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HOROSPHERICAL INVARIANT MEASURES AND A RANK DICHOTOMY
FOR ANOSOV GROUPS
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(Communicated by Alex Eskin)

ABSTRACT. Let G = H;Il G; be a product of simple real algebraic groups of
rank one and I' an Anosov subgroup of G with respect to a minimal parabolic
subgroup. For each v in the interior of a positive Weyl chamber, let %y c
I'\G denote the Borel subset of all points with recurrent exp(R.v)-orbits. For
a maximal horospherical subgroup N of G, we show that the N-action on
vy is uniquely ergodic if r = rank(G) < 3 and v belongs to the interior of the
limit cone of I, and that there exists no N-invariant Radon measure on 2y
otherwise.

1. INTRODUCTION

Let G be a connected semisimple real algebraic group, and I" < G be a Zariski
dense discrete subgroup. Let N be a maximal horospherical subgroup of G,
which is unique up to conjugation. We are interested in the study of N-invariant
ergodic Radon measures on the quotient space I'\G (from now on, all measures
we will consider are implicitly assumed to be Radon measures). When I' is a
uniform lattice in G, the N-action on I'\ G is known to be uniquely ergodic, that
is, there exists a unique N-invariant ergodic measure on I'\ G, up to proportion-
ality, which is the G-invariant measure. This result is due to Furstenberg [14]
for G = PSL,(R) and Veech [42] in general. Dani [10] classified all N-invariant
ergodic measures for a general lattice I'. Later, Ratner [33] gave a complete clas-
sification of all invariant ergodic measures for any unipotent subgroup action
when I is a lattice of G.

When G is of rank one and I is geometrically finite, there exists a unique
M N-invariant ergodic measure on I'\G, not supported on a closed M N-orbit,
where M is a maximal compact subgroup of the normalizer of N, called the
Burger-Roblin measure. This result is due to Burger [6] for convex cocompact
subgroups of PSL, (R) with critical exponent bigger than 1/2, and to Roblin [34]
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in general. For G # SL,(R), Winter [43] showed that the Burger-Roblin mea-
sure is N-ergodic, and hence the N-action on I'\G is essentially uniquely er-
godic. This relies on the fact that M is connected. Indeed, for G = SL, (R) where
M = {+e}, the Burger-Roblin measure has one or two N-ergodic components
depending on I (cf. [27, Thm. 7.14]).

For geometrically infinite groups, there may be a continuous family of N-
invariant ergodic measures, as first discovered by Babillot and Ledrappier ([1, 2]).
See [36, 37, 24, 25, 30, 22, 21] for partial classification results in the rank one
case.

In this paper, we obtain a measure classification result for the N-action on
Anosov homogeneous spaces I'\G which surprisingly depends on the rank of G:
on the recurrent set in an interior direction of the limit cone of I', the N-action
is uniquely ergodic if rank G < 3, and admits no invariant measure if rank G > 3.

When the rank of G is one, the class of Anosov subgroups coincides with that
of Zariski dense convex cocompact subgroups. To define it in general, let P be
a minimal parabolic subgroup of G. Let & denote the Furstenberg boundary
G/P, and @ the unique open G-orbit in & x &. A Zariski dense discrete
subgroup I' < G is called an Anosov subgroup (with respect to P) if it is a finitely
generated word hyperbolic group which admits a I'-equivariant embedding { of
the Gromov boundary 9T into & such that ({(x),{(y)) € & @ for all x # yindrl.
First introduced by Labourie [20] as the images of Hitchin representations of
surface groups, this definition is due to Guichard and Wienhard [15]. The class
of Anosov groups in particular includes any Zariski dense Schottky subgroup (cf.
[32], [12, Lem. 7.2]).

Let P = AMN be the Langlands decomposition of P, so that A is a maximal
real split torus of G, M is a compact subgroup which commutes with A and N
is the unipotent radical of P. Fix a positive Weyl chamber a* < a =log A, and
denote by & < a® the limit cone of T, i.e., £ is the smallest closed cone of a*
which contains the Jordan projection of I" (see (2.1) for definition). It is known
that if I' is Zariski dense, Zr is a convex cone with non-empty interior [3, Thm.
1.2]. We denote by A c & the limit set of I', which is the unique I'-minimal
closed subset of &#. Then

&= {[g] el'\G:gPe A}
is the unique P-minimal closed subset of I'\G. For each vector v € inta*, define
the following directional recurrent subset of &:
(1.1 R, = {x eI'\G: xexp(t;v) is bounded for some t; — +oo}.

It is easy to see that %, = @ unless v € £r. Since v € inta® and AM centralizes
exp(Rv), #, is a P-invariant dense Borel subset of &. In particular, £, is either
co-null or null for any N-invariant ergodic measure on I'\G. We are interested
in understanding N-invariant ergodic measures supported on %,,.

In the rest of the introduction, we assume that

r
G=[]Gi,
i=1
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where each G; is a rank one simple real algebraic group; hence r = rank G. While
G; can be isomorphic to PSL,(R), we exclude the case when G; is isomorphic
to SLy(R) in order to ensure that P is connected. We let I' < G be an Anosov
subgroup. For each v € int.%r, we denote by mE® the M N-invariant Burger—
Roblin measure for the direction v (see (6.1)). For Anosov subgroups, it was
shown by Lee and Oh that the family {m5®:v eint.#r} gives all N-invariant
ergodic and P quasi-invariant measures on &, up to proportionality ([26, 27]).

The main result of this paper is as follows:

THEOREM 1.1. LetT < G be an Anosov subgroup and v € inta™.

1. Forr <3 and v € int 4, the N-action on 2%, is uniquely ergodic. More
precisely, mBR is the unique N-invariant measure supported on &, up to
proportionality.

2. Forr>3 orv ¢intr, there exists no N-invariant measure supported on
Ry .

This theorem uses the result by Burger, Landesberg, Lee and Oh [8] that 2,
is a co-null (resp. null) set for mER for r < 3 (resp. r > 3), which was developed
simultaneously, in part for the purpose of this work.

We note that the unique ergodicity as in (1) implies that m5R is N-ergodic,
reproving some special cases of [27, Thm. 1.1]. When r =1 and I' is a convex
cocompact subgroup of G, this theorem recovers the unique ergodicity of the
N-action on &.

We deduce the following classification of N-ergodic measures supported on
the directional recurrent set

2= %..
veinta*t
A measure p on I'\G is said to be supported on £ if the complement of £ is
contained in a y-null set.

COROLLARY 1.2. The space # of all N-invariant ergodic measures supported on
Z is given by

- {mBR:veint#} forr<3
e forr>3.

We apply our theorem to some concrete examples considered in [7]. Let
Y be a surface subgroup with two convex cocompact realizations in rank one
Lie groups G; and G,. For each i = 1,2, denote by 7; : £ — G; an injective
homomorphism with Zariski dense image. We assume that 75 o nl‘l does not
extend to an algebraic group isomorphism G; — Go.

It is easy to check that I'y, x, := {(1(y),m2(y)) : y € £} is an Anosov subgroup
of G:= Gy x Go.

COROLLARY 1.3. ForT =Ty, 5, as above, the N-action on 2, is uniquely ergodic
for each v € int £r.
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On the proof of Theorem 1.1. In the rank one case, i.e., when I' is convex co-
compact, Theorem 1.1 follows from the combined works of Roblin [34] and
Winter [43] (see also [28] and [38] for G = SO°(n, 1) case). These proofs are all
based on the finiteness and the strong mixing property of the Bowen-Margulis—
Sullivan measure. In the higher rank case, although there exists an analogous
measure (which is also called the Bowen—-Margulis—Sullivan measure) for each
direction v € int &, this is an infinite measure [26, Cor. 4.9] and it is not clear
how to extend the approaches of the aforementioned papers. We henceforth
follow an approach of the recent work of Landesberg and Lindenstrauss [22] for
the case G = SO°(n, 1) which is in the spirit of Ratner’s work. The main technical
result we prove in this paper is the following:

PROPOSITION 1.4. Let T be a Zariski dense discrete subgroup of G and v € inta*.
Then any N-invariant ergodic measure |1 on X, is P-quasi-invariant.

REMARK 1.5. We refer to Theorem 4.1 for a more general version, analogous to
the main theorem of [22] for G =S0°(n, 1).

Following [22], our proof of Proposition 1.4 utilizes the geometry observed
along the one-dimensional diagonal flow exp(Rv) of points in the support of u
to obtain an extra quasi-invariance of u. Roughly speaking, if, for y-a.e. x e T'\G,
we have xexp(¢,v)g, = xexp(t,v) for some infinite sequence t, — oo and g, € G
converging to some loxodromic element gy € G, we show that the generalized
Jordan projection of gy preserves the measure class of u, provided the attracting
fixed point of g is in general position with that of g 1. The last condition always
holds in the rank one setting as any two distinct points on & are in general
position. In the higher rank setting, this property is needed to ensure that the
high powers of gy attract some neighborhood of its attracting fixed point to
itself, which is an underlying key point which makes our analysis possible.

