

1
2
3
4
5
6
7 The visual coupling between neighbors explains local interactions
8 underlying human 'flocking'
9

10
11
12 Gregory C. Dachner, Trenton D. Wirth, Emily Richmond, and William H. Warren*
13
14 Department of Cognitive, Linguistic, and Psychological Sciences
15 Brown University, Providence, RI 02912
16

17
18
19
20
21 *Corresponding Author
22 Email: Bill_Warren@brown.edu
23

24
25
26 **ORCID IDs:**
27 Gregory Dachner: 0000-0002-9198-330X
28 Trenton Wirth: 0000-0002-2510-8603
29 Emily Richmond: 0000-0001-8667-0969
30 William Warren: 0000-0003-4843-2315
31
32

33 **Keywords:**
34 collective behavior, crowd dynamics, pedestrian dynamics, vision-based model, agent-based model
35

36
37
38
39
40

41 Abstract

42 Patterns of collective motion in bird flocks, fish schools, and human crowds are believed to emerge from
43 local interactions between individuals. Most 'flocking' models attribute these local interactions to
44 hypothetical rules or metaphorical forces and assume an omniscient 3rd-person view of the positions and
45 velocities of all individuals in space. We develop a *visual model* of collective motion in human crowds
46 based on the visual coupling that governs pedestrian interactions from a 1st-person embedded viewpoint.
47 Specifically, humans control their walking speed and direction by canceling the average angular velocity
48 and optical expansion/contraction of their neighbors, weighted by visibility (inverse of occlusion). We test
49 the model by simulating data from experiments with virtual crowds and real human 'swarms'. The visual
50 model outperforms our previous omniscient model and explains basic properties of interaction: 'repulsion'
51 forces reduce to canceling optical expansion, 'attraction' forces to canceling optical contraction, and
52 'alignment' to canceling the combination of expansion/contraction and angular velocity. Moreover, the
53 neighborhood of interaction follows from Euclid's Law of perspective and the geometry of occlusion. We
54 conclude that the local interactions underlying human flocking are a natural consequence of the laws of
55 optics. Similar perceptual principles may apply to collective motion in other species.

56 **Background**

57 Human crowds exhibit patterns of collective motion in many public settings, from train stations and
 58 shopping plazas to – sometimes catastrophically – mass events [1, 2]. Similar patterns of coordinated
 59 motion are observed in bird flocks, fish schools, and animal herds, suggesting that diverse systems obey
 60 common principles of self-organization [3, 4]. It is generally believed that these global ‘flocking’ patterns
 61 emerge from local interactions between individuals [3-5]. The crux of the problem thus lies in
 62 understanding the nature of the local interactions.

63 Most models of collective motion ascribe these interactions to hypothetical rules or metaphorical forces,
 64 often inspired by physical systems, and assume an omniscient, 3rd-person view of the positions and
 65 velocities of all individuals in space [6, 7]. Such phenomenological models – including our own [8] –
 66 describe relations between individuals without offering an underlying mechanism. But humans and
 67 animals are embedded in groups and coupled to their neighbors by sensory information. Here we develop
 68 a visual model of collective motion that explains local interactions in terms of the visual coupling, based
 69 on optical variables. Not only does the visual model outperform our previous omniscient model, but basic
 70 properties of interaction follow from the laws of optics.

71 Understanding local interactions involves, first, identifying the *rules of engagement* that govern how an
 72 individual responds to a neighbor, and second, characterizing the *neighborhood of interaction* over which
 73 the rules operate and the influences of multiple neighbors are combined. Classical “zonal” models [9-11]
 74 posit three local rules or forces in concentric zones: (i) *repulsion* from neighbors in a near zone to avoid
 75 collisions, (ii) *alignment* with the velocity of neighbors in an intermediate zone to generate common
 76 motion, and (iii) *attraction* to neighbors in a far zone to ensure group cohesion. Influences are combined
 77 by averaging neighbors within a zone, sometimes weighted by their distance [12, 13]. An alignment rule
 78 by itself is theoretically sufficient to generate collective motion [14], as is the combination of attraction and
 79 repulsion [15]. In humans, the prominent Social Force model [16, 17] also assumes attraction and
 80 repulsion, successfully simulates key crowd scenarios [18, 19], and can produce collective motion under
 81 certain boundary conditions [20, 21]. However, it does not generate realistic individual trajectories [22] or
 82 generalize between situations without re-parameterization [17, 23].

83 The strength of such physics-inspired models is that they capture generic properties of collective motion,
 84 yet the same global patterns can be generated by different sets of local rules [5, 24]. To infer the actual
 85 rules, researchers have turned to behavioral experiments on local interactions [25-28]. We believe that
 86 such a ‘bottom-up’ approach should be grounded in the sensory coupling that actually governs these
 87 interactions. The coupling incorporates limits on the sensory range and field of view [10, 29] as well as
 88 the visibility of individual neighbors [30, 31]. Moreover, local interactions strongly depend on the visual
 89 information that controls locomotion [32, 33]. This insight has inspired recent ‘vision-based’ models [34-
 90 36], but the effective optical variables remains to be determined.

91 We take a bottom-up, experiment-driven approach called ‘behavioral dynamics’ [27, 37]. Our initial
 92 experiments on following in pedestrian dyads [38, 39] revealed that humans obey an alignment rule: the
 93 follower tends to match the walking direction (*heading*) and speed of the leader. To infer the
 94 neighborhood of interaction, we immersed walking participants in a virtual crowd and manipulated the
 95 motions of the avatars; we also analyzed observational data on human ‘swarms’ [8]. The results showed
 96 that pedestrians follow a crowd by averaging the heading directions and speeds of neighbors within a
 97 180° field of view, with weights that decay exponentially with distance to zero at 4-5m. The findings led to
 98 an *omniscient model* of collective motion [8] based on the weighted average of neighbor headings and
 99 speeds (Figure 1a; see SM). The model successfully predicts individual trajectories in both virtual crowd
 100 experiments and real crowd data [8, 40], and the ‘soft metric’ neighborhood generates robust collective
 101 motion in simulation [13, 41].

102 Like its predecessors, however, our omniscient model relied on metaphorical forces, assumed physical
 103 variables as input, and did not account for the neighborhood of interaction. In this article we report new
 104 experiments that lead to an embedded *visual model* (Figure 1b), predicated on the optical variables that

105 control pedestrian following [42, 43]. This new model explains the rules of engagement and the form of
 106 the neighborhood as natural consequences of the laws of optics.

