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HOROSPHERICAL INVARIANT MEASURES AND A RANK DICHOTOMY
FOR ANOSOV GROUPS

OR LANDESBERG, MINJU LEE, ELON LINDENSTRAUSS AND HEE OH
(Communicated by Alex Eskin)

ABSTRACT. Let G = Qr
i=1 Gi be a product of simple real algebraic groups of

rank one and ° an Anosov subgroup of G with respect to a minimal parabolic
subgroup. For each v in the interior of a positive Weyl chamber, let Rv Ω
°\G denote the Borel subset of all points with recurrent exp(R+v)-orbits. For
a maximal horospherical subgroup N of G , we show that the N -action on
Rv is uniquely ergodic if r = rank(G) ∑ 3 and v belongs to the interior of the
limit cone of °, and that there exists no N -invariant Radon measure on Rv
otherwise.

1. INTRODUCTION

Let G be a connected semisimple real algebraic group, and °<G be a Zariski
dense discrete subgroup. Let N be a maximal horospherical subgroup of G ,
which is unique up to conjugation. We are interested in the study of N -invariant
ergodic Radon measures on the quotient space °\G (from now on, all measures
we will consider are implicitly assumed to be Radon measures). When ° is a
uniform lattice in G , the N -action on °\G is known to be uniquely ergodic, that
is, there exists a unique N -invariant ergodic measure on °\G , up to proportion-
ality, which is the G-invariant measure. This result is due to Furstenberg [14]
for G = PSL2(R) and Veech [42] in general. Dani [10] classified all N -invariant
ergodic measures for a general lattice °. Later, Ratner [33] gave a complete clas-
sification of all invariant ergodic measures for any unipotent subgroup action
when ° is a lattice of G .

When G is of rank one and ° is geometrically finite, there exists a unique
M N -invariant ergodic measure on °\G , not supported on a closed M N -orbit,
where M is a maximal compact subgroup of the normalizer of N , called the
Burger–Roblin measure. This result is due to Burger [6] for convex cocompact
subgroups of PSL2(R) with critical exponent bigger than 1/2, and to Roblin [34]
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in general. For G 6' SL2(R), Winter [43] showed that the Burger–Roblin mea-
sure is N -ergodic, and hence the N -action on °\G is essentially uniquely er-
godic. This relies on the fact that M is connected. Indeed, for G ' SL2(R) where
M = {±e}, the Burger–Roblin measure has one or two N -ergodic components
depending on ° (cf. [27, Thm. 7.14]).

For geometrically infinite groups, there may be a continuous family of N -
invariant ergodic measures, as first discovered by Babillot and Ledrappier ([1, 2]).
See [36, 37, 24, 25, 30, 22, 21] for partial classification results in the rank one
case.

In this paper, we obtain a measure classification result for the N -action on
Anosov homogeneous spaces °\G which surprisingly depends on the rank of G :
on the recurrent set in an interior direction of the limit cone of °, the N -action
is uniquely ergodic if rankG ∑ 3, and admits no invariant measure if rankG > 3.

When the rank of G is one, the class of Anosov subgroups coincides with that
of Zariski dense convex cocompact subgroups. To define it in general, let P be
a minimal parabolic subgroup of G . Let F denote the Furstenberg boundary
G/P , and F

(2) the unique open G-orbit in F £F . A Zariski dense discrete
subgroup °<G is called an Anosov subgroup (with respect to P ) if it is a finitely
generated word hyperbolic group which admits a °-equivariant embedding ≥ of
the Gromov boundary @° into F such that (≥(x),≥(y)) 2F

(2) for all x 6= y in @°.
First introduced by Labourie [20] as the images of Hitchin representations of
surface groups, this definition is due to Guichard and Wienhard [15]. The class
of Anosov groups in particular includes any Zariski dense Schottky subgroup (cf.
[32], [12, Lem. 7.2]).

Let P = AM N be the Langlands decomposition of P , so that A is a maximal
real split torus of G , M is a compact subgroup which commutes with A and N
is the unipotent radical of P . Fix a positive Weyl chamber a+ Ω a = log A, and
denote by L° Ω a+ the limit cone of °, i.e., L° is the smallest closed cone of a+

which contains the Jordan projection of ° (see (2.1) for definition). It is known
that if ° is Zariski dense, L° is a convex cone with non-empty interior [3, Thm.
1.2]. We denote by § Ω F the limit set of °, which is the unique °-minimal
closed subset of F . Then

E :=
©
[g ] 2 °\G : g P 2§

™

is the unique P-minimal closed subset of °\G . For each vector v 2 inta+, define
the following directional recurrent subset of E :

Rv =
©

x 2 °\G : x exp(tiv) is bounded for some ti !+1
™

.(1.1)

It is easy to see that Rv =; unless v 2L°. Since v 2 inta+ and AM centralizes
exp(Rv), Rv is a P-invariant dense Borel subset of E . In particular, Rv is either
co-null or null for any N -invariant ergodic measure on °\G . We are interested
in understanding N -invariant ergodic measures supported on Rv.

In the rest of the introduction, we assume that

G =
rY

i=1
Gi ,
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where each Gi is a rank one simple real algebraic group; hence r= rankG . While
Gi can be isomorphic to PSL2(R), we exclude the case when Gi is isomorphic
to SL2(R) in order to ensure that P is connected. We let ° < G be an Anosov
subgroup. For each v 2 intL°, we denote by mBR

v the M N -invariant Burger–
Roblin measure for the direction v (see (6.1)). For Anosov subgroups, it was
shown by Lee and Oh that the family

©
mBR

v : v 2 intL°
™

gives all N -invariant
ergodic and P quasi-invariant measures on E , up to proportionality ([26, 27]).

The main result of this paper is as follows:

THEOREM 1.1. Let °<G be an Anosov subgroup and v 2 inta+.

1. For r ∑ 3 and v 2 intL°, the N -action on Rv is uniquely ergodic. More
precisely, mBR

v is the unique N -invariant measure supported on Rv, up to
proportionality.

2. For r > 3 or v › intL°, there exists no N -invariant measure supported on
Rv.

This theorem uses the result by Burger, Landesberg, Lee and Oh [8] that Rv

is a co-null (resp. null) set for mBR
v for r ∑ 3 (resp. r > 3), which was developed

simultaneously, in part for the purpose of this work.
We note that the unique ergodicity as in (1) implies that mBR

v is N -ergodic,
reproving some special cases of [27, Thm. 1.1]. When r = 1 and ° is a convex
cocompact subgroup of G , this theorem recovers the unique ergodicity of the
N -action on E .

We deduce the following classification of N -ergodic measures supported on
the directional recurrent set

R :=
[

v2inta+
Rv.

A measure µ on °\G is said to be supported on R if the complement of R is
contained in a µ-null set.

COROLLARY 1.2. The space M of all N -invariant ergodic measures supported on
R is given by

M =
(©

mBR
v : v 2 intL°

™
for r∑ 3

; for r> 3.

We apply our theorem to some concrete examples considered in [7]. Let
ß be a surface subgroup with two convex cocompact realizations in rank one
Lie groups G1 and G2. For each i = 1,2, denote by ºi : ß ! Gi an injective
homomorphism with Zariski dense image. We assume that º2 ±º°1

1 does not
extend to an algebraic group isomorphism G1 !G2.

It is easy to check that °º1,º2 :=
©
(º1(∞),º2(∞)) : ∞ 2ß

™
is an Anosov subgroup

of G :=G1 £G2.

COROLLARY 1.3. For °= °º1,º2 as above, the N -action on Rv is uniquely ergodic
for each v 2 intL°.
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On the proof of Theorem 1.1. In the rank one case, i.e., when ° is convex co-
compact, Theorem 1.1 follows from the combined works of Roblin [34] and
Winter [43] (see also [28] and [38] for G = SO±(n,1) case). These proofs are all
based on the finiteness and the strong mixing property of the Bowen–Margulis–
Sullivan measure. In the higher rank case, although there exists an analogous
measure (which is also called the Bowen–Margulis–Sullivan measure) for each
direction v 2 intL°, this is an infinite measure [26, Cor. 4.9] and it is not clear
how to extend the approaches of the aforementioned papers. We henceforth
follow an approach of the recent work of Landesberg and Lindenstrauss [22] for
the case G = SO±(n,1) which is in the spirit of Ratner’s work. The main technical
result we prove in this paper is the following:

PROPOSITION 1.4. Let ° be a Zariski dense discrete subgroup of G and v 2 inta+.
Then any N -invariant ergodic measure µ on Rv is P-quasi-invariant.

REMARK 1.5. We refer to Theorem 4.1 for a more general version, analogous to
the main theorem of [22] for G = SO±(n,1).

