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Abstract

When two streams of pedestrians cross at an angle, striped patterns spontaneously
emerge as a result of local pedestrian interactions. This clear case of self-organized
pattern formation remains to be elucidated. In counterflows, with a crossing angle of 180°,
alternating lanes of traffic are commonly observed moving in opposite directions, whereas
in crossing flows at an angle of 90°, diagonal stripes have been reported. Naka (1977)
hypothesized that stripe orientation is perpendicular to the bisector of the crossing angle.
However, studies of crossing flows at acute and obtuse angles remain underdeveloped.
We tested the bisector hypothesis in experiments on small groups (18-19 participants
each) crossing at seven angles (30° intervals), and analyzed the geometric properties of
stripes. We present two novel computational methods for analyzing striped patterns in
pedestrian data: (i) an edge-cutting algorithm, which detects the dynamic formation
of stripes and allows us to measure local properties of individual stripes; and (ii) a
pattern-matching technique, based on the Gabor function, which allows us to estimate
global properties (orientation and wavelength) of the striped pattern at a time T. We
find an invariant property: stripes in the two groups are parallel and perpendicular to
the bisector at all crossing angles. In contrast, other properties depend on the crossing
angle: stripe spacing (wavelength), stripe size (number of pedestrians per stripe), and
crossing time all decrease as the crossing angle increases from 30° to 180°, whereas
the number of stripes increases with crossing angle. We also observe that the width
of individual stripes is dynamically squeezed as the two groups cross each other. The
findings thus support the bisector hypothesis at a wide range of crossing angles, although
the theoretical reasons for this invariant remain unclear. The present results provide
empirical constraints on theoretical studies and computational models of crossing flows.

Author summary

You may have noticed that pedestrians in a crosswalk often form multiple lanes of
traffic, moving in opposite directions (180°). Such spontaneous pattern formation is an
example of self-organized collective behavior, a topic of intense interdisciplinary interest.
When two groups of pedestrians cross at an intersection (90°), similar diagonal stripes
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appear. Naka (1977) conjectured that the stripes are perpendicular to the mean walking
direction of the two groups. This facilitates the forward motion of each group and
reduces collisions. We present the first empirical test of the hypothesis by studying
two groups of participants crossing at seven different angles (30° intervals). To analyze
the striped patterns, we introduce two computational methods, a local Edge-cutting
algorithm and a global Pattern-matching technique. We find that stripes are indeed
perpendicular to the mean walking direction at all crossing angles, consistent with the
hypothesis. But other properties depend on the crossing angle: the number of stripes
increases with crossing angle, whereas the spacing of stripes, the number of pedestrians
per stripe, and the crossing time all decrease. Moreover, the width of individual stripes
is “squeezed” in the middle of the crossing. Future models of crowd dynamics will need
to capture these properties.

Introduction

Collective motion in groups of humans, as well as other social organisms, has increasingly
become a subject of analysis and modeling [1-7]. Currently, characteristic patterns
of collective motion are understood as emergent behavior resulting from the collective
dynamics of interactions between individuals. Studies of human crowd dynamics have
important applications to improving pedestrian traffic flow, safety management, and the
prevention of crowd disasters [8-12]. Analyses of real-life mass events have been used to
model crowd behavior in situations such as religious gatherings, rock concerts, sporting
matches, and transportation hubs [13-16], with a critical goal of averting life-threatening
crushes, stampedes, and trampling [14,17,18]. A first step to successful modeling is
a better understanding of actual crowd behavior by analysis of crowd dynamics and
pattern formation in human data. In this paper, we develop a computational analysis of
spontaneous stripe formation in crossing flows of pedestrians.

Pedestrian traffic flow has been studied empirically in a wide variety of situations,
using both experimental methods and motion tracking of real crowds. The simplest case
is uni-directional flow in a corridor, in which properties such as the dependence of speed
on density have been analyzed [19-24]. Collision avoidance between pedestrians has been
investigated in pairs of walkers [25,26] and multiple walkers [27]. Bottlenecks occur when
a large group attempts to pass through a narrow opening [21,28-33], as in Black Friday
sales or fire emergencies, which can lead to jamming and crushes. Other empirical studies
have examined pedestrian flow through a T-junction [34, 35], bidiréctionalfflows [36],
multi-directional flows [37,38], a pedestrian crossing through a dense static crowd [39,40],
and a bottleneck leading to a 1D corridor [41].

Crossing flows can be described as two streams of pedestrians walking in different
directions, passing through each other at a crossing angle o > 0° (where 0° is walking in
the same direction). Many real-world situations produce crossing flows, such as streams
of pedestrians crossing at a sidewalk intersection, or subway commuters passing each
other when entering and exiting a metro car. A special case of crossing flows, called
counterflow, occurs when the crossing angle is 180°. Self-organized spatial patterns
have been observed when two groups cross each other. In counterflow, the formation of
stable lanes is regularly reported in both human experiments [3,38,42-46] and numerical
simulations [47-59], in which alternating lanes of pedestrian traffic are aligned with
the walking directions of the two groups (180° apart). A jamming transition can occur
above a critical flow density [49,53,56,57]. More generally, at other crossing angles the
formation of stripes is observed, but the alternating stripes are not aligned with the
walking directions of the two groups. The familiar case of orthogonal flows (a = 90°)
has been widely studied [60], and the formation of diagonal stripes is found in human
crowds [55,61] and in simulation [42,54,55,62-67]. In a recent study, body orientation
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of crossing flows of agents has been explicitly measured to study its dependence on
density [68]. However, the analysis of striped patterns in crossing flows of humans at
other crossing angles remains underdeveloped.

Naka [61] first reported stripes at acute and obtuse crossing angles in pedestrian
crowds, and hypothesized that stripes form at an orientation that is perpendicular to
the bisector of the crossing angle. Abstractly, a stripe is a traveling wave that moves in
the mean direction of the two flows, such that individual pedestrians travel forward with
a stripe and laterally within it [43]. A striped pattern facilitates overall pedestrian flow
by reducing collision-avoidance maneuvers, thereby increasing the average walking speed.
Only afew subsequent human studies have tested oblique crossing angles [69-71], but
stripe patterns were not analyzed. The bisector hypothesis thus remains to be tested
experimentally.

Striped patterns in oblique crossing flows have been reproduced in simulation, consis-
tent with the biSeéctor iypothesis [43, 72]. In one system, the inclination of the stripe to
the bisector was found to increase with the velocity difference between two orthogonal
flows [54]. The mechanism responsible for the formation of self-organized stripes in
orthogonal flows has been studied theoretically [64—67]. A mean field analysis shows the
underlying mechanism to be a linear instability of the randomly uniform state in the
intersecting region compared to the formation of diagonal striped patterns [64,66,67].
The ‘wake’ of a pedestrian has been proposed as the microscopic mechanism for stripe
formation, a density perturbation created in the perpendicularly moving flow [65]. The
inclination of the striped patterns was related to the velocity difference between the two
groups, producing a ‘chevron’ effect [64,66]. Absence of striped patterns has also been
observed when three or more groups of people intersect [73-75].

The purpose of the present research is to experimentally test the bisector hypothesis
by analyzing stripe formation at a variety of crossing angles, without spatial constraints.
We seek to answer several theoretically-motivated questions: (i) Can stripe orientation
be predicted as perpendicular to the bisector for all crossing angles? (ii) Do other stripe
properties depend on crossing angle? (iii) What are the stripe dynamics during crossing
flows? (iv) Does spontaneous stripe formation generalize from continuous crossing flows
in defined corridors to small crowds without boundary conditions on spatial position,
density, or visibility?

We addressed these questions as part of the PEDINTERACT Project [39], in which
two different sets of subjects participated (36 on Day 1, 38 on Day 2). The setup appears
in Fig 1 (also see S1 Video). In the experiment, two groups of participants (18 or 19
per group) walked through each other at seven different crossing angles (0° to 180°, at
30° intervals); there were approximately 17 trials per angle. On each trial, the groups
were positioned in two starting boxes oriented at the designated crossing angle, and were
instructed to walk in the direction they were facing to the other side of the room. To
investigate whether striped patterns would emerge in the absence of spatial boundary
conditions, we did not use opaque corridors as in many previous studies [43,62,64,70].
Head position was recorded with a motion-capture system at 120 Hz. Sample traces for
all pedestrians in a typical trial appear in Fig 2.

