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Abstract

When two streams of pedestrians cross at an angle, striped patterns spontaneously
emerge as a result of local pedestrian interactions. This clear case of self-organized
pattern formation remains to be elucidated. In counterflows, with a crossing angle of 180°,
alternating lanes of traffic are commonly observed moving in opposite directions, whereas
in crossing flows at an angle of 90°, diagonal stripes have been reported. Naka (1977)
hypothesized that stripe orientation is perpendicular to the bisector of the crossing angle.
However, studies of crossing flows at acute and obtuse angles remain underdeveloped.
We tested the bisector hypothesis in experiments on small groups (18-19 participants
each) crossing at seven angles (30° intervals), and analyzed the geometric properties of
stripes. We present two novel computational methods for analyzing striped patterns in
pedestrian data: (i) an edge-cutting algorithm, which detects the dynamic formation
of stripes and allows us to measure local properties of individual stripes; and (ii) a
pattern-matching technique, based on the Gabor function, which allows us to estimate
global properties (orientation and wavelength) of the striped pattern at a time T . We
find an invariant property: stripes in the two groups are parallel and perpendicular to
the bisector at all crossing angles. In contrast, other properties depend on the crossing
angle: stripe spacing (wavelength), stripe size (number of pedestrians per stripe), and
crossing time all decrease as the crossing angle increases from 30° to 180°, whereas
the number of stripes increases with crossing angle. We also observe that the width
of individual stripes is dynamically squeezed as the two groups cross each other. The
findings thus support the bisector hypothesis at a wide range of crossing angles, although
the theoretical reasons for this invariant remain unclear. The present results provide
empirical constraints on theoretical studies and computational models of crossing flows.

Author summary

You may have noticed that pedestrians in a crosswalk often form multiple lanes of
traffic, moving in opposite directions (180°). Such spontaneous pattern formation is an
example of self-organized collective behavior, a topic of intense interdisciplinary interest.
When two groups of pedestrians cross at an intersection (90°), similar diagonal stripes
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appear. Naka (1977) conjectured that the stripes are perpendicular to the mean walking
direction of the two groups. This facilitates the forward motion of each group and
reduces collisions. We present the first empirical test of the hypothesis by studying
two groups of participants crossing at seven different angles (30° intervals). To analyze
the striped patterns, we introduce two computational methods, a local Edge-cutting
algorithm and a global Pattern-matching technique. We find that stripes are indeed
perpendicular to the mean walking direction at all crossing angles, consistent with the
hypothesis. But other properties depend on the crossing angle: the number of stripes
increases with crossing angle, whereas the spacing of stripes, the number of pedestrians
per stripe, and the crossing time all decrease. Moreover, the width of individual stripes
is “squeezed” in the middle of the crossing. Future models of crowd dynamics will need
to capture these properties.

Introduction 1

Collective motion in groups of humans, as well as other social organisms, has increasingly 2

become a subject of analysis and modeling [1–7]. Currently, characteristic patterns 3

of collective motion are understood as emergent behavior resulting from the collective 4

dynamics of interactions between individuals. Studies of human crowd dynamics have 5

important applications to improving pedestrian traffic flow, safety management, and the 6

prevention of crowd disasters [8–12]. Analyses of real-life mass events have been used to 7

model crowd behavior in situations such as religious gatherings, rock concerts, sporting 8

matches, and transportation hubs [13–16], with a critical goal of averting life-threatening 9

crushes, stampedes, and trampling [14, 17, 18]. A first step to successful modeling is 10

a better understanding of actual crowd behavior by analysis of crowd dynamics and 11

pattern formation in human data. In this paper, we develop a computational analysis of 12

spontaneous stripe formation in crossing flows of pedestrians. 13

Pedestrian traffic flow has been studied empirically in a wide variety of situations, 14

using both experimental methods and motion tracking of real crowds. The simplest case 15

is uni-directional flow in a corridor, in which properties such as the dependence of speed 16

on density have been analyzed [19–24]. Collision avoidance between pedestrians has been 17

investigated in pairs of walkers [25,26] and multiple walkers [27]. Bottlenecks occur when 18

a large group attempts to pass through a narrow opening [21, 28–33], as in Black Friday 19

sales or fire emergencies, which can lead to jamming and crushes. Other empirical studies 20

have examined pedestrian flow through a T-junction [34, 35], bidirectional flows [36], 21

multi-directional flows [37,38], a pedestrian crossing through a dense static crowd [39,40], 22

and a bottleneck leading to a 1D corridor [41]. 23

Crossing flows can be described as two streams of pedestrians walking in different 24

directions, passing through each other at a crossing angle α > 0° (where 0° is walking in 25

the same direction). Many real-world situations produce crossing flows, such as streams 26

of pedestrians crossing at a sidewalk intersection, or subway commuters passing each 27

other when entering and exiting a metro car. A special case of crossing flows, called 28

counterflow, occurs when the crossing angle is 180°. Self-organized spatial patterns 29

have been observed when two groups cross each other. In counterflow, the formation of 30

stable lanes is regularly reported in both human experiments [3,38,42–46] and numerical 31

simulations [47–59], in which alternating lanes of pedestrian traffic are aligned with 32

the walking directions of the two groups (180° apart). A jamming transition can occur 33

above a critical flow density [49,53,56,57]. More generally, at other crossing angles the 34

formation of stripes is observed, but the alternating stripes are not aligned with the 35

walking directions of the two groups. The familiar case of orthogonal flows (α = 90°) 36

has been widely studied [60], and the formation of diagonal stripes is found in human 37

crowds [55,61] and in simulation [42,54,55,62–67]. In a recent study, body orientation 38
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of crossing flows of agents has been explicitly measured to study its dependence on 39

density [68]. However, the analysis of striped patterns in crossing flows of humans at 40

other crossing angles remains underdeveloped. 41

Naka [61] first reported stripes at acute and obtuse crossing angles in pedestrian 42

crowds, and hypothesized that stripes form at an orientation that is perpendicular to 43

the bisector of the crossing angle. Abstractly, a stripe is a traveling wave that moves in 44

the mean direction of the two flows, such that individual pedestrians travel forward with 45

a stripe and laterally within it [43]. A striped pattern facilitates overall pedestrian flow 46

by reducing collision-avoidance maneuvers, thereby increasing the average walking speed. 47

Only a few subsequent human studies have tested oblique crossing angles [69–71], but 48

stripe patterns were not analyzed. The bisector hypothesis thus remains to be tested 49

experimentally. 50

Striped patterns in oblique crossing flows have been reproduced in simulation, consis- 51

tent with the bisector hypothesis [43, 72]. In one system, the inclination of the stripe to 52

the bisector was found to increase with the velocity difference between two orthogonal 53

flows [54]. The mechanism responsible for the formation of self-organized stripes in 54

orthogonal flows has been studied theoretically [64–67]. A mean field analysis shows the 55

underlying mechanism to be a linear instability of the randomly uniform state in the 56

intersecting region compared to the formation of diagonal striped patterns [64,66,67]. 57

The ‘wake’ of a pedestrian has been proposed as the microscopic mechanism for stripe 58

formation, a density perturbation created in the perpendicularly moving flow [65]. The 59

inclination of the striped patterns was related to the velocity difference between the two 60

groups, producing a ‘chevron’ effect [64,66]. Absence of striped patterns has also been 61

observed when three or more groups of people intersect [73–75]. 62

The purpose of the present research is to experimentally test the bisector hypothesis 63

by analyzing stripe formation at a variety of crossing angles, without spatial constraints. 64

We seek to answer several theoretically-motivated questions: (i) Can stripe orientation 65

be predicted as perpendicular to the bisector for all crossing angles? (ii) Do other stripe 66

properties depend on crossing angle? (iii) What are the stripe dynamics during crossing 67

flows? (iv) Does spontaneous stripe formation generalize from continuous crossing flows 68

in defined corridors to small crowds without boundary conditions on spatial position, 69

density, or visibility? 70

We addressed these questions as part of the PEDINTERACT Project [39], in which 71

two different sets of subjects participated (36 on Day 1, 38 on Day 2). The setup appears 72

in Fig 1 (also see S1 Video). In the experiment, two groups of participants (18 or 19 73

per group) walked through each other at seven different crossing angles (0° to 180°, at 74

30° intervals); there were approximately 17 trials per angle. On each trial, the groups 75

were positioned in two starting boxes oriented at the designated crossing angle, and were 76

instructed to walk in the direction they were facing to the other side of the room. To 77

investigate whether striped patterns would emerge in the absence of spatial boundary 78

conditions, we did not use opaque corridors as in many previous studies [43,62,64,70]. 79

Head position was recorded with a motion-capture system at 120 Hz. Sample traces for 80

all pedestrians in a typical trial appear in Fig 2. 81

Because the empirical analysis of crossing flows is quite underdeveloped, we describe 82

a number of computational methods for analyzing the characteristics of stripes in human 83

data. In particular, we present a novel approach to identify the formation of stripes, 84

called the Edge-cutting algorithm. Using this algorithm we were able to measure the 85

local properties of individual stripes such as their orientation, width and size. We also 86

use an independent method to characterize global stripe properties, a pattern matching 87

technique that fits a two dimensional sinusoidal function (e.g. Gabor function) to 88

the positions of pedestrians in the two groups. This method assumes the existence of 89

a periodic pattern of stripes and then finds the geometric properties of the pattern 90

March 31, 2022 3/1



(b) (c)(a)

Fig 1. Photograph of our experimental set-up to study crossing flows. Agents participating in our experiment
are shown in this photograph for a typical trial with crossing angle 120°. The three stages of the trial are shown here, viz.
(a) before crossing (b) during crossing and (c) after crossing.