For G=S0°(n,1), the conjugation action of an element of A on N is simply a
scalar multiplication, and both the Besicovitch covering lemma and Hochman'’s
ratio ergodic theorem for Euclidean norm balls in the abelian group N = R4m~
were used in [22], in order to control ergodic properties of N-orbits. In our
setting where G is a product [] G; of rank one Lie groups, the horospherical sub-
group N is a product [T N; of abelian and two-step nilpotent subgroups and the
conjugation action by exp(zv) scales N;’s by different factors. The existence of
exp(tv)-invariant family of quasi-balls satisfying the Besicovitch covering prop-
erty in this case is a consequence of the work of Le Donne and Rigot [23, Thm.
1.2]. This is precisely the main reason for our assumption that G is the product
of rank one Lie groups. We note that in the higher rank case, the ratio ergodic
theorem with respect to this family of quasi-balls in our N =[] N;, is available
only when N is abelian [11].! To sidestep the lack of the ratio ergodic theorem
in the generality we need, we use in this paper a modified argument relying only
on the Besicovitch covering property. In addition to technical difficulties arising

1We mention that the only case when the ratio ergodic theorem is known and N is not abelian
is when G =SU(n,1) and N is Heisenberg [19].
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in the higher rank setting and from the fact that N is not necessarily abelian,
our proof of Proposition 1.4 is different from [22] also in this aspect.

Theorem 1.1 is then deduced from Proposition 1.4 together with the classifi-
cation of I'-conformal measures on A of [26] (Theorem 6.1) and the dichotomy
on the recurrence property of the Burger—-Roblin measures according to the rank
of G, obtained in [8] (Theorem 6.2).

Rank one groups. While the main emphasis in this paper is on the higher rank
case, one can also deduce the following new result for all rank one groups. Given
Theorem 4.1 and the description of N-ergodic invariant and P°-quasi invaiant
measures (cf. [22, Lem. 5.2], [27, Prop. 7.2]), the following corollary can be
proved almost verbatim as [22, Cor. 1.1, 1.2] and [21, Thm. 1.5] where similar
statements were established for G = SO°(n, 1).

For y e I'\G, we denote by radiy;(y) the supremal injectivity radius at y.

COROLLARY 1.6. Let T be a Zariski dense discrete subgroup of a simple real alge-
braic group G of rank one. Let u be an N-invariant ergodic measure supported
oné.

1. If the injectivity radius on I'\G is uniformly bounded away from 0, then at
least one of the following holds:
(a) u is quasi-invariant under some loxodromic element of P,
(b) lim;_.o radipj(xexp tv) = co for p-a.e. x and v € int at.

2. If the injectivity radius on I'\G is uniformly bounded from above or if T is a
normal subgroup of a geometrically finite subgroup of G, then either:
(@) u is proportional to mBR|y for some T'-conformal measure v on A and a
P°-minimal subset Y cT\G (see (6.1) for the definition omeR), or
(b) u is supported on a closed M N -orbit.

We remark that by a recent work of Fraczyk and Gelander [13], the injectivity
radius on I'\G is never bounded from above when G is simple with rank G = 2
and Vol(T'\G) = co.

REMARK 1.7. For I' geometrically finite, an atom of a I'-conformal density is
necessarily a parabolic limit point which yields a closed M N-orbit, and the so-
called Patterson-Sullivan measure, say, vy, is the unique atom-free I'-conformal
measure on A [40]. Therefore Corollary 1.6(2) implies the essential unique
ergodicity for the N-action as well as the N-ergodicity of mE?IY for each P°-
minimal subset Y. Noting that the proofs given in [28] and [38] on the N-unique
ergodicity for SO°(n,1) rely on the ratio ergodic theorem for the abelian sub-
group N which is not available for a general rank one group, our paper gives
the only alternative proof for a general rank one case after Roblin and Winter
([34, 43]).

Organization. In Section 2, we set up notations and recall basic definitions.
In Section 3, we deduce the Besicovitch covering lemma for our setting from
[23] and state several consequences including the maximal ratio inequality. In
Section 4, we prove Theorem 4.1, which is the main technical result of this paper.
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In Section 5, we prove Theorem 5.1 which in particular implies Proposition 1.4,
using Theorem 4.1 together with some properties of Zariski dense subgroups.
In Section 6, we specialize to Anosov subgroups and prove Theorem 1.1.

We close the introduction with the following open problem.

OPEN PROBLEM 1.8. For r <3 and I' Anosov, is any N-invariant ergodic measure
on & necessarily supported on %, for some v € int £r?

2. PRELIMINARIES

Let G be a connected, semisimple real algebraic group. We fix, once and for
all, a Cartan involution 0 of the Lie algebra g of G, and decompose g as g =€ap,
where £ and p are the +1 and —1 eigenspaces of 0, respectively. We denote by
K the maximal compact subgroup of G with Lie algebra £. Choose a maximal
abelian subalgebra a of p. Choosing a closed positive Weyl chamber a* of a, let
A:=expaand A" =expa®. The centralizer of A in K is denoted by M, and we
set N~ and N* to be the contracting and expanding horospherical subgroup:
for aeint A*,

N*={geG:a"ga" — e as n — Foo}.

We set P* = MAN®, which are minimal parabolic subgroups. As we will be
looking at the N~ -action in this paper, we set N:= N~ and P = P~ for notational
simplicity. We also set L= MA=PnP™*.

Let wy € Nx(A) be the Weyl element satisfying Ad,,, a* = —a™. Then wy satis-
fies wo P~ wal = P*. For each g € G, we define

g :=gPeG/P and g :=gwyPeG/P
Let # = G/P and #® denote the unique open G-orbit in & x %:
F@ =Gt e)={g' g ) eFxF geG}.

We say that &,7 are in general position if (¢,7) € F®@).

Any element g € G can be written as the commuting product gj,g.gu, where
gn» 8. and g, are unique elements which are conjugate to elements of A*, K
and N, respectively. We say g is loxodromic if g, € ¢(int A*)p~! for some ¢ € G,
and write

(2.1) A =¢ lgrpeintA*
calling it the Jordan projection of g. We set
(2.2) Vei=¢";

this is well-defined independent of the choice of ¢. We note that g fixes y, and
for any h € N*, limy_o, g¥(¢he") = yg, uniformly on compact subsets of N*,
and for this reason, yg is called the attracting fixed point of g.

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 331-362



INVARIANT MEASURES AND RANK DICHOTOMY 337

Bruhat coordinates. The product map N x Ax M x N* — G is injective and its
image is Zariski open in G. For g € G and ne€ N with gne NAMN™, we write

2.3) gn=>b (g, mb*™(g,mb" (g,n)

where bV (g,n) € N, b*M(g,n) € AM, bV (g,n) € N* are uniquely determined.
For each subgroup * = N, AM or N*, b*(g,n) is a smooth function for each
g € G and n € N whenever it is defined.

For convenience, for ¢ = ne™ with n€ N and g € G with gé € Ne™, we set

b*(g,&):=b* (g, n).

If g € G is a loxodromic element with y, € Ne™, the following generalized Jordan
projection of g is well-defined:

AMg) =b*M (g, ye).

We mention that the condition y; € Ne~ implies that there exists ¢ € NN*
such that g = pa 'me~! for unique a € int A* and m € M. In this case, A(g) =
alm. In particular, the A-component of A(g) coincides with AA(g_l). If gis
not loxodromic, we set 1(g) = e.

3. COVERING LEMMA FOR exp fv-CONJUGATION INVARIANT BALLS

In the rest of the paper, let G:=[];_, G; where G; is a connected simple real
algebraic group of rank one. For each 1 < i <r, we identify G; with the subgroup

{(gj)jEHGngj=e forallj;éi}<G
J

and we set H; := HNG; for any subset H c G. We have A =[]; A; and A* =[[; A7,
where A; is a one-parameter diagonalizable subgroup of G;. Let a; denote the
simple root of G; with respect to A;. The subgroup N = N~ is of the form N =
I1; N;, where N; is the contracting horospherical subgroup of G for A;r and
P =]]P; for P; = M;A;N;. We set &; = G;/P;.

As G; has rank one, N; is a connected simply connected nilpotent subgroup
of at most 2-step. Let n; denote the Lie algebra of N;. When n; is abelian, for
each a; € A;, Adg, |, is the multiplication by e*1°84), When n; is a 2-step nilpo-
tent, we can write n; = n;, ®n;, where [n;,n; ] cn;, and n;, is the center of n;.
We have that for a; € A;, Adg, |, = e%1084) and Ad,, ln;, = e2aillogan (¢f [29)).

