Semantic Soundness for Language Interoperability

Daniel Patterson
Northeastern University
Boston, MA, USA
dbp@dbpmail.net

Andrew Wagner
Northeastern University
Boston, MA, USA
ahwagner@ccs.neu.edu

Abstract

Programs are rarely implemented in a single language, and
thus questions of type soundness should address not only the
semantics of a single language, but how it interacts with oth-
ers. Even between type-safe languages, disparate features can
frustrate interoperability, as invariants from one language
can easily be violated in the other. In their seminal 2007 pa-
per, Matthews and Findler [33] proposed a multi-language
construction that augments the interoperating languages
with a pair of boundaries that allow code from one language
to be embedded in the other. While this technique has been
widely applied, their syntactic source-level interoperability
doesn’t reflect practical implementations, where the behavior
of interaction is only defined after compilation to a common
target, and any safety must be ensured by target invariants
or inserted target-level “glue code”

In this paper, we present a novel framework for the design
and verification of sound language interoperability that fol-
lows an interoperation-after-compilation strategy. Language
designers specify what data can be converted between types
of the two languages via a convertibility relation 74 ~ 75 (“z4
is convertible to 75”) and specify target-level glue code imple-
menting the conversions. Then, by giving a semantic model
of source-language types as sets of target-language terms,
they can establish not only the meaning of the source types,
but also soundness of conversions: i.e., whenever 4 ~ 7, the
corresponding pair of conversions (glue code) convert target
terms that behave like 74 to target terms that behave like
7B, and vice versa. With this, they can prove semantic type
soundness for the entire system. We illustrate our framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI 22, June 13—17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9265-5/22/06...$15.00
https://doi.org/10.1145/3519939.3523703

Noble Mushtak
Northeastern University
Boston, MA, USA
mushtak.n@northeastern.edu

Amal Ahmed
Northeastern University
Boston, MA, USA
amal@ccs.neu.edu

via a series of case studies that demonstrate how our seman-
tic interoperation-after-compilation approach allows us both
to account for complex differences in language semantics
and make efficiency trade-offs based on particularities of
compilers or targets.

CCS Concepts: « Software and its engineering — Gen-
eral programming languages.

Keywords: language interoperability, type soundness, se-
mantics, logical relations

ACM Reference Format:

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed.
2022. Semantic Soundness for Language Interoperability. In Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (PLDI °22), June 13-17,
2022, San Diego, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3519939.3523703

1 Introduction

All practical language implementations come with some way
of interoperating with code written in a different language,
usually via a foreign-function interface (FFI). This enables
development of software systems with components written
in different languages, whether to support legacy libraries or
different programming paradigms. For instance, you might
have a system with a high-performance data layer written
in Rust interoperating with business logic implemented in
OCaml. Sometimes, this interoperability is realized by target-
ing a common platform (e.g., Scala [40] and Clojure [23] for
the JVM, or SML [10] and F# [48] for .NET). Other times, it is
supported by libraries that insert boilerplate or “glue code” to
mediate between the two languages (such as the binding gen-
erator SWIG [7], C->Haskell [16], OCaml-ctypes [54], NLFFI
[13], Rust’s bindgen [55], etc). While interoperability can
be achieved in other ways—via the network, inter-process
communication, or dispatching between interpreters and
compiled code—we focus in this paper on the case when
both languages are compiled to a shared intermediate or
target language.

In 2007, Matthews and Findler [33] observed that while
there were numerous FFIs that supported interoperation

https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3519939.3523703

PLDI °22, June 13-17, 2022, San Diego, CA, USA

between languages, there had been no effort to study the
semantics of interoperability. They proposed a simple and
elegant system for abstractly modeling interactions between
languages A and B by embedding the existing operational
syntax and semantics into a multi-language AB and adding
boundaries to mediate between the two. Specifically, a bound-
ary "AAB™ (-) allows a term ep of type 75 to be embedded
in an A context that expects a term of type 74, and like-
wise for the boundary 2 8A™ (). Operationally, the term
AABE (ep) evaluates ep using the B-language semantics to
TAAB™ (vp) and then a type-directed conversion takes the
value vg of type 75 to an A-language term of type 74. There
are often interesting design choices in deciding what conver-
sions are available for a type, if any at all. One can then prove
that the entire multi-language type system is sound by prov-
ing type safety for the multi-language, which includes the
typing rules of both the embedded languages and the bound-
aries. This multi-language framework has inspired a signif-
icant amount of work on interoperability: between simple
and dependently typed languages [41], between languages
with unrestricted and substructural types [45, 50], between
a high-level functional language and assembly [43], and be-
tween source and target languages of compilers [2, 37, 44].

Unfortunately, while Matthews-Findler-style boundaries
give an elegant, abstract model for interoperability, they do
not reflect reality. Indeed, a decade and a half later, there is
little progress on assigning semantics to real multi-language
systems. In the actual implementations we study, the source
languages are compiled to components in a common target
and glue code is inserted at the boundaries between them
to account for different data representations or calling con-
ventions. While one could try to approach this problem by
defining source-level boundaries, building a compiler for the
multi-language, and then showing that the entire system
is realized correctly, there are serious downsides to this ap-
proach. One is that if the two languages differ significantly,
the multi-language may be significantly more than just an
embedding of the evaluation rules of both languages (c.f. our
last case study, as an implicitly garbage-collected language
interoperating with a manually managed language may need
to make the garbage collection explicit). And that doesn’t
even consider the fact that in practice, we usually have exist-
ing compiler implementations for one or both languages and
wish to add (or extend) support for interoperability. Here,
language designers’ understanding of what datatypes should
be convertible at the source level very much depends on
how the sources are compiled and how data is (or could be)
represented in the target, all information that is ignored by
the multi-language approach. Moreover, certain conversions,
even if possible, might be undesirable because the glue code
needed to realize safe interoperability imposes too much
runtime overhead.

In this paper, we present a framework for the design and
verification of sound language interoperability, where both

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

activities are connected to the actual implementation (of com-
pilers and conversions). At the source, we still use Matthews-
Findler-style boundaries, as our approach differs not in the
source syntax but rather that instead of proving operational
properties of that source, we instead prove semantic type
soundness by defining a model of source types as sets of (or
relations on) target terms. That is, the interpretation of a
source type is the set of target terms that behave as that type.
Guiding the design of these type interpretations are the com-
pilers. This kind of model, often called a realizability model,
is not a new idea — for instance, Benton and Zarfaty [12]
and Benton and Tabareau [11] used such models to prove
type soundness, but their work was limited to a single source
language. By interpreting the types of two source languages
as sets of terms in a common target, we enable rich reasoning
about interoperability. Using the model, we can then give
meaning to a boundary BBA™ (-): there is a bit of target
code that, when given a target term that is in the model of
the type 74, results in a target term in the model of type 7.

A realizability model is valuable not only for proving
soundness, but for reasoning about the design of interop-
erability. For example, we can ask if a particular type in one
language is the same as a type in the other language. This is
true if the same set of target terms inhabits both types, and in
this case conversions between the types should do nothing.
More generally, opportunities for efficient conversions may
only become apparent upon looking at how source types and
invariants are represented (or realized) in the target. Since
interoperability is a design challenge, with tradeoffs just
like any other—performance high among them—working
with the ability to understand all the pieces is a tremendous
advantage.

Contributions. To demonstrate the use and benefits of
our framework, we present three case studies that illustrate
different kinds of challenges for interoperability. In each case,
we compile to an untyped target language.

1. Shared-Memory Interoperability (§3): We consider
how mutable references can be exchanged between two lan-
guages and what properties must hold of stored data for
aliasing to be safe. We show that to avoid copying muta-
ble data — without having to wrap references in guards or
chaperones [47] — convertible reference types must be in-
habitated by the very same set of target terms.

2. Affine & Unrestricted (§4): We consider how MiniML,
a standard functional language with mutable references, can
interact with , an affine language. We show that affine
code can be safely embedded in unrestricted code and vice
versa by using runtime checks (only where necessary) to
ensure that affine resources are used at most once.

3. Memory Management & Polymorphism (§5): We
consider how MiniML, whose references are garbage col-
lected, can interact with L3 [3], a language that uses linear

Semantic Soundness for Language Interoperability

capabilities to support safe strong updates to a manually man-
aged mutable heap. We demonstrate not only when memory
can be moved between languages, but also a type-level form
of interoperability that allows generics to be used with L3
(which lacks type polymorphism) without violating any in-
variants of either language.

For each case study, we devise a novel realizability model.
An interesting aspect of these models is that, since the target
languages are untyped, statically enforced source invariants
must be captured using either dynamic enforcement in target
code or via invariants in the model. This demonstrates that
our approach is viable even when working with existing
target languages without rich static reasoning principles.

We chose these three case studies to exercise our frame-
work both in terms of type system invariants (substructural
types, polymorphism) but also properly handling mutable
state (exchanging pointers and garbage collection). Interest-
ing challenges for the future could include differences of
control-flow and concurrency.

Definitions and proofs elided from this paper are provided in
our technical appendix [42].

2 The Framework

Before diving into the case studies that serve as evidence
of its efficacy, we first describe, in step-by-step fashion, the
framework for proving type soundness in the presence of
interoperability that is the primary contribution of this paper.
The inputs to the framework are two source languages, lan-
guage A and language B, a target language T, and compilers
e* = e and e* = e. This section serves both as a roadmap of
what is to come and a reference to return to. The first two
steps (§2.1 and §2.2) must be performed by the designer of
the interoperability system, whereas the last three (§2.3, §2.4,
and §2.5) should be performed by the verifier of the system.
Note that, as with type soundness, partial verification is still
potentially useful, and so the first two steps should be seen
as what needs to be implemented, and the last three as what
should be aspired to, if not formally carried out.

2.1 Boundary Syntax

To include code from another language, the designer requires
some way of invoking such code. While there are various
ways of doing this in real toolchains, here she adopts a gen-
eral approach based on a notion of language boundaries.