-10

-5

0

5

10

-10 -5 0 5 10

time = T1

y
 [

m
]

x [m]

-10

-5

0

5

10

-10 -5 0 5 10

time = T2

T1 < T2 < T3

y
 [

m
]

x [m]

-10

-5

0

5

10

-10 -5 0 5 10

time = T3

y
 [

m
]

x [m]

Fig 2. Illustration of a trial of crossing flow from our experiments. Traces of all the pedestrians involved for a
typical trial has been shown with expected value of crossing angle equal to 60°. Three different instances of the trial has
been shown here viz. before crossing (T1), during crossing (T2) and after crossing (T3). The actual values of time frames
are T1 = 2.3 sec, T2 = 6.55 sec and T3 = 10.8 sec from the beginning of the trial. The two groups of pedestrians are
denoted by blue and red dots. The tails behind each of the dots are basically the distances travelled by the pedestrians in
previous 1.25 sec.

from a fitting procedure. The two methods are complementary, in the sense that the 91

edge-cutting algorithm requires the whole history of the crossing and provides the full 92

dynamics of the stripes, whereas the pattern matching method can be performed on a 93

single snapshot. The stripe orientations obtained by the edge-cutting algorithm and the 94

pattern matching technique are compared to each other, and to the hypothesis that the 95

stripes are perpendicular to the bisector of the crossing angle. 96

In sum, the present paper makes two major contributions: (i) we present experimental 97

data on crossing flows of pedestrians that support the bisector hypothesis, and (ii) we 98

introduce and discuss methodological tools to detect the formation and presence of 99

striped patterns and to estimate their geometric properties. 100
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Results 101

When two groups of people cross each other, striped patterns emerge, as schematically 102

illustrated in Fig 3. The primary goal of the present research was to characterize 103

the properties of these emergent stripes, based on numerical analysis of participant 104

trajectories. The actual crossing angle α between the mean walking directions of the two 105

groups was measured from the data. The properties of stripe orientation γ relative to the 106

crossing angle bisector, and stripe spacing λ are illustrated in Fig 3 (right). We begin by 107

introducing two independent computational methods devised to analyze the geometric 108

properties of the stripes, (i) the Edge-cutting algorithm and (ii) the Pattern-matching 109

technique. 110

time = T1 2 3

T  <  T  <  T1 2 3

time = T time = T

γ

γ

λ

λα

Fig 3. Schematic representation for the formation of stripes and definition of orientation γ and physical
separation λ of stripes. Formation of stripes as a consequence of two groups crossing each other. In this schematic
diagram the crossing angle between the two groups is α. The figure has been shown for three instances viz. before
crossing (T1), during crossing (T2) and after crossing (T3). The two groups before crossing are denoted by blue and red
squares, whose direction of motion is denoted by arrows of the same color. The green dotted arrow denotes the bisector of
the crossing angle. The orientation γ of the stripes is measured counter-clockwise from the bisector. λ is the spatial
separation between two stripes from the same group. For specific definitions of γ and λ see Fig 6.

Identifying stripes using edge-cutting algorithm 111

For purposes of the first method, we define a stripe as a subset of participants from 112

one group that is not penetrated by participants from the other group. Specifically, 113

the virtual connections or edges between the participants in a stripe are never crossed 114

or ‘cut’ by the trajectory of a participant from the other group. The principal output 115

of the Edge-cutting algorithm is the identification of the participants who belong to 116

each stripe (see Materials and Method for details). This analysis indeed revealed the 117

spontaneous emergence of striped patterns and the stripes were successfully identified. 118

The dynamics of stripe formation was also observed, as illustrated for two typical trials 119

in Fig 4. The Edge-cutting algorithm also yields the time of the initial edge-cut Ti at the 120

start of crossing (left column of Fig 4) and the time of the final edge-cut Tf at the end 121

of crossing (right column of Fig 4). Animations of the Edge-cutting process for these 122

two trials appear in the supplementary material (S2 Video and S3 Video). 123
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Fig 4. Pictorial representation of the edge-cutting algorithm. Figure demonstrates the working process of the
edge-cutting algorithm as a sequence of time. Here we show the process for two typical trials with α = 89.8° and
α = 116.9°. Red and blue arrows indicate the direction of motion of the two groups represented by red and blue dots
respectively. The lines connecting the dots in each of the groups are considered as the virtual bonds or ‘edges’ which are
suppressed when cut by a pedestrian on the other group (see Materials and Methods). The figures are shown for three
instances, viz. Ti, (Ti + Tf )/2 and Tf . Ti and Tf denote the instances of time when the first and last edge-cut take place
respectively. The edge-cutting process for the entire course of time for these two trials are shown as videos in
supplementary materials (S2 Video and S3 Video).

Characterizing stripes using pattern-matching technique 124

The Pattern-matching technique estimates the orientation and width of a set of stripes, 125

assuming that the stripes are parallel and equally spaced. This method fits a two- 126

dimensional spatial frequency function f , based on a sinusoidal Gabor function, to the 127

positions of pedestrians at a time T . The free parameters of orientation γ, wavelength λ, 128

and phase ψ, are chosen by maximizing C, the fit of the function to pedestrian positions, 129

where positive values (peaks) are assigned to one group and negative values (troughs) 130

to the other (see Materials and Methods for details). The fitting can be applied to all 131

pedestrians or to a subset (e.g. one group). The output of this fitting procedure for 132

all pedestrians in two representative trials appears in Fig 5, where γ̄ and λ̄ refer to the 133

orientation and wavelength of stripes in the whole crowd. 134

The two methods are complementary. The edge-cutting algorithm requires the whole 135

history of the crossing event and yields in return the full dynamics of stripes. It estimates 136

the local spatial properties of individual stripes at each time point, without assuming 137

any prior knowledge about them. The pattern-matching technique requires only a single 138
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Fig 5. Output of the pattern matching technique. The panels on the left show fitting of pedestrian positions for
the same trials shown in Fig 4. Fitting was done using the parametric sine curve f and the transformed coordinates
(x′, y′). The blue and red parts of the plot represent the crests and troughs of the sine function respectively. The outputs
of the fitting are γ̄ = 83.34°, λ̄ = 1.865m and ψ̄ = −116.37° for the typical trial with α = 89.8° and γ̄ = 89.99°,
λ̄ = 2.286m and ψ̄ = −0.92° for the typical trial with α = 116.9°. (see Materials and Methods) The panels on the right
show variation of C̄ as a function of γ̄ and λ̄ keeping ψ fixed to the value obtained from the fitting shown in the left
panel. The region of occurrence of high values of C̄ is shown in yellow. The function C̄ was maximised to fit the sine
function f . The maximum value of C̄ for the trial with α = 89.8, as obtained by our optimisation procedure is 1.132,
which occurred for γ̄ = 83.34° and λ̄ = 1.865m. Whereas, for the trial with α = 116.9° we obtained the maximum value of
C̄ = 1.205, which occurred for γ̄ = 89.99° and λ̄ = 2.286m.

snapshot, and recovers the global spatial properties of orientation and wavelength. The 139

prior assumptions of parallel, equally spaced stripes help to match the instantaneous 140

pattern, as long as the actual stripes are close to this ideal. We will see now how both 141

approaches allow us to gain insight into the striped structure. 142

Stripe Orientation 143

Based on previous empirical observations and modeling, there are reasons to expect that 144

the observed stripes would be parallel and perpendicular to the bisector of the crossing 145

angle, as illustrated in Fig 3. This bisector hypothesis thus predicts γ = 90° for all 146

crossing angles α. However, it is possible that the stripes for one group (blue in Fig 147

3) are not parallel to those for the other group (red), such that γblue 6= γred; also that 148
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individual stripes within a group are not parallel. We thus estimated the orientation of 149

stripes using the global and local methods: (i) the Pattern-matching technique allowed 150

us to estimate the overall stripe orientation γ̄ (Fig 6a), as well as the orientation for 151

each group separately γ̃L and γ̃L, (Fig 6b); (ii) the Edge-cutting algorithm enabled us 152

to estimate the orientation of individual stripes γL and γR, (Fig 6c). We report each of 153

these measurements of stripe orientation in turn. 154
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(a) (b) (c)

Estimated from
Edge-cutting Algorithm

Estimated from
parametric sinusoidal fitting

Fig 6. Summary of different methods to estimate orientation γ and physical separation λ of the stripes.
The arrows in blue and red represents the direction of motion of the two groups. The schematic diagrams are shown for
an arbitrary crossing angle. The dashed green arrow indicates the bisector of the crossing angle between the two group
direction vectors. The lines in blue and red show the stripes from the two groups. γ is the angle between the direction of
stripes and the bisector of crossing angle, always measured counterclockwise. (a) Estimation of orientation γ̄ of the stripes
and physical separation λ̄ between two stripes from the same group using the parametric sinusoidal fitting. In doing this
calculation it was assumed that stripes from the two groups are parallel to each other and are equispaced, as shown in the
figure. (b) Orientation of the stripes from the two groups when we assume that stripes from the same group are parallel
to each other and are equispaced. γ̃L and γ̃R denote the orientation of stripes whose group direction vectors are left and
right to the direction of bisector respectively. Using the same convention, γ̃L and γ̃R are the spatial separation between
the stripes in those cases. This calculation was also done by fitting the two dimensional sine curve. (c) Estimation of
orientation of the individual stripes that were found using the edge-cutting algorithm, for the two groups. γL or γR denote
the orientation of individual stripes whose group direction vector is left or right to the direction of bisector respectively.