Because the empirical analysis of crossing flows is quite underdeveloped, we describe
a number of computational methods for analyzing the characteristics of stripes in human
data. In particular, we present a novel approach to identify the formation of stripes,
called the Edge-cutting algorithm. Using this algorithm we were able to measure the
local properties of individual stripes such as their orientation, width and size. We also
use an independent method to characterize global stripe properties, a pattern matching
technique that fits a two dimensional sinusoidal function (e.g. Gabor function) to
the positions of pedestrians in the two groups. This method assumes the existence of
a periodic pattern of stripes and then finds the geometric properties of the pattern
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Fig 1. Photograph of our experimental set-up to study crossing flows. Agents participating in our experiment
are shown in this photograph for a typical trial with crossing angle 120°. The three stages of the trial are shown here, viz.

(a) before crossing (b) during crossing and (c) after crossing.
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Fig 2. Illustration of a trial of crossing flow from our experiments. Traces of all the pedestrians involved for a
typical trial has been shown with expected value of crossing angle equal to 60°. Three different instances of the trial has
been shown here viz. before crossing (7}), during crossing (72) and after crossing (753). The actual values of time frames
are T = 2.3 sec, 15 = 6.55 sec and T35 = 10.8 sec from the beginning of the trial. The two groups of pedestrians are

denoted by blue and red dots. The tails behind each of the dots are basically the distances travelled by the pedestrians in

previous 1.25 sec.

from a fitting procedure. The two methods are complementary, in the sense that the
edge-cutting algorithm requires the whole history of the crossing and provides the full
dynamics of the stripes, whereas the pattern matching method can be performed on a
single snapshot. The stripe orientations obtained by the edge-cutting algorithm and the
pattern matching technique are compared to each other, and to the hypothesis that the
stripes are perpendicular to the bisector of the crossing angle.

In sum, the present paper makes two major contributions: (i) we present experimental
data on crossing flows of pedestrians that support the bisector hypothesis, and (ii) we
introduce and discuss methodological tools to detect the formation and presence of
striped patterns and to estimate their geometric properties.
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Results

When two groups of people cross each other, striped patterns emerge, as schematically
illustrated in Fig 3. The primary goal of the present research was to characterize
the properties of these emergent stripes, based on numerical analysis of participant
trajectories. The actual crossing angle o between the mean walking directions of the two
groups was measured from the data. The properties of stripe orientation ~y relative to the
crossing angle bisector, and stripe spacing A are illustrated in Fig 3 (right). We begin by
introducing two independent computational methods devised to analyze the geometric
properties of the stripes, (i) the Edge-cutting algorithm and (ii) the Pattern-matching

technique.
AN\
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Fig 3. Schematic representation for the formation of stripes and definition of orientation v and physical
separation )\ of stripes. Formation of stripes as a consequence of two groups crossing each other. In this schematic
diagram the crossing angle between the two groups is a. The figure has been shown for three instances viz. before
crossing (71), during crossing (75) and after crossing (75). The two groups before crossing are denoted by blue and red
squares, whose direction of motion is denoted by arrows of the same color. The green dotted arrow denotes the bisector of
the crossing angle. The orientation ~ of the stripes is measured counter-clockwise from the bisector. A is the spatial
separation between two stripes from the same group. For specific definitions of v and A see Fig 6.

Identifying stripes using edge-cutting algorithm

For purposes of the first method, we define a stripe as a subset of participants from
one group that is not penetrated by participants from the other group. Specifically,
the virtual connections or edges between the participants in a stripe are never crossed
or ‘cut’ by the trajectory of a participant from the other group. The principal output
of the Edge-cutting algorithm is the identification of the participants who belong to
each stripe (see Materials and Method for details). This analysis indeed revealed the

spontaneous emergence of striped patterns and the stripes were successfully identified.

The dynamics of stripe formation was also observed, as illustrated for two typical trials
in Fig 4. The Edge-cutting algorithm also yields the time of the initial edge-cut T; at the
start of crossing (left column of Fig 4) and the time of the final edge-cut Ty at the end
of crossing (right column of Fig 4). Animations of the Edge-cutting process for these
two trials appear in the supplementary material (S2 Video and S3 Video).
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Fig 4. Pictorial representation of the edge-cutting algorithm. Figure demonstrates the working process of the
edge-cutting algorithm as a sequence of time. Here we show the process for two typical trials with o = 89.8° and

a = 116.9°. Red and blue arrows indicate the direction of motion of the two groups represented by red and blue dots
respectively. The lines connecting the dots in each of the groups are considered as the virtual bonds or ‘edges’ which are
suppressed when cut by a pedestrian on the other group (see Materials and Methods). The figures are shown for three
instances, viz. T;, (T; + T)/2 and Ty. T; and T denote the instances of time when the first and last edge-cut take place
respectively. The edge-cutting process for the entire course of time for these two trials are shown as videos in
supplementary materials (S2 Video and S3 Video).

Characterizing stripes using pattern-matching technique

The Pattern-matching technique estimates the orientation and width of a set of stripes,
assuming that the stripes are parallel and equally spaced. This method fits a two-
dimensional spatial frequency function f, based on a sinusoidal Gabor function, to the
positions of pedestrians at a time 7. The free parameters of orientation =y, wavelength A,
and phase v, are chosen by maximizing C, the fit of the function to pedestrian positions,
where positive values (peaks) are assigned to one group and negative values (troughs)
to the other (see Materials and Methods for details). The fitting can be applied to all
pedestrians or to a subset (e.g. one group). The output of this fitting procedure for
all pedestrians in two representative trials appears in Fig 5, where 4 and A refer to the
orientation and wavelength of stripes in the whole crowd.

The two methods are complementary. The edge-cutting algorithm requires the whole
history of the crossing event and yields in return the full dynamics of stripes. It estimates
the local spatial properties of individual stripes at each time point, without assuming
any prior knowledge about them. The pattern-matching technique requires only a single
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Fig 5. Output of the pattern matching technique. The panels on the left show fitting of pedestrian positions for
the same trials shown in Fig 4. Fitting was done using the parametric sine curve f and the transformed coordinates
(z',4y'). The blue and red parts of the plot represent the crests and troughs of the sine function respectively. The outputs
of the fitting are 7 = 83.34°, A = 1.865m and ¢ = —116.37° for the typical trial with a = 89.8° and 7 = 89.99°,

A = 2.286m and 1) = —0.92° for the typical trial with o = 116.9°. (see Materials and Methods) The panels on the right
show variation of C as a function of 4 and A keeping 1 fixed to the value obtained from the fitting shown in the left
panel. The region of occurrence of high values of C' is shown in yellow. The function C' was maximised to fit the sine
function f. The maximum value of C for the trial with o = 89.8, as obtained by our optimisation procedure is 1.132,
which occurred for ¥ = 83.34° and A = 1.865m. Whereas, for the trial with a = 116.9° we obtained the maximum value of
C = 1.205, which occurred for 7 = 89.99° and \ = 2.286m.

snapshot, and recovers the global spatial properties of orientation and wavelength. The
prior assumptions of parallel, equally spaced stripes help to match the instantaneous
pattern, as long as the actual stripes are close to this ideal. We will see now how both
approaches allow us to gain insight into the striped structure.

