visual model (RMSEV=15.0˚) than the omniscient 314 
model (RMSEO=22.9˚) (t (29)=4.48, p<0.001, Cohen’s d=0.806; BF10>100, decisive evidence), as was the 315 
mean position error (MEV=0.60m, MEO=0.80m) (t (29)=2.21, p<0.05, Cohen’s d=0.338; BF10=1.60 316 
anecdotal evidence). On the other hand, the mean speed error was significantly lower for the omniscient 317 
model (RMSEV=0.224 m/s, RMSEO=0.146 m/s) (t (29)=6.83 p<0.001, Cohen’s d=1.198; BF10>>100, 318 
decisive evidence); we consider this result in the Discussion.   319 

The visual model thus accounts for individual heading and position in real crowd data better than the 320 
omniscient model, even though the latter’s decay term was fit to a sample of the same data. We attribute 321 
this advantage largely to the effect of occlusion. Whereas the omniscient model approximates the decay 322 
with distance using a fixed exponential function, the visual model incorporates dynamic occlusion and is 323 
thus sensitive to changes in visibility over time. 324 

 325 

Discussion 326 

Nearly all microscopic models of collective motion in humans and animals attribute local interactions to 327 
hypothetical rules or forces and assume physical variables as input. In this article we developed a visual 328 
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model of human ‘flocking’ based on a visual coupling with optical variables as input. In contrast to 329 
previous phenomenological models, the visual model explains basic properties of interaction as natural 330 
consequences of the laws of optics.  331 

First, social forces and rules of engagement are reduced to optical variables that control an individual’s 332 
heading and speed. In place of explicit ‘repulsion’ and ‘attraction’ forces, collision avoidance results from 333 
canceling optical expansion and group cohesion is maintained by canceling optical contraction. Instead of 334 
an explicit ‘alignment’ rule, collective motion emerges from canceling the combined expansion/contraction 335 
and angular velocity of neighbors. The visual coupling thus behaves functionally like a force or ‘optical 336 
push’ [48]. 337 

Second, the neighborhood of interaction is explained by the laws of optics, without an explicit distance 338 
term. The gradual decay to visible neighbors follows from Euclid’s Law, the diminution of optical velocity 339 
with distance. The more rapid decay within a crowd follows from the added effect of visual occlusion, 340 
which grows with the separation in depth between near and far neighbors. Consequently, the 341 
neighborhood range and number of neighbors n are not determined by a fixed distance but vary with 342 
crowd opacity.  343 

The visual model thus predicts that the effective neighborhood depends on crowd density, which we have 344 
confirmed in related experiments [49]. In dense human crowds (1-2m apart), complete opacity can occur 345 
by a range of 5m. Starlings appear to adjust flock density to maintain ‘marginal opacity’ such that 346 
individual birds can see through the entire flock [47]. The range of interaction might also be limited by a 347 
detection threshold for optical motion. However, adding a motion threshold in our simulations did not 348 
improve the fit to the data, perhaps because it was superseded by occlusion.  349 

Virtually all physical models assume the principle of superposition, according to which the response to a 350 
group is the linear combination of independent responses to each neighbor. But superposition is 351 
invalidated by the facts of visual occlusion: because the influence of far neighbors depends on the 352 
positions of a near neighbors, the response to the former is not independent of the latter. While this may 353 
be computationally inconvenient, visual occlusion has large effects on local interactions (see SM) and 354 
should be incorporated into future models [30, 31]. 355 

Note that Euclid’s Law predicts an asymmetry in the pedestrian’s response. Given a neighbor at an initial 356 
distance ahead, if they slow down, their distance decreases, whereas if they speed up, their distance 357 
increases. Consequently, the rate of expansion is greater than the rate of contraction for the same speed 358 
change. This effect explains an asymmetric speed response we previously observed in pedestrian 359 
following [38, 43]. 360 

The visual model generally outperforms the omniscient model, although they were quite similar in our re-361 
simulation of Rio,et al.’s [8] experiment. This is attributable to the fact that the omniscient model 362 
approximates the decay with distance using an exponential function that was fit to human swarms with a 363 
similar distance and density to the virtual crowd. However, this fixed decay term did not generalize to 364 
greater crowd distances in Experiment 2, whereas the visual model did so. The visual model thus not only 365 
explains the form of the neighborhood but generalizes to new conditions without re-parameterization. 366 

We noted a limitation of the current visual model when we were simulating the human swarm data. In five 367 
additional segments, the front of the crowd executed a 180˚ hairpin turn and walked back toward the focal 368 
participant, generating rapid expansion in the field of view. Human participants kept walking forward, but 369 
the visual model responded by slowing down and backing up to cancel the optical expansion. Similar but 370 
less extreme responses to U-turns may explain the larger speed error for the visual model reported 371 
above. Clearly, the model needs to distinguish neighbors that should be followed from obstacles that 372 
should be avoided, which may be as straightforward as discriminating the front and back of other 373 
pedestrians.  374 