Following [22], our proof of Proposition 1.4 utilizes the geometry observed
along the one-dimensional diagonal flow exp(Rv) of points in the support of µ
to obtain an extra quasi-invariance of µ. Roughly speaking, if, for µ-a.e. x 2 °\G ,
we have x exp(tnv)gn = x exp(tnv) for some infinite sequence tn !1 and gn 2G
converging to some loxodromic element g0 2 G , we show that the generalized
Jordan projection of g0 preserves the measure class of µ, provided the attracting
fixed point of g0 is in general position with that of g°1

0 . The last condition always
holds in the rank one setting as any two distinct points on F are in general
position. In the higher rank setting, this property is needed to ensure that the
high powers of g0 attract some neighborhood of its attracting fixed point to
itself, which is an underlying key point which makes our analysis possible.

For G = SO±(n,1), the conjugation action of an element of A on N is simply a
scalar multiplication, and both the Besicovitch covering lemma and Hochman’s
ratio ergodic theorem for Euclidean norm balls in the abelian group N 'Rdim N

were used in [22], in order to control ergodic properties of N -orbits. In our
setting where G is a product

Q
Gi of rank one Lie groups, the horospherical sub-

group N is a product
Q

Ni of abelian and two-step nilpotent subgroups and the
conjugation action by exp(tv) scales Ni ’s by different factors. The existence of
exp(tv)-invariant family of quasi-balls satisfying the Besicovitch covering prop-
erty in this case is a consequence of the work of Le Donne and Rigot [23, Thm.
1.2]. This is precisely the main reason for our assumption that G is the product
of rank one Lie groups. We note that in the higher rank case, the ratio ergodic
theorem with respect to this family of quasi-balls in our N =Q

Ni , is available
only when N is abelian [11].1 To sidestep the lack of the ratio ergodic theorem
in the generality we need, we use in this paper a modified argument relying only
on the Besicovitch covering property. In addition to technical difficulties arising

1We mention that the only case when the ratio ergodic theorem is known and N is not abelian
is when G ' SU(n,1) and N is Heisenberg [19].
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in the higher rank setting and from the fact that N is not necessarily abelian,
our proof of Proposition 1.4 is different from [22] also in this aspect.

Theorem 1.1 is then deduced from Proposition 1.4 together with the classifi-
cation of °-conformal measures on § of [26] (Theorem 6.1) and the dichotomy
on the recurrence property of the Burger–Roblin measures according to the rank
of G , obtained in [8] (Theorem 6.2).

Rank one groups. While the main emphasis in this paper is on the higher rank
case, one can also deduce the following new result for all rank one groups. Given
Theorem 4.1 and the description of N -ergodic invariant and P±-quasi invaiant
measures (cf. [22, Lem. 5.2], [27, Prop. 7.2]), the following corollary can be
proved almost verbatim as [22, Cor. 1.1, 1.2] and [21, Thm. 1.5] where similar
statements were established for G = SO±(n,1).

For y 2 °\G , we denote by radinj(y) the supremal injectivity radius at y .

COROLLARY 1.6. Let ° be a Zariski dense discrete subgroup of a simple real alge-
braic group G of rank one. Let µ be an N -invariant ergodic measure supported
on E .

1. If the injectivity radius on °\G is uniformly bounded away from 0, then at
least one of the following holds:
(a) µ is quasi-invariant under some loxodromic element of P,
(b) limt!1 radinj(x exp tv) =1 for µ-a.e. x and v 2 inta+.

2. If the injectivity radius on °\G is uniformly bounded from above or if ° is a
normal subgroup of a geometrically finite subgroup of G, then either:
(a) µ is proportional to mBR

∫ |Y for some °-conformal measure ∫ on § and a
P±-minimal subset Y Ω °\G (see (6.1) for the definition of mBR

∫ ), or
(b) µ is supported on a closed M N -orbit.

We remark that by a recent work of Fraczyk and Gelander [13], the injectivity
radius on °\G is never bounded from above when G is simple with rankG ∏ 2
and Vol(°\G) =1.

REMARK 1.7. For ° geometrically finite, an atom of a °-conformal density is
necessarily a parabolic limit point which yields a closed M N -orbit, and the so-
called Patterson–Sullivan measure, say, ∫0, is the unique atom-free °-conformal
measure on § [40]. Therefore Corollary 1.6(2) implies the essential unique
ergodicity for the N -action as well as the N -ergodicity of mBR

∫0
|Y for each P±-

minimal subset Y . Noting that the proofs given in [28] and [38] on the N -unique
ergodicity for SO±(n,1) rely on the ratio ergodic theorem for the abelian sub-
group N which is not available for a general rank one group, our paper gives
the only alternative proof for a general rank one case after Roblin and Winter
([34, 43]).

Organization. In Section 2, we set up notations and recall basic definitions.
In Section 3, we deduce the Besicovitch covering lemma for our setting from
[23] and state several consequences including the maximal ratio inequality. In
Section 4, we prove Theorem 4.1, which is the main technical result of this paper.
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In Section 5, we prove Theorem 5.1 which in particular implies Proposition 1.4,
using Theorem 4.1 together with some properties of Zariski dense subgroups.
In Section 6, we specialize to Anosov subgroups and prove Theorem 1.1.

We close the introduction with the following open problem.

OPEN PROBLEM 1.8. For r∑ 3 and ° Anosov, is any N -invariant ergodic measure
on E necessarily supported on Rv for some v 2 intL°?

2. PRELIMINARIES

Let G be a connected, semisimple real algebraic group. We fix, once and for
all, a Cartan involution µ of the Lie algebra g of G , and decompose g as g= k©p,
where k and p are the +1 and °1 eigenspaces of µ, respectively. We denote by
K the maximal compact subgroup of G with Lie algebra k. Choose a maximal
abelian subalgebra a of p. Choosing a closed positive Weyl chamber a+ of a, let
A := expa and A+ = expa+. The centralizer of A in K is denoted by M , and we
set N° and N+ to be the contracting and expanding horospherical subgroup:
for a 2 int A+,

N± =
©

g 2G : a°n g an ! e as n !®1
™

.

We set P± = M AN±, which are minimal parabolic subgroups. As we will be
looking at the N°-action in this paper, we set N := N° and P = P° for notational
simplicity. We also set L = M A = P \P+.

Let w0 2 NK (A) be the Weyl element satisfying Adw0 a
+ =°a+. Then w0 satis-

fies w0P°w°1
0 = P+. For each g 2G , we define

g+ := g P 2G/P and g° := g w0P 2G/P.

Let F =G/P and F
(2) denote the unique open G-orbit in F £F :

F
(2) =G(e+,e°) =

©
(g+, g°) 2F £F : g 2G

™
.

We say that ª,¥ are in general position if (ª,¥) 2F
(2).

Any element g 2G can be written as the commuting product gh ge gu , where
gh , ge and gu are unique elements which are conjugate to elements of A+, K
and N , respectively. We say g is loxodromic if gh 2'(int A+)'°1 for some ' 2G ,
and write

∏A(g ) :='°1gh' 2 int A+(2.1)

calling it the Jordan projection of g . We set

yg :='+;(2.2)

this is well-defined independent of the choice of '. We note that g fixes yg and
for any h 2 N+, limk!1 g k ('he+) = yg , uniformly on compact subsets of N+,
and for this reason, yg is called the attracting fixed point of g .
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Bruhat coordinates. The product map N £ A£M £N+ !G is injective and its
image is Zariski open in G . For g 2G and n 2 N with g n 2 N AM N+, we write

g n = bN (g ,n)b AM (g ,n)bN+
(g ,n)(2.3)

where bN (g ,n) 2 N , b AM (g ,n) 2 AM , bN+
(g ,n) 2 N+ are uniquely determined.

For each subgroup ? = N , AM or N+, b?(g ,n) is a smooth function for each
g 2G and n 2 N whenever it is defined.

For convenience, for ª= ne° with n 2 N and g 2G with gª 2 Ne°, we set

b?(g ,ª) := b?(g ,n).

If g 2G is a loxodromic element with yg 2 Ne°, the following generalized Jordan
projection of g is well-defined:

∏(g ) = b AM (g , yg ).

We mention that the condition yg 2 Ne° implies that there exists ' 2 N N+

such that g ='a°1m'°1 for unique a 2 int A+ and m 2 M . In this case, ∏(g ) =
a°1m. In particular, the A-component of ∏(g ) coincides with ∏A(g°1). If g is
not loxodromic, we set ∏(g ) = e.