If a language A is to include code from language B, the A
designer should add a boundary form (e|),. This allows a
term e : to be used in an A context at type 7, for some
7, and 75. This boundary strategy is very general: it allows
both inline code, a strategy adopted by many FFI libraries for
C, but also the more typical import/export style of linking.
In that case, what is compiled would be an open term with
a B binding free. Then, the use of the imported
term would be (f),, .., for appropriate types 7, and 7.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Note that while in our examples, we equip both languages
with boundaries, the framework does not require this.

2.2 Convertibility Rules

To know whether a term (e, is well-typed, the designer
needs to know if a B term can be converted to an
A type 7. There is no way to know, a priori, what types
can be converted, and thus the framework requires that the
designer specify this explicitly. In particular, she must pro-
vide judgments of the form 7, ~ 7 to indicate that these
two types are interconvertible, allowing for the possibility
of dynamic conversion errors. Since our notion of linking
depends upon both language A and B being compiled to a
common target T, this conversion needs to be witnessed
by T code that performs the conversion. C;,,,, denotes the
code that performs a target-level conversion from 7, to
For example, if bool ~ int, and the former compiles to the
integers 0 and 1, then the conversion Cpoo11-int 1S @ n0-0p
(since compiled booleans are already T language integers),
but Ci,i-b001 must do something different. It could raise a
dynamic conversion error if given a T int other than 0 or 1, or
it could collapse all other numbers into one of those, or some-
thing else. The particular choice depends on the languages
in question, and what the designer of the interoperability
system thinks makes sense: the framework only requires
that the decision made preserves type soundness.

2.3 Realizability Models for Both Languages

In order to prove type soundness, and in particular, account
for the boundaries and convertibility rules from §2.1 and
§2.2, the verifier needs to build a logical relation for both
languages. This relation is atypical in two ways. First, it is
a realizability model, which means that while it is indexed
by source types, it is inhabited by target terms. That is, the
verifier must first define an interpretation of values for each
source type 7, written V[r], as the set of T language val-
ues v that behave as 7. That is, V[bool] is not the set of A
language booleans (i.e., true and false), but rather, the T
values that behave as A booleans (likely, 0 and 1). In particu-
lar, the compiler from A to T must send true and false into
V[bool], but the latter can include more values. There is
also an expression relation, written E[[74], that is the set of T
language terms that evaluate to values in V[7,] (or diverge,
or run to a well-defined error). The second atypical, and
novel, aspect is that the relation is indexed with the types of
both of our source languages; in this example, A and B. Since
they compile to the same target, this works: the inhabitants
of V[bool] and V[int] are both T values. By bringing the
types of both languages into a common setting, the verifier
gains powerful reasoning principles; for example, we can

ask if V[bool] = V[int].

PLDI °22, June 13-17, 2022, San Diego, CA, USA

2.4 Soundness of Conversions

Using the realizability models defined in §2.3, the verifier
can prove that the convertibility rules defined in §2.2 are
sound. In particular, if 7, ~ 7, then she should show that the
conversions Cy, ., and C,,,., actually translate expressions
between the types correctly. This is done by showing for any
term e in E[z,], that C;,+., (e) is in E[7], and similarly
for C,,,. Since the model defines type interpretations, this
ensures that the conversions do exactly what is expected.

2.5 Soundness of Entire Languages

Proving the conversions sound (§2.4) is the central goal, of
course, but the verifier also needs to ensure that the model
defined in §2.3 is actually faithful to the languages. She does
this by following the standard approach for proving semantic
type soundness. First, for each typing rule in both source
languages, she proves that a corresponding lemma holds in
terms of the model. For example, for pairs she proves that
ife € 8[r X 1] then fst* e € &[] —note we write fst*,
which is T code (and could be an array projection, or some
other T operation), since what is in &[] are T terms.

3 Shared Memory

Aliased mutable data is challenging to deal with no matter the
context, but aliasing across languages is especially difficult
because giving a pointer to a foreign language can allow for
unknown data to be written to its address. Specifically, if the
pointer has a particular type in the host language, then only
certain data should be written to it, but the foreign language
may not respect or even know about that restriction. One
existing approach to this problem is to create proxies, where
data is guarded or converted before being read or written [17,
32, 47]. While sound, this comes with significant runtime
overhead. Here, our framework allows a different approach.

Languages. In this case study, we explore this problem
using two simply-typed functional source languages with
dynamically allocated mutable references, RefHL and
(for “higher-level” and “lower-level”). RefHL has boolean,
sum, and product types, whereas has arrays (

). Their syntax is given in Fig. 1 and their static semantics
— which are entirely standard — are elided (see [42]). These
two languages are compiled (Fig. 3—note that we write e*
to indicate e’, where e ~» ¢’) into an untyped stack-based
language called StackLang (inspired by [29]), whose syntax
and small-step operational semantics — a relation on config-
urations (H; S; P) comprised of a heap, stack, and program —
are given in Fig. 2; here we describe a few highlights. First,
we note that StackLang values include not only numbers,
thunks, and locations, but arrays of values, a simplification
we made for the sake of presentation. Second, notice the
interplay between thunk and lam: thunks are suspended
computations, whereas lam is an instruction (not a value)

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

RefHL Typer == unit|bool |7+7r| X7 |7r—>7|refr
Expr.e == ()]|true|false|x|inle]|inre

| (e,e) | fste|snde|ifeee|Ax:te|ee

| match e x{e} y{e} |refe|le|e:=¢e] (e

Typer == [[z]] |
Expr.e == n|x]| | | |
| | | e | | (e
Figure 1. Syntax for RefHL and
Program P x= - |i,P Valuev := n|thunkP|¢][v,...]

Instruction i push v | add | less? | ifo P P | lam x.P | call
| idx | len | alloc | read | write | fail ¢

TypE | Ipx | Conv

Error Code ¢

Heap H = {l:v,...} Stack S == v,...,v | Fail c
(H;S; push v, P) —(H;S,v; P) (S # Fail ¢)
(H;S,n’, n;add, P) —(H;S, (n+n’); P)

(H;S,n’, n; less?, P) —(H;S, b; P) (b=0ifn<n’ else 1)
(H;S, n;ifo Py Py, P) —(H:S;P,P) (i=1ifn=0else 2)

(H;S;if0 P71 P, P) — (H; S; fail TypE)
(H;S,v;lam x.P1, P2) —(H;S; [x+—>V]P1,P2)
(H;S, thunk Py;call, P) —(H;S;P1, Py)

(H;S, [vo, ..., vw], n;idx, P)—(H;S, vu; P)

(H;S, [vo, ..., Vvr], n;idx, P)— (H; S; fail Ipx)
(H;S, [vo,...,vn];len,P) —(H;S,(n+1);P)
(H; S, v; alloc, P) —(HW{t:v};S, £;P)
(Hw{t:v};S, t;read, P) —(HW{f:v};S, v; P)
(Hw{t:_};S, £, v; write, P) —(Hw{f:v};S;P)
(H;S; fail ¢, P) —(H;Fail ¢; -)

(S#5,n)

(nefo,n’])
(ng[0.n"])

Figure 2. Syntax and selected operational semantics for
StackLang (most fail TYPE cases elided).

responsible solely for substitution!. We can see how these
features are combined, or used separately, in our compilers
(Fig. 3). Finally, note that for any instruction where the pre-
condition on the stack is not met, the configuration steps to
a program with fail TypE (a dynamic type error), although
we elide most of these reduction rules for space.

Convertibility. In our source languages, we may syntac-
tically embed a term from one language into the other using
the boundary forms (e),, and (e|),,. The typing rules for
boundary terms require that the boundary types be convert-
ible, written 7, ~ 7. Those typing rules are:

ke A ~

Tk (e)r, :7a

s Trerta A~

[T F (e

Note that the convertibility judgment is a declarative, ex-
tensible judgment that describes closed types in one language
that are interconvertible with closed types in the other, al-
lowing for the possibility of well-defined runtime errors. By
separating this judgment from the rest of the type system,

1A la Levy’s Call-by-push-value [31].

Semantic Soundness for Language Interoperability

SWAP £ [am x.(lam y.push x, push y)
DROP = lam x.() DUP = lam x.(push x, push x)

() ~» push 0 x ~> push x

|
true | false ~» push (0] 1)
inle|inre ~» ef lamx.(push [(0 | 1),x])
ifeer e ~ etifo et el
match e ~» et DUP, push 1,idx, SWAP, push 0,
x{e1} y{e>} idx, if0 (lam x.eT) (lam y.e¥)
(e1,ep) ~s ef, e, lam xp, x1.(push [x1,x2])
fste|snde ~» et push (0| 1),idx
e1 e ~ ef,e?, SWAP, call
ref e ~ et alloc
e =ep ~s e7, e, write, push 0
()~ it * Cosr
~» push n | ~s et et SWAP, add
~ et et lamxn, ..., X7
(push [x1,...,%xn])
~s et et idx
~» push (thunk lam x.e*)
~s et read
e ~ et ol

Figure 3. Selections from compilers for RefHL and

the language designer can allow additional conversions to
be added later, whether by implementers or even end-users.
The second thing to note is that this presentation allows for
open terms to be converted, so we must maintain a type
environment for both languages during typechecking (both
I' and I'), as we have to carry information from the site of
binding—possibly through conversion boundaries—to the
site of variable use. A simpler system, which we have ex-
plored, would only allow closed terms to be converted. In
that case, the typing rules still use the 7, ~ 73 judgment but
do not thread foreign environments (using only I' for RefHL
and only I' for).

We present, in Fig. 4, some of the convertibility rules we
have defined for this case study (we elide 71 X 7, ~ [7]),
which come with target-language instruction sequences that
perform the conversions, written C,,,,, (some are no-ops).
An instruction sequence C,,,,,, while ordinary target code,
when appended to a program in the model at type 74, should
result in a program in the model at type 73. An implementer
can write these conversions based on understanding of the
sets of target terms that inhabit each source type, before
defining a proper semantic model (or possibly, without defin-
ing one, if formal soundness is not required). They would do
this based on inspection of the compiler and the target.