We call a function d: N x N — [0,00) a quasi-distance on N if it is symmetric,
d(x,y) =0 iff x =y, and there exists C = C(d) = 1 such that

(3.1 d(x,y)<C(d(x,2)+d(z,y)) forallx,y,z€ N.

For s >0 and x € N, we set B;(x,s) = {y € N:d(x,y) < s}. For simplicity, we
write B;(s) := Bg4(e, s). Note that whenever d is left-invariant, B;(x,s) = xB;(s)
for all xe N and s > 0.

When N is abelian, it is well-known that Euclidean norm-balls of N satisfy the
Besicovitch covering property. In general, we deduce the following from [23].
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PROPOSITION 3.1. Foranyv € inta* U{0}, there exists a continuous left-invariant
quasi-distance d = d,, on N such that the family of balls

{Bs(u,s) = uBy(s):ueN,s>0}

satisfies the Besicovitch covering property. That is, there exists a constant x, >0,
depending only on d,, such that for any bounded subset S c N, and any cover
{uB,4(ty) : u € S} of S, for some positive function u — t, on S, there exists a
countable subset F S such that {qu(tu) ‘UE F} covers S and

Z ﬂqu(tu) = Ky.

ueF

Moreover, if v =0, we can take d, = dy to be a distance, and if v # 0, we have

(3.2) By(e'r) = exp(tv)Bgy(r)exp(~tv) forallteR andr>0.

Proof. For A =1, consider the Lie algebra homomorphism n — n given by
02X = Adexp(togyv) X-

Let I :={i:n; abelian} and J := {i : n; is of 2-step}. Set ¢; := a;(v) = 0. For i € I,
set V;, :=n; and for i € J, set V;, :=n;, and V,;, :=n,,. Since §, acts on each V;,
(resp. Vo) by A% (resp. A?%), and ¥ ;c; Vi, + X e Vou, is the center of n, it follows
that
n=(®ierus Vi) ® (®iesVar,)

provides commuting different layers for the family {§4|1 > 0} in the terminology
of [23]. Hence [23, Thm. 1.2] provides the required quasi-distance such that
d(63(n1),81(n2)) = Ad(ny, np) where 8, (n) = 108V =108V 4150 denotes the
Lie group isomorphism of N induced from §,. For A = ¢!, this implies (3.2). If
v =0, then t; =2¢; =0 for all i, and hence n = V. Now [23, Cor. 1.3, Def. 2.21]
implies that dj can be taken to be a distance. O

Indeed, an explicit construction of d, has been given in [23]: for v € inta™,
for (X;);, (Y;); € I1; Ni, and

3.3) d, (X0, (Y3);) = maxd; (X;, Y/ * ™)

where d; is a left invariant metric on N; induced from an Euclidean norm on n;.
For each v € inta™ (resp. v = 0), we fix a quasi-distance d, as above (resp. a
distance dp), and write for any e >0 and u € N,

(3.4) B,(u,€) := By, (u,¢), and B, (¢) := By, (€).

We denote by m a Haar measure on N and by 2p the sum of all positive roots,

ie.,
r

2p =) a;(dimN +dimZ(N)),
i=1
where Z(N) denotes the center of N. For v # 0, we have from (3.2) that for any
R>0and u€ N,

(3.5) m(B, (1, R)) = R**Y m(B, (u,1)).
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For v =0, dj is a left-invariant metric and by [16] (see also [5]), we have
3.6) m(Bo(u, R) = O(RIMN*AmZIN),

LEMMA 3.2. Fixveinta*, >0,0<n; <1, and let u— t, be a positive function
on N. Consider the two collections of balls {Bv(u, etuni) ‘ueN,t,> 0} fori=1,2.
Then for any bounded subset S c N, there exists a countable subset F c S such
that {B\,(ui, et“inl) ‘U € F} covers S and the following holds: for each u; € F,

#{u; € F: By (u;,e"iny) < By (uj,e"in), | tu, - tu;| < B} <k (v, B,11,7m2),

MBI 201

where x (v, B,M1,12) := mB.m )

Proof. Set By, := B,(u,e"n;) and Cy, := B, (u, e 1n,). Let F < S and {By, : u; € F}
be respectively the countable subset and the corresponding countable subcover
of § given by Proposition 3.1. Fix u; € F. Suppose that By, U---U By, < Cy; and
that |#,, — ty;| < pforall 1 <i < p. Since

i=1"Uj

p
Zi]lB“i SKV-]IUF B
1=

we have

p 1 p
(3.7 m(Cy,)=zm||JBu |z — Y m(By).

i=1 Kv iz

Using (3.5), we get
m(B,.)m(B,
m(By,) = e "*!"Pm(B,,), and m(Cy,) = (Bu;) m(By (172))

: ' m(By (1))

It then follows from (3.7):

m(Bv(le)) > ﬁe_”z””ﬁ, and hence p< m(Bv(TIZ))Kve”gp”ﬁ
m(B,(n1)) «y m(By (1))

proving the claim. O

’

The following is a consequence of the polynomial growth of the quasi-balls
B, () in N:

LEMMA 3.3. Let u be an N-invariant ergodic measure on a Borel space Z and fix

v € inta* U {0}. For any bounded Borel subset Q of Z with u(Q) > 0, there exists a

co-null subset Z' (depending on Q) such that for all x € Z', we have the following:

for any r,e > 0, there exists a sequence t; — oo such that

J,en Lalxm) dn
[RPEDEE

Proof. For x € Z and a subset Q c Z, we write

(3.8) <1l+e.

(3.9) To@) ={ueN:xueQl.
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By ergodicity of p, we know that p-almost every N-orbit intersects Q2 non-
trivially. Indeed, consider the set

E:={xeZ|m(Tq(x)nB,(sy)) >0 for some sy > 0}.
If x € E, then, for any u € N, there exists s > s satisfying
By(sx) < uBy(s)
and consequently
m(Ta(xw) NBy(s)) = m(Ta(x) NuBy(s)) = m(Ta(x) N By(sy)) >0,

implying xu € E. Hence the set E is N-invariant. Now, by ergodicity of p, the
set E is either null or conull. On the other hand, since

fzm(TQ(x)ﬂBv(l))du(x) =fB ( )lelg(xn)du(x)dn= m(B, (1)) u(Q) >0,
L (1
the set {x eZ - m(Tqgx)nB,(1)) > 0} has positive measure. Therefore yu(E) >0,
and hence E is conull. Set Z' = E. Let x € Z’ and s, > 0 be such that
m(Tq(x) N By(sy)) > 0.

Suppose that (3.8) does not hold for x. Then there exists t, > s, such that for all
=1y,

m(By(t+1)=m(TaX)NBy(t+71)) =1 +e)m(Tq(x) N By(1)).
It follows that for all k=1,
m (B, (tx+ k) = (1+ &) m(Tq(x) N B, (1)

Since m (B, (tx+ kr)) grows polynomially in k by (3.5) and (3.6), and since
m(Taq(x) N By(tyx)) > 0, this yields a contradiction. O

A standard consequence of the Besicovitch covering property is the maximal
ratio inequality. These are in fact equivalent when considering symmetric aver-
aging sets, see [18] and references therein. For completeness we include below
a proof of this implication applicable to our setup:

LEMMA 3.4 (Maximal ratio inequality). Let u be an N-invariant ergodic measure
on a Borel space Z. Fixv € inta® u{0} and a > 0. For any bounded measurable
subsets Qy and Qy of Z with u(Qy) < oo, we have

1(Q2nEY) < 2x,a7 (@),

where

ET:={er:3R>Os.t.f

1o, (xn)dn= af
B, (R)

Ilgz(xn)dn}.
B, (R)

Proof. For R; =0, set

E(Rl):z{er:EOSRSRl s.t.f ]lgl(xn)dnzaf

v By (R)

ﬂgz(xn)dn}.
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Since E(R;) is an increasing sequence of subsets whose union is E and p(Qs) <
oo, it suffices to show that for any R; =0,
w(Q2NE(RY) < 2xya ' p(Qy).