107 **Experimental Methods**

108 *Human subjects:* Twelve subjects (7F, 5M) participated in Experiment 1, and ten different subjects (6F,
 109 4M) in Experiment 2. A power analysis determined that a sample size of 8 per experiment was sufficient
 110 to achieve a power of 0.85 with $\alpha = .05$ and an effect size of 0.5 ($\eta^2 = 0.2$) [44]. All participants gave
 111 informed consent and were compensated for their time. The research protocol was approved by Brown
 112 University's Institutional Review Board in accordance with the principles expressed in the Declaration of
 113 Helsinki.

114 *Equipment:* Participants walked freely in a 12m x 14m tracking area while viewing a virtual environment in
 115 a wireless, stereoscopic head-mounted display (Oculus Rift DK1, 90°H x 65°V field of view, 640 x 800
 116 pixels per eye, 60 Hz refresh rate). Head position and orientation were recorded with an inertial/ultrasonic
 117 tracking system (Intersense IS-900; 60 Hz sampling rate) and used to update the display with a latency of
 118 50-67 ms.

119 *Displays:* The virtual environment (WorldViz software) consisted of a green start pole and a gray
 120 orientation pole 12.73 m apart on a granite-textured ground plane, with a blue sky. The virtual crowd
 121 consisted of animated 3D human models (WorldViz Complete Characters). These virtual humans were
 122 initially positioned on arcs with the start pole at the center, at randomly assigned eccentricities ($\pm 6^\circ$, $\pm 19^\circ$,
 123 $\pm 32^\circ$, $\pm 45^\circ$) about the direction to the orientation pole, then randomly jittered.

124 *Procedure:* To elicit collective-motion responses, participants were instructed to "walk with the group of
 125 virtual humans" and "treat them as if they were real people." On each trial, the participant walked to the
 126 start pole and faced the orientation pole. The virtual crowd appeared with their backs to the participant,
 127 "Begin" was played over headphones, and the crowd began walking forward (1.0 m/s). After 5s the
 128 walking direction of some or all virtual humans was perturbed by $\pm 10^\circ$ (right or left); the display continued
 129 for another 7s, then "End" was played. Test trials were preceded by two practice trials to familiarize the
 130 participant with walking in a virtual environment.

131 *Data processing:* The time series of head position in the horizontal (X-Y) plane were low-pass filtered
 132 (Matlab) to reduce tracker error and oscillations due to the step cycle, then time series of heading
 133 direction and walking speed were computed. The dependent measure was *final heading*, the average
 134 heading direction during the last two seconds of each trial. Left and right perturbation trials were
 135 collapsed by multiplying the left turn heading by -1. Statistical analyses were performed in Microsoft Excel
 136 and JASP. (See SM for details.)

137 **Experiment 1: Range of interaction**

139 Based on crowd data, the omniscient model holds that neighbor influence decays to zero at a fixed radius
 140 of 4-5m [8]. But it seems likely that interactions with visible neighbors can occur at greater distances. To
 141 test the range of interaction, we manipulated the initial distance (1.8, 3.0, 4.0, 6.0 or 8.0 m) of a single row
 142 of virtual humans (crowd size 2, 4, or 8), with no occlusion (Figure 2a). On each trial, their headings were
 143 all perturbed in same direction ($\pm 10^\circ$), and participants were asked to walk with the group.

144 **Results**

145 We observed a very gradual decay in neighbor influence over a much longer distance (Figure 2b). Final
 146 heading decreased from a maximum at 1.8m (mean $M=9.55^\circ$) to just half that value at 8m ($M=5.16^\circ$), (F
 147 $(4, 44)=14.93$, $p<0.001$, $\eta^2_G=0.290$). Simple linear extrapolation suggests an interaction range of at least
 148 15m ($y = -0.722x + 10.8$, $r(14) = -0.95$). Consistent with averaging of neighbors, there was no effect of
 149 crowd size on final heading ($F(2, 22)=0.77$, $p=0.476$, $\eta^2_G=0.010$) and no distance x size interaction (F
 150 $(8, 88)=0.83$ $p=0.575$, $\eta^2_G=0.033$).

151 These results clearly show that the neighborhood of interaction does not have a fixed radius of 4-5m, for
 152 pedestrians may be influenced by neighbors at three times that distance – if they are fully visible. This
 153 finding suggests that there may be two decay processes at work: a gradual decay to visible neighbors,
 154 and a more rapid decay within a partially occluded crowd.

155

156 **Experiment 2: The double-decay hypothesis**

157 The second experiment tested this 'double-decay' hypothesis that there are two decay processes that
 158 depend on distance. We manipulated a virtual crowd of 12 neighbors, randomly positioned in three rows
 159 spaced 2m apart (Figure 3a). To check the decay rate to fully visible neighbors, we varied the distance of
 160 the near row (2, 4, or 6 m). To probe the decay rate within the partially occluded crowd, we selectively
 161 perturbed the near, middle, or far row, so all neighbors in one row turned in the same direction ($\pm 10^\circ$).
 162 Farther neighbors were thus dynamically occluded by nearer neighbors.

163 **Results**

164 Final heading is plotted as a function of distance to the perturbed row in Figure 3b, where each curve
 165 represents a crowd distance. Two decay rates are immediately apparent. First, the heading response
 166 decreases with the distance of the crowd ($F(2,18)=26.68, p<0.001, \eta^2=0.229$). In particular, the response
 167 to perturbations of the near row (diamonds) decays gradually with distance (simple effect test, F
 168 ($2,18)=48.46, p<0.001$), replicating Experiment 1. Linear extrapolation suggests an interaction range of at
 169 least 9m ($y = -0.81x + 7.33, r(2) = -0.99$). The decay rate (slope) is slightly steeper and responses are
 170 weaker than in Experiment 1, due to the presence of unperturbed neighbors; together they are
 171 responsible for the shorter interaction range.

172 Second, in each curve the heading response decreases more rapidly within the crowd ($F(2,18)=86.98,$
 173 $p<0.001, \eta^2=0.760$), steeply from the near row to the middle row ($t(9)=10.82, p<0.001$, Cohen's $d=3.42$)
 174 and the far row ($t(9)=11.95, p<0.001$, Cohen's $d=3.77$). This finding implies that dynamic occlusion by
 175 near neighbors weakened responses to the middle and far rows, almost to the floor of zero.

176 The evidence thus reveals that the neighborhood of interaction results from two decay processes. We
 177 propose, first, that the gradual decay to visible neighbors follows from Euclid's Law of perspective, which
 178 states that the visual angle subtended by an object (or motion) with frontal extent x diminishes with
 179 distance z as $\tan^{-1}(x/z)$. Note that this predicts a larger range of interaction than simple linear
 180 extrapolation. Second, the more rapid decay within the crowd is due to the additional effect of occlusion.
 181 These findings led us to formulate a new visual model.

182 **Visual model**

183 To build a visual model of collective motion from the bottom up, we begin with the visual coupling
 184 between a pedestrian and a single neighbor [38, 42, 43].