From Fig. 3, we see that bool and int both compile to target
integers, and importantly, that if compiles to if0, which
means the compiler interprets false as any non-zero integer.
Hence, conversions between bool and are identities.

For sums, we use the tags 0 and 1, and as for if, we use
if0 to branch in the compilation of match. Therefore, we can

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Choolsints Cintsbool : bool ~

Cref boolis ,C —ref bool : ref bool ~
Cm—> ,C IR N Cm—) ,C o T2
Cri+ry[int] Clint]s 41, : T1 + 72 ~
Choolrs =C —bool = Cref bool =C s ref =
bool
Criinio 2 DUP, push 1, idx, SWAP,push 0, idx, DUP,
if0 (SWAP, C; —int)
(SWAP, Cy,sint).lam xy.lam x¢.push [xt, xyv]
C T +7) é

DUP, len, push 2, SWAP,less?, if0 fail Conv,

DUP, push 1, idx, SWAP,push 0, idx, DUP,

ifo (SWAP, C HU)(DUP, push —1, add,

if0 (SWAP, Cinisr,)(fail Conv)),lam xy.lam x¢.push [x¢, xy]

Figure 4. Conversions for RefHL and

choose if the inl and inr tags should be represented by 0
and 1, or by 0 and any other integer n. Given that tags could
be added later, we choose the former, thus converting a sum
to an array of integers is mostly a matter of converting the
payload. In the other direction, we have to handle the case
that the array is too short, and error.

The final case, between ref bool and , is the reason
for this case study. Intuitively, if you exchange pointers, any
value of the new type can now be written at that address,
and thus must have been compatible with the old type (as
aliases could still exist). Thus, we require that bool and
are somehow “identical” in the target, so conversions are
unnecessary.

Semantic Model. Declaring that a type bool is “identical”
to int or that 7 is convertible to 7 and providing the conver-
sion code is not sufficient for soundness. In order to show
that these conversions are sound, and indeed to understand
which conversions are even possible, we define a model for
source types that is inhabited by target terms. Since both
languages compile to the same target, the range of their re-
lations will be the same (i.e., composed of terms and values
from StackLang), and thus we will be able to easily and di-
rectly compare the inhabitants of two types, one from each
language.

Our model, which aside from the use of StackLang is a
standard step-indexed unary logical relation for a language
with mutable state (essentially following Ahmed [4]), is pre-
sented with some parts elided in Fig. 5 (see [42]).

We give value interpretations for each source type 7, writ-
ten V[z] as sets of target values v paired with worlds W that
inhabit that type. A world W is comprised of a step index
k and a heap typing ¥, which maps locations to type inter-
pretations in Typ. As is standard, Typ is the set of valid type
interpretations, which must be closed under world extension.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

A future world W’ extends W, written W 2 W, if W’ has a
potentially lower step budget j < W.k and all locations in
W.¥ still have the same types (to approximation j).

Intuitively, (W,v) € V[r] says that the target value v
belongs to (or behaves like a value of) type 7 in world W. For
example, ‘V[unit] is inhabited by 0 in any world. A more
interesting case is V[bool], which is the set of all target
integers, not just 0 and 1, though we could choose to define
our model that way (provided we compiled bools to 0 or 1).
An array V[|7]] is inhabited by an array of target values v;
in world W if each v is in “V[z] with W.

Functions follow the standard pattern for logical relations,
appropriately adjusted for our stack-based target language:
V[r1 — 2] is inhabited by values thunk lam x.P in world
W if, for any future world W’ and argument v in V]
at that world, the result of substituting the argument into
the body ([x+>V]P) is in the expression relation at the result
type E[r2]. Reference types V[ref 7] are inhabited by a
location ¢ in world W if the current world’s heap typing
W.¥ maps ¢ to the value relation V] approximated to the
step index in the world W k. (The j-approximation of a type,
written | V(]];, restricts V[r] to inhabitants with worlds
in World;.)

Our expression relation E[r] defines when a program P in
world W behaves as a computation of type 7. It says that for
any heap H that satisfies the current world W, written H : W,
and any non-Fail stack S, if the machine (H;S; P) terminates
in j steps (where j is less than our step budget W.k), then
either it ran to a non-type error or there exists some value
v and some future world W’ such that the resulting stack
S’ is the original stack with v on top, the resulting heap H’
satisfies the future world W’ and W’ and v are in ‘V[].

At the bottom of Fig. 5, we show a syntactic shorthand,
[[;T F e 7], for showing that well-typed source programs,
when compiled and closed off with well-typed substitutions
y that map variables to target values, are in the expression
relation. Note G[I'] contains closing substitutions y in world
W that assign every x : 7 € T to a v such that (W, v) € V[z].

With our logical relation in hand, we can now state formal
properties about our convertibility judgments.

Lemma 3.1 (Convertibility Soundness).
Ifr ~ 7, then V(W,P) € &[r].(W,(P,C..)) € E[7]
AY(W,P)e&[r] (W, (P,Cr.)) €E[T].

Proof. We sketch the ref bool ~ case; (rest elided,
see [42]). For ref bool ~ , what we need to show
is that given any expression in E[ref bool], if we apply
the conversion (which does nothing), the result will be in
&l]- That requires V[ref bool] = V[1.

The value relation at a reference type says that if you look
up the location ¢ in the heap typing of the world (W.¥), you
will get the value interpretation of the type. That means a
ref bool must be alocation ¢ that, in the model, points to the
value interpretation of bool (i.e., ‘V[bool]). In our model,

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

this must be true for all future worlds, which makes sense
for ML-style references. Thus, for this proof to go through,
V[bool] must be the same as V[int], which it is. i

Once we have proved Lemma 3.1, we can prove semantic
type soundness in the standard two-step way for our en-
tire system. First, for each source typing rule, we define a
compatibility lemma that is a semantic analog to that rule.
For example, the compatibility lemma for the conversion
typing rule, shown here, requires the proof of Lemma 3.1 to

go through:

[;Trerc)fAT~r = [Tk (e),: 7]
Once we have all compatibility lemmas we can prove the
following theorems as a consequence:

Theorem 3.2 (Fundamental Property).

IfI;T v then [T;T ¢] and if ;T + e : 7 then
[T Fe:1].
Theorem 3.3 (Type Safety for) If -k

then for any H : W, if (H;-;e*) 5 (H’;S’; P"), then either
(H’;S’; P’y — (H”;S”";P"), or P’ = - and either S’ = Fail c
for some c € {Conv, IDx} or S’ =v.

Theorem 3.4 (Type Safety for RefHL). If-- F e : 7
then for any H : W, if (H;-;e*) 5 (H’;S’; P’), then either
(H’;S’;P’y — (H”;S”;P”), or P’ = - and either S’ = Fail c
for some ¢ € {ConV, IDx} orS’ = v.

Discussion. In addition to directly passing across point-
ers, there are two alternative conversion strategies, both of
which our framework would accommodate. First, we could
create a new location and copy and convert the data. This
would allow the more flexible convertibility which does not
require references to “identical” types, but would not allow
aliasing, which may be desirable. Second, we could convert
(unit — 7) X (7 — unit) and in-
stead ref rand (assuming we had pairs)—i.e., read/write
proxies to the reference (similar to that used in [17]). This
allows aliasing, i.e., both languages reading / writing to the
same location, and is sound for arbitrary convertibility rela-
tions, but comes at a runtime cost at each read / write.

The choice to use the encoding described in this case study,
or either of these options, is not exclusive—we could pro-
vide different options for different types in the same system,
depending on the performance characteristics we need.

4 Affine & Unrestricted

In our second case study, we consider an affine language,

, interacting with an unrestricted one, MiniML. We en-
force ’s at-most-once variable use dynamically in the
target using the well-known technique described, e.g., in
[50], where affine resources are protected behind thunks
with stateful flags that raise runtime errors the second time

Semantic Soundness for Language Interoperability

AtomVal, = {(W,v) | W € World,}
Worldp, = {(k,¥) | k <n A¥Y C HeapTy; }
HeapTy,, = {¢ — Typ,,...}

Typn = {R € 2A7omValn | y(W,v) € R.
VW . wecw — (W/,v) eR}

V[bool] = {(W,n)} V[unit] = {(W,0)}
VI + 2] = {(W, [0,v]) | (W,v) € V[n]}
U{W, [1,v]) [(W,v) € V[r]}
V[— 2] = {(W, thunk lam x.P) |
Y, W 3 W.(W',v) € V[r]
= (W', [x—V]P) € &[]}
V[ref] ={(W,0) | W¥ () = [V[r]lw.i}

Vint] = {(W,n)}
(V[[]]:{(W’[VL'-"Vn])|(W’Vi)€(v[[II}
V[1 = {(W, thunk lam x.P) |

Y, W O3 W.(W',v) € V][]
= (W', [x—V]P) € &[]}
V[ret] ={(W,0) | W) = [V[]Iwi}
&[] = {(W,P) | VH:W, S # Fail ,H,S",j < Wk.
(H;S; P) ER (H’;8’;-y = §’ = Fail c A ¢ € {Conv, IDx}
VI, W IW. (S =S,vAH : W A (W, v) € V[]))}
[T re:c] =VWyryr (W,yr) € GIIT A (W, yr) € G[1]
= (W, close(yr, close(yr, e%))) € E[7]

[T kel =VWyryr .(Woyr) € GIT] A (W, yr) € G[1]
= (W, close(yr, close(yr, €*))) € E[7]

Figure 5. Logical relation for RefHL and

the thunk is forced. However, an interesting and challenging
aspect of our case study is that we only want to use dynamic
enforcement when we lack static assurance that an affine
variable will be use at most once.