3. COVERING LEMMA FOR exp tv-CONJUGATION INVARIANT BALLS

In the rest of the paper, let G :=Qr
i=1 Gi where Gi is a connected simple real

algebraic group of rank one. For each 1 ∑ i ∑ r, we identify Gi with the subgroup
n

(g j ) j 2
Y

j
G j : g j = e for all j 6= i

o
<G

and we set Hi := H\Gi for any subset H ΩG . We have A =Q
i Ai and A+ =Q

i A+
i ,

where Ai is a one-parameter diagonalizable subgroup of Gi . Let Æi denote the
simple root of Gi with respect to Ai . The subgroup N = N° is of the form N =Q

i Ni , where Ni is the contracting horospherical subgroup of G for A+
i and

P =Q
Pi for Pi = Mi Ai Ni . We set Fi =Gi /Pi .

As Gi has rank one, Ni is a connected simply connected nilpotent subgroup
of at most 2-step. Let ni denote the Lie algebra of Ni . When ni is abelian, for
each ai 2 Ai , Adai |ni is the multiplication by eÆi (log ai ). When ni is a 2-step nilpo-
tent, we can write ni = ni1 ©ni2 where [ni1 ,ni1 ] Ω ni2 and ni2 is the center of ni .
We have that for ai 2 Ai , Adai |ni1

= eÆi (log ai ) and Adai |ni2
= e2Æi (log ai ) (cf. [29]).

We call a function d : N £N ! [0,1) a quasi-distance on N if it is symmetric,
d(x, y) = 0 iff x = y , and there exists C =C (d) ∏ 1 such that

d(x, y) ∑C
°
d(x, z)+d(z, y)

¢
for all x, y, z 2 N .(3.1)

For s > 0 and x 2 N , we set Bd (x, s) =
©

y 2 N : d(x, y) < s
™
. For simplicity, we

write Bd (s) := Bd (e, s). Note that whenever d is left-invariant, Bd (x, s) = xBd (s)
for all x 2 N and s > 0.

When N is abelian, it is well-known that Euclidean norm-balls of N satisfy the
Besicovitch covering property. In general, we deduce the following from [23].
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PROPOSITION 3.1. For any v 2 inta+[{0}, there exists a continuous left-invariant
quasi-distance d = dv on N such that the family of balls

©
Bd (u, s) = uBd (s) : u 2 N , s > 0

™

satisfies the Besicovitch covering property. That is, there exists a constant ∑v > 0,
depending only on dv, such that for any bounded subset S Ω N , and any cover©
uBd (tu) : u 2 S

™
of S, for some positive function u 7! tu on S, there exists a

countable subset F Ω S such that
©
uBd (tu) : u 2 F

™
covers S and

X

u2F
uBd (tu ) ∑ ∑v.

Moreover, if v= 0, we can take dv = d0 to be a distance, and if v 6= 0, we have

Bd (et r ) = exp(tv)Bd (r )exp(°tv) for all t 2R and r > 0.(3.2)

Proof. For ∏∏ 1, consider the Lie algebra homomorphism n! n given by

±∏X = Adexp((log∏)v) X .

Let I := {i : ni abelian} and J := {i : ni is of 2-step}. Set ti := Æi (v) ∏ 0. For i 2 I ,
set Vti := ni and for i 2 J , set Vti := ni1 and V2ti := ni2 . Since ±∏ acts on each Vti

(resp. V2ti ) by ∏ti (resp. ∏2ti ), and
P

i2I Vti +
P

i2J V2ti is the center of n, it follows
that

n=
°
©i2I[J Vti

¢
©

°
©i2J V2ti

¢

provides commuting different layers for the family {±∏|∏> 0} in the terminology
of [23]. Hence [23, Thm. 1.2] provides the required quasi-distance such that
d(±∏(n1),±∏(n2)) = ∏d(n1,n2) where ±∏(n) = e(log∏)vne°(log∏)v also denotes the
Lie group isomorphism of N induced from ±∏. For ∏= et , this implies (3.2). If
v = 0, then ti = 2ti = 0 for all i , and hence n= V0. Now [23, Cor. 1.3, Def. 2.21]
implies that d0 can be taken to be a distance.

Indeed, an explicit construction of dv has been given in [23]: for v 2 inta+,
for (Xi )i , (Yi )i 2

Q
i Ni , and

dv
°
(Xi )i , (Yi )i

¢
= max

i
di (Xi ,Yi )1/Æi (v)(3.3)

where di is a left invariant metric on Ni induced from an Euclidean norm on ni .
For each v 2 inta+ (resp. v = 0), we fix a quasi-distance dv as above (resp. a

distance d0), and write for any "> 0 and u 2 N ,

Bv(u,") := Bdv (u,"), and Bv(") := Bdv (").(3.4)

We denote by m a Haar measure on N and by 2Ω the sum of all positive roots,
i.e.,

2Ω =
rX

i=1
Æi (dimN +dimZ (N )),

where Z (N ) denotes the center of N . For v 6= 0, we have from (3.2) that for any
R > 0 and u 2 N ,

m(Bv(u,R)) = R2Ω(v)m(Bv(u,1)).(3.5)
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For v= 0, d0 is a left-invariant metric and by [16] (see also [5]), we have

m(B0(u,R)) =O
°
RdimN+dimZ (N )¢.(3.6)

LEMMA 3.2. Fix v 2 inta+, Ø> 0, 0 < ¥1 < ¥2 and let u 7! tu be a positive function
on N . Consider the two collections of balls

©
Bv(u,etu¥i ) : u 2 N , tu > 0

™
for i = 1,2.

Then for any bounded subset S Ω N , there exists a countable subset F Ω S such
that

©
Bv(ui ,etui ¥1) : ui 2 F

™
covers S and the following holds: for each u j 2 F ,

#
©
ui 2 F : Bv(ui ,etui ¥1) Ω Bv(u j ,etu j ¥2), |tui ° tu j |∑Ø

™
∑ ∑§(v,Ø,¥1,¥2),

where ∑§(v,Ø,¥1,¥2) := m(Bv(¥2))
m(Bv(¥1)) ek2ΩkØ∑v.

Proof. Set Bu := Bv(u,etu¥1) and Cu := Bv(u,etu¥2). Let F Ω S and
©
Bui : ui 2 F

™

be respectively the countable subset and the corresponding countable subcover
of S given by Proposition 3.1. Fix u j 2 F . Suppose that Bu1 [ · · ·[Bup ΩCu j and
that |tui ° tu j |∑Ø for all 1 ∑ i ∑ p. Since

pX

i=1
Bui

∑ ∑v · [p
i=1Bui

,

we have

m
°
Cu j

¢
∏ m

√
p[

i=1
Bui

!

∏ 1
∑v

pX

i=1
m(Bui ).(3.7)

Using (3.5), we get

m(Bui ) ∏ e°k2ΩkØm(Bu j ), and m(Cu j ) =
m(Bu j )m(Bv(¥2))

m(Bv(¥1))
.

It then follows from (3.7):

m(Bv(¥2))
m(Bv(¥1))

∏ p
∑v

e°k2ΩkØ, and hence p ∑ m(Bv(¥2))
m(Bv(¥1))

∑vek2ΩkØ,

proving the claim.

The following is a consequence of the polynomial growth of the quasi-balls
Bv(t ) in N :

LEMMA 3.3. Let µ be an N -invariant ergodic measure on a Borel space Z and fix
v 2 inta+[ {0}. For any bounded Borel subset ≠ of Z with µ(≠) > 0, there exists a
co-null subset Z 0 (depending on ≠) such that for all x 2 Z 0, we have the following:
for any r,"> 0, there exists a sequence ti !1 such that

R
Bv(ti+r ) ≠(xn)dn
R

Bv(ti ) ≠(xn)dn
∑ 1+".(3.8)

Proof. For x 2 Z and a subset ≠Ω Z , we write

T≠(x) =
©
u 2 N : xu 2≠

™
.(3.9)
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By ergodicity of µ, we know that µ-almost every N -orbit intersects ≠ non-
trivially. Indeed, consider the set

E :=
©

x 2 Z | m
°
T≠(x)\Bv(sx )

¢
> 0 for some sx > 0

™
.

If x 2 E , then, for any u 2 N , there exists s > sx satisfying

Bv(sx ) Ω uBv(s)

and consequently

m
°
T≠(xu)\Bv(s)

¢
= m

°
T≠(x)\uBv(s)

¢
∏ m

°
T≠(x)\Bv(sx )

¢
> 0,

implying xu 2 E . Hence the set E is N -invariant. Now, by ergodicity of µ, the
set E is either null or conull. On the other hand, since

Z

Z
m

°
T≠(x)\Bv(1)

¢
dµ(x) =

Z

Bv(1)

Z

Z
≠(xn)dµ(x)dn = m(Bv(1))µ(≠) > 0,

the set
©

x 2 Z : m(T≠(x)\Bv(1)) > 0
™

has positive measure. Therefore µ(E) > 0,
and hence E is conull. Set Z 0 = E . Let x 2 Z 0 and sx > 0 be such that

m
°
T≠(x)\Bv(sx )

¢
> 0.