185 **Heading control**

186 Consider a pedestrian following a neighbor who turns left (Figure 4, top row). If the neighbor is directly
 187 ahead ($\beta = 0^\circ$ eccentricity, with positive angles to the right and negative angles to the left), this generates
 188 a leftward angular velocity (negative ψ) in the pedestrian's field of view (Figure 4a). Canceling ψ would
 189 cause the pedestrian to steer left and approximately match the neighbor's heading. On the other hand, if
 190 the neighbor is on the pedestrian's right ($\beta = 90^\circ$), this generates an optical expansion (θ) in the field of
 191 view (Figure 4b). In this case, canceling θ would also cause the pedestrian to steer left and match the
 192 neighbor's heading. Critically, optical velocities (ψ, θ) decrease with neighbor distance in accordance with
 193 Euclid's Law.

194 These two optical variables thus trade off as a function of the neighbor's eccentricity (Figure 4c). For a left
 195 turn, angular velocity ψ (blue curve) is a cosine function of eccentricity with a minimum (leftward motion)
 196 at $\beta = 0^\circ$; whereas expansion rate θ (red curve) is a sine function with a minimum (contraction) at $\beta =$
 197 -90° and a maximum (expansion) at $\beta = 90^\circ$. For a right turn, these functions flip about the horizontal
 198 axis.

199 The visual coupling for controlling heading (ϕ) can thus be formalized as a second-order control law,

$$200 \quad \dot{\phi}_p = -c_1(\cos \beta_i)\psi_i + c_2(\sin \beta_i)\theta_i \quad (1)$$

201 in which pedestrian p steers (angular acceleration $\dot{\phi}$) so as to cancel the combined angular velocity (ψ)
 202 and expansion rate (θ) of neighbor i . Their dependence on β acts as a filter so the pedestrian is only
 203 influenced by variables that specify a turn at that eccentricity. The free parameters ($c_1 = 14.38, c_2 = 59.71$)
 204 were fit to our previous data on pedestrian following [42] and held constant.

205 Speed control

206 The control of walking speed is complementary to the control of heading (Figure 4, bottom row). If a
 207 neighbor directly ahead ($\beta = 0^\circ$) slows down, this generates an optical expansion (θ) in the pedestrian's
 208 field of view (Figure 4d). Canceling the expansion would cause the pedestrian to slow down and
 209 approximately match the neighbor's speed. But if a neighbor to the pedestrian's right ($\beta = 90^\circ$) slows
 210 down, this generates a rightward angular velocity (positive ψ) in the field of view (Figure 4e); canceling it
 211 would also lead the pedestrian to slow to the neighbor's speed. These two optical variables again trade
 212 off as a function of eccentricity, but with the opposite sine and cosine functions (Figure 4f). If the neighbor
 213 speeds up, the curves flip about the horizontal axis.

214 The visual coupling for control of radial speed (r) is thus based on the same two optical variables as in
 215 Equation 1, but the sine and cosine functions are reversed:

$$216 \quad \dot{r}_p = -c_3(\sin \beta_i)\psi_i - c_4(\cos \beta_i)\theta_i \quad (2)$$

217 Pedestrian p thus linearly accelerates or decelerates (r) so as to cancel the combined angular velocity
 218 (ψ) and expansion rate (θ) of neighbor i . But now the pedestrian is only influenced by combinations that
 219 specify a speed change at a given eccentricity. The free parameters ($c_3 = 0.18, c_4 = 0.72$) were fit to our
 220 data on pedestrian following [42] and held fixed. To normalize for variation in neighbor size, the relative
 221 rate of expansion (θ/θ) can be substituted for expansion rate (θ) [43].

222 Collective motion

223 To formulate a model of collective motion, we substitute the visual control laws for local interactions
 224 (Equations 1 and 2) into a neighborhood function that averages the influences of multiple neighbors
 225 (Equation S1):

$$226 \quad \dot{\phi}_p = \frac{1}{n} \sum_{i=1}^n v_i [-c_1(\cos \beta_i)\psi_i + c_2(\sin \beta_i)\theta_i] \quad (3)$$

$$227 \quad \dot{r}_p = \frac{1}{n} \sum_{i=1}^n v_i [-c_3(\sin \beta_i)\psi_i - c_4(\cos \beta_i)\theta_i] \quad (4)$$

228 Pedestrian p 's heading and speed are thus controlled by canceling the mean angular velocity (ψ_t) and
 229 rate of expansion (θ_t) of all visible neighbors ($i = 1 \dots n$), depending on their eccentricities (β_i). The field of
 230 view is centered on the heading direction, as people tend to face in the direction they're walking [45].

231 Partial occlusion is incorporated by weighting each neighbor in proportion to their visibility [46], ranging
 232 from $v_i = 0$ (fully occluded) to $v_i = 1$ (fully visible). Visibility is set to 0 if its value falls below a threshold
 233 ($v_t = 0.15$), thus n is the number of visible neighbors above threshold. Importantly, the occluded region
 234 behind a near neighbor grows with distance, so the visibility of far neighbors tends to decrease with their

235 separation in depth from near neighbors (Figure 1b). Consequently, the range of interaction depends on
 236 the crowd's opacity [47] and is limited by the complete occlusion of far neighbors.

237 Basic properties of physics-inspired models fall out naturally from the visual model. First, canceling optical
 238 expansion yields collision avoidance without an explicit 'repulsion' force. Second, canceling optical
 239 contraction maintains group cohesion without an explicit 'attraction' force. Third, canceling the combined
 240 angular velocity and expansion/contraction generates collective motion without an explicit 'alignment' rule.
 241 Finally, the laws of optics account for the form of the neighborhood without an explicit decay function:
 242 Euclid's Law explains the gradual decay of influence to visible neighbors, and the added effect of
 243 occlusion explains the more rapid decay within a crowd.

244 Model simulations

245 We tested the visual model (Equations 3-4) by predicting human trajectories in virtual crowd experiments
 246 and real crowd data, and compared the results to our previous omniscient model (Equations S1-S4). We
 247 find that the visual model outperforms the omniscient model (and a motion model without occlusion, see
 248 SM) and generalizes to real crowds.

249 To simulate each experimental trial, the models were initialized with the participant's position, heading,
 250 and speed 2s before the perturbation. For the omniscient model, the input on each time step was the
 251 position, heading, and speed of all virtual neighbors in the HMD's 90° field of view on that trial. For the
 252 visual model, the input was the angular velocity, expansion rate, eccentricity, and visibility of the same
 253 neighbors, calculated from their positions on each time step. The output of both models was the position,
 254 heading, and speed of the simulated agent on the next time step, represented as time series for each
 255 trial. As a measure of model performance, we computed the mean position error (ME) or root mean
 256 squared error (RMSE) between each participant's mean time series in each condition and the
 257 corresponding mean time series for the model.