Fix a compact subset D = D(R;) c N so that 0 < m(DB,(R})) <2m(D), which is
possible in view of (3.5) and (3.6). Let Tq(x) be defined as in (3.9). For each
x € Z with xu € E(R;), there exists 0 < R, < R; such that

m(Tq,(x) N B, (1, Ry) < a 'm(Tq, (x) N B, (1, Ry)).
Consider the cover
€ (x) = {B\,(u,Ru) :uebDn TE(Rl)(x)}

of the subset DN Tgg,)(x). By Proposition 3.1, we can find a countable subset
I © N such that the family {B, (1, R,) : u € I,} € €(x) covers DN T g, (x) and

Y 1B,wr) <k1DB,R)-
uel,

We obtain:

1
M(QzﬂE(Rﬂ):mfzfl)ﬂgznﬂm)(xn)dndﬂ(x)

dp(x)

uel,

1
" m(D) fzm(DnTQZ“E(Rﬂ(xm( U Bv(u,Ru))
1

= m(D) Zuezfxm(TQZ ()N By (u, Ru))dp(x)

1

<— 1 (n)-1g, (xn)dndu(x)
(X-m(D) Zu;X\/]‘V Bv(uyRu) Q1 u

1
= szvfz(z Jle(u,Ru)(n))Ilgl(xn)d/u(x)dn

a: uel,
<Lf f]l (xn)du(x)dn
~ a-m(D) Jpa,r)Jz = K
Ky - m(DB,(Ry))
= MY @
@ D) ©(€2y)

<250 0
= a/l 1)-

4. SCENERY ALONG exp(R;Vv)-FLOW AND QUASI-INVARIANCE

As before, let G := l'[;:1 G; where G; is a connected simple real algebraic
group of rank one. Let I" be a discrete subgroup of G. Let u be an N-invariant
ergodic measure on I'\G. In the whole section, we fix a vector v € inta™, and set

a;:=exp(tv) forteR.

For all x eT'\G, define

F(v) :=limsup a;lg_ll"gat = limsup Stabg(xay).
t—+oo t—+00
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The limsup,_, ., above is the topological limit superior, i.e., the collection of all
accumulation points; hence we may otherwise write

-« —
S =1Uag ' Tgar
n=1t>n
As v € intat, we have %, (v) = #(v) for all n € N, and hence the measurable
map x — %, is N-invariant. Since u is N-ergodic, there exists a closed subset
Fu(v) of G for which F(v) = #,(v) for y-a.e. xeI'\G.
For ¢,ne &, we set
O = {h € G:loxodromic, (y;, ), (yp-1,m) € F P}

We remark that as G;’s are rank one groups, for a loxodromic element h =
(hy,...,h) € Gwith h; € G; and & = (¢4,...,¢,) € & with &; € &;, we have (yp,,¢{) €
F@ ifand only if y,, #&; forall 1<i<r.

The main result of this section is the following:
THEOREM 4.1. We have
4.1) M) N (Dt ey UD (e ) < Stabg ([ud),
where Stabg ([1]) denotes the stabilizer in G of the measure class of 1.

When G is of rank one, any loxodromic element of G belongs to either O ¢+ -)
or O ¢+). Therefore (4.1) is same as saying

A(Fu(v)) < Stabg ([uD);

this generalizes [22, Thm. 1.3] to all rank one Lie groups.
Since S, (V)71 = F,(v), D(‘eﬁ ey = Dleer), and Stabg([u]) is a subgroup of G,
(4.1) follows if we show

(4.2) A (L) N O e+ o)) < Stabg ([u).
The rest of this section is devoted to the proof of (4.2). We fix the left-invariant
quasi-distance d, as in (3.3) and set
Ny :=B,(n) foreachn>0,
where B, (1) is defined as in (3.4). We set
ti:=a;j(v)>0 foreachl<i=<r.

Since d, = max; d;/ ' where d; is a left-invariant metric on N;, for any 1 > 0, the
quasi-ball Nj, is a product of balls in Nj,
r
(4.3) Ny =[] Ni(n"™,
i=1

where N;(n") :={x e N;:d;(e;,x) <n'} and e; denotes the identity element of
G;.*

2 We stress that the notation N; with subscript i is used solely for the subgroup G; n N,
whereas Np, Ng, etc are used for quasi-balls in N.
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Fix any loxodromic element
h() € yu(v) ﬁD(etef).

Our goal is to show that A(hg) € Stabg([u]).

Writing hg = (hy,..., h) component-wise, each h; is a loxodromic element of
Gi. We write h; = ¢;a; 'm;@;" for some a; € AT —{e}, m; € M; and ¢; € G; so
that ¢; = ¢;e; € Z; and @] = @;e] € F; are the unique attracting fixed points
of h; and hl._1 respectively; here e;—“ € Z; means the i-th component of e* € & =
[I; Zi. As G; is of rank one, we have &; = N;e; U {e;“}. Since hg € O e+ o), We
have, for all i,

@; # e and @] #e;.
We denote by n; the unique element of N; such that

(4.4) @; =n;e; € Nje; .

1
Using the diffeomorphism between N; and N;e; given by n— ne;, we may
regard d; as a left-invariant metric on N; e;, so that

4.5) di(ne;,n'e;)=d;(n,n") forall n,n' € Nj.

Definition of 7¢. Since e; # (,o;r and hence e; € ¢;N;e; , there exist 79 >0 and
J >0 such that

(4.6) Nye < [[eiNie;.
i=1

LEMMA 4.2. There exists pg = po(ho) € N such that for all p = pg, and1<i<r,
we have

1
4.7) d; (hfZi,hfz;) = 2@+ 'di(Zi,Z;)

for all z;, z; € p; N;(J)e; .

Proof. Since (al.‘lmi)”nei‘ = (al._p(mfnm;p)af)ei‘ and M; is a compact sub-
group normalizing N;, we have (ai‘1 m;)P ne; — e; as p — oo, uniformly for all
n € N;(J). Therefore (pi(ai‘lmi)pNi (J)e; is contained in a compact subset of

Nigp; = Nje; for all sufficiently large p. Since N;e; is endowed with a metric d;,
induced from a Euclidean norm on n;, the Lipschitz constant

Lip ((pil(alflmi)”Ni(])e;)
is well defined and finite. Since hf =@i(a;'m;)Pp;', we have
Lip (1] 1, nine;) < LD (91t mpyp vy e ) LiP (@7 )P Iniene; ) i (@7 gy vi e )-

Since Lip((ai‘lmi)”INi(])ei—) —0as p— oo and (a;'m;)PN;(J)e; — e;, we have
Lip (hfl(p,-Ni(])ei—) — 0 as p — oco. Therefore the lemma follows. O
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Since hg 1 nl-N,-(n(t)")e‘ — ¥n, uniformly, as p — oo, and yj, € Ne™, by pos-

sibly increasing py if necessary, we may assume that py satisfies that, for all
p = po,

r

(4.8) h ] niNi(mg) < NLN™;
i=1
4.9) sup |Jac, BN (R}, )| = 1/2;
UE Ny Vg
(4.10) h(’?Nryh0 C Nyj2yp, forall0<r<nj.

We make use of the following simple observation:
LEMMA 4.3. If there exists py = 1 such that
{A(hY): p = p1} < Stabg ([u)),
then A(hy) € Stabg([ul).

Proof. Since Stabg([u]) is a group and A(hg)? = A(hé’ ), the above lemma implies
that

Alhg) = Aho)P*' A(hg)~P € Stabg ([u]). O

Hence it suffices to show that for all p = py, )L(hg ) € Stabg([u]). In the rest of
this section, fix any p = pg and set

go=hy.
We now assume that
(4.11) lo:= A(go) € Stabg([u])
and will prove that this assumption leads to a contradiction.
We write g; = hf so that

gO = (gly---;gl')-

Noting that ¢; and ¢ are the attracting fixed points of g; and gl.‘1 respectively,
we set ¢ := (¢1,...,¢,). Hence ¢T = (97 ,...,¢]) are the attracting fixed points of
ggl respectively. We set

.Vgo = o
Note that yg, = yj,. By (4.7), for all k € N, we have
1
k, ok
(4.12) d,-(gl- Zi, 8; z;)sm.di(zi,z;.)

for any z;, z:. €iN;i(De; .

We begin by presenting a long list of constants and subsets in a carefully
designed order to be used in getting two contradictory upper and lower bounds
in Lemmas 4.15 and 4.16.
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Definition of E, 01 and 0y,. We fix subsets E cI'\G and 0 < L as given by the
following lemma:

LEMMA 4.4. There exist an N-invariant p-conull set E < I'\G and a symmetric
neighborhood O, c L of e such that

EnEly'op=0.