Global stripe orientation γ̄ and γ̃ using the Pattern-matching technique 155

In the first analysis, we estimated the overall orientation of all stripes γ̄ to the bisector, 156

on the assumption that the stripes for the two groups were parallel and equally spaced 157

(see Fig 6a), using the pattern matching technique. The analysis was performed at a 158

suitable time T between the crossing midpoint (Ti + Tf )/2 and the final crossing point 159

Tf , when the periodic pattern of stripes was most clearly defined (see Discussion). The 160

resulting values of γ̄ are represented in box plots in Fig 7a (blue bars). Note that the 161

median values are very close to the predicted angle of 90° for all crossing angles, with 162

deviations less than 3° in all conditions. A set of t-tests comparing the mean value of γ̄ to 163

90° at each crossing angle was significant only for α = 63.8°, t(17) = −2.550, p = 0.0207; 164

no other conditions were significant. Overall, this finding is consistent with the bisector 165

hypothesis. A one-way analysis of variance (ANOVA) on γ̄ was also performed, with 166
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Fig 7. Orientation γ of the stripes using different methods. (a) Figure shows boxplots for obtained values of γ̄,
γ̃L, γ̃R from the pattern-matching technique and γL, γR from the edge-cutting algorithm. Outliers are shown by black
dots. The dashed line corresponds to 90°. The boxplots were made using the various values of γ evaluated at the same
time instant. This instant was chosen to be the time when the periodicity of the stripes from the two groups was best
maintained (see Discussion). For detailed definitions of γ̄, γ̃L, γ̃R, γL and γR see Fig 6 and Materials and methods. (b)
Boxplots for the difference in obtained values of orientations (γ̃L − γ̃R) as estimated by separate-group analysis using
pattern-matching technique. The values of γ̃L and γ̃R are the instantaneous values, which are shown in (a) (brown and
orange bars)

crossing angle α as the factor (excluding the 0° condition). The result found that stripe 167

orientation did not depend significantly on crossing angle, F (5, 99) = 2.301, p = 0.0504, 168

η2 = 0.1. 169

The second analysis added one degree of freedom by estimating the orientation of 170

the stripes to the bisector for each group separately (γ̃L, γ̃R), on the weaker assumption 171

that only the stripes within one group are parallel. We thus fit the sinusoidal function f 172

to the pedestrian positions separately for the two groups, yielding estimates of stripe 173

orientation γ̃L for the group heading to the left of the bisector, and γ̃R for the group 174

heading to the right (Fig 6b). We first estimated these values at the same instant that 175

the overall orientation γ̄ was estimated, and the results appear in the boxplots in Fig 176

7a (brown and orange bars). The median values are again close to 90° for all but one 177

crossing angle, although the variability is greater because only half the pedestrian data 178

contributed to each fit. One-way ANOVAs found no influence of crossing angle on 179

γ̃L, F (5, 100) = 0.614, p = 0.689, η2 = 0.029, or on γ̃R, F (5, 100) = 0.521, p = 0.76, 180

η2 = 0.025. The within-trial difference between γ̃L and γ̃R is represented in Fig 7b. The 181

median values at each crossing angle lie close to 0°, and the deviations are less than 182

5°. A set of t-tests comparing γ̃L − γ̃R to 0° at each crossing angle found no significant 183

differences (all p’s > 0.1), indicating that the stripes for the left and right groups tend 184

to be parallel within a trial. 185

We then calculated γ̃L and γ̃R as a function of time, and obtained the time-average 186

of these quantities, 〈γ̃L〉t and 〈γ̃R〉t, during the interval (Ti + Tf )/2 to Tf for each time 187

frame of our data (see Discussion). Boxplots of the time-averaged values appear in Fig 188

8a. Median angles are again close to the expected value of 90° for both left and right 189

groups, with deviations less than 8° for acute crossing angles and less than 2° for obtuse 190

angles. One-way ANOVAs did not find a significant effect of crossing angle α on either 191

〈γ̃L〉t, F (5, 100) = 0.934, p = 0.462, η2 = 0.045, or 〈γ̃R〉t, F (5, 100) = 0.399, p = 0.848, 192

η2 = 0.019. A set of t-tests comparing 〈γ̃L − γ̃R〉t to 0° at each crossing angle found no 193

significant differences (all p’s > 0.16). A series of one-sample Kolmogorov-Smirnov tests 194
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have also confirmed that 〈γ̃L − γ̃R〉t follows a normal distribution (all p’s > 0.47). The 195

data for 〈γ̃L − γ̃R〉t has been shown as boxplots in S8 Fig. Together, these results indicate 196

that the stripes formed by the two groups are generally parallel and perpendicular to 197

the bisector of the crossing angle, as measured by the pattern-matching technique. 198
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Fig 8. Time averaged orientation of stripes. (a) Boxplots for 〈γ̃L〉t and 〈γ̃R〉t. γ̃L and γ̃R are the orientations of
stripes in a trial as obtained from separate-group analysis using pattern matching technique. (b) Boxplots for 〈γL〉t and
〈γR〉t, where γL and γR are estimated from the per-stripe analysis using edge-cutting algorithm.

Individual stripe orientation (γL and γR) based on the Edge-cutting algo- 199

rithm 200

Finally, we performed an analysis of each individual stripe based on the output of the 201

Edge-cutting algorithm. The orientations of stripes in the left and right groups are 202

denoted γL and γR , respectively (see Fig 6c). We first measured these values at the 203

same instant that the overall orientation γ̄ was estimated, and the results appear in the 204

boxplots in Fig 7a (light-green and dark-green bars). The medians for individual stripes 205

are again close to the expected value of 90° and comparable to the other techniques, 206

with the exception of the most acute crossing angle (α = 26.1°). 207

Because the configuration of stripes changed over time (e.g. Fig 4), we also measured 208

the individual stripe orientations at different time points and computed time-averaged 209

values, 〈γL〉t and 〈γR〉t, during the interval (Ti + Tf )/2 to Tf for each time frame of our 210

data. The results of this analysis appear in the boxplots in Fig 8b. Although there is 211

much more variability in individual stripe orientations than in the pattern-matching 212

estimates (Fig 7a), the median values for both left and right groups are again quite close 213

to the expected value of 90°, consistent with the bisector hypothesis. 214

Other stripe properties 215

We also used the global and local methods to estimate other geometric properties of the 216

observed stripes, including their physical spacing, width, number, and size (number of 217

pedestrians per stripe). 218

Stripe spacing (λ) using the Pattern-matching technique 219

We used the Pattern-matching technique to estimate the spacing of stripes, on the 220

assumption that the stripes in the analysis are parallel and equally spaced. The physical 221

separation between the centers of stripes corresponding to the same group was estimated 222
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by the wavelength λ of the sinusoidal function f , which was fitted to the pedestrian 223

position data as described in the previous section. The first analysis fit the data from 224

the whole crowd to obtain λ̄, the overall spacing between stripes from the same group 225

(see Fig 6a), at the same instant that the overall orientation γ̄ was estimated. The 226

results appear in the boxplot in Fig 9a (blue bars). The median is near 2m at most 227

crossing angles, but drops to 1.3m in the counterflow condition. A one-way ANOVA 228

found that λ̄ depended significantly on crossing angle α, F (5, 100) = 3.426, p = 0.0067, 229

η2 = 0.15. A trend analysis revealed significant linear through 5th-order trends (all p’s 230

< 0.01), indicating that the relationship was irregular, not monotonic (see S3 Fig). In 231

the second analysis, we fit each group independently to estimate the stripe spacing for 232

the left and right groups, λ̃L, λ̃R (see Fig 6b), at the same instant. These results also 233

appear in Fig 9(a) (brown and orange bars), and exhibit a similar drop in stripe width 234

in the counterflow condition. One-way ANOVAs found a significant effect of crossing 235

angle on λ̃L, F (5, 100) = 3.817, p = 0.0033, η2 = 0.16, but not on λ̃R, F (5, 100) = 1.781, 236

p = 0.124, η2 = 0.082, likely due to the higher variability in the latter group. A trend 237

analysis found no significant trends for either λ̃L or λ̃R (all p’s > 0.08, see S3 Fig). 238
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Fig 9. Boxplots for λ as estimated from the pattern matching technique. λ is the spatial separation between
two alternate stripes from the same group. (a) The boxplots were made over all the trials for obtained values of λ̄, λ̃L
and λ̃R at the instant when the periodicity of the two groups was best maintained. λ̄, λ̃L and λ̃R are defined in Materials
and methods. (b) Boxplots for the difference between obtained values of spatial separations from the whole-crowd and
separate-group analyses under the pattern matching procedure. (c) Time-averaged difference of physical separation
〈|λ̃L − λ̃R|〉t, where λ̃L and λ̃R are the physical separations between stripes in a trial as estimated from the
separate-group analysis using pattern matching technique.
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To compare the overall spacing of the crowd with the separate spacing in each group, 239

we computed the absolute difference between them on each trial, |λ̄− λ̃L| and |λ̄− λ̃R|. 240