Stripe Orientation

Based on previous empirical observations and modeling, there are reasons to expect that
the observed stripes would be parallel and perpendicular to the bisector of the crossing
angle, as illustrated in Fig 3. This bisector hypothesis thus predicts v = 90° for all
crossing angles a. However, it is possible that the stripes for one group (blue in Fig
3) are not parallel to those for the other group (red), such that Ypiue 7 Yred; also that
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individual stripes within a group are not parallel. We thus estimated the orientation of 19
stripes using the global and local methods: (i) the Pattern-matching technique allowed 15
us to estimate the overall stripe orientation 4 (Fig 6a), as well as the orientation for s
each group separately 41, and 7, (Fig 6b); (ii) the Edge-cutting algorithm enabled us 15
to estimate the orientation of individual stripes v;, and g, (Fig 6¢). We report each of 153

these measurements of stripe orientation in turn. 154
Estimated from Estimated from
parametric sinusoidal fitting Edge-cutting Algorithm

(b)

Fig 6. Summary of different methods to estimate orientation v and physical separation )\ of the stripes.
The arrows in blue and red represents the direction of motion of the two groups. The schematic diagrams are shown for
an arbitrary crossing angle. The dashed green arrow indicates the bisector of the crossing angle between the two group
direction vectors. The lines in blue and red show the stripes from the two groups. -y is the angle between the direction of
stripes and the bisector of crossing angle, always measured counterclockwise. (a) Estimation of orientation 7 of the stripes
and physical separation A between two stripes from the same group using the parametric sinusoidal fitting. In doing this
calculation it was assumed that stripes from the two groups are parallel to each other and are equispaced, as shown in the
figure. (b) Orientation of the stripes from the two groups when we assume that stripes from the same group are parallel
to each other and are equispaced. 77, and 4z denote the orientation of stripes whose group direction vectors are left and
right to the direction of bisector respectively. Using the same convention, 77, and Ji are the spatial separation between
the stripes in those cases. This calculation was also done by fitting the two dimensional sine curve. (c¢) Estimation of

orientation of the individual stripes that were found using the edge-cutting algorithm, for the two groups. =y or v denote
the orientation of individual stripes whose group direction vector is left or right to the direction of bisector respectively.

Global stripe orientation 4 and 7 using the Pattern-matching technique 155

In the first analysis, we estimated the overall orientation of all stripes 74 to the bisector, 1s6
on the assumption that the stripes for the two groups were parallel and equally spaced 17
(see Fig 6a), using the pattern matching technique. The analysis was performed at a 15
suitable time T" between the crossing midpoint (7; + T)/2 and the final crossing point 15
Ty, when the periodic pattern of stripes was most clearly defined (see Discussion). The 10
resulting values of 7 are represented in box plots in Fig 7a (blue bars). Note that the 1«
median values are very close to the predicted angle of 90° for all crossing angles, with 1
deviations less than 3° in all conditions. A set of t-tests comparing the mean value of ¥ to 163
90° at each crossing angle was significant only for o = 63.8°, ¢(17) = —2.550, p = 0.0207; 164
no other conditions were significant. Overall, this finding is consistent with the bisector s
hypothesis. A one-way analysis of variance (ANOVA) on 4 was also performed, with 1

March 31, 2022 8/1



160

140

120

100

80

60

40

©/ (b

20

i

; ]

-20

difference in orientation of stripes [°]
o

-40

orientation of stripes by different methods [°]

26.1

63.8

89.8

116.9 1541 179.7 26.1 63.8 89.8 116.9 154.1 179.7

crossing angle o [°] crossing angle o [°]

Fig 7. Orientation ~ of the stripes using different methods. (a) Figure shows boxplots for obtained values of 7,
L, Yr from the pattern-matching technique and ~y,, vg from the edge-cutting algorithm. Outliers are shown by black
dots. The dashed line corresponds to 90°. The boxplots were made using the various values of v evaluated at the same
time instant. This instant was chosen to be the time when the periodicity of the stripes from the two groups was best
maintained (see Discussion). For detailed definitions of %, 41, g, vr and g see Fig 6 and Materials and methods. (b)
Boxplots for the difference in obtained values of orientations (7, — 9g) as estimated by separate-group analysis using
pattern-matching technique. The values of 47, and g are the instantaneous values, which are shown in (a) (brown and
orange bars)

crossing angle « as the factor (excluding the 0° condition). The result found that stripe
orientation did not depend significantly on crossing angle, F'(5,99) = 2.301, p = 0.0504,
n? =0.1.

The second analysis added one degree of freedom by estimating the orientation of
the stripes to the bisector for each group separately (71,%r), on the weaker assumption
that only the stripes within one group are parallel. We thus fit the sinusoidal function f
to the pedestrian positions separately for the two groups, yielding estimates of stripe
orientation 4y, for the group heading to the left of the bisector, and 4x for the group
heading to the right (Fig 6b). We first estimated these values at the same instant that
the overall orientation 4 was estimated, and the results appear in the boxplots in Fig
7a (brown and orange bars). The median values are again close to 90° for all but one
crossing angle, although the variability is greater because only half the pedestrian data
contributed to each fit. One-way ANOVAs found no influence of crossing angle on
YL, F(5,100) = 0.614, p = 0.689, n? = 0.029, or on g, F(5,100) = 0.521, p = 0.76,
n? = 0.025. The within-trial difference between 77, and g is represented in Fig 7b. The
median values at each crossing angle lie close to 0°, and the deviations are less than
5°. A set of t-tests comparing 41, — Yr to 0° at each crossing angle found no significant
differences (all p’s > 0.1), indicating that the stripes for the left and right groups tend
to be parallel within a trial.

We then calculated 4, and 4i as a function of time, and obtained the time-average
of these quantities, (j); and (¥r)¢, during the interval (T; + T)/2 to T for each time
frame of our data (see Discussion). Boxplots of the time-averaged values appear in Fig
8a. Median angles are again close to the expected value of 90° for both left and right
groups, with deviations less than 8° for acute crossing angles and less than 2° for obtuse
angles. One-way ANOVAs did not find a significant effect of crossing angle « on either
(L), F(5,100) = 0.934, p = 0.462, n* = 0.045, or ()¢, F(5,100) = 0.399, p = 0.848,
n? = 0.019. A set of t-tests comparing (7 — Ygr): to 0° at each crossing angle found no
significant differences (all p’s > 0.16). A series of one-sample Kolmogorov-Smirnov tests
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have also confirmed that (3, — Yr): follows a normal distribution (all p’s > 0.47). The
datafor(y=7R )7 has'been shown as boxplotsiin S8 Fig. Together, these results indicate
that the stripes formed by the two groups are generally parallel and perpendicular to
the bisector of the crossing angle, as measured by the pattern-matching technique.
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Fig 8. Time averaged orientation of stripes. (a) Boxplots for (37); and (yg):. 41 and 4r are the orientations of
stripes in a trial as obtained from separate-group analysis using pattern matching technique. (b) Boxplots for (vz); and
(vr)t, where v, and g are estimated from the per-stripe analysis using edge-cutting algorithm.

Individual stripe orientation (7, and ) based on the Edge-cutting algo-
rithm

Finally, we performed an analysis of each individual stripe based on the output of the
Edge-cutting algorithm. The orientations of stripes in the left and right groups are
denoted vy, and g , respectively (see Fig 6¢). We first measured these values at the
same instant that the overall orientation 4 was estimated, and the results appear in the
boxplots in Fig 7a (light-green and dark-green bars). The medians for individual stripes
are again close to the expected value of 90° and comparable to the other techniques,
with the exception of the most acute crossing angle (o = 26.1°).

Because the configuration of stripes changed over time (e.g. Fig 4), we also measured
the individual stripe orientations at different time points and computed time-averaged
values, (yr): and (yr)¢, during the interval (T; +T)/2 to T for each time frame of our
data. The results of this analysis appear in the boxplots in Fig 8b. Although there is
much more variability in individual stripe orientations than in the pattern-matching
estimates (Fig 7a), the median values for both left and right groups are again quite close
to the expected value of 90°, consistent with the bisector hypothesis.

Other stripe properties

We also used the global and local methods to estimate other geometric properties of the
observed stripes, including their physical spacing, width, number, and size (number of
pedestrians per stripe).