258 Simulating Experiment 2

259 First, we simulated the double-decay experiment. For the omniscient model, we added a gradual
 260 exponential term to the decay function (Equation S4), estimated from the data. Because crowd speed
 261 was not manipulated in this experiment, we used the participant's recorded walking speed as input to the
 262 omniscient model. Mean final heading for the two models is plotted in Figure 3b, together with the human
 263 results. Although both models are close to the 95% confidence intervals for the human data (shaded
 264 regions), the visual model (dotted curves) lies entirely within them.

265 Over the whole time series, the mean heading error for the visual model ($RMSE_v=2.47^\circ$) was significantly
 266 smaller than that for the omniscient model ($RMSE_o=3.45^\circ$) ($t(9)=14.48, p<.001$, Cohen's $d=1.460$); a
 267 Bayes Factor indicated decisive evidence for the alternative hypothesis ($BF_{10}>>100$). The mean position
 268 error for the visual model ($ME_v=0.241m$) was also smaller than that for the omniscient model
 269 ($ME_o=0.309m$) ($t(9)=8.46, p<.001$, Cohen's $d=0.294$), decisive evidence ($BF_{10}>>100$).

270 In sum, the visual model predicted the neighborhood better than the omniscient model because the decay
 271 rate is not a constant function of distance, but depends on the amount of occlusion. The visual model thus
 272 accounts for the form of the neighborhood without an explicit decay function.

273 Re-simulating Rio, Dachner & Warren [8]

274 As a further test of the models, we re-simulated Rio, et al.'s [8] Experiment 2, which perturbed heading or
 275 speed and manipulated the number and distance of perturbed neighbors (Figure 5a). The virtual crowd
 276 contained 5 neighbors in the near row (1.5m) and 7 in the far row (3.5m). On each trial, a subset of
 277 neighbors, predominantly in one row, either turned $\pm 10^\circ$ or changed speed by ± 0.3 m/s (from 1.0 m/s).
 278 Mean final heading and mean final speed appear in Figure 5b,c (solid curves). Responses were larger
 279 when near neighbors were perturbed (blue) than when far neighbors were perturbed (red), indicating a
 280 decay of influence with distance.

281 Simulations of the visual model (dotted curves) and the original omniscient model (dashed curves);
 282 Equation S1-S3) appear in Figure 5b,c. Both are close to the human data (solid curves), falling within the
 283 95% confidence intervals in nearly all conditions. Over time, the mean heading error was significantly
 284 smaller for the visual model ($\text{RMSE}_v=1.97^\circ$, $\text{RMSE}_o=2.08^\circ$), ($t(9)=6.94$, $p<.001$, Cohen's $d=0.871$,
 285 $\text{BF}_{10}>100$), although there was no difference for the mean speed error ($\text{RMSE}_v=0.0627 \text{ m/s}$,
 286 $\text{RMSE}_o=0.0640 \text{ m/s}$), ($t(9)=1.15$, $p=0.281$, Cohen's $d=0.208$; $\text{BF}_{01}=1.91$, anecdotal evidence for the null
 287 hypothesis), or the mean position error ($\text{ME}_v=0.193\text{m}$, $\text{ME}_o=0.199\text{m}$), ($t(9)=1.112$, $p=0.295$, Cohen's
 288 $d=0.082$; $\text{BF}_{01}=1.96$, anecdotal). Both models thus capture the human data quite well, although the visual
 289 model performs better on heading.

290 The comparatively good performance of the omniscient model in this experiment stems from the fact that
 291 the decay function was originally fit to human swarms that had nearest-neighbor distances (1-3m) and
 292 densities similar to those of the virtual crowd. However, this empirical decay term did not generalize to
 293 larger distances in the double-decay experiment, whereas the visual model did so.

294 In sum, the visual model accounts for Rio, et al.'s [8] experiment as well or better than the omniscient
 295 model. Whereas the latter assumes physical variables as input, the former is based on optical variables
 296 available to an embedded pedestrian: far neighbors exert less influence because they have lower optical
 297 velocities and are partially occluded by near neighbors.

298 Human swarm simulations

299 To test whether our findings for virtual crowds apply to real crowds, we simulated walking trajectories in
 300 previously recorded data on 'human swarms' [8]. We attempted to predict the trajectory of an individual
 301 pedestrian from the movements of their neighbors using both models.

302 Three different groups of participants ($n=10, 16, 20$) were instructed to walk about a large tracking area
 303 ($14\text{m} \times 20\text{m}$), veering left and right while staying together as a group, for a total of twelve 2-min trials.
 304 Head-mounted markers were recorded with 16 motion-capture cameras (Qualisys) at 60 Hz, and time
 305 series of head position, heading and speed were computed as before. We identified thirty 10s segments
 306 of data in which $\geq 75\%$ of the participants were continuously tracked. For each segment, we simulated a
 307 focal participant at the back of the group and treated the tracked neighbors as input. For the visual model,
 308 we computed optical variables from neighbor positions and velocities. The omniscient model used the
 309 original decay function (Equation S3).

310 Two segments of simulated swarm data appear in Figure 6. The heading time series (column b) for the
 311 focal participant (red) is more closely captured by the visual model (blue) than the omniscient model
 312 (green) in both segments, whereas the speed time series (column c) is better approximated by the
 313 omniscient model in Segment 1 (top) and the visual model in Segment 10 (bottom). Over all 30 segments,
 314 the mean heading error was significantly lower for the visual model ($\text{RMSE}_v=15.0^\circ$) than the omniscient
 315 model ($\text{RMSE}_o=22.9^\circ$) ($t(29)=4.48$, $p<0.001$, Cohen's $d=0.806$; $\text{BF}_{10}>100$, decisive evidence), as was the
 316 mean position error ($\text{ME}_v=0.60\text{m}$, $\text{ME}_o=0.80\text{m}$) ($t(29)=2.21$, $p<0.05$, Cohen's $d=0.338$; $\text{BF}_{10}=1.60$
 317 anecdotal evidence). On the other hand, the mean speed error was significantly lower for the omniscient
 318 model ($\text{RMSE}_v=0.224 \text{ m/s}$, $\text{RMSE}_o=0.146 \text{ m/s}$) ($t(29)=6.83$, $p<0.001$, Cohen's $d=1.198$; $\text{BF}_{10}>>100$,
 319 decisive evidence); we consider this result in the Discussion.

320 The visual model thus accounts for individual heading and position in real crowd data better than the
 321 omniscient model, even though the latter's decay term was fit to a sample of the same data. We attribute
 322 this advantage largely to the effect of occlusion. Whereas the omniscient model approximates the decay
 323 with distance using a fixed exponential function, the visual model incorporates dynamic occlusion and is
 324 thus sensitive to changes in visibility over time.