Proof. Since p is N-ergodic and ¢ ¢ Stab[u], p and p.¢y are mutually singu-
lar. Hence there exists a u-conull subset E' cT'\G with E'nE'¢y = @. Let c =1 if
|l = 0o, and ¢ = |u| otherwise. Choose x € E'nsupp(u) and a bounded neighbor-
hood @ < G of e such that u(x@) > c/2. Set F:= E'n x@’[&lﬁ. Since Féyc E'¢g
is a bounded null set, there exists a symmetric neighborhood 6, c LNn& of e
such that u(FG¢y) < c/4. Noting that u(xG — FG¢y) > c/4, we may choose a
compact subset C c xG — FO ¢y with y(C) > c/4. Since CZ(]I@L c x@?al@’, we
have
Cly'OLNE cxG0;'6NE =F

Since C¢;'0, N F = @ by the choice of C, we get C¢;'0, N E' = » and hence
uC Za 161) = 0. Consider the following N-invariant measurable subsets:

Elzz{zel“\G:f ]lc(zn)dn>0} and
N

Ez::{ZEF\G:f :ﬂ_cgalﬁL(Zn)dnzo}.
N

Recall B, (j) denotes the set {n€ N:d,(n,e) < j} for each j e N. Since

f f 1lc(zn)dndu(z) = p(Cym(B, (1)) >0,
zel'\G JB, (1)

we have p(E;) >0 by Fubini’s lemma. Since

f f ]lC,(;l@L(zn)dndu(z) = ,u(CZ(]l@’L)m(B\,(j)) =0,
z€T\G JB, (j)

again by Fubini’s lemma, E»(j) is p-conull, where

E>(j) :={zeF\G:f . ILC[()l@L(zn)dn:()},

vl
Since E» = ‘]?ZIEZ (j), the set E5 is p-conull as well. Therefore, if we set E =
E) N E,, then E is an N-invariant measurable subset with y(E) > 0. Now the
N-ergodicity of p implies that E is a p-conull subset. Moreover, we have
EnE(alﬁL = @; to see this, suppose z = yéalf for some z,y € E and ¢ € 0.
Then

f Lege,(vly €mdn =0,
N

By changing the variable ¢;'¢n(¢;'¢)"! — n, it implies that

fN Lerie,e1e, (yn)dn=0.
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Since C < Cly'0,07 ¢y, we get [ 1c(yn)dn =0, implying y ¢ E, yielding con-
tradiction. O

We set
(4.13) @éo = [()@’L,
so that En E@’[‘O1 =g@.

For a differentiable map f: N — N, let Dy, f: TyN — T,y N denote the dif-
ferential of f at u € N. Let 7, : N — N denote the left translation map, i.e.,
T4(n) = un for n € N. Choosing a basis %, := {vy,..., v} of TeN, the collection
By = {DeTw(v1),...,DeTw(vm)} gives a basis for T, N for each w € N. The
following Jacobian of f at u € N is well-defined, independent of the choice of
B.:

Brw
Jac, f :=det [Duf]% .

B . . .
Here [D, f] /" denotes the matrix representation of D,, f with respect to the
indicated bases.

Definition of r, ry. Since pAM (80, Vgy) = fo and pAM (8o,°) is continuous at yg,,
we can find

1
0<r < rniin mno
such that
b (g0, Ny, yg,) < Os,.
Set
3
rop .= Zrl.

Definition of k, c,n. By (4.6), we have gg Nj,e” — yg, uniformly as j — co. Hence
we may fix a large integer k = 1 which satisfies the following three conditions
foralllsi<r:

(4.14) er/ZJ/gochog(])CNTIoe_cNhygo;
(4.15) b (gF, Ni(mo™) < niN;i (1 14);
(4.16) gob™ (gt Ny, )N;, € NLN™,

where n; is given in (4.4). Since gl(ce:f # gll“ei‘, we can choose 0 <7 < %770 satisfy-
ing

(4.17) grer ¢ bNi(gk, e)Ni(n")e; forall i.

We fix a small number 0 <c<1/2sothatforalll<i<rand x,y€ Ni(nt")el._,
(4.18) 20)d; (x, y) =d; (b (g, ), bV (gF, )

and

. . N . N, k
2¢ < min ulerzlvf,l“acub (go,-)i,uler}vfrl|]acub (go,.)| .
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LEMMA 4.5. We have

(4.19) b (gs,e) Nacy = BN (g8, Ny) < bV (g8, e) Ny,
and
(4.20) b (gk, Ney) < BN (&, ) Ny

Proof. Fix1<i<r. By (4.17), we have pi (glk,e,-)Ni(nti)el.‘ c ngiel._ and hence
pNi (glk,e,-)Ni(nti) c bl (glk,Ni). Letne N,-((ch)ti) be arbitrary. There exists
n' € N; such that bVi (gf,ei)n = pNi (gf, n'). We have, by (4.18),

(20)""d;(e;, n) = d; (BN (gF, en), b (gF, n))
=d;(b™ (gF,e), bV (gF,e))n) =d;(es, n) < (2em) ™
and hence d;(e;, n') < n‘i. It implies
bNi(gk enn=bNi(gF, n') e BN (gF, N;(n")).

This proves the first inclusion in (4.19).
By (4.12) and (4.6), we have

di(gFne;, gfn'e;) <27%d;(ne;,n'e;) forall n,n’ e N;(n").
In other words, for all n,n' € N;(n"),
4.21) di (b (g¥, m), BN (gF, n")) <27%d;(n, n).

Hence bVi (glk, -) has Lipschitz constant less than 1 on N;(n"), the right inclu-
sion in (4.19), as well as (4.20) follow. O

LEMMA 4.6. We have
(4.22) b (g0, BN (g¥, v)N,,) < bV (g¥, v)N,,  forallve N,

Proof. As d; is left-invariant, the choice of k as in (4.15) implies that for any
v e N;(n'), we have

b (gF, v)N;i(rf) o niNy(3rf 14) and BN (gF, N;(n"))Ni(ro") < niN; (37 12).

Since r; < min; WT]O and hence 3réi /12 < 176" by the definition of ry, it fol-
lows from (4.12) and the property gi¢; = ¢; that

gin;N; (Bréi/Z) c n;N; (3r(§i/4).
Therefore, for any ve N; (nti ),
b (g, b (gF, v)Ni(ro")) < n; N (37 14) < BN (gF, v) Ni (r ).
This proves the lemma. O
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Definition of ;. Since the following (4.23)- (4.30) are all open conditions which
have been proved at g = gp in (4.9),(4.10), (4.14) and Lemmas 4.5 and 4.6, we
may choose a bounded neighborhood V} of gy in G such that those conditions
continue to hold for all g€ Vp, u€ Ny, bN(gk,Nn) and v e Ny:

(4.23) 8&Nr, Vg, © Nr12YVgy

(4.24) Ny, 12Yg, < Ny 8¥Npe™ < Ny, yg,.

(4.25) b*™M(g,u) € Oy,

(4.26) bN(g*, e)Noey < BN (g%, Ny) < BN (g%, e)N,  and
(4.27) bN (g%, Ny) < bV (g5, ) N

(4.28) 2¢<|Jac, bV(g,)| <1, 2c<|Jac, bV (g, )| <1
(4.29) bN (g, bN (g*, v)N,,) c bV (g%, v) Ny,

(4.30) gb™(g*, N;))N;, « NLN™.

Definition of R, %8;, and %y . Since the sets Vy, N, and {bN (g, Nyp)Ny, : g € Vo}
are bounded, it follows from (4.30) that there exist R >0 and bounded symmet-
ric neighborhoods %, c L and B+ < N* of e such that for all g € Vj,

(4.31) g¥N, c Np B, BN+ and gb"(g¥, N))N;,  NrB BN~

Definition of 8, R’ and x .. We fix § > 0 such that

(4.32) a; ' NgNya;Nep < Noey  for all ¢ = B.

We also fix R’ > 0 so that

(4.33) U NeNy(a;NyNgNga;') < Ng.
te[-B,P1

Recalling the notation from Lemma 3.2, we set

MINR) . i2plf.

434 *:: * » Mo 7R, = \"
( ) K K« (v, B,cn, R) (Ner)

Definition of Q, Q, Gn+, Q, Q| and Ty. Let E be an N-invariant u-conull set as
in Lemma 4.4. We fix a compact subset Q c E with p(Q) > 0, and define

(4.35) Q:= QB BN+ .
Since u(Q) = u(Q N E), we can find a compact set Q c Q c QN E satisfying

(4.36) wQ-Q) <

16K0K x|

Since Q c E, we know ,u(Q@ZOl) = 0. By the uniform convergence theorem, there
exists a bounded symmetric neighborhood O+ < 9B+ of e for which the set

(4.37) QL:=QON:0y!
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satisfies
2
4.38 < —u(Q).
(4.38) ©(Qy) 16KuKorn 1)
We fix Ty > 0 such that
(4.39) Ady, BN+ cOn+  forall = Ty.

Definition of T3, Q1, Q2, = and O. Since % (v) = #,(v) for p-a.e. x € '\G, we
can find T; > Tj so that the set

(4.40) Q) :={xeQ:Stabg(xa;) NV # @ for some Ty <r< Ty}
satisfies
(4.41) uQ-0Q) < iu(Q).
Set
(4.42) Q1:=Qn.
Since Q c Q, we have
(4.43) p(Qy) = p(Q) - Q-0 > %u(m.
We define
(4.44) =:= {x e'\G:3t>0s.t. j;thrOa,l 1o, (xn)dn= cha,N,Oa[l ]lQ(xn)dn}.
Set
(4.45) Qo =0, -E=.