Languages. We present the syntax of ,MiniML, and
our untyped Scheme-like functional target LCVM in Fig. 6
and selected static semantics in Fig. 7 (see supplementary
material [42]). Our target LCVM is untyped, with functions,
pattern matching, mutable references, and a standard oper-
ational semantics defined via steps (H,e) — (H’,e’) over
heap and expression pairs. As in the previous case study, we
will support open terms across language boundaries, and
thus need to carry environments for both languages through-
out our typing judgments.

To avoid unnecessary dynamic enforcement, we have two
kinds of affine function types in : —o and —.? We intro-
duce a distinction between functions (and thus bind-
ings) that may be passed across the boundary (our “dynamic”
affine arrows —o, written with a hollow circle and bind dy-
namic affine variables a.), and ones that will only ever be

%In our supplementary materials [42], we also present a complete case study
with a simpler variant of , which does not distinguish —o /—e and thus
does dynamic enforcement even on affine variables that have no interaction
with unrestricted code.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Typer == | |int | | |7] |
Expr.e u=() | | [n]x]ac]
leel(e)s]!v] |
ledle2] |
Value =0 | v] |
Mode =o|
MiniML
Typer u==unit|int|cxr|r+r|r—7|Var|a]|refr
Expr.e ==()|n|x]|(ee)|fste|snde|inle|inre
| match e x{e} y{e} | Ax : t.e | ee | Aa.e | e[7]
[refelle|e:=¢e|(e)r
LCVM
Expre ==()|n|¢|x]|(ee)|fste|snde]|inle]|inre

| if e {e} {e} | match e x{e} y{e} | letx=eine
| Ax{e} |ee|refe|le|e:=e]|failc
Valuesvu=() | n| 7] (v,v)]| Ax.e

Errc :=TypE | Conv
Figure 6. Syntax for MiniML, ,and LCVM.
€ AT T + no., (2)
N T;TQF A T;TQ F
N; T3 T -
ATTQ F
= AT Q0 F AT Qs v
AT T5Q F
=0 ¥
AT T 3 AT T F
AT TQ R
=Q. v no.(Qe) AT;T;Qc ke T ~T
5Nk (e)r:t
= ;QuATrer i — 1 3 QAT ey
AT Qe e
Figure 7. Selected statics for and MiniML.

used within (our “static” affine arrows —e, written with
a solid circle and bind static affine variables a.).

We can see in Fig. 7 how ’s affine-variable environ-
ment Q is maintained: variables are introduced by lambda
and tensor-destructuring let, and environments are split
across subterms, but all bindings are not required to be used,
as we can see, in the variable rule. (In the full rules in supple-
mentary material [42], a similar pattern shows up for base
types). Since affine resources can exist within unrestricted
MiniML terms, our affine environments (2 need to be split,
even in MiniML typing rules.

Note that we do not allow a dynamic function to
close over static resources, as it may be duplicated if passed to

PLDI °22, June 13-17, 2022, San Diego, CA, USA

thunk(e) = let r = ref 1in A_{if !rq {fail Conv} {rs :=0;e}}

O~ () n~n Ax:r.e~ Ix{e*} / ~w 0/1
M 30 () de v ae s Aagje-{et}

~s et (let x = et in thunk(x))

> oot

> let Xgresh = *,
ae = fst Xgregh,
a, = snd Xgresh iN

Figure 8. Selected cases for MiniML and compilers.

MiniML, and thus the static resources would be unprotected.
However, we do allow a dynamic function to accept a static
closure as argument. This is safe because the dynamic guards
will ensure that the static closure is called at most once. Once
called, any static resources in its body will be used safely
because the static closure typechecked.

We present selections of our compilers in Fig. 8 that high-
light the interesting cases: how we compile variables, binders,
and application. In the application cases, we can see that
static variables do not introduce the overhead that dynamic
variables have (see the thunk macro at the top of the figure
that errors on second invocation).

Convertibility. We define convertibility relations and
conversions for and MiniML, highlighting selections
in Fig. 9 (see supplementary material for elided ~unit
and ~ 11 X 17;). We focus on the conversion between
— and (note, of course, that it is impossible to safely
convert —e to MiniML). Our compiler is designed to support
affine code being mixed directly with unrestricted code. Intu-
itively, an affine function should be able to behave as an unre-
stricted one, but the other direction is harder to accomplish,
and higher-order functions mean both must be addressed
at once. In order to account for this, we convert
not to 7y — 7, but rather to (unit — ;) — . That is, to
a MiniML function that expects its argument to be a thunk
containing a 7y rather than a r; directly. Provided that the
thunk fails if invoked more than once, we can ensure, dy-
namically, that a MiniML function with that type behaves
as an function of a related type. These invariants are
ensured by appropriate wrapping and use of the compiler
macro thunk(-) (see top of Fig. 8).

Semantic Model. The most interesting part of this case
study is the logical relation because we must build a model
that allows us to show that the dynamic and static affine
bindings within are used at most once. For a dynamic
binding, this is tracked in target code by the dynamic refer-
ence flag created by the macro thunk. For a static binding,
we use a similar strategy of tracking use via a flag, but rather
than a target-level dynamic runtime flag, we create a phan-
tom flag that exists only within our model. Specifically, we
define an augmented target operational semantics that exists

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

Cint.—> e —int * int ~
C HT]aCTﬂ—) : ~ 1N CQ»—» ,C T ¢ ~ T2
Cw ,C s ~(unit > 1) - o

Choohsint () € Cintishoo(€) 2ife01

C —(unit —) — (&) =
let x = e in AX¢hnk-let Xconv = Cryisz, (Xthnk ()) in

let Xace = thunk(xcony) in Cr,75 (X Xacc)
C(unit—wn) — T (e) = letx=ein

AXthnk-let Xace = thunk(C T (Xthnk () in Cr (X Xacc)

Figure 9. Selected convertibility rules for MiniML and

solely for the model, and any program that runs without
getting stuck under the augmented semantics has a trivial
erasure to a program that runs under the standard semantics.
This means we are using the model to identify a subset of
target programs (the erasures of well-behaved augmented
programs) that do not violate source type constraints (i.e.,
do not use static variables more than once), even if there is
nothing in the target programs that actually witnesses those
constraints (i.e., dynamic checks or static types).

We build the model as follows. First, we extend our ma-
chine configurations to keep track of phantom flags f — i.e.,
in addition to a heap H and term e, we have a phantom flag
set . Second, the augmented semantics uses one additional
term, protect, which consumes one of the aforementioned
phantom flags when it reduces:

Expressions e ::= ... protect(e, f)
(P W {f}, H, protect(e, f)) --> (®,H,e)

And finally, we modify the two rules that introduce bindings
such that whenever a binding in the syntactic category e is
introduced, we create a new phantom flag (where “f fresh”
means f is disjoint from all flags generated in this execution):

f fresh

(D, H, let ae = vine)-->(P W {f}, H, [aer=protect(v, f)]e)
f fresh

(D, H, Aaq.€ v)-->(® W {f}, H, [ae+>protect(v, f)]e)

Note that we write --» for a step in this augmented semantics,
to distinguish it from the true operational step —. While
phantom flags in the augmented operational semantics play
a similar role in protecting static affine resources as dynamic
reference flags in the dynamic case, the critical difference
is that in the augmented semantics, a protect(-)ed resource
for which there is no phantom flag will get stuck, and thus
be excluded from the logical relation by construction. This
is very different from the dynamic case, where we want —
and, in fact, need — to include terms that can fail in order
to mix MiniML and without imposing an affine type

Semantic Soundness for Language Interoperability

system on MiniML itself. What this means for the model is
that dynamic reference flags are a shared resource that can
be accessed from many parts of the program and therefore
tracked in the world, while phantom flags are an unique
resource which our type system ensures is owned/used by
at most one part of the program, which is what allows us to
prove that the augmented semantics will not get stuck.

While the full definitions are in our supplementary mate-
rials [42], we give a high-level description of our expression
and value relations, shown in Fig. 10, noting that the high-
level structure is similar to the first case study.

Our expression relation, &[r],, is made up of tuples of
worlds W and phantom flag stores / term pairs (®;, e;), where
each flag store represents the phantom variables owned by
the expression. Our worlds W keep the step index, a standard
heap typing ¥ (see §3), but also an affine flag store ®, which
maps dynamic flags ¢ to either a marker that indicates a
dynamic affine variable has been used (0, written USED), or
the phantom flags @ that it closes over if it has not been
used (a set that can be empty, of course). These dynamic
flags ¢ are a subset of the heap, disjoint from ¥ (which tracks
the rest of the heap, i.e., all the normal/non-dynamic-flag
references). The expression relation then says that, given a
heap that satisfies the world and arbitrary “rest” of phantom
flag store @, (disjoint from that closed over by the world
and the owned portion), the term e will either: (i) run longer
than the step index accounts for, (ii) fail Conv (error while
converting a value), or (iii) terminate at some value e’, where
the flag store ® has been modified to &y W &, the heap has
changed to H’, and the new world W’ is an extension of
W. World extension (Cg,) is defined over worlds that do
not contain phantom flags from ®,, since phantom flags are
a local resource and the world contains what is global. It
allows the step index to decrease, the heap typing to gain
(but not overwrite or remove) entries, and the affine store to
mark (but not unmark) dynamic bindings as USED.

At that future world, we know that the resulting value,
along with their @, will be in the value relation V[z],. The
phantom flag store @, is “garbage” that is no longer needed,
and the “rest” is unchanged. Note that, while running, some
phantom flags may have moved into the new world but the
new world cannot have absorbed what was in the “rest”.