325

326 Discussion

327 Nearly all microscopic models of collective motion in humans and animals attribute local interactions to
 328 hypothetical rules or forces and assume physical variables as input. In this article we developed a visual

329 model of human 'flocking' based on a visual coupling with optical variables as input. In contrast to
 330 previous phenomenological models, the visual model explains basic properties of interaction as natural
 331 consequences of the laws of optics.

332 First, *social forces and rules of engagement* are reduced to optical variables that control an individual's
 333 heading and speed. In place of explicit 'repulsion' and 'attraction' forces, collision avoidance results from
 334 canceling optical expansion and group cohesion is maintained by canceling optical contraction. Instead of
 335 an explicit 'alignment' rule, collective motion emerges from canceling the combined expansion/contraction
 336 and angular velocity of neighbors. The visual coupling thus behaves functionally like a force or 'optical
 337 push' [48].

Formatted: Font: Italic

338 Second, the *neighborhood of interaction* is explained by the laws of optics, without an explicit distance
 339 term. The gradual decay to visible neighbors follows from Euclid's Law, the diminution of optical velocity
 340 with distance. The more rapid decay within a crowd follows from the added effect of visual occlusion,
 341 which grows with the separation in depth between near and far neighbors. Consequently, the
 342 neighborhood range and number of neighbors n are not determined by a fixed distance but vary with
 343 crowd opacity.

Deleted: is

Deleted: yields robust individual responses

Deleted: .

344 The visual model thus predicts that the effective neighborhood depends on crowd density, which we have
 345 confirmed in related experiments [49]. In dense human crowds (1-2m apart), complete opacity can occur
 346 by a range of 5m. Starlings appear to adjust flock density to maintain 'marginal opacity' such that
 347 individual birds can see through the entire flock [47]. The range of interaction might also be limited by a
 348 detection threshold for optical motion. However, adding a motion threshold in our simulations did not
 349 improve the fit to the data, perhaps because it was superseded by occlusion.

350 Virtually all physical models assume the principle of superposition, according to which the response to a
 351 group is the linear combination of independent responses to each neighbor. But superposition is
 352 invalidated by the facts of visual occlusion: because the influence of far neighbors depends on the
 353 positions of a near neighbors, the response to the former is not independent of the latter. While this may
 354 be computationally inconvenient, visual occlusion has large effects on local interactions (see SM) and
 355 should be incorporated into future models [30, 31].

356 Note that Euclid's Law predicts an asymmetry in the pedestrian's response. Given a neighbor at an initial
 357 distance ahead, if they slow down, their distance decreases, whereas if they speed up, their distance
 358 increases. Consequently, the rate of expansion is greater than the rate of contraction for the same speed
 359 change. This effect explains an asymmetric speed response we previously observed in pedestrian
 360 following [38, 43].

361 The visual model generally outperforms the omniscient model, although they were quite similar in our re-
 362 simulation of Rio, et al.'s [8] experiment. This is attributable to the fact that the omniscient model
 363 approximates the decay with distance using an exponential function that was fit to human swarms with a
 364 similar distance and density to the virtual crowd. However, this fixed decay term did not generalize to
 365 greater crowd distances in Experiment 2, whereas the visual model did so. The visual model thus not only
 366 explains the form of the neighborhood but generalizes to new conditions without re-parameterization.

367 We noted a limitation of the current visual model when we were simulating the human swarm data. In five
 368 additional segments, the front of the crowd executed a 180° hairpin turn and walked back toward the focal
 369 participant, generating rapid expansion in the field of view. Human participants kept walking forward, but
 370 the visual model responded by slowing down and backing up to cancel the optical expansion. Similar but
 371 less extreme responses to U-turns may explain the larger speed error for the visual model reported
 372 above. Clearly, the model needs to distinguish neighbors that should be followed from obstacles that
 373 should be avoided, which may be as straightforward as discriminating the front and back of other
 374 pedestrians.

375 Our findings suggest that characteristic patterns of collective motion in different species might result from
 376 reliance on different sensory variables. Humans cancel optical velocities, which yields collective motion
 377 despite variation in neighbor distance, density, and size. In contrast, holding the visual angles of
 378 neighbors at a particular value would yield fish schools with a preferred spatial scale, whereas

382 maintaining neighbors in particular visual directions would yield bird flocks with a preferred spatial
383 structure.

384 In sum, we conclude that the local interactions underlying collective motion have a lawful basis in the
385 visual coupling between neighbors. In recent multi-agent simulations, we have also shown that the visual
386 model generates emergent collective motion, and a report is in preparation.

387

388

389 **Data accessibility**

390 Data and computer code are available from the Brown Digital Repository: <https://doi.org/10.26300/r4c3-dq82> [50].

392

393 **Acknowledgments**

394 Thanks to Adam Kiefer, Stephane Bonneaud, Michael Fitzgerald, and the Sayles Swarm crew for their
395 help during crowd data collection, and to Arturo Cardenas, Eugy Han and the VENLab team for their
396 assistance in processing and analyzing the datafiles.

397

398 **Funding statement**

399 This research was supported by the National Institutes of Health, R01EY010923 and R01EY029745 to
400 W.W., and T32 EY018080 to Brown University; the National Science Foundation, BCS-1431406 to W.W.;
401 and Link Foundation Fellowships to G.D. and T.W.