Suppose that (3.8) does not hold for x. Then there exists tx > sx such that for all
t ∏ tx ,

m
°
Bv(t + r )

¢
∏ m

°
T≠(x)\Bv(t + r )

¢
∏ (1+")m

°
T≠(x)\Bv(t )

¢
.

It follows that for all k ∏ 1,

m
°
Bv(tx +kr )

¢
∏ (1+")k m

°
T≠(x)\Bv(tx )

¢
.

Since m (Bv(tx +kr )) grows polynomially in k by (3.5) and (3.6), and since
m

°
T≠(x)\Bv(tx )

¢
> 0, this yields a contradiction.

A standard consequence of the Besicovitch covering property is the maximal
ratio inequality. These are in fact equivalent when considering symmetric aver-
aging sets, see [18] and references therein. For completeness we include below
a proof of this implication applicable to our setup:

LEMMA 3.4 (Maximal ratio inequality). Let µ be an N -invariant ergodic measure
on a Borel space Z . Fix v 2 inta+[ {0} and Æ> 0. For any bounded measurable
subsets ≠1 and ≠2 of Z with µ(≠2) <1, we have

µ
°
≠2 \E †¢∑ 2∑vÆ

°1µ(≠1),

where

E † :=
Ω

x 2 Z : 9R > 0 s.t.
Z

Bv(R)
≠1 (xn)dn ∏Æ

Z

Bv(R)
≠2 (xn)dn

æ
.

Proof. For R1 ∏ 0, set

E(R1) :=
Ω

x 2 Z : 90 ∑ R ∑ R1 s.t.
Z

Bv(R)
≠1 (xn)dn ∏Æ

Z

Bv(R)
≠2 (xn)dn

æ
.
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Since E (R1) is an increasing sequence of subsets whose union is E † and µ(≠2) <
1, it suffices to show that for any R1 ∏ 0,

µ
°
≠2 \E(R1)

¢
∑ 2∑vÆ

°1µ(≠1).

Fix a compact subset D = D(R1) Ω N so that 0 < m(DBv(R1)) ∑ 2m(D), which is
possible in view of (3.5) and (3.6). Let T≠(x) be defined as in (3.9). For each
x 2 Z with xu 2 E(R1), there exists 0 ∑ Ru ∑ R1 such that

m
°
T≠2 (x)\Bv(u,Ru)

¢
∑Æ°1m

°
T≠1 (x)\Bv(u,Ru)

¢
.

Consider the cover

C (x) =
©
Bv(u,Ru) : u 2 D \TE(R1)(x)

™

of the subset D \TE(R1)(x). By Proposition 3.1, we can find a countable subset
Ix Ω N such that the family

©
Bv(u,Ru) : u 2 Ix

™
ΩC (x) covers D \TE(R1)(x) and

X

u2Ix

Bv(u,Ru ) ∑ ∑v DBv(R1).

We obtain:

µ(≠2 \E(R1)) = 1
m(D)

Z

Z

Z

D
≠2\E(R1)(xn)dndµ(x)

= 1
m(D)

Z

Z
m

√

D \T≠2\E(R1)(x)\
µ [

u2Ix

Bv(u,Ru)
∂!

dµ(x)

∑ 1
m(D)

Z

Z

X

u2Ix

m
°
T≠2 (x)\Bv(u,Ru)

¢
dµ(x)

∑ 1
Æ ·m(D)

Z

Z

X

u2Ix

Z

N
Bv(u,Ru )(n) · ≠1 (xn)dn dµ(x)

= 1
Æ ·m(D)

Z

N

Z

Z

√
X

u2Ix

Bv(u,Ru )(n)

!

≠1 (xn)dµ(x)dn

∑ ∑v
Æ ·m(D)

Z

DBv(R1)

Z

Z
≠1 (xn)dµ(x)dn

= ∑v ·m(DBv(R1))
Æ ·m(D)

µ(≠1)

∑ 2
∑v
Æ
µ(≠1).

4. SCENERY ALONG exp(R+v)-FLOW AND QUASI-INVARIANCE

As before, let G := Qr
i=1 Gi where Gi is a connected simple real algebraic

group of rank one. Let ° be a discrete subgroup of G . Let µ be an N -invariant
ergodic measure on °\G . In the whole section, we fix a vector v 2 inta+, and set

at := exp(tv) for t 2R.

For all x 2 °\G , define

Sx (v) := limsup
t!+1

a°1
t g°1°g at = limsup

t!+1
StabG (xat ).
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The limsupt!+1 above is the topological limit superior, i.e., the collection of all
accumulation points; hence we may otherwise write

Sx (v) =
1\

n=1

[

t>n
a°t g°1°g at .

As v 2 inta+, we have Sxn(v) = Sx (v) for all n 2 N , and hence the measurable
map x 7! Sx is N -invariant. Since µ is N -ergodic, there exists a closed subset
Sµ(v) of G for which Sx (v) =Sµ(v) for µ-a.e. x 2 °\G .

For ª,¥ 2F , we set

O(ª,¥) :=
©
h 2G : loxodromic,(yh ,ª), (yh°1 ,¥) 2F

(2)™.

We remark that as Gi ’s are rank one groups, for a loxodromic element h =
(h1, . . . ,hr) 2G with hi 2Gi and ª= (ª1, . . . ,ªr) 2F with ªi 2Fi , we have (yh ,ª) 2
F

(2) if and only if yhi 6= ªi for all 1 ∑ i ∑ r.

The main result of this section is the following:

THEOREM 4.1. We have

∏
°
Sµ(v)\

°
O(e+,e°) [O(e°,e+)

¢¢
Ω StabG ([µ]),(4.1)

where StabG ([µ]) denotes the stabilizer in G of the measure class of µ.

When G is of rank one, any loxodromic element of G belongs to either O(e+,e°)
or O(e°,e+). Therefore (4.1) is same as saying

∏(Sµ(v)) Ω StabG ([µ]);

this generalizes [22, Thm. 1.3] to all rank one Lie groups.
Since Sµ(v)°1 =Sµ(v), O°1

(e+,e°) =O(e°,e+), and StabG ([µ]) is a subgroup of G ,
(4.1) follows if we show

∏
°
Sµ(v)\O(e+,e°)

¢
Ω StabG ([µ]).(4.2)

The rest of this section is devoted to the proof of (4.2). We fix the left-invariant
quasi-distance dv as in (3.3) and set

N¥ := Bv(¥) for each ¥> 0,

where Bv(¥) is defined as in (3.4). We set

ti :=Æi (v) > 0 for each 1 ∑ i ∑ r.

Since dv = maxi d
1/ti
i where di is a left-invariant metric on Ni , for any ¥> 0, the

quasi-ball N¥ is a product of balls in Ni ,

N¥ =
rY

i=1
Ni (¥ti ),(4.3)

where Ni (¥ti ) :=
©

x 2 Ni : di (ei , x) < ¥ti
™

and ei denotes the identity element of
Gi .2

2 We stress that the notation Ni with subscript i is used solely for the subgroup Gi \ N ,
whereas N¥, N", etc are used for quasi-balls in N .
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Fix any loxodromic element

h0 2Sµ(v)\O(e+,e°).

Our goal is to show that ∏(h0) 2 StabG ([µ]).
Writing h0 = (h1, . . . ,hr) component-wise, each hi is a loxodromic element of

Gi . We write hi = 'i a°1
i mi'

°1
i for some ai 2 A+

i ° {e}, mi 2 Mi and 'i 2 Gi so
that '°

i ='i e°i 2Fi and '+
i ='i e+i 2Fi are the unique attracting fixed points

of hi and h°1
i respectively; here e±i 2Fi means the i -th component of e± 2F =Q

i Fi . As Gi is of rank one, we have Fi = Ni e°i [ {e+i }. Since h0 2O(e+,e°), we
have, for all i ,

'°
i 6= e+i and '+

i 6= e°i .