Our value relation cases are now mostly standard, so we

will focus only on the interesting ones: — and —. V[1.

is defined to take an arbitrary argument from V[r]., which
may own static phantom flags in ®, and add a new loca-
tion ¢ that will be used in the thunk that prevents mul-
tiple uses, but also store the phantom flags in the affine
store. The idea is that a function can be applied
to an expression that closes over static phantom flags, like

—the latter will have phantom
flags for both b, and c.. The body is then run with the argu-
ment substituted with a guarded expression. Now, consider

PLDI °22, June 13-17, 2022, San Diego, CA, USA

guard(e, £) = A_.{if ¢ {fail Conv} {¢ := USED; e}}
VI — 2]p = {(W, (0, Ax.{e})) | Vv W".
WEg W A (W,(0,v) e (V[[ﬁﬂp
= (W/’ (03 [XP—)V]C)) € SHTZHP}
VI I ={(W, (0, A x{e})) | YO v W’.
W o W A (W, (@) € V[r].
= (WEkW.YW.OWl—),
(0, [x+—guard(v, £)]e)) € E[=2].}
VI [={(W, (@120 {e})) |
VO fiv W.W Co W A (W, (2,v) € V[n].
ANOND =0 A f¢gdwd Wilags(W’)
= (W, (®w D" W {f}, [asr>protect(v, f)]e))
€ &[n]}
Elr]p = {(W, (@, e)) | freevars(e) = 0 A
VO, H:W, e/, H, j < Wk. 04D AD, & D : WA
(@, W flags(W) & ®, H,e) -5 (0, H',) »
= e’ =fail Conv Vv (30 &5 W'
D' = @ W flags(W') ¥ Qp W @y
AWEg, WAH W AW, (2e)) € V[t]p)}
(k,¥,0)Co (J,¥',0") 2 (j,¥',0") € Worldj A
Jj < kA D#flags(k, ¥,0) A D#flags(j, ¥/, 0)
AVE € dom(¥).[¥(0)]; =¥/ (¢) A
V¢ € dom(0).(¢) € dom(®’)A
(©(f) = usep = ©’(f) = USED)
A(O()=d = O'(f) = (USED V D))

Figure 10. Selections of MiniML & Logical Relation.

what happens when the variable is used: the guard(-) wrap-
per will update the location to USED, which means that in the
world, the phantom flags that were put at that location are no
longer there — i.e., they are no longer returned by flags(W),
which returns all phantom flags closed over by dynamic flags.
That means, for the reduction to be well-formed, the phan-
tom flags have to move somewhere else—either back to being
owned by the term (in ®¢) or in the discarded “garbage” ;.
Once the phantom flag set has been moved back out of the
world, the flags can again be used by protect(-) expressions.

The static function, V|], has a similar flavor, but
it may itself own static phantom flags. That means that the
phantom flag set for the argument must be disjoint, and
when we run the body, we combine the set along with a
fresh phantom flags f for the argument, which are then put
inside the protect(-) expressions.

With the logical relation in hand, we can prove analogous
theorems to Lemma 3.1 (Convertibility Soundness), Theo-
rem 3.2 (Fundamental Property), Theorem 3.3 (Type Safety
for Lang A), and Theorem 3.4 (Type Safety for Lang B).

Note that to prove our type safety theorems, we prove a

lemma which states that, if (H, e) 5 (H’,e’) -, then for any
®, (d,H, e) 5 (®1, H{,e7) -». This lemma is necessary be-
cause the given assumption of the type safety theorem is that
the configuration (H, e) steps under the normal operational

PLDI °22, June 13-17, 2022, San Diego, CA, USA

semantics, but to apply the expression relation, we need
that a corresponding configuration steps to an irreducible
configuration under the phantom operational semantics.

Although our phantom flag realizability model was largely
motivated by efficiency concerns with the dynamic enforce-
ment of affinity, more broadly, it demonstrates how one can
build complex static reasoning into the model even if such
reasoning is absent from the target. Indeed, the actual tar-
get language, which source programs are compiled to and
run in, has not changed; the augmentations exist only in the
model. In this way, the preservation of source invariants is
subtle: it is not that the types actually exist in the target (via
runtime invariants or actual target types), but rather that the
operational behavior of the target is exactly what the type
interpretations characterize.

5 Memory Management & Polymorphism

For our third case study, we consider how MiniML, whose ref-
erences are garbage collected, can interoperate with core L,
a language with safe strong updates despite memory aliasing,
supported via linear capabilities [3]. This case study primar-
ily highlights how different memory management strategies
can interoperate safely, in particular, that manually man-
aged linear references can be converted to garbage-collected
references without copying. This is of particular interest as
more low-level code is written in Rust, a language with an
ownership discipline on memory that similarly could allow
safe transfer of memory to garbage-collected languages.
We also use this case study to explore how polymor-
phism/generics in one language can be used, via a form of
interoperability, from the other. This is interesting because
significant effort has gone into adding generics to languages
that did not originally support them, in order to more easily
build certain re-usable libraries.> While we are not claiming
that interoperability could entirely replace built-in polymor-
phism, sound support for cross-language type instantiation
and polymorphic libraries presents a possible alternative,
especially for smaller, perhaps more special-purpose, lan-
guages. This would allow us to write something like:

map(((Ax : int.x + 1)) int)— (int) ([1, 2, 31115t (int)

where the blue language supports polymorphism, and has a
generic map function, while the pink language does not. Of
course, since convertibility is still driving this, in addition
to using a concrete intlist, [1, 2, 3], as above, the language
without polymorphism could convert entirely different (non-
list) concrete representations into similar polymorphic ones
— i.e., implementing a sort of polymorphic interface at the
boundary. For example, rather than an intlist (or a stringlist),
in the example above, one could start with an intarray or

Se.g., Java 1.5/5, C# 2.0 [28] and more recently, in the Go programming
language

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

intbtree, or any number of other traversable data structures
that could be converted to 1ist int (or any list).

Languages. We present the syntax of L*, augmented with
forms for interoperability, in Fig. 11. L* has linear capa-
bility types cap { 7 (capability for abstract location ¢ stor-
ing data of type 7), unrestricted pointer types ptr ¢ to sup-
port aliasing, and location abstraction (Al.e : Y¢.7 and
rZ, v1 : 3Z.7). The key insight to L? is that the pointer
can be separated from the capability and passed around in
the program separately. At runtime, the capabilities will be
erased, but the static discipline only allows pointers to be
used with their capabilities (tied together with the type vari-
ables ¢), and only allows capabilities to be used linearly. This
enables safe in-place updates and low-level manual memory
management while still supporting some flexibility in terms
of pointer manipulation. We refer the reader to our supple-
mentary materials [42], or the original paper on L? ([3])
for more details on its precise static semantics, but present
highlights here. In particular, new allocates memory and
returns an existential package containing a capability and
pointer (3Z.cap ¢ v ® ptr £). swap takes a matching capa-
bility (cap ¢ 71) and pointer ptr { and a value (of a possibly
different type 7,) and replaces what is stored, returning the
capability and old value cap ¢ 7, ® 71. Note that since ca-
pabilities record the type of what is in the heap and are
unique, strong updates are safe. Finally, free takes a package
of a capability and pointer (3Z.cap ¢ 7 ® ptr) and frees the
memory, consuming both in the process and returning what
was stored there—any lingering pointers are harmless, as the
necessary capability is now gone.

We compile both L? and MiniML to an extension of the
Scheme-like target LCVM that we used in the previous case
study (see Fig. 13 for L?; MiniML is standard). Our additions
to LCVM, shown in Fig. 12, add manual memory allocation
(alloc), free (which will error on a garbage-collected loca-
tion), an instruction (gcmov) to convert a manually managed
location to garbage collected, and an instruction (callgc) to
explicitly invoke the garbage collector. The last allows the
compiler to decide where the GC can intercede (before allo-
cation, in our compiler), and in doing so simplifies our model
slightly. The memory management itself is captured in our
heap definition, which allows the same location names to be

used as either GC’d (»ﬁ) or manually managed ("), and re-
used after garbage collection or manual free. Dereference (le)
and assignment (e := e) work on both types of reference (fail-
ing, of course, if it is manually managed and has been freed).
This strategy of explicitly invoking the garbage collector and
using a single pool of locations retains significant challeng-
ing aspects about garbage collectors while remaining simple
enough to expose the interesting aspects of interoperation.

As in the previous case study, we have boundary terms,
(e). and (e)) ., for converting a term and using it in the other

Semantic Soundness for Language Interoperability

L3
Type © x= unit|bool |T®@7|T—o7|!T
|ptrd |capgr|V¢.r| ALt
Value v w= Ax:te| ()| B| (v, v)|WV]|ALe]|TE v
Expr. e x= v|x|(e,e)|ee|let() = eine|ifeee
| let (x, x) = eine|let!x = eine | duple
| drop e | new e | freee | swapeee | e [{]
Irg evllet rg, x7 = einel (e)e | (e),
DurLicABLE = {unit, bool, ptr g, !z}
Figure 11. Syntax for L°.
Expr e = ...|alloce|freee|gcmov e | callgc
Heap H = {’gu,H|{’|g—c>v,H|'
Err Codec == ...|PTR

Figure 12. Additions to LCVM (see Fig. 6 for base LCVM).

language. Now, we also add new types (7), pronounced “for-
eign type”, and allow conversions from 7 to (7) for opaquely
embedding® types for use in polymorphic functions.

If a language supports polymorphism, then its type ab-
stractions should be agnostic to the types that instantiate
them, allowing them to range over not only host types, but
indeed any foreign types as well. Doing so should not vio-
late parametricity. However, the non-polymorphic language
may need to make restrictions on how this power can be
used, so as to not allow the polymorphic language to violate
its invariants. To make this challenge material, our non-
polymorphic language in this case study has linear resources
(heap capabilities) that cannot, if we are to maintain sound-
ness, be duplicated. This means, in particular, that whatever
interoperability strategy we come up with cannot allow a
linear capability from L to flow over to a MiniML function
that duplicates it, even if such function is well-typed (and
parametric) in MiniML.

Convertibility. The first conversion that we want to high-
light is between references. In L3, pointers have capabilities
that convey ownership, and thus to convert a pointer we
also need the corresponding capability. For brevity, we may
use REF 7 to abbreviate a capability+pointer package type.