The median differences (Fig 9b) are generally between 0.5m and 1m for acute and 241

orthogonal crossing angles, but less than 0.2m for obtuse crossing angles. One-way 242

ANOVAs confirmed that these differences significantly depended on crossing angle: for 243

|λ̄ − λ̃L| , F (5, 100) = 3.648, p = 0.0045, η2 = 0.154; for |λ̄ − λ̃R|, F (5, 100) = 5.796, 244

p < 0.001, η2 = 0.224. Finally, we compared the stripe spacing in the left and right groups 245

on each trial by computing the time-average of the difference 〈|∆λ̃|〉t = 〈|λ̃L − λ̃R|〉t, 246

during the interval (Ti +Tf )/2 to Tf for each time frame of our data. The results suggest 247

that stripe spacing differed between groups by more than 0.6m at acute crossing angles, 248

but by less than 0.4m at larger angles (Fig 9c). A one-way ANOVA on 〈|∆λ̃|〉t confirmed 249

a significant dependence on crossing angle, F (5, 100) = 4.26, p = 0.0015, η2 = 0.175. 250

Stripe width, number, and size based on the Edge-cutting algo- 251

rithm 252

To characterize the dynamic behaviour of the stripes as the two groups crossed, we 253

analyzed the variation in stripe width as a function of time. Precisely, we wanted 254

to investigate the dynamic adjustments made by the pedestrians within a stripe to 255

accommodate the incoming pedestrians from the other group. Once individual stripes 256

were identified with the Edge-cutting algorithm, the width of each stripe was estimated 257

by constructing a minimum bounding box for the stripe and taking its width dimension 258

(see Materials and Methods). The dynamic variation in stripe width is plotted as a 259

function of scaled time in Fig 10 for two different trials. Stripe width decreases at the 260

onset of edge-cutting (time = 0) to a minimum before the last edge is cut (time = 1) and 261

then increases again, as if the stripes are ‘squeezed’ in space during the crossing interval. 262
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Fig 10. Width of stripes as a function of time. Figure shows variation of stripe width as a function of time for all
the stripes from a trial for two typical trials with (a) α = 89.8° and (b) α = 116.9°. Time t has been scaled as t = t−Ti

Tf−Ti
.

Thus, t = Ti and t = Tf correspond to the scaled values of 0 and 1 respectively, which are shown by vertical dashed lines
in the figure. For almost all the cases, we see that the width of the stripe attains a global minimum within the interval 0
and 1, which represents the ‘squeezing’ of stripes.

The Edge-cutting algorithm also enables us to analyze the number of stripes that 263

emerged during group crossing. The mean number of stripes decreased monotonically 264

as the crossing angle α increased, as represented in Fig 11. This finding implies that 265

stripe size (number of pedestrians per stripe) conversely increased with crossing angle, 266
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as suggested by the graph in S5 Fig. Overall, the size of the identified stripes ranged 267

from 1 to 15 participants in this study. 268
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Fig 11. Mean number of stripes emerging from a group. Figure shows the
variation of this quantity with crossing angle α. The mean was estimated over all the
trials of our experiments. The number decreases with increasing α. The error-bars
indicate the corresponding standard errors of mean.

Discussion 269

In this section we discuss the formation of striped patterns and their geometric properties 270

as observed and estimated from our experimental data. This is followed by an evaluation 271

of the two computational methods we used to derive our findings. 272

Did we observe stripe formation? 273

Analyzing the formation of stripes was the main goal of this research. In our experiments, 274

we found that stripe formation occurs even in small groups of pedestrians with fewer 275

than 20 members, crossing in different directions without spatial constraints. This 276

demonstrates that continuous flows in constrained channels are not necessary for self- 277

organized pattern formation, which can be attributed to local interactions. We should 278

point out that, there could have been a number of outcomes. For example, the two 279

groups could have avoided without even penetrating each other, resulting in no formation 280

of stripes. Large difference in velocities of the two groups could result in this scenario; 281

thus the velocity of the two groups plays a crucial role in this context. Another possibility 282

might be that crossing groups produced single isolated pedestrians, i.e., all the virtual 283

connections between the pedestrians from one group were destroyed by pedestrians from 284

the other group. This situation would also result in absence of stripe formation. The two 285

groups avoiding each other and the isolation of single pedestrians are the two extreme 286

possibilities of outcomes from our experiments. In reality we saw that the two groups 287

indeed penetrate each other. The edge-cutting algorithm revealed the groups of around 288

20 participants, divided into 4 to 7 subgroups, as shown in Fig 11. This confirms that 289

not all pedestrians from a group end up being isolated as a consequence of crossing. The 290

identification of the participants belonging to a stripe was then used to calculate the 291

orientation and width of the stripe. Several examples of the edge-cutting process are 292

shown in Fig 4 and 12. 293
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Fig 12. Examples of the edge-cutting process. Edge-cutting process for two trials with (a) α = 63.8° and (b)
α = 154.1°. The blue and red arrows denote the directions of motion for the two groups of pedestrians shown by blue and
red dots respectively. The instances shown in this figure goes forward in time from (i) to (iii) and backward in time from
(iii) to (v). In (i) the instance shown is Ti − 1, when all the edges within a group are intact. (ii) Shows the situation when
the edges have started to cut and stripes are gradually being formed at (Ti + Tf )/2. (iii) Shows the situation at Tf + 1
when all probable edge-cuts have taken place and the stripes have completely been formed. (iv) and (v) shows the
instances as in (ii) and (i) respectively but with the visualisation of all the stripes that are completely formed only after
Tf .

March 31, 2022 14/1



Do the stripe properties depend on crossing angle? 294

We were primarily interested in the effect of crossing angle on the orientation γ of the 295

stripes with respect to the bisector of the crossing angle. Based on previous observations 296

and simulations, the expected value of γ = 90° should be invariant over different values 297

of crossing angle α. The results obtained from our experimental data using several 298

methods of measurement are shown in Fig 7a. The deviation of the median value of γ 299

remained less than 3° at all crossing angles, which is in good agreement with the bisector 300

hypothesis. 301

Spatial separation λ between two stripes from the same group was output from the 302

pattern matching technique. We compared the values of λ estimated using whole-crowd 303

and separate-group analysis in Fig 9a as a function of α. 304

Estimations of individual stripe properties based on the Edge-cutting algorithm 305

revealed that the mean number of stripes that emerges from a group decreases with α, 306

as shown in Fig 11. This implies that the mean size of a stripe should show an increase 307

with α. In S5 Fig we have shown the plot of mean size of a stripe as a function of the 308

crossing angle α. The mean stripe size indeed increases with α. Thus the edge-cutting 309

algorithm is very useful to establish the dependence of individual stripe properties on 310

the crossing angle. 311

Comparison of assumptions and results for the whole-crowd and 312

separate-group analyses using the pattern matching technique 313

To perform pattern matching using a two dimensional sinusoid we make two different 314

assumptions about the formation of stripes. In our analysis of finding γ̄ and λ̄, we 315

assumed that the orientation of the two groups are parallel to each other and the stripes 316

formed are periodic and equispaced. However we kept in mind that in reality this 317

might not always be true. The orientation of the stripes for the two groups could be 318

different and have different spacing. Thus, in a preliminary analysis we estimated stripe 319

orientation γ̃ and their physical separation λ̃ for the two groups separately as a function 320

of time. In this approach we assumed that the stripes within one group are parallel 321

to each other and equispaced. The time window which was selected for this analysis 322

was from Ti to Tf . The two timescales Ti and Tf were estimated from the Edge-cutting 323

algorithm, and they approximately denote the beginning and end of interaction, between 324

the two groups. 325

γ̃ and λ̃ for each groups show some fluctuations near Ti i.e. when the stripes have 326

just started to form (see S4 Fig). The fluctuations reduce with time and the values of γ̃ 327

and λ̃ approach a more steady value near Tf i.e. when the stripes have been formed. 328

Thus we calculate 〈γ̃L〉t and 〈γ̃R〉t, i.e., the time averages of γ̃L and γ̃R (shown in Fig 329

8(a)) and the time-averaged difference 〈|∆λ̃|〉t = 〈|λ̃L − λ̃R|〉t (shown in Fig 9c) from 330