Stripe spacing (\) using the Pattern-matching technique

We used the Pattern-matching technique to estimate the spacing of stripes, on the
assumption that the stripes in the analysis are parallel and equally spaced. The physical
separation between the centers of stripes corresponding to the same group was estimated
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by the wavelength A of the sinusoidal function f, which was fitted to the pedestrian 22
position data as described in the previous section. The first analysis fit the data from 22
the whole crowd to obtain ), the overall spacing between stripes from the same group s
(see Fig 6a), at the same instant that the overall orientation 5 was estimated. The 2
results appear in the boxplot in Fig 9a (blue bars). The median is near 2m at most 2
crossing angles, but drops to 1.3m in the counterflow condition. A one-way ANOVA s
found that A depended significantly on crossing angle o, F(5,100) = 3.426, p = 0.0067, 2o
n? = 0.15. A trend analysis revealed significant linear through 5*"-order trends (all p’s 20
< 0.01), indicating that the relationship was irregular, not monotonic (see S3 Fig). In  aa
the second analysis, we fit each group independently to estimate the stripe spacing for 23
the left and right groups, AL, AR (see Fig 6b), at the same instant. These results also 2
appear in Fig 9(a) (brown and orange bars), and exhibit a similar drop in stripe width 23
in the counterflow condition. One-way ANOVAS found a significant effect of crossing 25
angle on /\L7 F(5,100) = 3.817, p = 0.0033, % = 0.16, but not on Ag, F(5,100) = 1.781, 2%

= 0.124, n? = 0.082, likely due to the higher variability in the latter group. A trend »

ana1y51s found no significant trends for either Ay, or Ag (all p’s > 0.08, see S3 Fig). 238

‘E 45 T ¥

= . -y | — .

o = |7 AL b
=z 4 . (a) S 3| [h-dy . (b)
o 2 . . 8 Rl
o8 35 . = .

s . 5 25 ‘
8E 3 g -

< . 5
= 3 . il 2 .
g2 25 . et :

EE 2 . g .

25 S 15 . .
&< 15 8

38 g

E== o =

= A 5
T @ ~ =5 05

o 05 . 2

b jami
3 0 A == 5 0 ﬁ !
26.1 63.8 89.8 116.9 154.1 179.7 8 89.8 1169  154.1 179.7
crossing angle o [°] crossing angle o [°]
E o5 —
.E <A Ag|>, —
z . (©
2 2
=
g
2 15
g
(5]
=
1 1
<
g
=
$ 05
=
5}
5
g 0
& 89.8 116.9 154.1 179.7

crossing angle o, [°]

Fig 9. Boxplots for )\ as estimated from the pattern matching technique. ) is the spatial separation between
two alternate stripes from the same group. (a) The boxplots were made over all the trials for obtained values of \, AL
and \g at the instant when the periodicity of the two groups was best maintained. A, AL and A are defined in Materials
and methods. (b) Boxplots for the difference between obtained values of spatial separations from the whole-crowd and
separate-group analyses under the pattern matching procedure. (c) Time-averaged difference of physical separation
(IAL — Arl)¢, where A, and Ag are the physical separations between stripes in a trial as estimated from the
separate-group analysis using pattern matching technique.
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To compare the overall spacing of the crowd with the separate spacing in each group,
we computed the absolute difference between them on each trial, |\ — Az| and |A — Ag|.
The median differences (Fig 9b) are generally between 0.5m and 1m for acute and
orthogonal crossing angles, but less than 0.2m for obtuse crossing angles. One-way
ANOVAs confirmed that these differences significantly depended on crossing angle: for
A=Azl , F(5,100) = 3.648, p = 0.0045, n?> = 0.154; for |X\ — Ag|, F(5,100) = 5.796,
p < 0.001, n% = 0.224. Finally, we compared the stripe spacing in the left and right groups
on each trial by computing the time-average of the difference (JAM); = (|AL — Ar|)+,
during the interval (T; +T)/2 to T for each time frame of our data. The results suggest
that stripe spacing differed between groups by more than 0.6m at acute crossing angles,
but by less than 0.4m at larger angles (Fig 9c). A one-way ANOVA on (|AX|); confirmed
a significant dependence on crossing angle, F'(5,100) = 4.26, p = 0.0015, n? = 0.175.

Stripe width, number, and size based on the Edge-cutting algo-
rithm

To characterize the dynamic behaviour of the stripes as the two groups crossed, we
analyzed the variation in stripe width as a function of time. Precisely, we wanted
to investigate the dynamic adjustments made by the pedestrians within a stripe to
accommodate the incoming pedestrians from the other group. Once individual stripes
were identified with the Edge-cutting algorithm, the width of each stripe was estimated
by constructing a minimum bounding box for the stripe and taking its width dimension
(see Materials and Methods). The dynamic variation in stripe width is plotted as a
function of scaled time in Fig 10 for two different trials. Stripe width decreases at the
onset of edge-cutting (time = 0) to a minimum before the last edge is cut (time = 1) and
then increases again, as if the stripes are ‘squeezed’ in space during the crossing interval.
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0.2

width of the stripes [m]

0.1
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£}
» 0.8
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2
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2

scaled time (t - T;)/(T;- T;) scaled time (t - T;)/(T;-T;)

Fig 10. Width of stripes as a function of time. Figure shows variation of stripe width as a function of time for all

the stripes from a trial for two typical trials with (a) o = 89.8° and (b) o = 116.9°. Time ¢ has been scaled as ¢t =

t—T;

Thus, t = T; and ¢t = T correspond to the scaled values of 0 and 1 respectively, which are shown by vertical dashed lines
in the figure. For almost all the cases, we see that the width of the stripe attains a global minimum within the interval 0
and 1, which represents the ‘squeezing’ of stripes.

The Edge-cutting algorithm also enables us to analyze the number of stripes that
emerged during group crossing. The mean number of stripes decreased monotonically
as the crossing angle « increased, as represented in Fig 11. This finding implies that
stripe size (number of pedestrians per stripe) conversely increased with crossing angle,

March 31, 2022

12/1

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266



as suggested by the graph in S5 Fig. Overall, the size of the identified stripes ranged
from 1 to 15 participants in this study.

o2}

o

(b)

mean number of stripes per group

26.1 63.8 89.8 116.9 1541 179.7
o [°]

Fig 11. Mean number of stripes emerging from a group. Figure shows the
variation of this quantity with crossing angle «. The mean was estimated over all the
trials of our experiments. The number decreases with increasing a. The error-bars
indicate the corresponding standard errors of mean.

Discussion

In this section we discuss the formation of striped patterns and their geometric properties
as observed and estimated from our experimental data. This is followed by an evaluation
of the two computational methods we used to derive our findings.

Did we observe stripe formation?

Analyzing the formation of stripes was the main goal of this research. In our experiments,
we found that stripe formation occurs even in small groups of pedestrians with fewer
than 20 members, crossing in different directions without spatial constraints. This
demonstrates that continuous flows in constrained channels are not necessary for self-
organized pattern formation, which can be attributed to local interactions. We should
point out that, there could have been a number of outcomes. For example, the two
groups could have avoided without even penetrating each other, resulting in no formation
of stripes. Large difference in velocities of the two groups could result in this scenario;
thus the velocity of the two groups plays a crucial role in this context. Another possibility
might be that crossing groups produced single isolated pedestrians, i.e., all the virtual
connections between the pedestrians from one group were destroyed by pedestrians from
the other group. This situation would also result in absence of stripe formation. The two
groups avoiding each other and the isolation of single pedestrians are the two extreme
possibilities of outcomes from our experiments. In reality we saw that the two groups
indeed penetrate each other. The edge-cutting algorithm revealed the groups of around
20 participants, divided into 4 to 7 subgroups, as shown in Fig 11. This confirms that
not all pedestrians from a group end up being isolated as a consequence of crossing. The
identification of the participants belonging to a stripe was then used to calculate the
orientation and width of the stripe. Several examples of the edge-cutting process are
shown in Fig 4 and 12.
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Fig 12. Examples of the edge-cutting process. Edge-cutting process for two trials with (a) o = 63.8° and (b)

« = 154.1°. The blue and red arrows denote the directions of motion for the two groups of pedestrians shown by blue and
red dots respectively. The instances shown in this figure goes forward in time from (i) to (iii) and backward in time from
(iii) to (v). In (i) the instance shown is T; — 1, when all the edges within a group are intact. (ii) Shows the situation when
the edges have started to cut and stripes are gradually being formed at (T; 4+ T)/2. (iil) Shows the situation at 7y + 1
when all probable edge-cuts have taken place and the stripes have completely been formed. (iv) and (v) shows the
instances as in (ii) and (i) respectively but with the visualisation of all the stripes that are completely formed only after
Ty
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Do the stripe properties depend on crossing angle?

We were primarily interested in the effect of crossing angle on the orientation v of the
stripes with respect to the bisector of the crossing angle. Based on previous observations
and simulations, the expected value of v = 90° should be invariant over different values
of crossing angle a. The results obtained from our experimental data using several
methods of measurement are shown in Fig 7a. The deviation of the median value of ~
remained less than 3° at all crossing angles, which is in good agreement with the bisector
hypothesis.