Cosr,CrimpiT~1T

CREF rref o Cref rorep ¢ - Fef 7~ 3f.cap z @ Iptr §

CRrir rsref r(€) = letx=snd ein
let _ = (x := Crsr(!X)) in gcmov x
Cref risrir ¢ (€) = let x = alloc Cris(le) in ((),x)

The glue code itself is quite interesting: going from L to
MiniML, since the L? type system guarantees that this is the
only capability to this pointer, we can safely directly convert
the pointer into a MiniML pointer with gcmov after in-place

4Similar to “lumps” in Matthews-Findler[33], though they give a single lump
type for all foreign types, i.e., they would have only (), rather than (7).

PLDI °22, June 13-17, 2022, San Diego, CA, USA

xw x () w () true/false »» 0/1 v ~ws v Ax:7.e o Axet

e1€e2 N> e1+ez+

if €1 €2 €3 ~ o if e1+ 62+ e3+

(e1, e2) ~ (er, e™)

duple ~ letx =etin (x, x)

drop e ~s et _=etin ()

new e ~» let _ = callgc in let xp = alloc et
in (0, xe)

free e ~s let x = et in let x, = !(snd x) in
let _ = free (snd x) in x;

swap ec ep ey W let Xp = ep"' inlet _=ecinletx, = Ixp
inlet _ = (xp :=ey+) in ((),xv)

Al.e ~ o Aet

e[Z] ~w et ()

re, el ~ et

(e)< ~ Crise(e?)

let () =ejiney ~wo et _=eqTiney®

letp=e;tinletx; =fstpin
let x =snd pinez*

letx =e;Tiney?t

let x =eqTiney™t

let (x1, x2) =ejine; -~

let'x = eq in ey ~
let ¢, x7=e1ine; ~>

Figure 13. Compiler for L3.

replacing the contents with the result of converting (a less
general rule that had a different premise might not need to
convert, e.g., if the data was already compatible—see the first
case study for more details). Going the other direction, from
MiniML to L3, there is no way for us to know if there are
other aliases to the reference, so we can’t re-use the pointer.
While we could simply disallow this conversion, and error if
it were attempted, instead we copy and convert data into a
freshly allocated manually managed location (note how, in
the target, capabilities are erased to unit). In this case, as in
many, there are multiple sound ways of converting, and it
may be that a particular one makes more sense for your use
case: we took the position that it was useful to get a copy of
the data, unaliased, but perhaps a language designer would
rather force the pointer to be dereferenced on the MiniML
side and the underlying data converted.

We account for interoperability of polymorphism in two
parts. First, we have a foreign type, (7), which embeds an
L? type into the type grammar of MiniML. This foreign type,
like any MiniML type, can be used to instantiate type abstrac-
tions, define functions, etc, but MiniML has no introduction
or elimination rules for it—terms of foreign type must come
across from, and then be sent back to, L3. These come by
way of the conversion rule () ~ 7, which allow terms of
the form (€| ;) (to bring an L? term to MiniML) and (e|),
(the reverse). Moreover, the conversion rule for foreign types
restricts 7 to a safe DUPLICABLE subset of types, but has no
runtime consequences:

7 € DUPLICABLE C<T>._)t(e) L e
Cr(ry(e) =e

C(’E}»—)r’ C'D—)(T) () ~7

PLDI °22, June 13-17, 2022, San Diego, CA, USA

To prove soundness we need to show that DUPLICABLE
types are indeed safe to embed. The soundness condition
depends on the expressive power of the two languages when
viewed through the lens of polymorphism. In our case, since
the non-polymorphic language is linear but the polymorphic
one is not, we need to show that a DUPLICABLE type can be
copied (i.e., none of its values own linear capabilities)—this
includes unit and bool, but also ptr ¢ and any type of the
form !z. Now, consider examples using this:

(Aa.Ax:a.Ay:a.y)[(bool)] (true) o1y (false) hoory (1)
(Ax : BOOL.x) (true)goo. where BOOL = Va.a — a — o (2)

In (1), the leftmost expression is a polymorphic MiniML
function that returns the second of its two arguments. It is
instantiated it with a foreign type, (bool). Next, two terms
of type bool in L are embedded via the foreign conversion,
() (booly» which requires that bool € DupLICABLE. Not only
does this mechanism allow L* programmers to use polymor-
phic functions, but also MiniML programmers to use new
base types. Of course, we could also convert the actual val-
ues, as in (2). To do so, we can define conversions between
Church booleans in MiniML (which has no booleans) and
ordinary booleans in L3:

CBOOL!—)bOOl(e) ze()01

Ya.a — a — a ~ bool
{Aa.Ax:ady:a.y}

Semantic Model. In Fig. 14, we present parts of the logical
relation that we use to prove our conversions and entire
languages sound (see supplementary material [42]).

Our model is inspired by that of core L? [3], though ours is
significantly more complex to account for garbage collection
and interoperation with MiniML. The key is a careful distinc-
tion between owned (linear) manual memory, which is local
and described by heap fragments associated with terms, and
garbage-collected memory, which is global and described
by the world W. Since memory can be freed (via garbage
collection or manual free), reused, and moved from manual
memory to garbage-collected memory, there are several con-
straints on how heap fragments and worlds may evolve so
we can ensure safe memory usage.

With that in mind, our value interpretation of source types
V[r], are sets of worlds and related heap-fragments-and-
values (H, v), where the heap fragment H paired with value
v is the portion of the manually managed heap that v owns.

The relational substitution p maps type variables « to arbi-
trary type interpretations R and location variables { to con-
crete locations ¢. Since MiniML cannot own manual (linear)
memory, all cases of V7], have empty @ heap fragments.
However, during evaluation, memory could be allocated and
subsequently freed so the expression relation does not have

ChoolisBOOL (€) = if0 e {Aa.Ax:aAy:a.x}

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

that restriction. In L3, pointer types ptr do not own loca-
tions, so they can be freely copied. Rather, linear capabilities
cap ¢ 7 convey ownership of the location ¢ that { maps to
and the heap fragment H pointed to by ¢.

In the expression relation &[z],, we run the expression
with a set of pinned locations (L) that the garbage collec-
tor should not touch (which may come from an outer con-
text if we are evaluating a subterm), a garbage-collected
heap fragment that satisfies the world (Hg,), an arbitrary
disjoint manually allocated (MHeap) “rest” of the heap (H,),
composed with the owned fragment (H). Then, assuming
e terminates at v, we expect the “rest” heap is unchanged,
the garbage-collected portion has been transformed to Hy,
the owned portion has been transformed into H’, and that
(W', (H',v)) € V[r],, where W’ is a world the transformed
GC’d portion of the heap Hj must satisfy.

Critical to the relation is world extension, written T,
which indicates how our logical worlds can evolve over time.
In typical logical relations for state, the heap grows mono-
tonically and no location is ever overwritten, which world
extension captures. But, in our setting, the future heap might
have deallocated, overwritten, re-used memory (and re-used
it between the GC and manual allocation). We can’t just
allow arbitrary future states, however, as the semantics of
types do dictate restrictions on what has to happen in the
heap. In particular, there are two sets of locations that we
need to keep careful track of: the rest can change freely. The
first are manually managed locations that we can’t disturb,
which index L captures. Those are generally just the owned
locations of term that we are currently running. The second
are the garbage collected locations that we must preserve in
the heap, at the same type (but we can change the value of),
captured by 1. We also have a syntactic shorthand, denoted
by E, that is indexed by the heap H and the expressions e.
This syntactic shorthand is defined so that L takes its manu-
ally managed locations from the domain of H while n takes
its garbage collected locations as the locations in the original
world that are present in either some value in the heap H
or the expression e. Finally, we often use rchgclocs in order
to compute n when using world extension. rchgclocs(W, S)
is the set of locations in the world W that are actually men-
tioned in the set S; i.e., rchgclocs(W, S) = dom(W) N S.

While our target supports dynamic failure (in the form of
the fail term), our logical relation rules out that possibility,
ensuring that there are no errors from the source nor from
the conversion. This is, of course, a choice we made, which
may be stronger than desired for some languages (and, in-
deed, for our previous two case studies), but given our choice
of conversions, it is possible.

With the logical relation in hand, we prove analogous the-
orems to Lemma 3.1 (Convertibility Soundness), Theorem 3.2
(Fundamental Property), Theorem 3.3 (Type Safety for Lang
A), and Theorem 3.4 (Type Safety for Lang B).

Semantic Soundness for Language Interoperability

Vi, =pF(@)
V[unitl, ={(W.(0,0)}
VI — 2]p ={(W.(0,Ax.e)) [YW',v. WEg WA

(W, (0,v)) e V[ri]p, = (W', (0,[x — v]e)) € E[ra]lp}
VIvar, ={(W.(@._e).) | YR € RelT, W".

WEgeW = (W, (0,0) € E[7] i (a)sr]}

Vlref], ={(W,(0,0) | WY () = |V[]plwk}
Vi@l =V,

V[unit], ={(W,(0,0))}

V[booll, ={(W,(0,b))|be{0,1}}

V[r1 ® 2]p={(W,(H1 WHa, (v, v2))) |
(W, (Hy,v1)) € V][w]p A (W, (Hz,v2)) € V2] p}
V[— 2]p ={(W, (H,Ax.e)) | YW’ Hy,v.
WEHeW A (W, (Hy,v) € V[u], =
(W, (HYHy, [x > v]e)) € E[n2]p}
V'], ={(W,(0,v)) | (W,(0,v)) € V[z],}
Vptrglp, ={(W,(0,0) | pL3() = ¢}
VlcapZz], ={(W,(HW{t—v}()) |
pL3(3) =t A(W,(H,v) e V[z],}

VIvir], ={(W,(HA_e))|
Ve (W, (H,e)) € E[7]pL3(2)me1}
VI3, = (W, (M) | 36 (W, (Hv) € VIelpusion}

Elr]p = {(W,(H,e)) | VL,v,Hgs : W, H; : MHeap, H...