Recall the notation for distance dp on N and the corresponding metric balls
By(r), r >0, from Proposition 3.1. Consider the following set

c
(4.46) ©O:= {xeF\G:3r>Os.t.f lgnz(xn)dn=— ]lgz(xn)dn}.
By(r) K JBy(r)

PROPOSITION 4.7. We have

1
pQy —0) > ZH(Q)'

Proof. Since a;Ny,a;' = By(e'ro) for any f,ry > 0, we may apply the maximal
ratio inequality (Lemma 3.4) and (4.38) and get

Ky 2

2,
wQND) < Z—KC,U(QL) < Q) = ().

c 16x,KoK« 16K oK «

Therefore, by (4.36),
c

pQNE) = puQ-Q)+u(QnNE) < Py ©(€).
By (4.43), we have
- - 3 1
1(€Q2) = p(Q —E) =2 pu(Qy) — QN E) = (4_1 ~ Bror, ) u(€) > E'U(Q)'
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Employing the maximal ratio inequality yet again, we deduce

@n0) = 2% Gnm < 2% £ )= Tuo
iR =T M= c 81(01(*“ i
implying the claim by (4.43). O
Choice of xy, R;, R, and D. We fix R}, Ry > 0 so that Ny c By(R;) and
(4.47) U arBo(R)a;* < By(Ry).
0<t<T)

We choose xp and D as in the following lemma:
LEMMA 4.8. There exist xo € I'\G and a ball D = By(Ry,) with Ry, > R such that

Jplanz(xon)dn S S Jon, 0 L0, (Xom) dn 1
Jpla,(xom)dn ~ x.’ Jpla,(xom)dn 2

where 0, By(Ry,) := Bo(Ryx,) — Bo(Rx, — 7).

Proof. Choose any xj € Q, — 0, which is possible by Proposition 4.7. By the defi-
nition of O, x satisfies the first inequality for any ball D = By(R). By Lemma 3.3,
there exists Ry, > R, satisfying the second inequality, as required. O

For any X cI'\G, define the subset Tx < N by
Tx:={neN:xoneX}.

Definition of 7, a,, g,. By the definition of Q; in (4.40), for each u € Tq,, we
can choose Ty < t,, < T such that

Stabg(xouas) N Vp # @.
We set a, := a,, for the sake of simplicity, and choose
gu € Stabg(xouay,) N'Vy.

LEMMA 4.9. For u€Tgq,, we have uaubN(g’,j, N,,)a;1 cTz.

Proof. Let u€ Tq, and vy € N, be arbitrary. Setting vy, := N (g{i, Vo), we need to
show that xpua, v(’) a;l € Z. Observe that for all ve€ N,

xou(ayva,') = xouay (g v)ay"
(4.48) = xouau (b (gu, v) b™ (g, ) bV (g0, 1)) ay
= xou(a,b" (gu, v)ay;) b™ (g, v) (aub™ (gu, v)az),

whenever b(gy, v) is defined. For any n € N,;, we can plug v = vyn into (4.48)
by (4.30), and get

xou(ayvyna,') = xou(a,b™ (g, v(')n)a;l)([aubN+ (gu vymay")

where ¢ := b (g, vjn) € Gy, by (4.25).
Recall that bV (8u» vén) € BN+ by (4.31) and Adg, (Bn+) cOn+ for all £ = Tj
by (4.39). It follows that

b]\fJr ! -1 @)
ay (8u,vgn)a,,” € Onv+.
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Since
xou(ayb" (gu, vimay') = xou(ayvhna;") (aub (g, vimay,') 07,
and Q| = Q@’N+@€‘Ol as defined in (4.37), we have for all n€ Ny,

(4.49) Lo(xouayvgnay') < 1g, (xou(ayb™ (gu, vomay')).

Note that
f 1o (xouayvyay' (a,na;") dn
o

S[ ILQL(xouaubN(gu,v(')n)a;I) dn by (4.49)

)
< (20)_1f Lo, (xou(aunagl)) dn by (4.28) and Lemma 4.10
bN(gu,v(’)No)
< (20)_1f 1o, (xgu(aunagl)) dn by (4.29)
U Ny,

= (20)_1f Lo, (xouauv(')agl(aunagl)) dn.

0

Hence by the change of variable formula, we have

f Lo, (xouayvya,'n) dn= ZCf 1o (xouayvyay,'n) dn.
auNroa;

-1
auNrO a,

In view of definition (4.44), this proves that xoua, U(’)a;1 €. O

Although the following lemma, which was used in the above proof, should be
a standard fact, we could not find a reference, so we provide a proof.

LEMMA 4.10. For any measurable function f : N — R and a differentiable map
¢: N — N, we have

f(foqb)(n)llacngbldn:f f(n)dn.
N N

Proof. Since N is a simply connected nilpotent Lie group, the Haar measure dn
on N is the push-forward of the Lebesgue measure dLeb on n =Lie N by the
exponential map. Let ¢ :=logo ¢ oexp. Note that Id +% ad, € GL(n) is unipotent
for all x € n, as ad, € End(n) is a nilpotent element. We claim that |Jacex ¢| =
|Jacy ¢l.

Since N is a nilpotent Lie group of at most 2-step, we have for any n,n' € N,

1
log(nn') =logn+logn’ + 5[logn,log n'l.
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Hence, we get via a direct computation:

i xy—1 X Ly
dtlogd)(e) dle'e™”)

— %log¢(ex)—l¢(ex+ty+%t[x,y])

; 1

= % (10g¢>(eX)—1 +log(,b(ex+ty+§t[x,y]) + % [10g¢(ex)—1’10g¢)(ex+ty+§t[x,y])])
a -

= (Idn+%ad_¢(x)) (Ed)(“ t(y+ %[x, y])))

= (1dn+3ad_g)) o (D2 @) (v + 1% 1).

Now let x e n and y € TexN. In view of the identification n = T,N = T, N for
n=e”* and ¢(e*), we have

_i xy—1 Xty
Da¢@%—d ¢e”) "Pplee’’)
t=0

t

dt

expologp(e®) Lp(e*e’)
=0

=(Doexp)(%

logg(e®) Lp(ee’?)
=0

t
~ 1

= (Doexp) e (Idu+3ad_gx)) o (D) (y + 51, ¥])

= (Doexp) o (Idn +5ad_y)) o (D) o (Idu +3adx ) (1)

where we have used the convention %|t:0 B € TN to denote the element
of Tgo)N represented by a smooth curve f: (—¢,) — N. Since Dgexp : Ton —
T.N =n is the identity map Id,, under the identification Tyn =n and Id, +% ad;:
n — n has determinant one for any z € n, being a unipotent matrix, we deduce

that det(Dex ¢) = det(Dy ¢), proving the claim. Hence for any measurable func-
tion f: N — R, we have

fN(fO(p)(n) IJac,, ¢l dn = f(fo&)(x) IJacex ¢ d Leb(x)
n
=f(fo<Z>)(x)|Jacx<Z>|dLeb(x)
n

:ffmdmmmszMMm
n N

where we have used the change of variable formula for the Lebesgue measure
in the second last equality. This proves the lemma. O

Definition of B, J,,. For each u € Tq,, we define
B, := uauNC,]a;1 and
— N, _k -1, -1
Ju:i= {uaub (&y»may, :ne Ney,xouayna, € Q}.
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LEMMA 4.11. Forall ue Tq,, we have

2c-m(BynTq) =mJy).
Proof. Defining ¢, : N — N by ¢,(n) = u(ayna;,'), we have

Ju=(puob™(gh )0 (BunTa).
For all v € N, €Ny, we have 2¢ <|Jac, bN(g]Lj, -)| by (4.28), and hence
2cs ’Iacu (puob™ gy, ow;l)‘-
The lemma follows from Lemma 4.10. O
LEMMA 4.12. For any u€ Tq, N (D -0g,D), we have
JucTga=nD.

Proof. Letu€ Tq, and v € J,, be arbitrary. Then v = u(aubN(g’Lj, n) a;l) for some
n € Ney. Since xou € Q1 we have for all n € Ny,

X0 u(auna;I) = xouau(‘g'],jn)a;1

(4.50) = xouay(bY (gk, m) b™ gk, m) b™" (g, ) a,!
= xgu(aubN(g’lj,n)a;I) bAM(gZ]j,n) (aubN+ (g{f,n)a;l),
with b*M (gk n) € 28, and bN' (gk, n) € B+, by (4.31). Since 1, = Ty, we have
aubN+ (glf,n)a;l c On+ by (4.39). Hence,
xov = xou(a, b (g5, mayl)
= xgu(auna;l)(aubN+ (gL’i, n)_laal)bAM(g’uc, n) e Q0N+ By
Since Opn+ < B+ we deduce
Xov € QBN+ B < Q.