Spatial separation A between two stripes from the same group was output from the
pattern matching technique. We compared the values of A estimated using whole-crowd
and separate-group analysis in Fig 9a as a function of a.

Estimations of individual stripe properties based on the Edge-cutting algorithm
revealed that the mean number of stripes that emerges from a group decreases with «,
as shown in Fig 11. This implies that the mean size of a stripe should show an increase
with a. In S5 Fig we have shown the plot of mean size of a stripe as a function of the
crossing angle . The mean stripe size indeed increases with «. Thus the edge-cutting
algorithm is very useful to establish the dependence of individual stripe properties on
the crossing angle.

Comparison of assumptions and results for the whole-crowd and
separate-group analyses using the pattern matching technique

To perform pattern matching using a two dimensional sinusoid we make two different
assumptions about the formation of stripes. In our analysis of finding 5 and X, we
assumed that the orientation of the two groups are parallel to each other and the stripes
formed are periodic and equispaced. However we kept in mind that in reality this
might not always be true. The orientation of the stripes for the two groups could be
different and have different spacing. Thus, in a preliminary analysis we estimated stripe
orientation 4 and their physical separation  for the two groups separately as a function
of time. In this approach we assumed that the stripes within one group are parallel
to each other and equispaced. The time window which was selected for this analysis
was from T; to Ty. The two timescales T; and Ty were estimated from the Edge-cutting
algorithm, and they approximately denote the beginning and end of interaction, between
the two groups.

7 and \ for each groups show some fluctuations near T; i.e. when the stripes have
just started to form (see S4 Fig). The fluctuations reduce with time and the values of ¥
and A approach a more steady value near T i.e. when the stripes have been formed.
Thus we calculate (y1): and (yg)¢, i.e., the time averages of 47, and 4r (shown in Fig
8(a)) and the time-averaged difference (JAM|); = (|Ar — Ar|)+ (shown in Fig 9¢) from
(T; + Ty)/2 to Ty i.e. when 4 and \ remain approximately steady.

The differences of median values of (y1); and (r); from the expected value of 90°
are less than 2° for cases with an obtuse angle, and less than 8° for cases with an acute
crossing angle with no statistical effect of crossing angle. This approximately justifies our
earlier assumption about the orientation of stripes from two groups being parallel to each
other. The time averaged difference in stripe spacing between the two groups (|AM|);
also shows low median values - less than 0.8 m for all the crossing angles. This also
justifies our assumption of equispaced stripes from two groups when using the pattern
matching technique.

We also make a comparative analysis of the differences in values of physical spacing
of the stripes at the same time instant obtained by whole-crowd and separate-group
analyses under the pattern matching technique. The results for [A — Az| and |X — Ag|
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are shown in Fig 9b. The median values of the differences are less than 0.2 m for obtuse
crossing angles, but are higher for acute crossing angles.

There was a possibility of ‘chevron’ effect to create the differences in observed values
of 41, and 4r. But due to the small size of our groups, the pedestrians might tend to
move faster while leaving the crossing region - resulting in the absence of chevron effect.
The non-uniformity in the velocities of the agents both within the group and across the
groups could also lead to deformation of stripes. One explanation could be the duration
of time when the two groups keep interacting with each other. For lower values of « this
duration is higher (see S6 Fig), which results in deformation in the symmetric structure
of the stripes. There could also be an effect of the size of the environment where the
experiments were performed. Because of limitation of space used for the experiments,
the two groups start interacting immediately after the commencement of trials for lower
crossing angles. So there is a possibility that the agents participating for trials with acute
crossing angle (e.g. 30°) are still accelerating when reaching the crossing region, which
clearly is not the case for trials with higher crossing angles. To investigate this further
one needs to perform an analysis with larger number of people in a bigger environment
and eventually, with a flow of people - not just two groups crossing each other.

To analyse the statistical dependence of obtained results on the two methods under
pattern matching technique we performed ANOVAs for each of the crossing angles
separately. For 74, 4 and g ANOVAs reveal no dependence of these quantities on the
two methods for each of the crossing angles. For each of the cases the p-value is greater
than 0.145. For A, Ay, and A, the results were seen to be statistically independent of
the two methods except for the case o = 89.8°, as could also be seen from Fig 9a. Except
a = 89.8°, the p-values are greater than 0.266. The results of the ANOVAs are shown in
supplementary material (S1 Table and S2 Table).

Comparing results between pattern matching technique and the
edge-cutting algorithm

Using the edge-cutting algorithm we have conducted a per-stripe analysis, where proper-
ties of individual stripes were studied. This helps us in a minimal way to explore the
apparent asymmetry in the stripes from the two groups, which has been discussed earlier.
The edge-cutting algorithm gives us the knowledge of stripes formed viz. the pedestrians
belonging to a stripe. Using this output we compute the orientation and width of each
of the stripes by implying rotating calipers algorithm (see Materials and Methods). The
orientations yr, and yr were computed as a time series. The time averaged orientation
(vz)+ and (yr): were computed in the time interval (T; + T)/2 to T¢. The boxplots
over all the stripes and all the trials are shown in Fig 8b. The difference of the median
values of these average quantities from the expected orientation (90°) are less than 5° for
obtuse crossing angles, but are a bit higher for acute crossing angles - a trend similar
to previously discussed observations. The values of v, and yr computed at the same
instant as when 4 were computed, are shown in Fig 7a. In all the cases we observe that
for obtuse crossing angles the stripe orientations obtained by the edge-cutting algorithm
are not very different from that obtained by the pattern matching technique. However,
for the acute crossing angles the differences are a bit higher - possible for reasons which
have already been discussed. The width of the stripes as estimated from the per stripe
analysis are not actually comparable to the physical separation of the stripes as computed
by pattern matching technique. The stripes consisted of different numbers of people
- this causes an irregularity while we attempt to compute their individual orientation.
As a consequence, it would be inappropriate to compare these values with the outputs
of the pattern matching technique, where the symmetry and periodicity of the stripes
were assumed. However, we see that the median values of the average quantities (yp )¢
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and (yg): are not very far (approximately within 10° for all crossing angles) from the
expected value (90°), which was computed assuming the symmetry and regularity of the
stripes. This shows consistency across the methods that we have used to study stripe
properties.

Why did we use two different methods?

The two computational methods that we present in this paper have never been used
before to study striped patterns in crossing flows, to the best of our knowledge. We used
the two methods, viz. the edge-cutting algorithm and pattern matching technique, to
study the formation and geometric properties of the stripes. The edge-cutting algorithm
takes into consideration the entire trajectories of the pedestrians, whereas for the pattern
matching technique the instantaneous positions of the pedestrians are sufficient. Only
the edge-cutting algorithm can identify a stripe and the pedestrians belonging to it. This
yields a better definition of individual stripes and allows refined analysis of individual
stripes, and is thus a spatially local method. Besides, this algorithm provides the
full dynamics of individual stripes, and is the most appropriate to study dynamical
effects such as the 'squeezing effect’ of Fig 10 that we shall discuss shortly after. When
the stripes are very small (less than 3 participants) or are not sufficiently elongated
(see Materials and Methods), their geometric properties are not well defined and we
excluded them from our per stripe analysis. On the other hand, the pattern matching
technique uses a two-dimensional parametric sinusoid and is thus a spatially global
method. This idea was inspired by Gabor functions, which have been used to model
the spatial frequency response of the mammalian visual system [76]. We assume the
existence of a periodic pattern of parallel stripes and then use this method to look for it;
these assumptions have been borne out by the similarity of orientation and spacing when
measured in the whole crowd and separately for the two groups. For our small-scale

data the pattern matching technique is essential to study the orientation of the stripes.

How efficient is the pattern matching technique?

The pattern matching technique that we have used to find the orientation v of stripes
and their spacial separation A, was based on maximising C. C is obtained by fitting
a two-dimensional sinusoid f on the coordinates of the pedestrians (see Materials and
Methods). Therefore C' could be treated like a scoring function which indicates the
quality of fitting. For the case when we assume that stripes from the two groups are
parallel to each other and alternately equispaced (to find 4, A), the maximising function
is denoted by C' and when we fitted the two groups separately (to find 7, 5\), this function

was denoted by C.