402

403

404

405

406

407

408

409

410

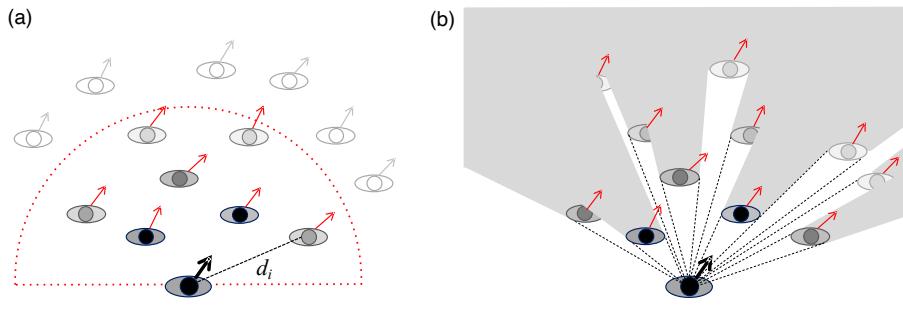
411
412

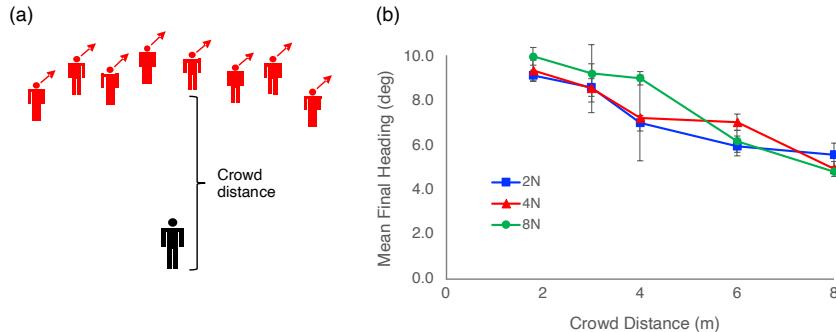
413 **Figure 1.** Omniscient and visual models of collective motion. (a) *Omniscient model*: a pedestrian (bottom)
 414 matches the average heading direction and speed of all neighbors in a 180° neighborhood. Neighbor
 415 weights (gray level) decay exponentially with distance d_i and go to zero at a fixed radius (dotted red
 416 curve). (b) *Visual model*: a pedestrian (bottom) cancels the average angular velocity and optical
 417 expansion of all visible neighbors. Neighbor influence decreases with distance due to Euclid's Law (gray
 418 level) and is proportional to neighbor visibility (shaded areas=occluded regions).

419

420

421





422

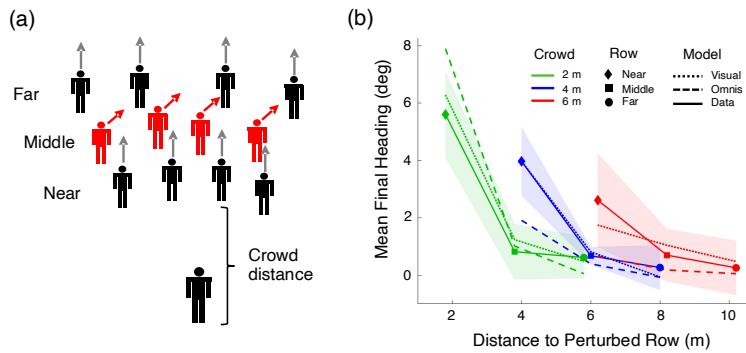
423

424 **Figure 2.** Experiment 1: Range of interaction, testing the decay with distance to fully visible neighbors. (a)
425 Schematic of virtual crowd, illustrating a rightward heading perturbation (red). (b) Results: Mean final
426 heading as a function of crowd distance, for each crowd size (curves). Error bars represent \pm SEM.

427

428

429



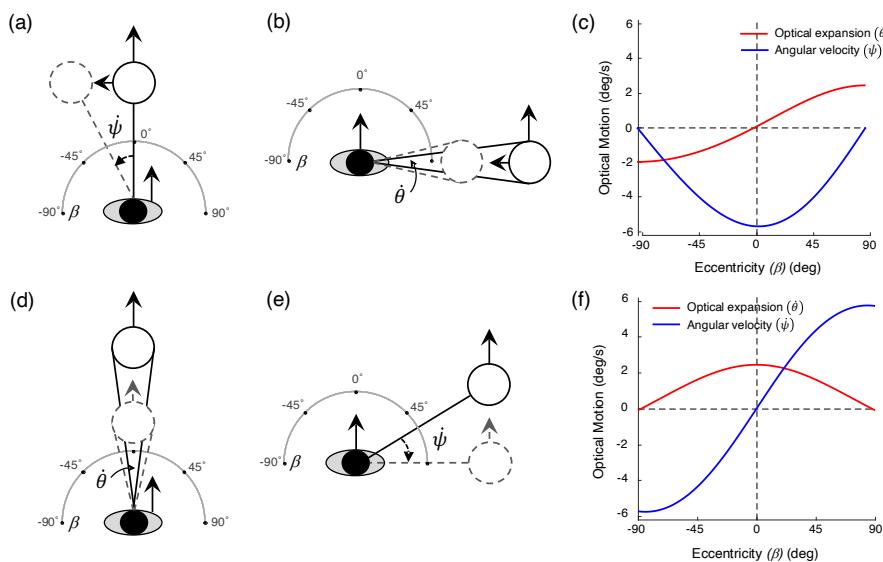
430

431

432 **Figure 3.** Experiment 2: Double-decay hypothesis. (a) Schematic of virtual crowd, illustrating a rightward
433 heading perturbation of the middle row. (b) Results: Mean final heading as a function of distance to the
434 perturbed row (symbols), for each crowd distance (curves). Solid curves represent human data, dotted
435 curves the visual model, and dashed curves the omniscient model. Shaded regions represent 95%
436 confidence intervals for the human data. (Models were not intended to reproduce gait oscillations, so their
437 variable error is small and not represented.)

438

439

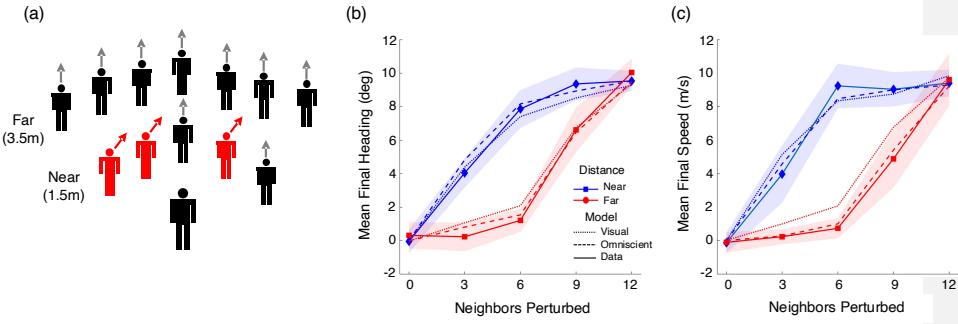
440
441
442
443

444

445

446 **Figure 4.** Visual information for control of heading (top) and speed (bottom). See text for explanation.447 Oval=pedestrian, open circle=neighbor, ψ =angular velocity, θ =expansion rate, β =eccentricity. Optical
448 motions are computed for a neighbor with diameter=0.4m, distance=1m, relative speed=-1 m/s leftward
449 (panel c) or -0.1 m/s backward (panel f).

450



451

452

453

454

455

456

457 **Figure 5.** Rio, Dachner & Warren's [8] Experiment 2. (a) Schematic of virtual crowd (12 neighbors). A
 458 subset of neighbors (0-12) was perturbed (red), predominantly in the near or the far row. (b) Results for
 459 heading perturbation: Mean final heading as a function of the number of perturbed neighbors, for each
 460 row (curves). (c) Results for speed perturbation: Mean final speed as a function of same. Solid curves
 461 represent human data, dotted curves the visual model, dashed curves the omniscient model. Shaded
 462 regions represent 95% confidence intervals for the human data. [Modified from (8), with permission.]