(Hgr WHW Hy,e) S (Hiv) -

= 3H’, H;,BW'.H* = H; $H WH, A H; WA
w E(dom(Hr)),rchgclocs(W,LUFL((:od(HV))) w’

A (W', (H,v)) € V[r], AHy =0}
(k,¥) T, (j,¥) = j <k A L#dom(¥)
AVE e n Y () = [Y(0)];

Note the highlighted parts only apply to MiniML types.

Figure 14. Logical Relation for MiniML and L°.

Our convertibility soundness result proves that our con-
versions above between garbage-collected and manual refer-
ences, as well as L? booleans and MiniML Church booleans
(described above) are sound. We also show that 71 — 7, ~
I(l7y —o 73) assuming 71 ~ 77 and 7, ~ 7.

Discussion. While we showed how to handle universal
types, handling existential types is another question. With
our existing “foreign type” mechanism, we can support defin-
ing data structures and operations over them and passing
both. For example, we could pass an expression of type
(int) X {int) — (int) X {(int) — int, for a counter defined
as an integer. That provides some degree of abstraction,
but doesn’t, for example, disallow passing the (int) back
to some other code that expects that type. We could, how-
ever, in the language with existential types, pack that to
Jda.a X a — axa— int.

More interesting is the question when both languages
have polymorphism. In that case, if we wanted to convert ab-
stract types, we would need to generalize our convertibility
rules to handle open types, i.e., A + 7 ~ 7’. If the interpre-
tation of type variables were the same in both languages

PLDI °22, June 13-17, 2022, San Diego, CA, USA

(i.e., in our model this would mean that both were drawn
from the same relation), this would be sufficient. If, however,
the interpretation of type variables were different in the two
languages (we do this in the case study in §4, see our supple-
mental materials [42] for the use of UnrTyp in V[Va.7],),
we would need, in our source type systems, some form of
bounded polymorphism in order to restrict the judgment
to variables that were equivalent. Otherwise, it would be
impossible to prove convertibility rules sound.

6 Related Work and Conclusion

Most research on interoperability has focused either on re-
ducing boilerplate or improving performance. We will not
discuss those, focusing on work addressing soundness.

Multi-language semantics. Matthews and Findler [33] stud-
ied the question of the interoperability of source languages,
developing the idea of a syntactic multi-language with bound-
ary terms (c.f., contracts [18, 19]) that mediate between the
two languages. They focused on a static language interact-
ing with a dynamic one, but similar techniques have been
applied widely (e.g., object-oriented [20, 21], affine and unre-
stricted [50], simple and dependently typed [41], functional
language and assembly [43], linear and unrestricted [45])
and used to prove compiler properties (e.g., correctness [44],
full abstraction [2, 37]). More recently, there has been an
effort understand this construction from a denotational [15]
and categorical [14] perspective. While the last may seem
particularly relevant to our work, they still firmly root the
multi-language as a source-language construct, rather than
building it out of a common substrate, our key divergence
from this prior work.

Barrett et al. [6] take a slightly different path, directly
mixing languages (PHP and Python) and allowing bindings
from one to be used in the other, though to similar ends.

Interoperability via typed targets. Shao and Trifonov [46,
51] studied interoperability much earlier, and closer to our
context: they consider interoperability mediated by transla-
tion to a common target. They tackle the problem that one
language has access to control effects and the other does not.
Their approach, however, is different: it relies upon a target
language with an effect-based type system that is sufficient
to capture the safety invariants, whereas while our realiz-
ability approach can certainly benefit from typed target lan-
guages, it doesn’t rely upon them. While typed intermediate
languages obviously offer real benefits, there are also unad-
dressed problems, foremost of which is designing a usable
type system that is sufficiently general to allow (efficient)
compilation from all the languages you want to support.
While there are ongoing attempts (probably foremost is the
TruffleVM project [22]) to design such general intermediates,
most have focused their attention on untyped or unsound
languages, and in the particular case of TruffleVM, there is
as-yet no meta-theory.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

An abstract framework for unsafe FFIs. Turcotte et al. [52]
advocate a framework using an abstract version of the for-
eign language, so soundness can be proved without building
a full multi-language. They demonstrate this by proving a
modified type safety proof of Lua and C interacting via the
C FFI, modeling the C as code that can do arbitrary unsound
behavior and thus blamed for all unsoundness. While this
approach seems promising in the context of unsound lan-
guages, it is less clear how it applies to sound languages.

Semantic Models and Realizability Models The use of se-

mantic models to prove type soundness has a long history [34].

We make use of step-indexed models [4, 5], developed as part
of the Foundational Proof-Carrying Code [1] project, which
showed how to scale the semantic approach to complex fea-
tures found in real languages such as recursive types and
higher-order mutable state. While much of the recent work
that uses step-indexed models is concerned with program
equivalence, one recent project that focuses on type sound-
ness is RustBelt [27]: they give a semantic model of Agys;
types and use it to prove the soundness of Ag,s; typing rules,
but also to prove that the Ag,s; implementation of standard
library features (essentially unsafe code) are semantically
sound inhabitants of their ascribed type specification.
Unlike the above, our realizability model interprets source
types as sets of target terms. Our work takes inspiration from
a line of work by Benton and collaborators on “low-level
semantics for high-level types” (dubbed “realistic realizabil-
ity”) [8]. Such models were used to prove type soundness
of standalone languages, specifically, Benton and Zarfaty
[12] proved an imperative while language sound and Benton
and Tabareau [11] proved type soundness for a simply typed
functional language, both times interpreting source types
as relations on terms of an idealized assembly and allowing
for compiled code to be linked with a verified memory allo-
cation module implemented in assembly [8]. Krishnaswami
et al. [30] make use of a realizability model to prove consis-
tency of LNLp a core type theory that integrates linearity
and full type dependency. The linear parts of their model,
like our interpretation of L? types, are directly inspired by
the semantic model for L? by Ahmed et al. [3]. While they
consider interoperability and use realizability models, their
approach is quite different from ours, as their introduce both
term constructors and types (G and F) that allow direct em-
bedding into the other language, thereby changing it, rather
than defining conversions into existing types (which, indeed,
is probably impossible in their case). More generally, such
realizability models have also been used by Jensen et al. [26]
to verify low-level code using a high-level separation logic,
and by Benton and Hur [9] to verify compiler correctness.
Finally, New et al. [36, 38, 39] make use of realizability
models in their work on semantic foundations of gradual
typing, work that we have drawn inspiration from, given

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

gradual typing is a special instance of language interoperabil-
ity. They compile type casts in a surface gradual language
to a target Call-By-Push-Value [31] language without casts,
build a realizability model of gradual types and type preci-
sion as relations on target terms, and prove properties about
the gradual surface language using the model.

Verification-based Approaches Much work has been done
using high-level program logics to reason about target terms,
which can be seen as analogous to the realizability approach.
Perhaps most relevant, in the context of interoperability, is
the Cito system of Wang et al. [53], where code to-be-linked
is given a specification over the behavior of target code,
and compilation can then proceed relying upon that speci-
fication. This clearly renders benefits in terms of language
independence, since any compiled code that satisfied that
specification could be used. However, there is a significant
difference from our work: by incorporating the semantics of
types of both languages we can prove that the conversions
preserve those semantics, and thus allow an end user to gain
the benefits of type soundness without having to do any
verification. Indeed, proving the conversions sound (or, in
the case that they can be no-ops, proving that is okay) is the
central result of this paper, and such conversions are not a
part of the setup of Wang et al. [53].

Conclusion and Future Work. We have presented a
novel framework for the design and verification of sound lan-
guage interoperability where that interoperability happens,
as in practical systems, after compilation. The realizability
models at the heart of our technique give us powerful rea-
soning tools, including the ability to encode static invariants
that are otherwise impossible to express in often untyped
or low-level target languages. Even when it is possible to
turn static source-level invariants into dynamic target-level
checks, the ability to instead move these invariants into the
model allows for more performant (and perhaps, realistic)
compilers without losing the ability to prove soundness.

In the future, we hope to apply the framework to fur-
ther explorations of the interoperability design space, e.g.,
to investigate interactions between lazy and strict languages
(compilation to Call-By-Push-Value [31] may illuminate con-
versions), between single-threaded and concurrent languages
(session types [24, 25, 49] may help guide interoperability
with process calculi like the -calculus [35]), between differ-
ent control effects, and between Rust and a GC’ed language
such as ML, Java, or Haskell compiled to a low-level target.

Acknowledgments

We thank the anonymous reviewers for their in-depth com-
ments. This material is based upon work supported by the
National Science Foundation under Grant No. CCF-1816837
and CCF-1453796.

Semantic Soundness for Language Interoperability

References

(1]

—_
k=
—

—
O
—

(10]

(11]

[12]

(13

—

(14]

(15]

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N.
Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic Foundations
for Typed Assembly Languages. ACM Transactions on Programming
Languages and Systems 32, 3 (March 2010), 1-67.

Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving
CPS translation via multi-language semantics. In Proceeding of the
16th ACM SIGPLAN international conference on Functional Program-
ming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 431-444.
https://doi.org/10.1145/2034773.2034830

Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3 : A Linear
Language with Locations. Fundamenta Informaticae 77, 4 (June 2007),
397-449.

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph.D.
Dissertation. Princeton University.

Andrew W. Appel and David A. McAllester. 2001. An indexed model
of recursive types for foundational proof-carrying code. ACM Trans.
Program. Lang. Syst. 23, 5 (2001), 657-683. https://doi.org/10.1145/
504709.504712

Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt.
2016. Fine-grained Language Composition: A Case Study. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 3:1-3:27. https:
//doi.org/10.4230/LIPlcs.ECOOP.2016.3

David M. Beazley. 1996. SWIG: An Easy to Use Tool for In-
tegrating Scripting Languages with C and C++. In Fourth An-
nual USENIX Tcl/Tk Workshop 1996, Monterey, California, USA, July
10-13, 1996, Mark Diekhans and Mark Roseman (Eds.). USENIX
Association. https://www.usenix.org/legacy/publications/library/
proceedings/tcl96/beazley.html

Nick Benton. 2006. Abstracting allocation: The new new thing. In
Computer Science Logic (CSL).