Our findings suggest that characteristic patterns of collective motion in different species might result from 375 
reliance on different sensory variables. Humans cancel optical velocities, which yields collective motion 376 
despite variation in neighbor distance, density, and size. In contrast, holding the visual angles of 377 
neighbors at a particular value would yield fish schools with a preferred spatial scale, whereas 378 
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maintaining neighbors in particular visual directions would yield bird flocks with a preferred spatial 382 
structure.  383 

In sum, we conclude that the local interactions underlying collective motion have a lawful basis in the 384 
visual coupling between neighbors. In recent multi-agent simulations, we have also shown that the visual 385 
model generates emergent collective motion, and a report is in preparation. 386 

 387 
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Data accessibility 389 

Data and computer code are available from the Brown Digital Repository: https://doi.org/10.26300/r4c3-390 
dq82 [50]. 391 
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 411 
 412 

Figure 1. Omniscient and visual models of collective motion. (a) Omniscient model: a pedestrian (bottom) 413 
matches the average heading direction and speed of all neighbors in a 180˚ neighborhood. Neighbor 414 
weights (gray level) decay exponentially with distance di and go to zero at a fixed radius (dotted red 415 
curve). (b) Visual model: a pedestrian (bottom) cancels the average angular velocity and optical 416 
expansion of all visible neighbors. Neighbor influence decreases with distance due to Euclid’s Law (gray 417 
level) and is proportional to neighbor visibility (shaded areas=occluded regions).  418 

 419 
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  422 

 423 

Figure 2. Experiment 1: Range of interaction, testing the decay with distance to fully visible neighbors. (a) 424 
Schematic of virtual crowd, illustrating a rightward heading perturbation (red). (b) Results: Mean final 425 
heading as a function of crowd distance, for each crowd size (curves). Error bars represent ±SEM.  426 

 427 

 428 

 429 

  430 

 431 

Figure 3. Experiment 2: Double-decay hypothesis. (a) Schematic of virtual crowd, illustrating a rightward 432 
heading perturbation of the middle row. (b) Results: Mean final heading as a function of distance to the 433 
perturbed row (symbols), for each crowd distance (curves). Solid curves represent human data, dotted 434 
curves the visual model, and dashed curves the omniscient model. Shaded regions represent 95% 435 
confidence intervals for the human data. (Models were not intended to reproduce gait oscillations, so their 436 
variable error is small and not represented.) 437 
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 440 
 441 
 442 
 443 

 444 

 445 

Figure 4. Visual information for control of heading (top) and speed (bottom). See text for explanation.  446 
Oval=pedestrian, open circle=neighbor, 𝜓̇=angular velocity, 𝜃̇=expansion rate, 𝛽=eccentricity. Optical 447 
motions are computed for a neighbor with diameter=0.4m, distance=1m, relative speed=-1 m/s leftward 448 
(panel c) or -0.1 m/s backward (panel f). 449 
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 452 
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 454 

 455 

 456 

Figure 5. Rio, Dachner & Warren’s [8] Experiment 2. (a) Schematic of virtual crowd (12 neighbors). A 457 
subset of neighbors (0-12) was perturbed (red), predominantly in the near or the far row. (b) Results for 458 
heading perturbation: Mean final heading as a function of the number of perturbed neighbors, for each 459 
row (curves). (c) Results for speed perturbation: Mean final speed as a function of same. Solid curves 460 
represent human data, dotted curves the visual model, dashed curves the omniscient model. Shaded 461 
regions represent 95% confidence intervals for the human data. [Modified from (8), with permission.] 462 
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 468 

 469 

 470 
 471 
Figure 6. Sample segments (10s) from the human swarm, with focal participant (red) and simulations of 472 
visual model (blue dots) and omniscient model (green dashes). (a) Traces of position over time (Segment 473 
1: MEV = 0.379m, MEO=0.818m; Segment 10: MEV=0.275m, MEO=1.389m). (b) Time series of heading 474 
(Segment 1: RMSEV=10.67˚, RMSEO=32.88˚; Segment 10: RMSEV=11.81˚, RMSEO=23.62˚). (c) Time 475 
series of speed (Segment 1: RMSEV=0.187 m/s, RMSEO=0.162 m/s; Segment 10: RMSEV=0.157 m/s, 476 
RMSEO =0.178 m/s). Thin gray curves = neighbors; o = starting positions, x = final positions, dots at 1s 477 
intervals. Note that errors are higher than those in virtual crowds because they are computed on single 478 
trials rather than mean time series, and thus reflect gait oscillations and tracking errors. 479 
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