We denote by ni the unique element of Ni such that

'°
i = ni e°i 2 Ni e°i .(4.4)

Using the diffeomorphism between Ni and Ni e°i given by n 7! ne°i , we may
regard di as a left-invariant metric on Ni e°i , so that

di (ne°i ,n0e°i ) = di (n,n0) for all n,n0 2 Ni .(4.5)

Definition of ¥0. Since e°i 6='+
i and hence e°i 2'i Ni e°i , there exist ¥0 > 0 and

J > 0 such that

N¥0 e° Ω
rY

i=1
'i Ni (J )e°i .(4.6)

LEMMA 4.2. There exists p0 = p0(h0) 2N such that for all p ∏ p0, and 1 ∑ i ∑ r,
we have

di
°
hp

i zi ,hp
i z 0

i

¢
∑ 1

2(ti+1)
·di (zi , z 0

i )(4.7)

for all zi , z 0
i 2'i Ni (J )e°i .

Proof. Since (a°1
i mi )p ne°i =

°
a°p

i (mp
i nm°p

i )ap
i

¢
e°i and Mi is a compact sub-

group normalizing Ni , we have (a°1
i mi )p ne°i ! e°i as p !1, uniformly for all

n 2 Ni (J). Therefore 'i (a°1
i mi )p Ni (J)e°i is contained in a compact subset of

Ni'
°
i = Ni e°i for all sufficiently large p. Since Ni e°i is endowed with a metric di ,

induced from a Euclidean norm on ni , the Lipschitz constant

Lip
°
'i |(a°1

i mi )p Ni (J )e°
i

¢

is well defined and finite. Since hp
i ='i (a°1

i mi )p'°1
i , we have

Lip
°
hp

i |'i Ni (J )e°
i

¢
∑ Lip

°
'i |(a°1

i mi )p Ni (J )e°
i

¢
Lip

°
(a°1

i mi )p |Ni (J )e°
i

¢
Lip

°
'°1

i |'i Ni (J )e°
i

¢
.

Since Lip
°
(a°1

i mi )p |Ni (J )e°
i

¢
! 0 as p !1 and (a°1

i mi )p Ni (J)e°i ! e°i , we have
Lip

°
hp

i |'i Ni (J )e°
i

¢
! 0 as p !1. Therefore the lemma follows.
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Since hp
0

Qr
i=1 ni Ni (¥ti

0 )e° ! yh0 uniformly, as p !1, and yh0 2 Ne°, by pos-
sibly increasing p0 if necessary, we may assume that p0 satisfies that, for all
p ∏ p0,

hp
0

rY

i=1
ni Ni (¥ti

0 ) Ω N LN+;(4.8)

sup
u2N¥0 yh0

ØØJacu bN (hp
0 , ·)

ØØ∑ 1/2;(4.9)

hp
0 Nr yh0 Ω Nr /2 yh0 for all 0 < r < ¥0.(4.10)

We make use of the following simple observation:

LEMMA 4.3. If there exists p1 ∏ 1 such that
©
∏(hp

0 ) : p ∏ p1
™
Ω StabG ([µ]),

then ∏(h0) 2 StabG ([µ]).

Proof. Since StabG ([µ]) is a group and ∏(h0)p =∏(hp
0 ), the above lemma implies

that

∏(h0) =∏(h0)p+1∏(h0)°p 2 StabG ([µ]).

Hence it suffices to show that for all p ∏ p0, ∏(hp
0 ) 2 StabG ([µ]). In the rest of

this section, fix any p ∏ p0 and set

g0 = hp
0 .

We now assume that

`0 :=∏(g0) 62 StabG ([µ])(4.11)

and will prove that this assumption leads to a contradiction.

We write gi = hp
i so that

g0 = (g1, . . . , gr).

Noting that '°
i and '+

i are the attracting fixed points of gi and g°1
i respectively,

we set ' := ('1, . . . ,'r). Hence '® = ('®
1 , . . . ,'®

r ) are the attracting fixed points of
g±1

0 respectively. We set

yg0 :='°.

Note that yg0 = yh0 . By (4.7), for all k 2N, we have

di
°
g k

i zi , g k
i z 0

i

¢
∑ 1

2(ti+1)k
·di (zi , z 0

i )(4.12)

for any zi , z 0
i 2'i Ni (J )e°i .

We begin by presenting a long list of constants and subsets in a carefully
designed order to be used in getting two contradictory upper and lower bounds
in Lemmas 4.15 and 4.16.
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Definition of E , OL and O`0 . We fix subsets E Ω °\G and OL Ω L as given by the
following lemma:

LEMMA 4.4. There exist an N -invariant µ-conull set E Ω °\G and a symmetric
neighborhood OL Ω L of e such that

E \E`°1
0 OL =;.

Proof. Since µ is N -ergodic and `0 › Stab[µ], µ and µ.`0 are mutually singu-
lar. Hence there exists a µ-conull subset E 0 Ω °\G with E 0 \E 0`0 =;. Let c = 1 if
|µ| =1, and c = |µ| otherwise. Choose x 2 E 0\supp(µ) and a bounded neighbor-
hood O ΩG of e such that µ(xO ) > c/2. Set F := E 0 \ xO`°1

0 O . Since F`0 Ω E 0`0
is a bounded null set, there exists a symmetric neighborhood OL Ω L \O of e
such that µ(FOL`0) < c/4. Noting that µ(xO °FOL`0) > c/4, we may choose a
compact subset C Ω xO °FOL`0 with µ(C ) > c/4. Since C`°1

0 OL Ω xO`°1
0 O , we

have
C`°1

0 OL \E 0 Ω xO`°1
0 O \E 0 = F.

Since C`°1
0 OL \F = ; by the choice of C , we get C`°1

0 OL \E 0 = ; and hence
µ(C`°1

0 OL) = 0. Consider the following N -invariant measurable subsets:

E1 :=
Ω

z 2 °\G :
Z

N
C (zn)dn > 0

æ
and

E2 :=
Ω

z 2 °\G :
Z

N
C`°1

0 OL
(zn)dn = 0

æ
.

Recall Bv( j ) denotes the set
©
n 2 N : dv(n,e) < j

™
for each j 2N. Since

Z

z2°\G

Z

Bv(1)
C (zn)dndµ(z) =µ(C )m(Bv(1)) > 0,

we have µ(E1) > 0 by Fubini’s lemma. Since
Z

z2°\G

Z

Bv( j )
C`°1

0 OL
(zn)dndµ(z) =µ(C`°1

0 OL)m(Bv( j )) = 0,

again by Fubini’s lemma, E2( j ) is µ-conull, where

E2( j ) :=
Ω

z 2 °\G :
Z

Bv( j )
C`°1

0 OL
(zn)dn = 0

æ
.

Since E2 = T1
j=1 E2( j ), the set E2 is µ-conull as well. Therefore, if we set E =

E1 \E2, then E is an N -invariant measurable subset with µ(E) > 0. Now the
N -ergodicity of µ implies that E is a µ-conull subset. Moreover, we have
E \E`°1

0 OL = ;; to see this, suppose z = y`°1
0 ` for some z, y 2 E and ` 2 OL .

Then Z

N
C`°1

0 OL
(y`°1

0 `n)dn = 0.

By changing the variable `°1
0 `n(`°1

0 `)°1 ! n, it implies that
Z

N
C`°1

0 OL`°1`0
(yn)dn = 0.
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Since C ΩC`°1
0 OL`

°1`0, we get
R

N C (yn)dn = 0, implying y › E , yielding con-
tradiction.

We set

O`0 := `0OL ,(4.13)

so that E \EO
°1
`0

=;.

For a differentiable map f : N ! N , let Du f : Tu N ! T f (u)N denote the dif-
ferential of f at u 2 N . Let øu : N ! N denote the left translation map, i.e.,
øu(n) = un for n 2 N . Choosing a basis Be := {v1, . . . , vm} of Te N , the collection
Bw :=

©
De øw (v1), . . . ,De øw (vm)

™
gives a basis for Tw N for each w 2 N . The

following Jacobian of f at u 2 N is well-defined, independent of the choice of
Be :

Jacu f := det[Du f ]
B f (u)

Bu
.

Here
£
Du f

§B f (u)

Bu
denotes the matrix representation of Du f with respect to the

indicated bases.

Definition of r1,r0. Since b AM (g0, yg0 ) = `0 and b AM (g0, ·) is continuous at yg0 ,
we can find

0 < r1 < min
i

1

21+(1/ti )
¥0

such that
b AM (g0, Nr1 yg0 ) ΩO`0 .

Set

r0 := 3
4

r1.