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-indexing
and Compiler Correctness. In Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming (Edinburgh, Scot-
land) (ICFP ’09). ACM, New York, NY, USA, 97-108. https://doi.org/
10.1145/1596550.1596567

Nick Benton, Andrew Kennedy, and Claudio V Russo. 2004. Adventures
in interoperability: the sml. net experience. In Proceedings of the 6th
ACM SIGPLAN International conference on Principles and Practice of
Declarative Programming. 215-226.

Nick Benton and Nicolas Tabareau. 2009. Compiling functional types
to relational specifications for low level imperative code. In Proceedings
of TLDI'09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January
24, 2009. 3-14.

Nick Benton and Uri Zarfaty. 2007. Formalizing and Verifying Se-
mantic Type Soundness of a Simple Compiler. In Proceedings of the
9th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming (Wroclaw, Poland) (PPDP ’07). Associa-
tion for Computing Machinery, New York, NY, USA, 1-12. https:
//doi.org/10.1145/1273920.1273922

Matthias Blume. 2001. No-longer-foreign: Teaching an ML compiler
to speak C “natively”. Electronic Notes in Theoretical Computer Science
59,1 (2001), 36-52.

Samuele Buro, Roy Crole, and Isabella Mastroeni. 2020. Equational
logic and categorical semantics for multi-languages. Electronic Notes
in Theoretical Computer Science 352 (2020), 79-103.

Samuele Buro and Isabella Mastroeni. 2019. On the Multi-Language
Construction.. In ESOP. 293-321.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Manuel MT Chakravarty. 1999. C->HASKELL, or Yet Another In-
terfacing Tool. In Symposium on Implementation and Application of
Functional Languages. Springer, 131-148.

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012.
Complete Monitors for Behavioral Contracts. In European Symposium
on Programming (ESOP).

Robert Bruce Findler and Matthias Blume. 2006. Contracts as pairs
of projections. In International Symposium on Functional and Logic
Programming. Springer, 226-241.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for
higher-order functions. In Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming. 48-59.

Kathryn E Gray. 2008. Safe cross-language inheritance. In European
Conference on Object-Oriented Programming. Springer, 52-75.
Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. 2005. Fine-
grained interoperability through mirrors and contracts. ACM SIGPLAN
Notices 40, 10 (2005), 231-245.

Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger,
and Hanspeter Mossenbock. 2015. High-performance cross-language
interoperability in a multi-language runtime. In Proceedings of the 11th
Symposium on Dynamic Languages. 78-90.

Rich Hickey. 2020. A history of Clojure. Proceedings of the ACM on
programming languages 4, HOPL (2020), 1-46.

Kohei Honda. 1993. Types for dyadic interaction. In International
Conference on Concurrency Theory. Springer, 509-523.

Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo. 1998. Language
primitives and type discipline for structured communication-based
programming. In European Symposium on Programming. Springer, 122-
138.

Jonas B. Jensen, Nick Benton, and Andrew Kennedy. 2013. High-
Level Separation Logic for Low-Level Code (POPL ’13). Association
for Computing Machinery, New York, NY, USA, 301-314. https://doi.
org/10.1145/2429069.2429105

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2018. RustBelt: Securing the Foundations of the Rust Programming
Language. In ACM Symposium on Principles of Programming Languages
(POPL).

Andrew Kennedy and Don Syme. 2001. Design and Implementation of
Generics for the NET Common Language Runtime. In Proceedings of
the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (Snowbird, Utah, USA) (PLDI *01). Association for
Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.
1145/378795.378797

Robert Kleffner. 2017. A Foundation for Typed Concatenative Languages.
Master’s thesis. Northeastern University.

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015.
Integrating Linear and Dependent Types. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sri-
ram K. Rajamani and David Walker (Eds.). ACM, 17-30. https:
//doi.org/10.1145/2676726.2676969

Paul Blain Levy. 2001. Call-by-Push-Value. Ph. D. Dissertation. Queen
Mary, University of London, London, UK.

Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control:
Compositionally Correct Closure Conversion with Mutable State. In
ACM Conference on Principles and Practice of Declarative Programming
(PPDP).

Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics
for multi-language programs. In Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, January 17-19, 2007, Martin Hofmann and Matthias
Felleisen (Eds.). ACM, 3-10. https://doi.org/10.1145/1190216.1190220
Robin Milner. 1978. A theory of type polymorphism in programming.
J. Comput. Syst. Sci. 17 (1978), 348-375.

https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.4230/LIPIcs.ECOOP.2016.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.3
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.1145/1273920.1273922
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/378795.378797
https://doi.org/10.1145/378795.378797
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1145/1190216.1190220

PLDI °22, June 13-17, 2022, San Diego, CA, USA

[35] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of
mobile processes, i. Information and computation 100, 1 (1992), 1-40.

[36] Max S. New and Amal Ahmed. 2018. Graduality from Embedding-
Projection Pairs, In ICFP. Proceedings of the ACM on Programming
Languages 2, 73:1-73:30.

[37] MaxS.New, William J. Bowman, and Amal Ahmed. 2016. Fully abstract
compilation via universal embedding. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii (Eds.). ACM, 103-116. https://doi.org/10.1145/
2951913.2951941

[38] Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Graduality and
Parametricity: Together Again for the First Time. Proceedings of the
ACM on Programming Languages 4, POPL, 46:1-46:32.

[39] Max S New, Daniel R Licata, and Amal Ahmed. 2019. Gradual type
theory. Proceedings of the ACM on Programming Languages 3, POPL
(2019), 15:1-15:31.

[40] Martin Odersky and Matthias Zenger. 2005. Scalable component ab-
stractions. In Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications.
41-57.

[41] Peter-Michael Osera, Vilhelm Sj6berg, and Steve Zdancewic. 2012. De-
pendent interoperability. In Proceedings of the sixth workshop on Pro-
gramming Languages meets Program Verification, PLPV 2012, Philadel-
phia, PA, USA, January 24, 2012, Koen Claessen and Nikhil Swamy
(Eds.). ACM, 3-14. https://doi.org/10.1145/2103776.2103779

[42] Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal
Ahmed. 2022. Semantic Soundness for Language Interoper-
ability (Technical Appendix). (March 2022). Available at
https://dbp.io/pubs/2022/semint-tr.pdf.

[43] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed.
2017. FunTAL: reasonably mixing a functional language with assembly.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 495-509.
https://doi.org/10.1145/3062341.3062347

[44] James T. Perconti and Amal Ahmed. 2014. Verifying an Open Com-

piler Using Multi-language Semantics. In Programming Languages

and Systems - 23rd European Symposium on Programming, ESOP 2014,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-

ings (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.).

Springer, 128-148. https://doi.org/10.1007/978-3-642-54833-8_8

Gabriel Scherer, Max S. New, Nick Rioux, and Amal Ahmed. 2018.

FabULous Interoperability for ML and a Linear Language. In Founda-

tions of Software Science and Computation Structures - 21st International

(45

=

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed

Conference, FOSSACS 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 10803), Christel Baier and Ugo Dal Lago (Eds.). Springer, 146-162.
https://doi.org/10.1007/978-3-319-89366-2_8

Zhong Shao and Valery Trifonov. 1998. Type-directed continuation
allocation. In International Workshop on Types in Compilation. Springer,
116-135.

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler,
and Matthew Flatt. 2012. Chaperones and Impersonators: Run-Time
Support for Reasonable Interposition. In ACM International Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA) (Tucson, Arizona, USA). Association for Computing Machin-
ery, New York, NY, USA, 943-962. https://doi.org/10.1145/2384616.
2384685

Don Syme. 2006. Leveraging. NET meta-programming components
from F# integrated queries and interoperable heterogeneous execution.

In Proceedings of the 2006 workshop on ML. 43-54.
Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An interaction-

based language and its typing system. In International Conference on
Parallel Architectures and Languages Europe. Springer, 398-413.

Jesse Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine
Types. In Programming Languages and Systems, 19th European Sympo-
sium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings (Paphos, Cyprus).

Valery Trifonov and Zhong Shao. 1999. Safe and principled language
interoperation. In European Symposium on Programming. Springer,
128-146.

Alexi Turcotte, Ellen Arteca, and Gregor Richards. 2019. Reasoning
About Foreign Function Interfaces Without Modelling the Foreign
Language. In 33rd European Conference on Object-Oriented Program-
ming (ECOOP 2019) (Leibniz International Proceedings in Informat-
ics (LIPIcs), Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 16:1-16:32.
https://doi.org/10.4230/LIPlcs.ECOOP.2019.16

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler
Verification Meets Cross-Language Linking via Data Abstraction. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). Association for Computing Machinery, New York,
NY, USA, 675-690. https://doi.org/10.1145/2660193.2660201

Jeremy Yallop, David Sheets, and Anil Madhavapeddy. 2018. A modular
foreign function interface. Science of Computer Programming 164 (2018),
82-97.

Jyun-Yan You. 2021. Rust Bindgen. https://github.com/rust-lang/rust-
bindgen

https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2103776.2103779
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-319-89366-2_8
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.4230/LIPIcs.ECOOP.2019.16
https://doi.org/10.1145/2660193.2660201
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen

	Abstract
	1 Introduction
	2 The Framework
	2.1 Boundary Syntax
	2.2 Convertibility Rules
	2.3 Realizability Models for Both Languages
	2.4 Soundness of Conversions
	2.5 Soundness of Entire Languages

	3 Shared Memory
	4 Affine & Unrestricted
	5 Memory Management & Polymorphism
	6 Related Work and Conclusion
	Acknowledgments
	References