Importance of C' and )\

For best fittings one would get C' = Chnae = 2 and C = Cyues = 1, and for the worst
case (disordered input points) the sinusoidal function would not fit - it would either
over-fit or under-fit the data points. Over-fitting or under-fitting could be identified by
the obtained value of spatial separation A between the stripes. The obtained value of A
was therefore very crucial to justify the pattern matching technique. From edge-cutting
algorithm one could have an approximate idea of the spatial separation between two
stripes for a trial (see Materials and Methods). A would be very low or very high

compared to this approximate value in case of over-fitting and under-fitting respectively.

The quality of the pattern matching technique is therefore estimated both in terms of C
and by the optimised value of A. Fig 5 (right) shows the variation of C' as a function
of A for two typical trials. In Fig 13 we have shown boxplots for the values of C' for
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Fig 13. Boxplots for the maximising function of pattern matching technique. (a) Boxplots for C'/C,,4, and
C / C’,,Law, where C is the maximising function of pattern matching procedure of whole-crowd analysis and C is the same
with separate group-analysis. Conas and C’maz are the maximum possible values of the maximising functions in these two
cases, which are 2 and 1 respectively. (b) Boxplots for the time-averaged values of Cp, and Cp.

each of the crossing angles, as obtained by whole-crowd and separate-group analysis
under the pattern matching technique. Higher values of C' indeed signify a better fitting.
From Fig 13 we see that the median values of both C' and C' increase with . One-way
ANOVAs on C found a significant effect of crossing angle on C, F(5,100) = 17.53,
p < 0.001, n? = 0.467, on Cr, F(5,100) = 7.955, p < 0.001, n*> = 0.285, and on Cg,
F(5,100) = 3.665, p = 0.0043, n? = 0.155.

Estimating residual error of the fitting

To study the accuracy of the pattern matching procedure to find ¥ and A, we calculate
the residual errors. Ideally one would expect all the data points to lie within the distance
—\/4 to A\/4, where X is the wavelength of the fitted sine curved f. We calculated the
residual error of pattern matching technique as the distance of the data points from
the crest or trough of the fitted sine function f. The results are shown in Fig 14. The
normalised distribution of this distance shows a Gaussian peak at the origin. We fit the
data for each of the cases using the functional form of Gaussian distribution. From the
fittings, we estimate the standard deviations. For o = 179.9° the standard deviation of
the fitted curve was 0.134\ and for the remaining crossing angles this value is 0.184\
on average. From the data of residual error, we found that for a = 179.6°, 92.4% of
the data points are accumulated between the distances —\/4 and —\/4, and for the
remaining crossing angles, on an average 85.3% of the data is within this range. This
surely establishes the efficiency of pattern fitting to a great extent. Besides, this also
underlines a difference in stability between lanes and stripes (discussed later).

Periodicity of the two groups

The periodic arrangement of stripes that are seen to form in our experiments have been a
point of concern for the pattern matching technique. An important aspect of our pattern
fitting procedure is to choose the instant of time for which the position of pedestrians
are considered and fitted. For higher values of « this instant is usually when all the
edges have been cut and all possible clusters have been formed, which is T - an output
from the Edge-cutting algorithm. However, for lower values of « the periodicity of the
two groups of pedestrians appears to be destroyed at T;. For such trials, a suitable time
is chosen which is less than Ty but higher than (T; + Tf)/2. The principal motivation of
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Fig 14. Accuracy of the pattern matching procedure. Figure shows Normalised
distributions for the distances of pedestrian positions from the crest or troughs of the
fitted 2D sinusoid i.e. the residual errors. The distributions show a Gaussian peak at
the origin for each a. The data were fitted according to a Gaussian curve and the fitted
curves are shown by solid lines.

choosing such a time-scale is to protect the periodicity of the two groups and to ensure
the formation of stripes up to such an extent that the position of pedestrians could be
considered for sinusoidal fitting (see Materials and Methods). In Fig 5 we have shown
pedestrian positions from the two groups for two typical trials and the fitted sine curves
f, demonstrating the periodicity of the stripes.

Comparison of lanes and stripes

The striped patterns that are seen for counter flows (i.e. a = 179.6° for our case) are
known in the literature as lanes. Our results confirm that lanes (which are parallel to the
direction of motion) are more stable than stripes (which in general are not aligned with
the direction of motion). From Fig 9, we see that all A measurements coincide better for
counter flows and for this structure, the pedestrians accept a lower distance between the
lanes (minimum of A\). Typically the distance between neighboring stripes is of the order
of 0.8 to 1.1 m when the motion of pedestrians is not parallel to the direction of the
stripes. While for lanes, the distance between the centers of lanes is rather 0.6 m - which,
given the width of pedestrians, seems close to the minimum possible value if pedestrians
intend to avoid collision. Higher stability of lanes compared to the stripes was also
established when we estimate the residual error of sinusoidal fitting. We found that, 7%
more of data points lie between the expected range for counter flows, than compared to
the other crossing angles, as could also be seen from Fig 14. In Fig 15 We show all the
stripes for a typical trial of counterflow. We also show the minimum bounding boxes of
each stripe that has been computed using the Rotating Calipers algorithm for per-stripe
analysis (see Materials and Methods for details).

Squeezing behaviour of the stripes: future investigations

The macroscopic dynamics of the stripes, accessible thanks to the edge-cutting algorithm,
also show intriguing behaviour. When the two groups cross each other, the stripes
that are formed get ‘squeezed’ in order to accommodate in space the incoming group.
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Microscopically, each of the pedestrians within a stripe adjust their motion when they
encounter a pedestrian from the opposite group. In Fig 10 we have shown width of
all the stripes from two typical trials as a function of a scaled time for each crossing
angle a. The time is scaled in such a way that the scaled value of 0 and 1 correspond
to T; and Ty of the trial. It is observed from Fig 10 that between the interval 0 and 1
i.e. the beginning and end of interactions, the width of the stripes decreases, attains a
global minimum and then increases again. This indicates some interesting underlying
microscopic behaviour of the agents, which results in the squeezing behaviour as a
macroscopic property of the stripes. In our subsequent research we would be interested
to determine the underlying mechanism responsible for this behaviour. It would also be
appealing to find out whether a following behaviour is present among the pedestrians
leading to the formation of stripes, which we plan to work in our next research.

Conclusion

We conducted experimental trials for crossing flows of pedestrians without any spatial
constraints of motion. In spite of having small number of participants we observed the
formation of emerging striped patterns for each value of the crossing angle. Edge-cutting
algorithm was implemented to detect the formation of stripes. Striped patterns for
counter flows i.e lanes are seen to be more stable than those for other crossing angles. We
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have used a pattern matching technique and the edge-cutting algorithm to study a few
properties of the stripes formed and compare them with each other and with hypothesized
effects. The observed values for the orientation of stripes from edge-cutting algorithm
are in good agreement with the expected result which justifies that our assumption
about the regularity and symmetry of the striped patterns are reasonable enough. The
maximised values of C' as obtained by us signify the regularity of the striped patterns
from the two groups. While performing numerical simulations to model the scenario of
crossing flows, the quantity C' would act as a parameter to evaluate the effectiveness of
the simulation technique in reproducing the observed behaviour. We not only confirmed
that stripe orientation is predicted by the bisector hypothesis at all crossing angles, but
we also discovered several unexpected effects. First we showed that the average number
of stripes within a group decreases with the crossing angle alpha. Second, we found
that the spacing, number, and size of stripes depended significantly on crossing angle.
Third, we observed a squeezing effect visible in the time evolution of the stripes. The
macroscopic dynamics of the stripes motivates us to study the microscopic behaviour of
the individual pedestrians as our next investigation.

Materials and methods

Experimental details

The participants of the experiments were divided into two groups (with similar spatial
densities). They were instructed to move along a direction which was announced before
the commencement of each trial, such that the two groups cross each other at a particular
angle. For 7 different expected values of crossing angles, viz. [0°, 30°, 60°, 90°, 120°,
150° and 180°], we performed approximately 17 trials at each angle, a total of 116 trials
(See Table 1). During each trial the head trajectory of each pedestrian was recorded as
a time series. Each trial lasted about 15-25 seconds. The experiment was performed
in a rectangular hall (20m ¥ 30m) with a tracking area of 15m X 20m. The positions
of the pedestrians were recorded at 120 Hz using VICON - an infrared camera system.
The pedestrians were equipped with head-mounted reflective markers detectable by
the VICON motion capture system. The center of the tracking was considered as the
origin of a two-dimensional Cartesian coordinate system, which was used as a reference
to represent the position of the pedestrians at every time step. Table 1 summarizes
the various details of the experiments, i.e. the number of pedestrians and number of
trials for each value of the crossing angle. In Fig 16 we have schematically shown our
experimental set-up.