(Ti + Tf )/2 to Tf i.e. when γ̃ and λ̃ remain approximately steady. 331

The differences of median values of 〈γ̃L〉t and 〈γ̃R〉t from the expected value of 90° 332

are less than 2° for cases with an obtuse angle, and less than 8° for cases with an acute 333

crossing angle with no statistical effect of crossing angle. This approximately justifies our 334

earlier assumption about the orientation of stripes from two groups being parallel to each 335

other. The time averaged difference in stripe spacing between the two groups 〈|∆λ̃|〉t 336

also shows low median values - less than 0.8 m for all the crossing angles. This also 337

justifies our assumption of equispaced stripes from two groups when using the pattern 338

matching technique. 339

We also make a comparative analysis of the differences in values of physical spacing 340

of the stripes at the same time instant obtained by whole-crowd and separate-group 341

analyses under the pattern matching technique. The results for |λ̄− λ̃L| and |λ̄− λ̃R| 342
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are shown in Fig 9b. The median values of the differences are less than 0.2 m for obtuse 343

crossing angles, but are higher for acute crossing angles. 344

There was a possibility of ‘chevron’ effect to create the differences in observed values 345

of γ̃L and γ̃R. But due to the small size of our groups, the pedestrians might tend to 346

move faster while leaving the crossing region - resulting in the absence of chevron effect. 347

The non-uniformity in the velocities of the agents both within the group and across the 348

groups could also lead to deformation of stripes. One explanation could be the duration 349

of time when the two groups keep interacting with each other. For lower values of α this 350

duration is higher (see S6 Fig), which results in deformation in the symmetric structure 351

of the stripes. There could also be an effect of the size of the environment where the 352

experiments were performed. Because of limitation of space used for the experiments, 353

the two groups start interacting immediately after the commencement of trials for lower 354

crossing angles. So there is a possibility that the agents participating for trials with acute 355

crossing angle (e.g. 30°) are still accelerating when reaching the crossing region, which 356

clearly is not the case for trials with higher crossing angles. To investigate this further 357

one needs to perform an analysis with larger number of people in a bigger environment 358

and eventually, with a flow of people - not just two groups crossing each other. 359

To analyse the statistical dependence of obtained results on the two methods under 360

pattern matching technique we performed ANOVAs for each of the crossing angles 361

separately. For γ̄, γ̃L and γ̃R ANOVAs reveal no dependence of these quantities on the 362

two methods for each of the crossing angles. For each of the cases the p-value is greater 363

than 0.145. For λ̄, λ̃L and λ̃R, the results were seen to be statistically independent of 364

the two methods except for the case α = 89.8°, as could also be seen from Fig 9a. Except 365

α = 89.8°, the p-values are greater than 0.266. The results of the ANOVAs are shown in 366

supplementary material (S1 Table and S2 Table). 367

Comparing results between pattern matching technique and the 368

edge-cutting algorithm 369

Using the edge-cutting algorithm we have conducted a per-stripe analysis, where proper- 370

ties of individual stripes were studied. This helps us in a minimal way to explore the 371

apparent asymmetry in the stripes from the two groups, which has been discussed earlier. 372

The edge-cutting algorithm gives us the knowledge of stripes formed viz. the pedestrians 373

belonging to a stripe. Using this output we compute the orientation and width of each 374

of the stripes by implying rotating calipers algorithm (see Materials and Methods). The 375

orientations γL and γR were computed as a time series. The time averaged orientation 376

〈γL〉t and 〈γR〉t were computed in the time interval (Ti + Tf )/2 to Tf . The boxplots 377

over all the stripes and all the trials are shown in Fig 8b. The difference of the median 378

values of these average quantities from the expected orientation (90°) are less than 5° for 379

obtuse crossing angles, but are a bit higher for acute crossing angles - a trend similar 380

to previously discussed observations. The values of γL and γR computed at the same 381

instant as when γ̄ were computed, are shown in Fig 7a. In all the cases we observe that 382

for obtuse crossing angles the stripe orientations obtained by the edge-cutting algorithm 383

are not very different from that obtained by the pattern matching technique. However, 384

for the acute crossing angles the differences are a bit higher - possible for reasons which 385

have already been discussed. The width of the stripes as estimated from the per stripe 386

analysis are not actually comparable to the physical separation of the stripes as computed 387

by pattern matching technique. The stripes consisted of different numbers of people 388

- this causes an irregularity while we attempt to compute their individual orientation. 389

As a consequence, it would be inappropriate to compare these values with the outputs 390

of the pattern matching technique, where the symmetry and periodicity of the stripes 391

were assumed. However, we see that the median values of the average quantities 〈γL〉t 392
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and 〈γR〉t are not very far (approximately within 10° for all crossing angles) from the 393

expected value (90°), which was computed assuming the symmetry and regularity of the 394

stripes. This shows consistency across the methods that we have used to study stripe 395

properties. 396

Why did we use two different methods? 397

The two computational methods that we present in this paper have never been used 398

before to study striped patterns in crossing flows, to the best of our knowledge. We used 399

the two methods, viz. the edge-cutting algorithm and pattern matching technique, to 400

study the formation and geometric properties of the stripes. The edge-cutting algorithm 401

takes into consideration the entire trajectories of the pedestrians, whereas for the pattern 402

matching technique the instantaneous positions of the pedestrians are sufficient. Only 403

the edge-cutting algorithm can identify a stripe and the pedestrians belonging to it. This 404

yields a better definition of individual stripes and allows refined analysis of individual 405

stripes, and is thus a spatially local method. Besides, this algorithm provides the 406

full dynamics of individual stripes, and is the most appropriate to study dynamical 407

effects such as the ’squeezing effect’ of Fig 10 that we shall discuss shortly after. When 408

the stripes are very small (less than 3 participants) or are not sufficiently elongated 409

(see Materials and Methods), their geometric properties are not well defined and we 410

excluded them from our per stripe analysis. On the other hand, the pattern matching 411

technique uses a two-dimensional parametric sinusoid and is thus a spatially global 412

method. This idea was inspired by Gabor functions, which have been used to model 413

the spatial frequency response of the mammalian visual system [76]. We assume the 414

existence of a periodic pattern of parallel stripes and then use this method to look for it; 415

these assumptions have been borne out by the similarity of orientation and spacing when 416

measured in the whole crowd and separately for the two groups. For our small-scale 417

data the pattern matching technique is essential to study the orientation of the stripes. 418

How efficient is the pattern matching technique? 419

The pattern matching technique that we have used to find the orientation γ of stripes 420

and their spacial separation λ, was based on maximising C. C is obtained by fitting 421

a two-dimensional sinusoid f on the coordinates of the pedestrians (see Materials and 422

Methods). Therefore C could be treated like a scoring function which indicates the 423

quality of fitting. For the case when we assume that stripes from the two groups are 424

parallel to each other and alternately equispaced (to find γ̄, λ̄), the maximising function 425

is denoted by C̄ and when we fitted the two groups separately (to find γ̃, λ̃), this function 426

was denoted by C̃. 427

Importance of C and λ 428

For best fittings one would get C̄ = C̄max = 2 and C̃ = C̃max = 1, and for the worst 429

case (disordered input points) the sinusoidal function would not fit - it would either 430

over-fit or under-fit the data points. Over-fitting or under-fitting could be identified by 431

the obtained value of spatial separation λ between the stripes. The obtained value of λ 432

was therefore very crucial to justify the pattern matching technique. From edge-cutting 433

algorithm one could have an approximate idea of the spatial separation between two 434

stripes for a trial (see Materials and Methods). λ would be very low or very high 435

compared to this approximate value in case of over-fitting and under-fitting respectively. 436

The quality of the pattern matching technique is therefore estimated both in terms of C 437

and by the optimised value of λ. Fig 5 (right) shows the variation of C̄ as a function 438

of λ̄ for two typical trials. In Fig 13 we have shown boxplots for the values of C for 439
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Fig 13. Boxplots for the maximising function of pattern matching technique. (a) Boxplots for C̄/C̄max and
C̃/C̃max, where C̄ is the maximising function of pattern matching procedure of whole-crowd analysis and C̃ is the same
with separate group-analysis. C̄max and C̃max are the maximum possible values of the maximising functions in these two
cases, which are 2 and 1 respectively. (b) Boxplots for the time-averaged values of C̃L and C̃R.

each of the crossing angles, as obtained by whole-crowd and separate-group analysis 440

under the pattern matching technique. Higher values of C indeed signify a better fitting. 441

From Fig 13 we see that the median values of both C̄ and C̃ increase with α. One-way 442

ANOVAs on C found a significant effect of crossing angle on C̄, F (5, 100) = 17.53, 443

p < 0.001, η2 = 0.467, on C̃L, F (5, 100) = 7.955, p < 0.001, η2 = 0.285, and on C̃R, 444

F (5, 100) = 3.665, p = 0.0043, η2 = 0.155. 445

Estimating residual error of the fitting 446

To study the accuracy of the pattern matching procedure to find γ̄ and λ̄, we calculate 447

the residual errors. Ideally one would expect all the data points to lie within the distance 448