463

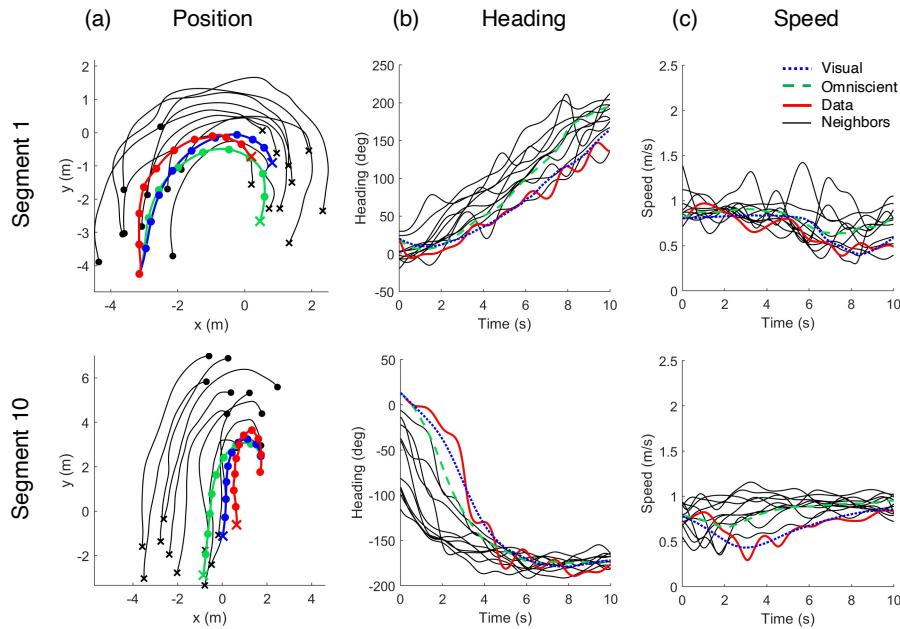
464

465

466

467

468



469

470

471

472 **Figure 6.** Sample segments (10s) from the human swarm, with focal participant (red) and simulations of
 473 visual model (blue dots) and omniscient model (green dashes). (a) Traces of position over time (Segment
 474 1: $ME_v = 0.379m$, $ME_o = 0.818m$; Segment 10: $ME_v = 0.275m$, $ME_o = 1.389m$). (b) Time series of heading
 475 (Segment 1: $RMSE_v = 10.67^\circ$, $RMSE_o = 32.88^\circ$; Segment 10: $RMSE_v = 11.81^\circ$, $RMSE_o = 23.62^\circ$). (c) Time
 476 series of speed (Segment 1: $RMSE_v = 0.187 \text{ m/s}$, $RMSE_o = 0.162 \text{ m/s}$; Segment 10: $RMSE_v = 0.157 \text{ m/s}$,
 477 $RMSE_o = 0.178 \text{ m/s}$). Thin gray curves = neighbors; o = starting positions, x = final positions, dots at 1s
 478 intervals. Note that errors are higher than those in virtual crowds because they are computed on single
 479 trials rather than mean time series, and thus reflect gait oscillations and tracking errors.

480

481

482 **References**

483 1. Helbing D., Buzna L., Johansson A., Werner T. 2005 Self-organized pedestrian crowd dynamics:
 484 Experiments, simulations, and design solutions. *Transportation Science* **39**(1), 1-24.

485 2. Ngai K.M., Burkle F.M., Hsu A., Hsu E.B. 2009 Human stampedes: a systematic review of
 486 historical and peer-reviewed sources. *Disaster medicine and public health preparedness* **3**(4), 191-195.

487 3. Couzin I.D., Krause J. 2003 Self-organization and collective behavior in vertebrates. *Advances in
 488 the Study of Behavior* **32**, 1-75.

489 4. Sumpter D.J.T. 2010 *Collective animal behavior*. Princeton, NJ, Princeton University Press.

490 5. Vicsek T., Zafeiris A. 2012 Collective motion. *Physics Reports* **517**, 71-140.

491 6. Giardina I. 2008 Collective behavior in animal groups: theoretical models and empirical studies.
HFSP Journal **2**(4), 205-219.

492 7. Schelling J., White T. 2011 A review of attraction and repulsion models of aggregation:
 493 Methods, findings and a discussion of model validation. *Ecological Modeling* **222**, 1897-1911.

494 8. Rio K.W., Dachner G.C., Warren W.H. 2018 Local interactions underlying collective motion in
 495 human crowds. *Proceedings of the Royal Society B* **285**(1878), 20180611, 20180611-20180619.
 496 (doi:doi:10.1098/rspb.2018.0611).

497 9. Couzin I.D., Krause J., James R., Ruxton G.D., Franks N.R. 2002 Collective memory and spatial
 498 sorting in animal groups. *Journal of Theoretical Biology* **218**, 1-11.

499 10. Huth A., Wissel C. 1992 The simulation of the movement of fish schools. *Journal of Theoretical
 500 Biology* **156**, 365-385.

501 11. Reynolds C.W. 1987 Flocks, herds, and schools: a distributed behavioral model. *Computer
 502 Graphics* **21**, 25-34.

503 12. Grégoire G., Chaté H., Tu Y. 2003 Moving and staying together without a leader. *Physica D:
 504 Nonlinear Phenomena* **181**(3-4), 157-170.

505 13. Cucker F., Smale S. 2007 Emergent behavior in flocks. *IEEE Transactions on automatic control
 506* **52**(5), 852-862.

507 14. Vicsek T., Czirók A., Ben-Jacob E., Cohen I., Shochet O. 1995 Novel type of phase transition in a
 508 system of self-driven particles. *Physics Review Letters* **75**(6), 1226-1229.

509 15. Romanczuk P., Couzin I.D., Schimansky-Geier L. 2009 Collective motion due to individual escape
 510 and pursuit response. *Physical Review Letters* **102**(1), 010602.

511 16. Helbing D., Molnár P. 1995 Social force model of pedestrian dynamics. *Physical Review E* **51**,
 512 4282-4286.

513 17. Chen X., Treiber M., Kanagaraj V., Li H. 2018 Social force models for pedestrian traffic-state of
 514 the art. *Transport Reviews* **38**(5), 625-653.

515 18. Chraibi M., Tordeux A., Schadschneider A., Seyfried A. 2018 Modelling of pedestrian and
 516 evacuation dynamics. In *Encyclopedia of complexity and systems science* (ed. Meyers R.A.), pp. 1-22.
 517 Berlin, Heidelberg, Springer Berlin Heidelberg.