For our experiments, we searched for participants on campus of University of Rennes,
France. The participants had no visual or locomotive impairments. The experiments
were performed over 2 days. On the first day, we could gather 36 participants and on
the next day the number was 38.

The participants were unaware of the actual motivation of the experiments. [The
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Fig 16. Schematic representation of the experimental set-up. Figure shows
the experimental set-up that we have constructed to study crossing flows of two groups
of people.

the participants. At the beginning of each trial, the participants were located in one
these squares ( $7 i) and were asked to reach the other side of the hall, crossing the

The data obtained from the experiments were low-pass filtered to reduce oscillations
due to the gait movement of the walking pedestrians. We used a forward-backward 4-th
order butterworth filter to reduce these unwanted oscillations. The traces of pedestrians
shown in Fig 2 are plotted using the filtered trajectories. For all the analysis presented
in this paper, we have used the filtered data.

Ethics Statement

The ethical approval for using live participants was obtained from The Operational

Committee for the Evaluation of Legal and FEthical Risks (COERLE - n° 2016-008).

The document could be found at S1 Document. Written consents were taken from the
participants who volunteered for the experimental trials.
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Table 1. Summary of the experimental details

Expected | Observed No. of No. of
crossing crossing | pedestrians | trials
angle angle o
, T
30° 26.1° gg 180
60° 63.8° 22 180
90° 89.8° gg 181
120° 116.9° 32 170
150° 154.1° 22 z
180° 179.7° 32 170

Table indicates number of pedestrians and number of trials categorized according to the
value of the crossing angle. The observed values of the crossing angle which are
mentioned here are basically the median values over all the trials.

Observed values of crossing angle o

During the experiments the participants followed visual references for their movement,
instead of a secluded corridor. As a consequence the actual direction of motion of the
groups and hence the actual value of the crossing angle is a bit different from what it
was expected i.e. the expected values. Therefore we calculate the observed values of
crossing angle « (see S1 Fig), and show all of our findings in terms of them. To calculate
the observed values of the crossing angle a we consider the two barycenters of the initial
and final positions of all the participants in a group for a trial. The line connecting
these two points gives the actual direction of motion of a group, from which we evaluate
the observed crossing angle a. We then compute medians over all the trials and use
these median values in all of our analysis. In Table 1 we mention the median values of
the observed crossing angle off We also expect the individual pedestrians to make some
personal adjustments in their trajectories to reach their goal. Thus we measure how
much a pedestrian actually deviates from his/her originally assigned trajectory. The
normalised distributions of this measurement show Gaussian behaviour (see S2 Fig).
The mean value of the angular deviations in each case is less than 2°.

Edge-cutting Algorithm: Detection of the stripes

In the beginning of the trial, at time ¢ = 0, we assume that each group of pedestrians
forms a complete graph with clustering coefficient = 1 i.e. all the individuals are
connected to each other within the group by an ‘edge’. The basis of such an assumption
is the correlated movements of pedestrians in a group [77]. With the progression of time,
when the two groups meet and cross each other, the edge between two pedestrians from
one group may be cut by a pedestrian from the other group. This situation is detected
by the edge-cutting algorithm. Once all the probable edge-cuttings are over, each group
is left with more than one cluster having a complete graph. The size of these clusters are
> 1. Fig 17 schematically represents the scenario of the edge connecting the individuals

March 31, 2022

23/1

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613



P and @ from the same group being cut by the individual R from the other group. The
conditions for the edge being destructed are three-fold and as follows:

(i) PG.PE > 0

(i) d = PQ.PR < |PQJ?

(i) 4(t) x At — 1) <0,

where the angle (3 is defined in Fig 17. Simultaneous satisfaction of these three conditions
detects the edge-cutting. Conditions (i) and (ii) ensure that the pedestrian R is able to
cut the edge between P and Q. When these two conditions are satisfied, the angle
between ]@ and PR is measured as a time series, and if it changes sign we confirm that
the edge is destructed. Condition (iii) allows us to detect the time of edge-cutting as
well. For a trial, the instant when the first (initial) edge-cut takes place is denoted by T;
and the instant of the last (final) edge-cut is denoted by T's. The two timescales T; and
T are outputs from the Edge-cutting algorithm, and they have been used extensively in
the analysis of stripe orientations.

Fig 17. Schematic representation of the edge-cutting algorithm. The ‘edge’
between the pedestrians P and @ belonging to the same group is cut by the pedestrian
R belonging to the other group.

Pattern matching: Fitting 2D parametric sinusoidal curves

To estimate the orientation of the parallel stripes and their physical separation we
implied a pattern matching technique. We use a two dimensional parametric sinusoidal
function f for this method and fit this function on the pedestrian positions. The goal of
the pattern matching technique was to (i) estimate the angle v between the stripes and
the bisector of the crossing angle and (ii) to estimate the physical separation A between
the stripes from the same group. In all the cases discussed in this paper, the orientation
~ of the stripes were measured counterclockwise from the bisector of the crossing angle
a. The data obtained by experiments were given a transformation such that z’, the

new z-axis coincided with the bisector of the crossing angle, this is illustrated in Fig 18.

This transformation was applied so that the orientation v could be directly evaluated
from pattern matching. The function f was fitted on the transformed coordinates of the
pedestrians (2/,y’). The fitting was achieved by maximising a function C, which is the
mean of sum of values of f as fitted on the pedestrian positions.

For the pattern matching procedure when we assume that the stripes from the two
groups are parallel to each other and are equispaced, we denote quantities with a bar as
a way of representation. In this case the sinusoidal function f was given by the form

< X
£y ) = sin (5 ) 1)
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clockwise
rotation
by 0

Fig 18. Transformation of coordinates. This diagram schematically represents the
transformation given to the experimentally obtained data such that the transformed
z-axis, i.e., 2’ is along the bisector of the two group direction vectors. The arrows in
blue and red indicate the two group direction vectors and the dotted green arrow
indicates the bisector. 8p is the angle between the bisector and the original z-axis. A
clockwise rotation by an angle fp in this case makes the bisector as the new z-axis. The
transformed axes z’ and 3’ are shown by green arrows. The bold line in purple
represents a stripe, which makes an angle v (measured anti-clockwise) with the bisector
of group direction or the z'-axis. The purpose of the pattern matching technique is to
find out the orientation of stripes ~.

where, X = 2/sin9y — ' cos7, X is the wavelength of the sine function and v denotes
the phase offset. To find the orientation 7 of the parallel stripes, we fit f to the position
(2’,y") of the pedestrians. The fitting was performed using an optimisation strategy,
where we maximise C, which is defined as

C=( X f@)+ Y —fEy)/N, 2)

group 1 group 2

where N is the total number of pedestrians. The first summation sign denotes the
sum over the position of pedestrians from one group and the second summation for the
position of pedestrians from the other group. The maximum possible value of C is 2,
which occurs for the ideal case when the position of pedestrians from the two groups
could be fitted exactly on the crests and troughs of the sinusoidal curve respectively.
Maximisation of C' by fitting f on pedestrian positions gives us the orientation 7 of the
stripes and spatial separation A between two stripes from the same group. Evaluation of
4 and A is done under the assumption that the stripes from the two groups are parallel
to each other and are equispaced. Pictorial representation of 4 and \ is shown in Fig 6a.