−λ̄/4 to λ̄/4, where λ̄ is the wavelength of the fitted sine curved f . We calculated the 449

residual error of pattern matching technique as the distance of the data points from 450

the crest or trough of the fitted sine function f . The results are shown in Fig 14. The 451

normalised distribution of this distance shows a Gaussian peak at the origin. We fit the 452

data for each of the cases using the functional form of Gaussian distribution. From the 453

fittings, we estimate the standard deviations. For α = 179.9° the standard deviation of 454

the fitted curve was 0.134λ̄ and for the remaining crossing angles this value is 0.184λ̄ 455

on average. From the data of residual error, we found that for α = 179.6°, 92.4% of 456

the data points are accumulated between the distances −λ̄/4 and −λ̄/4, and for the 457

remaining crossing angles, on an average 85.3% of the data is within this range. This 458

surely establishes the efficiency of pattern fitting to a great extent. Besides, this also 459

underlines a difference in stability between lanes and stripes (discussed later). 460

Periodicity of the two groups 461

The periodic arrangement of stripes that are seen to form in our experiments have been a 462

point of concern for the pattern matching technique. An important aspect of our pattern 463

fitting procedure is to choose the instant of time for which the position of pedestrians 464

are considered and fitted. For higher values of α this instant is usually when all the 465

edges have been cut and all possible clusters have been formed, which is Tf - an output 466

from the Edge-cutting algorithm. However, for lower values of α the periodicity of the 467

two groups of pedestrians appears to be destroyed at Tf . For such trials, a suitable time 468

is chosen which is less than Tf but higher than (Ti + Tf )/2. The principal motivation of 469
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Fig 14. Accuracy of the pattern matching procedure. Figure shows Normalised
distributions for the distances of pedestrian positions from the crest or troughs of the
fitted 2D sinusoid i.e. the residual errors. The distributions show a Gaussian peak at
the origin for each α. The data were fitted according to a Gaussian curve and the fitted
curves are shown by solid lines.

choosing such a time-scale is to protect the periodicity of the two groups and to ensure 470

the formation of stripes up to such an extent that the position of pedestrians could be 471

considered for sinusoidal fitting (see Materials and Methods). In Fig 5 we have shown 472

pedestrian positions from the two groups for two typical trials and the fitted sine curves 473

f , demonstrating the periodicity of the stripes. 474

Comparison of lanes and stripes 475

The striped patterns that are seen for counter flows (i.e. α = 179.6° for our case) are 476

known in the literature as lanes. Our results confirm that lanes (which are parallel to the 477

direction of motion) are more stable than stripes (which in general are not aligned with 478

the direction of motion). From Fig 9, we see that all λ measurements coincide better for 479

counter flows and for this structure, the pedestrians accept a lower distance between the 480

lanes (minimum of λ). Typically the distance between neighboring stripes is of the order 481

of 0.8 to 1.1 m when the motion of pedestrians is not parallel to the direction of the 482

stripes. While for lanes, the distance between the centers of lanes is rather 0.6 m - which, 483

given the width of pedestrians, seems close to the minimum possible value if pedestrians 484

intend to avoid collision. Higher stability of lanes compared to the stripes was also 485

established when we estimate the residual error of sinusoidal fitting. We found that, 7% 486

more of data points lie between the expected range for counter flows, than compared to 487

the other crossing angles, as could also be seen from Fig 14. In Fig 15 We show all the 488

stripes for a typical trial of counterflow. We also show the minimum bounding boxes of 489

each stripe that has been computed using the Rotating Calipers algorithm for per-stripe 490

analysis (see Materials and Methods for details). 491

Squeezing behaviour of the stripes: future investigations 492

The macroscopic dynamics of the stripes, accessible thanks to the edge-cutting algorithm, 493

also show intriguing behaviour. When the two groups cross each other, the stripes 494

that are formed get ‘squeezed’ in order to accommodate in space the incoming group. 495

March 31, 2022 19/1



y [
m

]

γ

γ

L

R
y [

m
]

y [
m

]

x [m]

γ

γL

R

Fig 15. Stripes for a typical trial of counter flow. The red and blue dots denote
the group of pedestrians that move along the direction of arrows shown in the same
colors. The rectangular boxes in blue and red are minimum bounding boxes of the
stripes that is used for per-stripe analysis. Individual stripe orientations γL and γR are
also shown. The dashed green line indicates the bisector of the crossing angle. The
dashed black lines enclosing each stripe are the convex hulls of pedestrian locations
within that stripe. The stripe with 2 pedestrians was excluded from per-stripe analysis.

Microscopically, each of the pedestrians within a stripe adjust their motion when they 496

encounter a pedestrian from the opposite group. In Fig 10 we have shown width of 497

all the stripes from two typical trials as a function of a scaled time for each crossing 498

angle α. The time is scaled in such a way that the scaled value of 0 and 1 correspond 499

to Ti and Tf of the trial. It is observed from Fig 10 that between the interval 0 and 1 500

i.e. the beginning and end of interactions, the width of the stripes decreases, attains a 501

global minimum and then increases again. This indicates some interesting underlying 502

microscopic behaviour of the agents, which results in the squeezing behaviour as a 503

macroscopic property of the stripes. In our subsequent research we would be interested 504

to determine the underlying mechanism responsible for this behaviour. It would also be 505

appealing to find out whether a following behaviour is present among the pedestrians 506

leading to the formation of stripes, which we plan to work in our next research. 507

Conclusion 508

We conducted experimental trials for crossing flows of pedestrians without any spatial 509

constraints of motion. In spite of having small number of participants we observed the 510

formation of emerging striped patterns for each value of the crossing angle. Edge-cutting 511

algorithm was implemented to detect the formation of stripes. Striped patterns for 512

counter flows i.e lanes are seen to be more stable than those for other crossing angles. We 513
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have used a pattern matching technique and the edge-cutting algorithm to study a few 514

properties of the stripes formed and compare them with each other and with hypothesized 515

effects. The observed values for the orientation of stripes from edge-cutting algorithm 516

are in good agreement with the expected result which justifies that our assumption 517

about the regularity and symmetry of the striped patterns are reasonable enough. The 518

maximised values of C̄ as obtained by us signify the regularity of the striped patterns 519

from the two groups. While performing numerical simulations to model the scenario of 520

crossing flows, the quantity C̄ would act as a parameter to evaluate the effectiveness of 521

the simulation technique in reproducing the observed behaviour. We not only confirmed 522

that stripe orientation is predicted by the bisector hypothesis at all crossing angles, but 523

we also discovered several unexpected effects. First we showed that the average number 524

of stripes within a group decreases with the crossing angle alpha. Second, we found 525

that the spacing, number, and size of stripes depended significantly on crossing angle. 526

Third, we observed a squeezing effect visible in the time evolution of the stripes. The 527

macroscopic dynamics of the stripes motivates us to study the microscopic behaviour of 528

the individual pedestrians as our next investigation. 529

Materials and methods 530

Experimental details 531

The participants of the experiments were divided into two groups (with similar spatial 532

densities). They were instructed to move along a direction which was announced before 533

the commencement of each trial, such that the two groups cross each other at a particular 534

angle. For 7 different expected values of crossing angles, viz. [0°, 30°, 60°, 90°, 120°, 535

150° and 180°], we performed approximately 17 trials at each angle, a total of 116 trials 536

(See Table 1). During each trial the head trajectory of each pedestrian was recorded as 537

a time series. Each trial lasted about 15-25 seconds. The experiment was performed 538

in a rectangular hall (20m × 30m) with a tracking area of 15m × 20m. The positions 539

of the pedestrians were recorded at 120 Hz using VICON - an infrared camera system. 540

The pedestrians were equipped with head-mounted reflective markers detectable by 541

the VICON motion capture system. The center of the tracking was considered as the 542

origin of a two-dimensional Cartesian coordinate system, which was used as a reference 543

to represent the position of the pedestrians at every time step. Table 1 summarizes 544

the various details of the experiments, i.e. the number of pedestrians and number of 545

trials for each value of the crossing angle. In Fig 16 we have schematically shown our 546

experimental set-up. 547

For our experiments, we searched for participants on campus of University of Rennes, 548

France. The participants had no visual or locomotive impairments. The experiments 549

were performed over 2 days. On the first day, we could gather 36 participants and on 550

the next day the number was 38. These two numbers are very close to each other and 551

we did not find any effect of this on our results. If the size of the groups were much 552

larger, the characteristics of the stripes formed would be different too. But 36 compared 553

to 38 is so little, that we can assume that it makes no difference. It would certainly be 554

interesting to bridge between our small-scale study and with a larger group of people or 555

even a continuous flow of people. 556

The participants were unaware of the actual motivation of the experiments. The 557

participants were recruited using a mailing list that is usually utilized to search for 558

volunteers, mostly from the campus. It is indeed true that we could not eliminate the 559

possibility that some participants might know each other. Importantly, however, they 560

were not allowed to communicate during the experimental trials, and we did not observe 561

any obvious sign of communication between the participants. At the beginning of each 562
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60°

20m

30m

Fig 16. Schematic representation of the experimental set-up. Figure shows
the experimental set-up that we have constructed to study crossing flows of two groups
of people. The dashed squares acted as visual references as the direction of motion for
the participants. At the beginning of each trial, the participants were located in one
these squares ( S7 Fig) and were asked to reach the other side of the hall, crossing the
other group.