By Lemma 4.9, since v = u(a,b™ (gk, n)a,!) with u € Q; and n € Ny, < N, we
have xov € = implying v € Tg=.

Further assuming that u € D —0g, D, since bN(g’,j, n) € Ng < By(Ry), by (4.31),
it follows from (4.47) that

a,bN gk, ma' € By(Ry).

Since dp is a distance, satisfying the triangle inequality, we deduce that v € D,
as claimed. O

Properties of coverings. For all u € Tq , we have

bN(gLIf,e)Nzc,7 c bN(gL’i,Nn) c bN(g'Lj, e) N, and

(4.51)

bN (g%, Ney) < b (gk, e) Ny
Setting
(4.52) wy = uaubN(gluc, e)a;l,
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we have

Juc wuauNCna;1 and
(4.53) -1 N, _k -1 -1
wyayNoepa, < uayb™(g,, Ny)a,” < wyayNya,, .

Since bN(g’lj,e) € Ng by (4.31), we have w;, € uauNRa;I. Hence
(4.54) Juc wuausza;l c uaubN(gS,Nn)a;1 c uauNRNna;l.

LEMMA 4.13. Ifu;,uj€ Tq, satisfy that ]y, NJu;, # 9, then
1. ay! ay;NrNyay, ay, Ney & Nocn,
2. u;'uj € ay NrNyay,! ay;NyNray!,
3. Bu; © Ujay, NpNy(a;,! au; NyNrNeyay,! ay)ay,!, and
4. ay! ay; < exp((-P, BIv).

Proof. To prove (1), let v € ], N Jy,. By (4.54), we have ujfl ve aujNRN,,a;j1 and

by (4.53), we have v_lwui € ay, Ncna;il, using the fact that N, is symmetric.
Hence,

(4.55) Uit wy, = W V)0 wy,) € ay, NeNpay, | @y, Neyay,)

Since u; € Tq, and uj ¢ T=, we have uj & u;ay, bN(g],ji,N,,)a;i1 by Lemma 4.9. It
follows from (4.53) that u; ¢ wy, ay; Nacy a;il, or equivalently,

Uj

wui ¢ au,- NZC?]a;il'
Note that by (4.55),

1 —
i uj
proving (1). We now prove (2). Since Jy, ﬁ]uj # @, by (4.53) and (4.54),

- 1 -1 -1
a, Wy, Ay, € Ay, Ay, NRNnauj ay; Nepn — Nacp,

-1 -1
uiay, NpNpa,; N ujaujNRNnauj # Q.
Since N; and Np are symmetric, we get

-1 -1 -1
u; uje€ayNpNpa,, auanNRauj.

To check (3), observe that

1

— 1. -1_ oy 1y, -
Buj = u]auchnauj = u;(u; u])aujNC,,auj

-1 -1 -1

(4.56) < u;(@y, NpNy @y, @y, Ny Nray, ') au; Ney @y,
-1 -1 -1

= w;ay, NpNy(ay, @y, NyNgNepa,! au,) ay,!,

where the inclusion c follows from Claim (2). Claim (4) follows from (1) by the
choice of § as in (4.32). O

LEMMA 4.14. For a bounded subset S c Tq,, consider the covering {B, : u € S}.
There exists a countable subset F S such that {By, : u; € F} covers S and

(4.57) 21y, <K
i

where x .. is given in (4.34).
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Proof. Let {By, : u; € F} be a countable subcover of S given by Lemma 3.2 with
respect to the parameters f3,1; = c¢n and 7, = R'. Since S c Tq,, note that when-
ever Jy,NJu; # @, we have |t — t,;| < f by Lemma 4.13(4). Moreover by Lemma
4.13(3), and the definition of R’ > 0 as given in (4.33), we also have

-1 ._ -1
By; = ujauch,,auj cCy, = ujay,Npa,, .
Therefore, if J,, N--- NJu, 79 for some g = 2, then
q

U Buj < Cui

j=1
and |ty — ;| < B forall 1 < i, j < g. Hence by Lemma 3.2, we get g < k.. Hence
the claim follows. O

LEMMA 4.15 (Lower bound). We have

m( U ]umD)zKi-m(TQmD).

uETQZ

Proof. First, note that the union in the statement is indeed measurable as this
is a union of open sets in N. Consider the cover

F:={By:uecTq,n(D-0g,D)}

of the bounded subset Tq, N (D —dg, D), where R; is given (4.47). By Lemma
4.14, we can find a countable subset F c T, N(D-0g, D) such that the collection
{By, : u; € F} covers Tq, N (D-0g,D) and

(4.58) > 1y, <«

u;eF

By Lemma 4.12, we have J,, ¢ D for all u; € F c T, n (D —0g,D). Hence,
using (4.58), we get

1
m( U ]unD)zm(U ]ul.)z— Y m(Jy,)-
MGTQZ u;eF K u;eF
Since m(Jy,) = 2c- m(By, N Tq) by Lemma 4.11 (recall that Q, = Q), we have
2c 2c
m| J JunD|z— ) m(By,nTa)z—m(Tq,Nn(D-0gD)),
METQZ * u;eF K

where the last inequality holds as {By, : u; € F} is a cover of T, N (D —0g,D).
Since
2:m(Tq,N(D-0g,D))=m(Tg,N D)

by the second inequality of Lemma 4.8, the claim follows. O

LEMMA 4.16 (Upper bound). We have

m( U ]unD) < Kim(TQZnD).

METQZ
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Proof. By Lemma 4.12 and the fact that Qp < Q;, we have

METQZ

By the choice of x satisfying the first inequality in Lemma 4.8, we have
c
m(Tga=ND) < K—m(TQ2 nD),
implying the claim. O

These two lemmas yield a contradiction to the hypothesis (4.11) that A(gp) =
Mhé’ ) € Stabg([ul). As p = py was arbitrary, we deduce that A(hg) € Stabg([u])
by Lemma 4.3. Therefore we have proved (4.2) and hence Theorem 4.1.

5. MEASURES SUPPORTED ON DIRECTIONAL RECURRENT SETS

Let G =[I;_, G; be a product of simple real algebraic groups of rank one. Let
I'p < G be a Zariski dense discrete subgroup of G, and I' be a Zariski dense
normal subgroup of T'y.

For v € inta’, define

(5.1) Ry ={I\I'g eT\G:limsupTo\Tygexp(tv) # }.
t—o0

As T is normal in I'y, £ is well-defined.

The main goal of this section is to deduce the following theorem and corollary
from Theorem 4.1:

THEOREM 5.1. Forveinta®, any N-invariant, ergodic measure p supported on
R is P° quasi-invariant.

COROLLARY 5.2. Set Z*(inta™) := Uyeinta+ %u. Any N-invariant, ergodic mea-
sure y supported on Z* (inta™) is P° quasi-invariant.

We remark that any N-invariant, ergodic and P°-invariant measure on & is of
the form mERly for some I'-conformal measure v on A and P°-minimal subset
Y cT'\G (see (6.1) and [27, Prop. 7.2]).

Proposition 1.4 is a special case of Theorem 5.1 when I' =T’y and M is con-
nected. We recall that as long as none of G; is isomorphic SL, (R), M is always
connected [43, Lem. 2.4].

Properties of Zariski dense groups. In the following Theorem 5.3, and Lemmas
5.4 and 5.5, we let £ be a Zariski dense discrete subgroup of any semisimple real
algebraic group G. Note that X contains a Zariski dense subset of loxodromic
elements [3]. The following theorem can be deduced from the work of Guivarc’h
and Raugi [17].

THEOREM 5.3 ([27, Cor. 3.6]). Any closed subgroup of M A containing the gener-
alized Jordan projection A(X) contains M° A.
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We denote by A(X) c & the limit set of X, which is the unique X-minimal
subset.
We refer to [12, Def. 7.1] for the definition of a Schottky subgroup of G.

LEMMA 5.4. Let © be a Zariski open subset of & . Any Zariski dense subgroup X
of G contains a Zariski dense Schottky subgroup X, with A(Z,) 0.

Proof. This can be proved similarly to the proof of [3, Prop. 4.3] (see also proof
of [12, Lem. 7.3]). First, we may assume that X is finitely generated. Hence
there exists an integer n := ny = 1 such that the subgroup (y”) generated by y"
is Zariski connected for all y € Z [41].