For a randomly oriented set of points, the pattern matching technique would over-fit
or under-fit the data - that could be detected by the obtained value of X. In our case,
before performing the pattern matching procedure, we imply the edge-cutting algorithm
to obtain the number of stripes that are formed in a trial. Combining this knowledge
with the width of the crossing region, we get an approximate estimate for the value of
spatial separation A. This helps us to identify any over-fitting or under-fitting. For the
trial with o = 89.9° shown in Fig 4 and Fig 5, the width of the crossing region is 8.06 m.
From the edge-cutting algorithm we get that the two groups of this trial gets divided
into a total of 9 subgroups. Therefore, approximate estimate for the wavelength of fitted
sinusoid is 2 X % = 1.79 m. From the pattern fitting we obtained A\ = 1.865 m, which
is quite close to the approximate estimate. The fitted sine functions f for two typical
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trials and variation of C' as a function of 4 and X for the same trials are depicted in Fig
5.

To find the orientation of stripes for the two groups in a trial separately, we used the
same fitting function f as in Eq (1) and the function which was maximised to obtain
the fitting in this case was

C=> f@'y)/N, (3)

where the summation was performed over the position of pedestrians from one group at
a time. N is the number of pedestrians in the group. The maximum possible value of C
is 1, which in this case occurs for the ideal situation when the pedestrian positions from
the group under consideration fall exactly on the crests of the sine curve represented

by f. This analysis was performed as a time sequence between (7; + T)/2 and Tf.

Maximisation of C' by fitting f on the pedestrian positions gives us the orientation 7 of
the stripes and the spatial separation A between the stripes from the same group. This
computation was done under the assumption that the stripes from the same group are
parallel to each other and have equal spacing between them.

While fitting the parallel stripes from the two groups separately we differentiate
them by using the notations 4, and Jr. 7, denotes the orientation of the stripes whose
group direction vector lies to the left (L) of the direction of bisector and similarly, 75
for the one whose group direction vector lies to the right (R) of the direction of bisector.
Similarly, we use the notations A;, and Ag to denote the spatial separation between the
stripes from the same group, according to the orientation of its group direction vector
with respect to the bisector. Pictorial demonstration of v, Yg, A and Mg are shown in
Fig 6b. Following the same convention, the functions that were maximised to obtain
(L, E\L) and (Yg, S\R) were denoted as Cf, and Cg respectively.

For the segregation of the groups according to whether they lie to the left or right of
the bisector of the crossing angle, it is therefore important to determine the direction of
the bisector. This direction is estimated using the two group direction vectors. But for
the case of crossing angle 180°, determining the direction of the bisector is not possible.
However we realise that the experimentally observed value of the crossing angle « is
never exactly equal to 180°. Thus estimating the direction of bisector for these cases is
also pretty straight-forward.

Finding individual stripe width and orientation

From the Edge-cutting algorithm we could successfully identify the stripes that are formed.
In our attempt to find the individual stripe orientations at each instant we construct
the minimum bounding box of the stripes using Rotating Calipers algorithm [78,79].
The orientation of the stripe was calculated along the length of the box. The width of
the rectangular box gives an estimate of the width of each of the stripes. The aspect
ratio of the minimum bounding box for a stripe, calculated as the ratio of its width to
length, gives an idea of the suitability of that stripe to be considered for the estimation
of orientation. The value of aspect ratio closer to 1 denotes a uniformly shaped stripe.
Whereas, lower value of aspect ratio indicates a sufficiently elongated stripe suitable for
finding the orientation. In Figure 19, we show two typical stripes with their respective
minimum bounding boxes calculated using the Rotating Calipers algorithm. We applied
a cut-off on aspect ratios of the stripes and considered only those stripes which had
an aspect ratio less than 0.5. CHo6sing this clt-off Iets s consider alimost/90% of the
stripes) and they are all'sufficiently elongated (5e€ S9 Fig ! The time window which was
selected for this calculation was from (7; + Tf)/2 to T¢. The orientation of individual
stripes were also estimated as the angle between the stripes and the bisector of the group
direction vectors, as depicted in Fig 6¢c. The angle is measured counterclockwise from
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the bisector. We use the notations vy, and g to differentiate the orientation of stripes
whose group direction vector lie to the left and right of the bisector respectively.

(a) (b)
aspect ratio = 0.999 aspect ratio = 0.266
o~
© -
<
— ° —
) g
> - > N
o ©
v -
‘
T A Y A
T T T T T T T T T T T
-5 -4 -3 -2 -1 0 -2 0 2 4 6
X [m] X [m]

Fig 19. Constructing the minimum bounding box of a stripe. Two typical
stripes are shown with aspect ratios (a) 0.999 and (b) 0.266. The red boxes denote the
minimum bounding boxes and the polygons shown by black lines are the convex hulls of
the points in the stripes. The stripe with the aspect ratio closer to 1 (a) is not suitable
for the estimation of orientation. The stripe with the lower aspect ratio (b) is inclined
at an angle of 76.01° with respect to the z-axis.

Supporting information

S1 Table. Results of ANOVAs for 7, 9, and 4 for each a. Table summarizes
the results of the ANOVA tests that were performed for each a with 7, 41, and Jg to
check their statistical dependencies on whole-crowd and separate-group analyses under
the pattern matching technique.

S2 Table. Results of ANOVAs for 5\, 5\L and S\R for each «. Table summarizes
the results of the ANOVA tests that were performed for each o with X, Az and Ag to
check their statistical dependencies on whole-crowd and separate-group analyses under
the pattern matching technique.

S1 Fig. Observed values of the crossing angle a. Figure shows boxplots for the
observed values of the crossing angle . The dashed lines denote the corresponding
values of the expected crossing angle.

S2 Fig. Normalised distributions of ¢ for each a. The quantity § is a measure
of the deviations that a pedestrian makes with his/her originally instructed direction of
motion as indicated by the visual references during the trials. We calculate ¢ at every
instant of a pedestrian’s trajectory as the angle between the trajectory of that pedestrian
and his/her expected direction of motion. Anti-clockwise (clockwise) deviations are
considered as positive (negative). ¢ is estimated for all the pedestrians at all the positions
along their trajectories. Normalised distributions of ¢ is shown in this figure. The data
for each v were fitted according to the curve f(x) = aexp[—b(z — ¢)?]. The quantity c
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(in unit of °) gives the mean of each distribution. The solid lines indicate the best fitting
curves. For each a we get |c| < 2°.

S3 Fig. Mean values of ), M. and }R as a function of a. Figure shows the
mean values of the observed quantities A\, A\, and Ag as a function of the crossing angle
a. The error-bars indicate the corresponding standard errors of mean. Trend analyses
show that dependence of X on « is irregular, not monotonic; whereas Az and Ag show
no significant trends.

S4 Fig. Time sequence of 5 and )\ estimated separately for the two groups
in a trial. The plots are shown for two typical trials with (a) o = 63.8° and (b)
a = 154.1°.
tive values of Ty for both the trials. T; and Ty are evaluated from

For # plots in the left panel,
the dashed lierizontal lines indicate 90°, the expected value of stripe orientation and for
X\ plots in the right panel, the dashed Hiotizotital lines indicate the value of A as estimated
from the pattern matching technique by considering the two groups together.

S5 Fig. Mean size of stripes as a function of «. The size of a stripes is defined
as the number of pedestrians belonging to that stripe. The mean size of a stripe increases
with the increase of crossing angle. The error-bars indicate the corresponding standard
errors of mean.

S6 Fig. Mean crossing time as a function of a. Crossing time for each trial is
defined as Ty — T, where T; and Ty are estimated from the edge-cutting algorithm. T;
and Ty denotes the time when the first and last edge-cut takes place for the trial. The
mean crossing time over all the trials decreases with the increase of crossing angle. The
error-bars indicate the corresponding standard errors of mean.

% b B e S T
each crossing angle are seen to be very close to 0°. 7z and 5 are the orientations
stripes in a given trial as obained from separate-group analysis using pattern maiching

59 Fig. Fraction of stripes considered as a function of aspect ratio cut-off
value for individual stripe measurements. We sce that for the cut-off value of 0.5,
approximately 90% of all the stripes could be considered for per-stripe analysis.

S1 Video. Video of the experimental trial which is shown in Fig 1

S2 Video. Edge-cutting process for a trial with o = 89.8° which is shown in

Fig 4. In this video we show the edge-cutting process for a typical trial with o = 89.8°,

the one which has been shown in Fig 4. The time frames are shown in scales of %
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S3 Video. Edge-cutting process for a trial with o = 116.9° which is shown

o

in Fig 4. Same as the previous item with with a = 116.9°.

S1 Document. Ethical approval statement.
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