day we assigned a random number to each of the participants and then they were 563

divided into groups based on ranking. After half of the trials, we switched the group 564

assignment strategy depending on odd or even numbers. This was done to minimize the 565

likelihood that familiarity would influence stripe formation. In addition, participants 566

were instructed not to stand near their friends, although we could not verify whether 567

this request was obeyed. Thus the random partition of groups was crucial to reduce the 568

effect of familiarity on our results. 569

The direction of motion was facilitated by visual references that were drawn by tape 570

on floor of the hall. For each trial, the two groups of participants were initially located 571

within a square shaped region. These squares on the floor of the hall were drawn by 572

dashed lines and could be seen in Fig 1 (also see S7 Fig ). The participants were instructed 573

to ‘walk straight across the room and pass through another group of participants’. The 574

orientation of the departure square of each group was giving a complementary hint about 575

the direction to follow. In Fig 16 all the square shaped boxes are shown which were 576

drawn on the floor of the hall to act as visual references for the motion of groups. 577

The data obtained from the experiments were low-pass filtered to reduce oscillations 578

due to the gait movement of the walking pedestrians. We used a forward-backward 4-th 579

order butterworth filter to reduce these unwanted oscillations. The traces of pedestrians 580

shown in Fig 2 are plotted using the filtered trajectories. For all the analysis presented 581

in this paper, we have used the filtered data. 582

Ethics Statement 583

The ethical approval for using live participants was obtained from The Operational 584

Committee for the Evaluation of Legal and Ethical Risks (COERLE - n° 2016-008). 585

The document could be found at S1 Document. Written consents were taken from the 586

participants who volunteered for the experimental trials. 587
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Table 1. Summary of the experimental details

Expected Observed No. of No. of
crossing crossing pedestrians trials

angle angle α

0° 38 6
36 4

30° 26.1° 38 10
36 8

60° 63.8° 38 10
36 8

90° 89.8° 38 11
36 8

120° 116.9° 38 10
36 7

150° 154.1° 38 9
36 8

180° 179.7° 38 10
36 7

Table indicates number of pedestrians and number of trials categorized according to the
value of the crossing angle. The observed values of the crossing angle which are
mentioned here are basically the median values over all the trials.

Observed values of crossing angle α 588

During the experiments the participants followed visual references for their movement, 589

instead of a secluded corridor. As a consequence the actual direction of motion of the 590

groups and hence the actual value of the crossing angle is a bit different from what it 591

was expected i.e. the expected values. Therefore we calculate the observed values of 592

crossing angle α (see S1 Fig), and show all of our findings in terms of them. To calculate 593

the observed values of the crossing angle α we consider the two barycenters of the initial 594

and final positions of all the participants in a group for a trial. The line connecting 595

these two points gives the actual direction of motion of a group, from which we evaluate 596

the observed crossing angle α. We then compute medians over all the trials and use 597

these median values in all of our analysis. In Table 1 we mention the median values of 598

the observed crossing angle α. We also expect the individual pedestrians to make some 599

personal adjustments in their trajectories to reach their goal. Thus we measure how 600

much a pedestrian actually deviates from his/her originally assigned trajectory. The 601

normalised distributions of this measurement show Gaussian behaviour (see S2 Fig). 602

The mean value of the angular deviations in each case is less than 2°. 603

Edge-cutting Algorithm: Detection of the stripes 604

In the beginning of the trial, at time t = 0, we assume that each group of pedestrians 605

forms a complete graph with clustering coefficient = 1 i.e. all the individuals are 606

connected to each other within the group by an ‘edge’. The basis of such an assumption 607

is the correlated movements of pedestrians in a group [77]. With the progression of time, 608

when the two groups meet and cross each other, the edge between two pedestrians from 609

one group may be cut by a pedestrian from the other group. This situation is detected 610

by the edge-cutting algorithm. Once all the probable edge-cuttings are over, each group 611

is left with more than one cluster having a complete graph. The size of these clusters are 612

≥ 1. Fig 17 schematically represents the scenario of the edge connecting the individuals 613
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P and Q from the same group being cut by the individual R from the other group. The 614

conditions for the edge being destructed are three-fold and as follows: 615

(i)
−−→
PQ.
−→
PR > 0 616

(ii) d =
−−→
PQ.
−→
PR < |

−−→
PQ|2 617

(iii) β(t)× β(t− 1) < 0, 618

where the angle β is defined in Fig 17. Simultaneous satisfaction of these three conditions 619

detects the edge-cutting. Conditions (i) and (ii) ensure that the pedestrian R is able to 620

cut the edge between P and Q. When these two conditions are satisfied, the angle β 621

between
−−→
PQ and

−→
PR is measured as a time series, and if it changes sign we confirm that 622

the edge is destructed. Condition (iii) allows us to detect the time of edge-cutting as 623

well. For a trial, the instant when the first (initial) edge-cut takes place is denoted by Ti 624

and the instant of the last (final) edge-cut is denoted by Tf . The two timescales Ti and 625

Tf are outputs from the Edge-cutting algorithm, and they have been used extensively in 626

the analysis of stripe orientations. 627

P

Q

R

d 

β

Fig 17. Schematic representation of the edge-cutting algorithm. The ‘edge’
between the pedestrians P and Q belonging to the same group is cut by the pedestrian
R belonging to the other group.

Pattern matching: Fitting 2D parametric sinusoidal curves 628

To estimate the orientation of the parallel stripes and their physical separation we 629

implied a pattern matching technique. We use a two dimensional parametric sinusoidal 630

function f for this method and fit this function on the pedestrian positions. The goal of 631

the pattern matching technique was to (i) estimate the angle γ between the stripes and 632

the bisector of the crossing angle and (ii) to estimate the physical separation λ between 633

the stripes from the same group. In all the cases discussed in this paper, the orientation 634

γ of the stripes were measured counterclockwise from the bisector of the crossing angle 635

α. The data obtained by experiments were given a transformation such that x′, the 636

new x-axis coincided with the bisector of the crossing angle, this is illustrated in Fig 18. 637

This transformation was applied so that the orientation γ could be directly evaluated 638

from pattern matching. The function f was fitted on the transformed coordinates of the 639

pedestrians (x′, y′). The fitting was achieved by maximising a function C, which is the 640

mean of sum of values of f as fitted on the pedestrian positions. 641

For the pattern matching procedure when we assume that the stripes from the two 642

groups are parallel to each other and are equispaced, we denote quantities with a bar as 643

a way of representation. In this case the sinusoidal function f was given by the form 644

f(x′, y′; γ̄, λ̄, ψ) = sin
(2πX

λ̄
+ ψ

)
(1)
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Fig 18. Transformation of coordinates. This diagram schematically represents the
transformation given to the experimentally obtained data such that the transformed
x-axis, i.e., x′ is along the bisector of the two group direction vectors. The arrows in
blue and red indicate the two group direction vectors and the dotted green arrow
indicates the bisector. θB is the angle between the bisector and the original x-axis. A
clockwise rotation by an angle θB in this case makes the bisector as the new x-axis. The
transformed axes x′ and y′ are shown by green arrows. The bold line in purple
represents a stripe, which makes an angle γ (measured anti-clockwise) with the bisector
of group direction or the x′-axis. The purpose of the pattern matching technique is to
find out the orientation of stripes γ.

where, X = x′ sin γ̄ − y′ cos γ̄, λ̄ is the wavelength of the sine function and ψ denotes 645

the phase offset. To find the orientation γ̄ of the parallel stripes, we fit f to the position 646

(x′, y′) of the pedestrians. The fitting was performed using an optimisation strategy, 647

where we maximise C̄, which is defined as 648

C̄ =
( ∑

group 1

f(x′, y′) +
∑

group 2

−f(x′, y′)
)
/N̄, (2)

where N̄ is the total number of pedestrians. The first summation sign denotes the 649

sum over the position of pedestrians from one group and the second summation for the 650

position of pedestrians from the other group. The maximum possible value of C̄ is 2, 651

which occurs for the ideal case when the position of pedestrians from the two groups 652

could be fitted exactly on the crests and troughs of the sinusoidal curve respectively. 653

Maximisation of C̄ by fitting f on pedestrian positions gives us the orientation γ̄ of the 654

stripes and spatial separation λ̄ between two stripes from the same group. Evaluation of 655

γ̄ and λ̄ is done under the assumption that the stripes from the two groups are parallel 656

to each other and are equispaced. Pictorial representation of γ̄ and λ̄ is shown in Fig 6a. 657

For a randomly oriented set of points, the pattern matching technique would over-fit 658

or under-fit the data - that could be detected by the obtained value of λ̄. In our case, 659

before performing the pattern matching procedure, we imply the edge-cutting algorithm 660

to obtain the number of stripes that are formed in a trial. Combining this knowledge 661

with the width of the crossing region, we get an approximate estimate for the value of 662

spatial separation λ̄. This helps us to identify any over-fitting or under-fitting. For the 663

trial with α = 89.9° shown in Fig 4 and Fig 5, the width of the crossing region is 8.06 m. 664

From the edge-cutting algorithm we get that the two groups of this trial gets divided 665

into a total of 9 subgroups. Therefore, approximate estimate for the wavelength of fitted 666

sinusoid is 2× 8.06
9 = 1.79 m. From the pattern fitting we obtained λ̄ = 1.865 m, which 667

is quite close to the approximate estimate. The fitted sine functions f for two typical 668
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trials and variation of C̄ as a function of γ̄ and λ̄ for the same trials are depicted in Fig 669