Definition of k,c,¥. By (4.6), we have g j
0 N¥0 e° ! yg0 uniformly as j !1. Hence

we may fix a large integer k ∏ 1 which satisfies the following three conditions
for all 1 ∑ i ∑ r:

Nr1/2 yg0 Ω Nr0 g k
0 N¥0 e° Ω Nr1 yg0 ;(4.14)

bNi (g k
i , Ni (¥0

ti )) Ω ni Ni (r ti
0 /4);(4.15)

g0bN (g k
0 , N¥0 )Nr0 Ω N LN+,(4.16)

where ni is given in (4.4). Since g k
i e+i 6= g k

i e°i , we can choose 0 < ¥< 1
2¥0 satisfy-

ing

g k
i e+i 62 bNi (g k

i ,ei )Ni (¥ti )e°i for all i .(4.17)

We fix a small number 0 < c < 1/2 so that for all 1 ∑ i ∑ r and x, y 2 Ni (¥ti )e°i ,

(2c)tidi (x, y) ∑ di
°
bNi (g k

i , x),bNi (g k
i , y)

¢
(4.18)

and

2c < min
µ

inf
u2Nr1

ØØ Jacu bN (g0, ·)
ØØ, inf

u2Nr1

ØØ Jacu bN (g k
0 , ·)

ØØ
∂

.
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LEMMA 4.5. We have

bN (g k
0 ,e)N2c¥ Ω bN (g k

0 , N¥) Ω bN (g k
0 ,e)N¥,(4.19)

and

bN (g k
0 , Nc¥) Ω bN (g k

0 ,e)Nc¥.(4.20)

Proof. Fix 1 ∑ i ∑ r. By (4.17), we have bNi (g k
i ,ei )Ni (¥ti )e°i Ω g k

i Ni e°i and hence
bNi (g k

i ,ei )Ni (¥ti ) Ω bNi (g k
i , Ni ). Let n 2 Ni ((2c¥)ti ) be arbitrary. There exists

n0 2 Ni such that bNi (g k
i ,ei )n = bNi (g k

i ,n0). We have, by (4.18),

(2c)tidi (ei ,n0) ∑ di (bNi (g k
i ,ei ),bNi (g k

i ,n0))

= di (bNi (g k
i ,ei ),bNi (g k

i ,ei )n) = di (ei ,n) ∑ (2c¥)ti

and hence di (ei ,n0) ∑ ¥ti . It implies

bNi (g k
i ,ei )n = bNi (g k

i ,n0) 2 bNi (g k
i , Ni (¥ti )).

This proves the first inclusion in (4.19).
By (4.12) and (4.6), we have

di
°
g k

i ne°i , g k
i n0e°i

¢
∑ 2°kdi (ne°i ,n0e°i ) for all n,n0 2 Ni (¥ti ).

In other words, for all n,n0 2 Ni (¥ti ),

di
°
bNi (g k

i ,n),bNi (g k
i ,n0)

¢
∑ 2°kdi (n,n0).(4.21)

Hence bNi (g k
i , ·) has Lipschitz constant less than 1 on Ni (¥ti ), the right inclu-

sion in (4.19), as well as (4.20) follow.

LEMMA 4.6. We have

bN °
g0,bN (g k

0 , v)Nr0

¢
Ω bN °

g k
0 , v

¢
Nr0 for all v 2 N¥.(4.22)

Proof. As di is left-invariant, the choice of k as in (4.15) implies that for any
v 2 Ni (¥ti ), we have

bNi
°
g k

i , v
¢
Ni

°
r ti

0

¢
æ ni Ni

°
3r ti

0 /4
¢

and bNi
°
g k

i , Ni (¥ti )
¢
Ni

°
r0

ti
¢
Ω ni Ni

°
3r ti

0 /2
¢
.

Since r1 < mini
1

21+(1/ti )¥0 and hence 3r ti
0 /2 < ¥ti

0 by the definition of r0, it fol-
lows from (4.12) and the property gi'

°
i ='°

i that

gi ni Ni
°
3r ti

0 /2
¢
Ω ni Ni

°
3r ti

0 /4
¢

.

Therefore, for any v 2 Ni (¥ti ),

bNi
°
gi ,bNi

°
g k

i , v
¢
Ni (r0

ti )
¢
Ω ni Ni

°
3r ti

0 /4
¢
Ω bNi

°
g k

i , v
¢
Ni (r ti

0 ).

This proves the lemma.
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Definition of V0. Since the following (4.23)- (4.30) are all open conditions which
have been proved at g = g0 in (4.9),(4.10), (4.14) and Lemmas 4.5 and 4.6, we
may choose a bounded neighborhood V0 of g0 in G such that those conditions
continue to hold for all g 2V0, u 2 Nr0 bN (g k , N¥) and v 2 N¥:

g Nr1 yg0 Ω Nr1/2 yg0 ,(4.23)

Nr1/2 yg0 Ω Nr0 g k N¥e° Ω Nr1 yg0 ,(4.24)

b AM (g ,u) 2O`0 ,(4.25)

bN (g k ,e)N2c¥ Ω bN (g k , N¥) Ω bN (g k ,e)N¥ and(4.26)

bN (g k , Nc¥) Ω bN (g k ,e)Nc¥.(4.27)

2c <
ØØ Jacu bN (g , ·)

ØØ< 1, 2c <
ØØ Jacv bN (g k , ·)

ØØ< 1(4.28)

bN °
g ,bN (g k , v)Nr0

¢
Ω bN (g k , v)Nr0(4.29)

g bN (g k , N¥)Nr0 Ω N LN+.(4.30)

Definition of R, BL , and BN+ . Since the sets V0, N¥ and
©
bN (g k , N¥)Nr0 : g 2V0

™

are bounded, it follows from (4.30) that there exist R > 0 and bounded symmet-
ric neighborhoods BL Ω L and BN+ Ω N+ of e such that for all g 2V0,

g k N¥ Ω NRBLBN+ and g bN (g k , N¥)Nr0 Ω NRBLBN+ .(4.31)

Definition of Ø, R 0 and ∑§. We fix Ø> 0 such that

a°1
t NR N¥at Nc¥ Ω N2c¥ for all t ∏Ø.(4.32)

We also fix R 0 > 0 so that
[

t2[°Ø,Ø]
NR N¥(at N¥NR Nc¥a°1

t ) Ω NR 0 .(4.33)

Recalling the notation from Lemma 3.2, we set

∑§ := ∑§(v,Ø,c¥,R 0) = m(NR 0)
m(Nc¥)

∑vek2ΩkØ.(4.34)

Definition of ≠, ≠̃, ON+ , Q, Q? and T0. Let E be an N -invariant µ-conull set as
in Lemma 4.4. We fix a compact subset ≠Ω E with µ(≠) > 0, and define

≠̃ :=≠BLBN+ .(4.35)

Since µ(≠̃) =µ(≠̃\E), we can find a compact set ≠ΩQ Ω ≠̃\E satisfying

µ(≠̃°Q) < c
16∑0∑§

.(4.36)

Since Q Ω E , we know µ(QO
°1
`0

) = 0. By the uniform convergence theorem, there
exists a bounded symmetric neighborhood ON+ ΩBN+ of e for which the set

Q? :=QON+O
°1
`0

(4.37)
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satisfies

µ(Q?) < c2

16∑v∑0∑§
µ(≠).(4.38)

We fix T0 > 0 such that

Adat BN+ ΩON+ for all t ∏ T0.(4.39)

Definition of T1, ≠1, ≠2, • and £. Since Sx (v) = Sµ(v) for µ-a.e. x 2 °\G , we
can find T1 > T0 so that the set

≠̃1 :=
©

x 2 ≠̃ : StabG (xat )\V0 6=; for some T0 ∑ t ∑ T1
™

(4.40)

satisfies

µ(≠̃° ≠̃1) < 1
4
µ(≠).(4.41)

Set

≠1 :=≠\ ≠̃1.(4.42)

Since ≠Ω ≠̃, we have

µ(≠1) ∏µ(≠)°µ(≠̃° ≠̃1) > 3
4
µ(≠).(4.43)

We define

• :=
n

x 2 °\G : 9t > 0 s.t.
Z

at Nr0 a°1
t

Q?(xn)dn ∏ 2c
Z

at Nr0 a°1
t

Q (xn)dn
o

.(4.44)

Set

≠2 :=≠1 °•.(4.45)

Recall the notation for distance d0 on N and the corresponding metric balls
B0(r ), r > 0, from Proposition 3.1. Consider the following set

£ :=
Ω

x 2 °\G : 9r > 0 s.t.
Z

B0(r )
≠̃\•(xn)dn ∏ c

∑§

Z

B0(r )
≠2 (xn)dn

æ
.(4.46)

PROPOSITION 4.7. We have

µ(≠2 °£) > 1
4
µ(≠).

Proof. Since at Nr0 a°1
t = Bv(et r0) for any t ,r0 > 0, we may apply the maximal

ratio inequality (Lemma 3.4) and (4.38) and get

µ(Q \•) ∑ 2∑v
2c

µ(Q?) < ∑v
c

· c2

16∑v∑0∑§
µ(≠) = c

16∑0∑§
µ(≠).