518 19. Boltes M., Zhang J., Tordeux A., Schadschneider A., Seyfried A. 2018 Empirical Results of
 519 Pedestrian and Evacuation Dynamics. In *Encyclopedia of Complexity and Systems Science* (ed. Meyers
 520 R.A.), pp. 1-29. Berlin, Heidelberg, Springer Berlin Heidelberg.

521 20. Helbing D., Farkas I., Vicsek T. 2000 Simulating dynamical features of escape panic. *Nature* **407**,
 522 487-490.

523 21. Helbing D., Molnár P., Farkas I., Bolay K. 2001 Self-organizing pedestrian movement.
Environment and Planning B: Planning and Design **28**, 361-383.

524 22. Pelechano N., Allbeck J.M., Badler N.I. 2007 Controlling individual agents in high-density crowd
 525 simulation. In *Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
 526 Animation, Aug 3-7, San Diego, CA* (pp. 99-108. Aire-la-Ville, Switzerland, Eurographics Association).

527

528

529 23. Campanella M., Hoogendoorn S., Daamen W. 2009 Improving the Nomad microscopic walker
 530 model. *IFAC Proceedings Volumes* **42**(15), 12-18.

531 24. Weitz S., Blanco S., Fournier R., Gautrais J., Jost C., Theraulaz G. 2012 Modeling collective animal
 532 behavior with a cognitive perspective: A methodological framework. *PLoS ONE* **7**(6), e38588.

533 25. Gautrais J., Ginelli F., Fournier R., Blanco S., Soria M., Chaté H., Theraulaz G. 2012 Deciphering
 534 interactions in moving animal groups. *PLoS Comput Biology* **8**(9), e1002678.

535 26. Sumpter D.J.T., Mann R.P., Perna A. 2012 The modelling cycle for collective animal behaviour.
 536 *Interface Focus* **2**(6), 764-773.

537 27. Warren W.H., Fajen B.R. 2008 Behavioral dynamics of visually-guided locomotion. In
 538 *Coordination: Neural, behavioral, and social dynamics* (eds. Fuchs A., Jirsa V.), pp. 45-75. Heidelberg,
 539 Springer.

540 28. Moussaid M., Helbing D., Garnier S., Johansson A., Combe M., Theraulaz G. 2009 Experimental
 541 study of the behavioural mechanisms underlying self-organization in human crowds. *Proceedings of the
 542 Royal Society B* **276**(1668), 2755-2762.

543 29. Pita D., Collignon B., Halloy J., Fernández-Juricic E. 2016 Collective behaviour in vertebrates: a
 544 sensory perspective. *Royal Society open science* **3**(11), 160377.

545 30. Strandburg-Peshkin A., Twomey C.R., Bode N.W.F., Kao A.B., Katz Y., Ioannou C.C., Rosenthal
 546 S.B., Torney C.J., Wu H.S., Levin S.A., et al. 2013 Visual sensory networks and effective information
 547 transfer in animal groups. *Current Biology* **23**(17), R709-R711.

548 31. Poel W., Winklmayr C., Romanczuk P. 2021 Spatial structure and information transfer in visual
 549 networks. *Frontiers in Physics: Social Physics* **9**, 716576, 716571-716514.

550 32. Gibson J.J. 1979 *The ecological approach to visual perception*. Boston, Houghton Mifflin.

551 33. Pepping G.J., Grealy M.L. 2007 Closing the gap: The scientific writings of David N. Lee. (Mahwah,
 552 NJ, Erlbaum.

553 34. Ondrej J., Pettré J., Olivier A.-H., Donikian S. 2010 A synthetic-vision based steering approach for
 554 crowd simulation. *ACM Transactions on Graphics* **29**(4), 123: 121-129.

555 35. Moussaïd M., Helbing D., Theraulaz G. 2011 How simple rules determine pedestrian behavior
 556 and crowd disasters. *Proceedings of the National Academy of Sciences* **108**(17), 6884-6888.

557 36. Bastien R., Romanczuk P. 2020 A model of collective behavior based purely on vision. *Science
 558 Advances* **6**, eaay0792, 0791-0799.

559 37. Warren W.H. 2006 The dynamics of perception and action. *Psychological Review* **113**, 358-389.

560 38. Rio K.W., Rhea C., Warren W.H. 2014 Follow the leader: Visual control of speed in pedestrian
 561 following. *Journal of Vision* **14**(2), 4:1-16.

562 39. Dachner G., Warren W.H. 2014 Behavioral dynamics of heading alignment in pedestrian
 563 following. *Transportation Research Procedia* **2**, 69-76.

564 40. Wirth T.D., Warren W.H. 2021 Robust weighted averaging accounts for recruitment into
 565 collective motion in human crowds. *Frontiers in Applied Mathematics and Statistics: Dynamical Systems*
 566 **7**(73), 761445. (doi:10.3389/fams.2021.761445).

567 41. Warren W.H., Dachner G.C. 2018 Comparing simple-radius and doughnut models of collective
 568 crowd motion. *Journal of Vision* **18**(10), 1038.

569 42. Dachner G., Warren W.H. 2017 A vision-based model for the joint control of speed and heading
 570 in pedestrian following. *Journal of Vision* **17**(10), 716.

571 43. Bai J., Warren W.H. 2019 The relative rate of optical expansion controls speed in 1D pedestrian
 572 following. *Journal of Vision* **19**(10), 52.

573 44. Faul F., Erdfelder E., Lang A.-G., Buchner A. 2007 G* Power 3: A flexible statistical power analysis
 574 program for the social, behavioral, and biomedical sciences. *Behavior research methods* **39**(2), 175-191.

575 45. Grasso R., Prevost P., Ivanenko Y.P., Berthoz A. 1998 Eye-head coordination for the steering of
 576 locomotion in humans: An anticipatory synergy. *Neuroscience letters* **253**(2), 115-118.

577 46. Dachner G., Warren W.H. 2019 Dynamic occlusion reduces the influence of neighbors in human
578 crowds. In *International Conference on Perception and Action* (Groningen, The Netherlands).

579 47. Pearce D.J.G., Miller A.M., Rowlands G., Turner M.S. 2014 Role of projection in the control of
580 bird flocks. *Proceedings of the National Academy of Sciences* **111**(29), 10422-10426.

581 48. Shaw R., Kinsella-Shaw J. 2007 Could optical 'pushes' be inertial forces? A geometro-dynamical
582 hypothesis. *Ecological Psychology* **19**(3), 305-320.

583 49. Wirth T.D., Warren W.H. 2018 Metric vs. topological models of collective motion in human
584 crowds. *Journal of Vision* **18**(10), 1036.

585 50. Dachner G.C., Wirth T.C., Richmond E., Warren W.H. 2022 Data and code from: The visual
586 coupling between neighbors explains local interactions underlying human 'flocking'. Brown Digital
587 Repository. doi.org/10.26300/r4c3-dq82 (

588