5. 670

To find the orientation of stripes for the two groups in a trial separately, we used the 671

same fitting function f as in Eq (1) and the function which was maximised to obtain 672

the fitting in this case was 673

C̃ =
∑

f(x′, y′)/Ñ, (3)

where the summation was performed over the position of pedestrians from one group at 674

a time. Ñ is the number of pedestrians in the group. The maximum possible value of C̃ 675

is 1, which in this case occurs for the ideal situation when the pedestrian positions from 676

the group under consideration fall exactly on the crests of the sine curve represented 677

by f . This analysis was performed as a time sequence between (Ti + Tf )/2 and Tf . 678

Maximisation of C̃ by fitting f on the pedestrian positions gives us the orientation γ̃ of 679

the stripes and the spatial separation λ̃ between the stripes from the same group. This 680

computation was done under the assumption that the stripes from the same group are 681

parallel to each other and have equal spacing between them. 682

While fitting the parallel stripes from the two groups separately we differentiate 683

them by using the notations γ̃L and γ̃R. γ̃L denotes the orientation of the stripes whose 684

group direction vector lies to the left (L) of the direction of bisector and similarly, γ̃R 685

for the one whose group direction vector lies to the right (R) of the direction of bisector. 686

Similarly, we use the notations λ̃L and λ̃R to denote the spatial separation between the 687

stripes from the same group, according to the orientation of its group direction vector 688

with respect to the bisector. Pictorial demonstration of γ̃L, γ̃R, λ̃L and λ̃R are shown in 689

Fig 6b. Following the same convention, the functions that were maximised to obtain 690

(γ̃L, λ̃L) and (γ̃R, λ̃R) were denoted as C̃L and C̃R respectively. 691

For the segregation of the groups according to whether they lie to the left or right of 692

the bisector of the crossing angle, it is therefore important to determine the direction of 693

the bisector. This direction is estimated using the two group direction vectors. But for 694

the case of crossing angle 180°, determining the direction of the bisector is not possible. 695

However we realise that the experimentally observed value of the crossing angle α is 696

never exactly equal to 180°. Thus estimating the direction of bisector for these cases is 697

also pretty straight-forward. 698

Finding individual stripe width and orientation 699

From the Edge-cutting algorithm we could successfully identify the stripes that are formed. 700

In our attempt to find the individual stripe orientations at each instant we construct 701

the minimum bounding box of the stripes using Rotating Calipers algorithm [78, 79]. 702

The orientation of the stripe was calculated along the length of the box. The width of 703

the rectangular box gives an estimate of the width of each of the stripes. The aspect 704

ratio of the minimum bounding box for a stripe, calculated as the ratio of its width to 705

length, gives an idea of the suitability of that stripe to be considered for the estimation 706

of orientation. The value of aspect ratio closer to 1 denotes a uniformly shaped stripe. 707

Whereas, lower value of aspect ratio indicates a sufficiently elongated stripe suitable for 708

finding the orientation. In Figure 19, we show two typical stripes with their respective 709

minimum bounding boxes calculated using the Rotating Calipers algorithm. We applied 710

a cut-off on aspect ratios of the stripes and considered only those stripes which had 711

an aspect ratio less than 0.5. Choosing this cut-off lets us consider almost 90% of the 712

stripes, and they are all sufficiently elongated (see S9 Fig ). The time window which was 713

selected for this calculation was from (Ti + Tf )/2 to Tf . The orientation of individual 714

stripes were also estimated as the angle between the stripes and the bisector of the group 715

direction vectors, as depicted in Fig 6c. The angle is measured counterclockwise from 716

March 31, 2022 26/1



the bisector. We use the notations γL and γR to differentiate the orientation of stripes 717

whose group direction vector lie to the left and right of the bisector respectively. 718

(a) (b)

x [m] x [m]

y 
[m

]

y 
[m

]

Fig 19. Constructing the minimum bounding box of a stripe. Two typical
stripes are shown with aspect ratios (a) 0.999 and (b) 0.266. The red boxes denote the
minimum bounding boxes and the polygons shown by black lines are the convex hulls of
the points in the stripes. The stripe with the aspect ratio closer to 1 (a) is not suitable
for the estimation of orientation. The stripe with the lower aspect ratio (b) is inclined
at an angle of 76.01° with respect to the x-axis.

Supporting information 719

S1 Table. Results of ANOVAs for γ̄, γ̃L and γ̃R for each α. Table summarizes 720

the results of the ANOVA tests that were performed for each α with γ̄, γ̃L and γ̃R to 721

check their statistical dependencies on whole-crowd and separate-group analyses under 722

the pattern matching technique. 723

S2 Table. Results of ANOVAs for λ̄, λ̃L and λ̃R for each α. Table summarizes 724

the results of the ANOVA tests that were performed for each α with λ̄, λ̃L and λ̃R to 725

check their statistical dependencies on whole-crowd and separate-group analyses under 726

the pattern matching technique. 727

S1 Fig. Observed values of the crossing angle α. Figure shows boxplots for the 728

observed values of the crossing angle α. The dashed lines denote the corresponding 729

values of the expected crossing angle. 730

S2 Fig. Normalised distributions of δ for each α. The quantity δ is a measure 731

of the deviations that a pedestrian makes with his/her originally instructed direction of 732

motion as indicated by the visual references during the trials. We calculate δ at every 733

instant of a pedestrian’s trajectory as the angle between the trajectory of that pedestrian 734

and his/her expected direction of motion. Anti-clockwise (clockwise) deviations are 735

considered as positive (negative). δ is estimated for all the pedestrians at all the positions 736

along their trajectories. Normalised distributions of δ is shown in this figure. The data 737

for each α were fitted according to the curve f(x) = a exp [−b(x− c)2]. The quantity c 738
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(in unit of °) gives the mean of each distribution. The solid lines indicate the best fitting 739

curves. For each α we get |c| < 2°. 740

S3 Fig. Mean values of λ̄, λ̃L and λ̃R as a function of α. Figure shows the 741

mean values of the observed quantities λ̄, λ̃L and λ̃R as a function of the crossing angle 742

α. The error-bars indicate the corresponding standard errors of mean. Trend analyses 743

show that dependence of λ̄ on α is irregular, not monotonic; whereas λ̃L and λ̃R show 744

no significant trends. 745

S4 Fig. Time sequence of γ̃ and λ̃ estimated separately for the two groups 746

in a trial. The plots are shown for two typical trials with (a) α = 63.8° and (b) 747

α = 154.1°. The time window for which the data is shown is between 0 and the respec- 748

tive values of Tf for both the trials. Ti and Tf are evaluated from the Edge-cutting 749

algorithm and are shown by vertical green lines in the plot. For γ̃ plots in the left panel, 750

the dashed horizontal lines indicate 90°, the expected value of stripe orientation and for 751

λ̃ plots in the right panel, the dashed horizontal lines indicate the value of λ̄ as estimated 752

from the pattern matching technique by considering the two groups together. 753

S5 Fig. Mean size of stripes as a function of α. The size of a stripes is defined 754

as the number of pedestrians belonging to that stripe. The mean size of a stripe increases 755

with the increase of crossing angle. The error-bars indicate the corresponding standard 756

errors of mean. 757

S6 Fig. Mean crossing time as a function of α. Crossing time for each trial is 758

defined as Tf − Ti, where Ti and Tf are estimated from the edge-cutting algorithm. Ti 759

and Tf denotes the time when the first and last edge-cut takes place for the trial. The 760

mean crossing time over all the trials decreases with the increase of crossing angle. The 761

error-bars indicate the corresponding standard errors of mean. 762

S7 Fig. Squares on the surface of experimental trials. This figure is basically 763

the snapshot of video in the next item at time 00:00. Before the onset of the trial, the 764

participants are seen to wait within the dashed squares, which are clearly pointed out 765

by light-green lines. 766

S8 Fig. Boxplots for the values of 〈γ̃L − γ̃R〉t. Median values of 〈γ̃L − γ̃R〉t for 767

each crossing angle are seen to be very close to 0°. γ̃L and γ̃R are the orientations of 768

stripes in a given trial as obtained from separate-group analysis using pattern matching 769

technique. One-sample Kolmogorov-Smirnov tests confirm that the data is normally 770

distributed. A series of t-tests have confirmed that the mean values are not significantly 771

different from 0°. 772

S9 Fig. Fraction of stripes considered as a function of aspect ratio cut-off 773

value for individual stripe measurements. We see that for the cut-off value of 0.5, 774

approximately 90% of all the stripes could be considered for per-stripe analysis. 775

S1 Video. Video of the experimental trial which is shown in Fig 1 776

S2 Video. Edge-cutting process for a trial with α = 89.8° which is shown in 777

Fig 4. In this video we show the edge-cutting process for a typical trial with α = 89.8°, 778

the one which has been shown in Fig 4. The time frames are shown in scales of t−Ti

Tf−Ti
. 779
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S3 Video. Edge-cutting process for a trial with α = 116.9° which is shown 780

in Fig 4. Same as the previous item with with α = 116.9°. 781

S1 Document. Ethical approval statement. 782
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