Therefore, by (4.36),

µ(≠̃\•) ∑µ(≠̃°Q)+µ(Q \•) < c
8∑0∑§

µ(≠).

By (4.43), we have

µ(≠2) =µ(≠1 °•) ∏µ(≠1)°µ(≠̃\•) ∏
µ

3
4
° c

8∑0∑§

∂
µ(≠) > 1

2
µ(≠).
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Employing the maximal ratio inequality yet again, we deduce

µ(≠2 \£) ∑ 2∑0∑§
c

µ(≠̃\•) < 2∑0∑§
c

· c
8∑0∑§

µ(≠) = 1
4
µ(≠),

implying the claim by (4.43).

Choice of x0, R1, R2 and D. We fix R1,R2 > 0 so that NR Ω B0(R1) and
[

0<t∑T1

at B0(R1)a°1
t Ω B0(R2).(4.47)

We choose x0 and D as in the following lemma:

LEMMA 4.8. There exist x0 2 °\G and a ball D = B0(Rx0 ) with Rx0 > R2 such that
R

D ≠̃\•(x0n)dn
R

D ≠2 (x0n)dn
< c
∑§

, and

R
@R2 D ≠2 (x0n)dn
R

D ≠2 (x0n)dn
< 1

2
,

where @r B0(Rx0 ) := B0(Rx0 )°B0(Rx0 ° r ).

Proof. Choose any x0 2≠2°£, which is possible by Proposition 4.7. By the defi-
nition of £, x0 satisfies the first inequality for any ball D = B0(R). By Lemma 3.3,
there exists Rx0 > R2 satisfying the second inequality, as required.

For any X Ω °\G , define the subset TX Ω N by

TX :=
©
n 2 N : x0n 2 X

™
.

Definition of tu , au , gu . By the definition of ≠1 in (4.40), for each u 2 T≠1 , we
can choose T0 ∑ tu ∑ T1 such that

StabG (x0uatu )\V0 6=;.

We set au := atu for the sake of simplicity, and choose

gu 2 StabG (x0uau)\V0.

LEMMA 4.9. For u 2T≠1 , we have uaubN (g k
u , N¥)a°1

u ΩT•.

Proof. Let u 2T≠1 and v0 2 N¥ be arbitrary. Setting v 0
0 := bN (g k

u , v0), we need to
show that x0uau v 0

0a°1
u 2•. Observe that for all v 2 N ,

x0u
°
au va°1

u
¢
= x0uau(gu v)a°1

u

= x0uau
°
bN (gu , v)b AM (gu , v)bN+

(gu , v)
¢
a°1

u

= x0u
°
aubN (gu , v)a°1

u
¢

b AM (gu , v)
°
aubN+

(gu , v)a°1
u

¢
,

(4.48)

whenever b(gu , v) is defined. For any n 2 Nr0 , we can plug v = v 0
0n into (4.48)

by (4.30), and get

x0u
°
au v 0

0na°1
u

¢
= x0u

°
aubN (gu , v 0

0n)a°1
u

¢°
`aubN+

(gu , v 0
0n)a°1

u
¢

where ` := b AM (gu , v 0
0n) 2O`0 by (4.25).

Recall that bN+
(gu , v 0

0n) 2 BN+ by (4.31) and Adat (BN+) Ω ON+ for all t ∏ T0
by (4.39). It follows that

aubN+
(gu , v 0

0n)a°1
u 2ON+ .
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Since

x0u
°
aubN (gu , v 0

0n)a°1
u

¢
= x0u

°
au v 0

0na°1
u

¢°
aubN+

(gu , v 0
0n)a°1

u
¢°1

`°1,

and Q? =QON+O
°1
`0

as defined in (4.37), we have for all n 2 Nr0 ,

Q
°
x0uau v 0

0na°1
u

¢
∑ Q?

°
x0u

°
aubN (gu , v 0

0n)a°1
u

¢¢
.(4.49)

Note that
Z

Nr0

Q
°
x0uau v 0

0a°1
u (auna°1

u )
¢

dn

∑
Z

Nr0

Q?

°
x0uaubN (gu , v 0

0n)a°1
u

¢
dn by (4.49)

∑ (2c)°1
Z

bN (gu ,v 0
0Nr0 )

Q?

°
x0u(auna°1

u )
¢

dn by (4.28) and Lemma 4.10

∑ (2c)°1
Z

v 0
0Nr0

Q?

°
x0u(auna°1

u )
¢

dn by (4.29)

= (2c)°1
Z

Nr0

Q?

°
x0uau v 0

0a°1
u (auna°1

u )
¢

dn.

Hence by the change of variable formula, we have
Z

au Nr0 a°1
u

Q?

°
x0uau v 0

0a°1
u n

¢
dn ∏ 2c

Z

au Nr0 a°1
u

Q
°
x0uau v 0

0a°1
u n

¢
dn.

In view of definition (4.44), this proves that x0uau v 0
0a°1

u 2•.

Although the following lemma, which was used in the above proof, should be
a standard fact, we could not find a reference, so we provide a proof.

LEMMA 4.10. For any measurable function f : N ! R and a differentiable map
¡ : N ! N , we have

Z

N
( f ±¡)(n) | Jacn ¡|dn =

Z

N
f (n)dn.

Proof. Since N is a simply connected nilpotent Lie group, the Haar measure dn
on N is the push-forward of the Lebesgue measure d Leb on n = Lie N by the
exponential map. Let ¡̃ := log±¡±exp. Note that Id+1

2 adx 2 GL(n) is unipotent
for all x 2 n, as adx 2 End(n) is a nilpotent element. We claim that | Jacex ¡| =
| Jacx ¡̃|.

Since N is a nilpotent Lie group of at most 2-step, we have for any n,n0 2 N ,

log(nn0) = logn + logn0+ 1
2

[logn, logn0].
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Hence, we get via a direct computation:

d
d t

log¡(ex )°1¡(ex et y )

= d
d t

log¡(ex )°1¡
°
ex+t y+ 1

2 t [x,y]¢

= d
d t

µ
log¡(ex )°1 + log¡

°
ex+t y+1

2 t [x,y]¢+ 1
2

h
log¡(ex )°1, log¡

°
ex+t y+1

2 t [x,y]¢i
∂

=
≥
Idn+1

2 ad°¡̃(x)

¥µ
d

d t
¡̃

°
x + t (y + 1

2 [x, y])
¢∂

=
≥
Idn+1

2 ad°¡̃(x)

¥
±
°

Dx ¡̃
¢°

y + 1
2 [x, y]

¢
.

Now let x 2 n and y 2 Tex N . In view of the identification n = Te N ' Tn N for
n = ex and ¡(ex ), we have

Dex ¡(y) = d
d t

ØØØØ
t=0

¡(ex )°1¡(ex et y )

= d
d t

ØØØØ
t=0

exp± log¡(ex )°1¡(ex et y )

=
°

D0 exp
¢µ d

d t

ØØØØ
t=0

log¡(ex )°1¡(ex et y )
∂

=
°

D0 exp
¢
±
°

Idn+1
2 ad°¡̃(x)

¢
±
°

Dx ¡̃
¢°

y + 1
2

[x, y]
¢

=
°

D0 exp
¢
±
°

Idn+1
2 ad°¡̃(x)

¢
±
°

Dx ¡̃
¢
±
°

Idn+1
2 adx

¢
(y)

where we have used the convention d
d t

ØØ
t=0 Ø 2 TØ(0)N to denote the element

of TØ(0)N represented by a smooth curve Ø : (°",") ! N . Since D0 exp : T0n!
Te N = n is the identity map Idn under the identification T0n' n and Idn+1

2 adz :
n! n has determinant one for any z 2 n, being a unipotent matrix, we deduce
that det(Dex ¡) = det(Dx ¡̃), proving the claim. Hence for any measurable func-
tion f : N !R, we have

Z

N
( f ±¡)(n) | Jacn ¡|dn =

Z

n

( f̃ ± ¡̃)(x) | Jacex ¡|d Leb(x)

=
Z

n

( f̃ ± ¡̃)(x) | Jacx ¡̃|d Leb(x)

=
Z

n

f̃ (x)d Leb(x) =
Z

N
f (n)dn,

where we have used the change of variable formula for the Lebesgue measure
in the second last equality. This proves the lemma.

Definition of Bu , Ju . For each u 2T≠1 , we define

Bu := uau Nc¥a°1
u and

Ju :=
n

uaubN (g k
u ,n)a°1

u : n 2 Nc¥, x0uauna°1
u 2≠

o
.
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LEMMA 4.11. For all u 2T≠1 , we have

2c ·m(Bu \T≠) ∑ m(Ju).