Since @ and #? are Zariski open in & and & x & respectively, we can
choose open subsets bl.i, i = 1,2 whose closures are contained in ¢ and which
are pairwise in general position.3 By [3, Lemma 3.6], for each i = 1,2, the subset

{y € £ :loxodromic, (y> Yy-1) € b} x b; }
is Zariski dense. Hence there exists g1 € X such that y; := g{* is loxodromic
and (yy,, Yy € by x b. By [41, Proposition 4.4], there exists a proper Zariski
closed subset F), < G containing all proper Zariski closed and Zariski connected
subgroups of G containing y;. Hence we can find a loxodromic element g, €
2 — F), such that (Vg2» Vg;1) € by x b;. Set y, := gJ'. By definition of n and F ,
the subgroup X := (y’f,y§> is Zariski dense for any k = 1.

We can find open subsets B;—“ c %, i=1,2 such that ﬂ?:l(Blfr NB)#@ and
Yi¥(B)  bf for all sufficiently large k = 1. Fix one such k. If we take ¢ €
ﬂf:l(B;r N B;), then X;¢p is contained in the union U;=;2(b] Ub;) < @. Since
the closure of X;.¢y contains A(Z;), which is the minimal X-subset, it follows
that A(Z;) € 6. O

LEMMA 5.5. For any¢,ne %, set
(5.2) O =18 € G: loxodromic, (yg, &), (yg1,1) € F@

For any Zariski dense subgroup X of G, the intersection XN O contains a
Zariski dense Schottky subgroup of G.

Proof. For ¢ € &, the subset O; := {¢' € F : (§,&') € FP} is Zariski open. By
Lemma 5.4, X contains a Zariski dense Schottky subgroup X, consisting of loxo-
dromic elements and with A(Z;) € @¢. Now Z; contains a Zariski dense Schottky
subgroup X with A(Zz) € 0y. Then Z; € O ) since

{yyn € F 1y €T} c A(Z2) €Oy N O O

Proof of Theorem 5.1. As p is supported on %, there exists x = [g] € Z, such
that ¥, (v) = F(v). By the definition of ., there exist y; € I'g and t; — +oo
such that y;gexp(¢;v) converges to some hy € G. Since I' is normal in Iy, it
follows that .%#,(v) contains X := h(; 1Thy, and hence

Fulv) o .

3Two subsets A and B of & are in general position if Ax Bc %@,
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Hence by Theorem 4.1,
/I(Z N D(eﬂef)) c Stabg ([u]).

Since X is Zariski dense, by Lemma 5.5, the intersection £ N O+ () contains
a Zariski dense discrete subgroup, say X’. Since the closure of the subgroup
generated by A(X) contains AM° by Theorem 5.3, we get AM° < Stabg([u]),
proving the claim.

Proof of Corollary 5.2. By Theorem 5.1, it suffices to show the following lemma:

LEMMA 5.6. Any N-invariant, ergodic measure y supported on Z*(inta*) is sup-
ported on X for somev € inta™.

Proof. For any subset U c inta*, we set

Z*(U):=J %, cI'\G.
ueU
Note that Z* (U) is N-invariant, since £, itself is N-invariant for each u € inta™.
Note that Z* (inta*) = Uyes Z;;, where S:={u €inta® : lul = 1}. Let (I'\G, &/, 1)
be the completion of the measure space (I'\G, %, u), where 28 is the Borel o-
algebra of I'\G.

CLAIM. For any open set U c S, the set Z* (U) belongs to < and is either p-null
or co-null.

Given U, denote Xy =T'\G x U equipped with the product o-algebra %8 ® %y
with respect to the Borel o-algebras on I'\G and U. Define the function v :
XU d [0,00] by

Wy(x,u) = litnlglfdr\c(x,xexp(tu)),

where dr\ is the metric induced from the left-invariant metric on G. The func-
tion v is clearly ® %y -measurable and therefore so is the set W := 1! ([0,00)).
Note that Z* (U) = nr\g(W) is the image of W under the projection map 7r\g :
Xy — I'\G. We would have liked to conclude that 2* (U) is itself Borel measur-
able but this might not be true. Fortunately, we have the following Measurable
Projection Theorem [9, II1.23]:

Let (Y, %) be a measure space and let (U, %By) be a Polish space, i.e., a separable
completely metrizable space, together with its Borel o-algebra. Let X =Y x U
together with & ® By be the product measure space. Then for any set W € & ® By,
the projection ny (W) c Y is universally measurable, that is, my (W) is contained
in the completion of & with respect to any probability measure v on (Y, %).

The space U is clearly Polish whenever U is open in S. Since u is equiva-
lent to a probability measure, say, fdu for some 0 < f € L' (u) of norm= 1, this
theorem implies that Z* (U) = nr\g(W) € of. By the properties of the comple-
tion o-algebra, there exist Borel measurable sets Q; ¢ 2" (U) c Q. satisfying
1(Q2— Q1) =0. Since Z* (U) is N-invariant we have

QINcZ"(U)N=2%"(U) cQ,
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and hence p(Q;AQ;N) =0, where A denotes symmetric difference. By ergod-
icity, this implies that Q;, and hence also Z*(U), are either y-null or co-null,
proving the claim.

Now take a countable basis {Uj ;} of S consisting of open balls of diameter
at most 1/2. By the claim above, the sets Z* (U ;) are either y-null or co-null.
Since p is supported on

R*(inta™) =2*(S) = J 2" (U1,),
i=1
there exists some #; for which 2" (U,;,) is co-null. Take a countable basis {U> ;}
of Uy ;, consisting of open balls of diameter at most 1/4. Then there exists
Us,i, c Uy,;, for which #£*(U,,;,) is co-null. Continuing inductively, we get a
decreasing sequence of balls Uy ;, > U,,;, > -+ of diameters diam Uy, ;, < 27k sat-
isfying that 2" (Uy,;,) are p-co-null. Hence Mg Uy, ;, = {v} for some v € S and
Ry =Nk R* (Uy,;,) is co-null for p. O

6. UNIQUE ERGODICITY AND ANOSOV GROUPS

We begin by recalling the definition of Burger—Roblin measures given in [12].
Let ' be a Zariski dense discrete subgroup of a connected semisimple real al-
gebraic group G. Denote by yr:a — RU {—oo} the growth indicator function of
I' defined by Quint [31]. Let ¥ be a linear form on a and v a (I',%)-conformal
measure supported on the limit set A. This implies ¥ = wr ([31, Thm. 1.2]).
When the rank of G is one, ¥ is simply a real number and yr is equal to the
critical exponent of I'. The Burger-Roblin measure m5R associated to v is the
M N-invariant Borel measure on I'\G which is induced from the following mea-
sure ME® on G/M: using the Hopf parametrization G/M = @ x a given by

gM— (g%,87,Bg (e, ),
6.1) dmiR(g) = eV P 8N *20 B @8 gy (g*)dm,(g7)dD,

where db is the Lebesgue measure on a, m, is the K-invariant probability mea-
sure on & and fg+ (e, g) € a and fg- (e, ) € a are respectively given by the con-
ditions

geKexp(Bg+(e,8))N and ge Kexp(Ady,(Bg(e,8))N".

Now, let I be an Anosov subgroup of G, as defined in the introduction. For
each v € int &, there exist a unique linear form v, € a* such that v, = wr and
¥, (v) = wr(v) and a unique (I',¥,)-conformal probability measure supported
on the limit set A, which we denote by v, (see [35] and [12, Theorem 7.9]). We
set

(6.2) mER = m%f.

Note that if Rv = Ru, then ¥, =y, and hence mE® = mBR,

We recall the following result of Lee and Oh, which is based on their classifi-
cation of I'-conformal measures on A [26, Thm. 7.7]:
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THEOREM 6.1 ([27, Prop. 7.2]). Any N-invariant ergodic and P°-quasi invariant
measure on & is of the form mBR|y for some v € int. % and some P°-minimal
subset Y c T'\G, up to proportionality.

Indeed in [26], it was also shown that each m?Rly in the above theorem is
N-ergodic; however we will not need this result.
For v e inta™, set
Ry = {x € & :limsup xexp tv # @}.
t—+0o0
We also recall the following recent result obtained by Burger, Landersberg,
Lee and Oh:

THEOREM 6.2 ([8]). Letveint%r andueinta®.
o IfrankG <3, then m5}(T\G-%,) = 0.
o IfrankG >3 or Ru # Rv, then m5R}(%,) = 0.

Proof of Theorem 1.1. Let y be an N-invariant measure supported on %, for
some u € inta®. In view of the ergodic decomposition, we may assume without
loss of generality that p is ergodic. By Proposition 1.4, u is P quasi-invariant.
Since P = P° under the hypothesis that none of G; is isomorphic to SLy(R), it
follows from Theorem 6.1 that u = m5R for some v € int %r. By Theorem 6.2,
this implies that rank G < 3 and Rv = Ru and hence u € int %r; in other cases,
such p cannot exist. This proves the claim.

Proof of Corollary 1.2. By Corollary 5.2, any N-invariant ergodic measure sup-
ported on Z is supported on £, for some u € inta®. Hence the claim follows
from Theorem 1.1.
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