Proof. Defining 'u : N ! N by 'u(n) = u(auna°1
u ), we have

Ju =
≥
'u ±bN (g k

u , ·)±'°1
u )(Bu \T≠

¥
.

For all v 2 Nc¥ ΩN¥, we have 2c ∑ | Jacv bN (g k
u , ·)| by (4.28), and hence

2c ∑
ØØØJacv

°
'u ±bN (g k

u , ·)±'°1
u

¢ØØØ .

The lemma follows from Lemma 4.10.

LEMMA 4.12. For any u 2T≠1 \ (D °@R2 D), we have

Ju ΩT≠̃\•\D.

Proof. Let u 2T≠1 and v 2 Ju be arbitrary. Then v = u
°
aubN (g k

u ,n)a°1
u

¢
for some

n 2 Nc¥. Since x0u 2≠1 we have for all n 2 Nc¥,

x0u(auna°1
u ) = x0uau(g k

u n)a°1
u

= x0uau
°
bN (g k

u ,n)b AM (g k
u ,n)bN+

(g k
u ,n)

¢
a°1

u

= x0u
°
aubN (g k

u ,n)a°1
u

¢
b AM (g k

u ,n)
°
aubN+

(g k
u ,n)a°1

u
¢
,

(4.50)

with b AM (g k
u ,n) 2 BL and bN+

(g k
u ,n) 2 BN+ , by (4.31). Since tu ∏ T0, we have

aubN+
(g k

u ,n)a°1
u ΩON+ by (4.39). Hence,

x0v = x0u
°
aubN (g k

u ,n)a°1
u

¢

= x0u
°
auna°1

u
¢°

aubN+
(g k

u ,n)°1a°1
u

¢
b AM (g k

u ,n)°1 2≠ON+BL .

Since ON+ ΩBN+ we deduce

x0v 2≠BN+BL Ω ≠̃.

By Lemma 4.9, since v = u
°
aubN (g k

u ,n)a°1
u

¢
with u 2≠1 and n 2 Nc¥ Ω N¥ we

have x0v 2• implying v 2T≠̃\•.
Further assuming that u 2 D °@R2 D , since bN (g k

u ,n) 2 NR Ω B0(R1), by (4.31),
it follows from (4.47) that

aubN (g k
u ,n)a°1

u 2 B0(R2).

Since d0 is a distance, satisfying the triangle inequality, we deduce that v 2 D ,
as claimed.

Properties of coverings. For all u 2T≠1 , we have

bN (g k
u ,e)N2c¥ Ω bN (g k

u , N¥) Ω bN (g k
u ,e)N¥ and

bN (g k
u , Nc¥) Ω bN (g k

u ,e)Nc¥.
(4.51)

Setting

wu := uaubN (g k
u ,e)a°1

u ,(4.52)

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 331–362



354 OR LANDESBERG, MINJU LEE, ELON LINDENSTRAUSS AND HEE OH

we have

Ju Ω wu au Nc¥a°1
u and

wu au N2c¥a°1
u Ω uaubN (g k

u , N¥)a°1
u Ω wu au N¥a°1

u .
(4.53)

Since bN (g k
u ,e) 2 NR by (4.31), we have wu 2 uau NR a°1

u . Hence

Ju Ω wu au N2c¥a°1
u Ω uaubN (g k

u , N¥)a°1
u Ω uau NR N¥a°1

u .(4.54)

LEMMA 4.13. If ui ,u j 2T≠2 satisfy that Jui \ Ju j 6=;, then

1. a°1
ui

au j NR N¥a°1
u j

aui Nc¥ 6Ω N2c¥,

2. u°1
i u j 2 aui NR N¥a°1

ui
au j N¥NR a°1

u j
,

3. Bu j Ω ui aui NR N¥(a°1
ui

au j N¥NR Nc¥a°1
u j

aui )a°1
ui

, and

4. a°1
ui

au j Ω exp([°Ø,Ø]v).

Proof. To prove (1), let v 2 Jui \ Ju j . By (4.54), we have u°1
j v 2 au j NR N¥a°1

u j
and

by (4.53), we have v°1wui 2 aui Nc¥a°1
ui

, using the fact that Nc¥ is symmetric.
Hence,

u°1
j wui = (u°1

j v)(v°1wui ) 2 au j NR N¥a°1
u j

aui Nc¥a°1
ui

.(4.55)

Since ui 2T≠1 and u j 62T•, we have u j 62 ui aui bN (g k
ui

, N¥)a°1
ui

by Lemma 4.9. It
follows from (4.53) that u j 62 wui aui N2c¥a°1

ui
, or equivalently,

u°1
j wui 62 aui N2c¥a°1

ui
.

Note that by (4.55),

a°1
ui

u°1
j wui aui 2 a°1

ui
au j NR N¥a°1

u j
aui Nc¥°N2c¥,

proving (1). We now prove (2). Since Jui \ Ju j 6=;, by (4.53) and (4.54),

ui aui NR N¥a°1
ui

\u j au j NR N¥a°1
u j

6=;.

Since N¥ and NR are symmetric, we get

u°1
i u j 2 aui NR N¥a°1

ui
au j N¥NR a°1

u j
.

To check (3), observe that

Bu j = u j au j Nc¥a°1
u j

= ui (u°1
i u j )au j Nc¥a°1

u j

Ω ui (aui NR N¥a°1
ui

au j N¥NR a°1
u j

)au j Nc¥a°1
u j

= ui aui NR N¥(a°1
ui

au j N¥NR Nc¥a°1
u j

aui )a°1
ui

,

(4.56)

where the inclusion Ω follows from Claim (2). Claim (4) follows from (1) by the
choice of Ø as in (4.32).

LEMMA 4.14. For a bounded subset S Ω T≠2 , consider the covering {Bu : u 2 S}.
There exists a countable subset F Ω S such that {Bui : ui 2 F } covers S and

X

i
Jui

∑ ∑§,(4.57)

where ∑§ is given in (4.34).
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Proof. Let
©
Bui : ui 2 F

™
be a countable subcover of S given by Lemma 3.2 with

respect to the parameters Ø,¥1 = c¥ and ¥2 = R 0. Since S ΩT≠2 , note that when-
ever Jui \ Ju j 6=;, we have |tui ° tu j |∑Ø by Lemma 4.13(4). Moreover by Lemma
4.13(3), and the definition of R 0 > 0 as given in (4.33), we also have

Bu j = u j au j Nc¥a°1
u j

ΩCui := ui aui NR 0a°1
ui

.

Therefore, if Ju1 \ · · ·\ Juq 6=; for some q ∏ 2, then

q[

j=1
Bu j ΩCui

and |tui ° tu j |∑Ø for all 1 ∑ i , j ∑ q . Hence by Lemma 3.2, we get q ∑ ∑§. Hence
the claim follows.

LEMMA 4.15 (Lower bound). We have

m

√
[

u2T≠2

Ju \D

!

∏ c
∑§

·m(T≠2 \D).

Proof. First, note that the union in the statement is indeed measurable as this
is a union of open sets in N . Consider the cover

F :=
©
Bu : u 2T≠2 \ (D °@R2 D)

™

of the bounded subset T≠2 \ (D °@R2 D), where R2 is given (4.47). By Lemma
4.14, we can find a countable subset F ΩT≠2\(D°@R2 D) such that the collection
{Bui : ui 2 F } covers T≠2 \ (D °@R2 D) and

X

ui2F
Jui

∑ ∑§.(4.58)

By Lemma 4.12, we have Jui Ω D for all ui 2 F Ω T≠2 \ (D ° @R2 D). Hence,
using (4.58), we get

m

√
[

u2T≠2

Ju \D

!

∏ m

√
[

ui2F
Jui

!

∏ 1
∑§

X

ui2F
m

°
Jui

¢
.

Since m(Jui ) ∏ 2c ·m(Bui \T≠) by Lemma 4.11 (recall that ≠2 Ω≠), we have

m

√
[

u2T≠2

Ju \D

!

∏ 2c
∑§

X

ui2F
m

°
Bui \T≠

¢
∏ 2c
∑§

m
°
T≠2 \ (D °@R2 D)

¢
,

where the last inequality holds as
©
Bui : ui 2 F

™
is a cover of T≠2 \ (D °@R2 D).

Since
2 ·m

°
T≠2 \ (D °@R2 D)

¢
∏ m(T≠2 \D)

by the second inequality of Lemma 4.8, the claim follows.

LEMMA 4.16 (Upper bound). We have

m

√
[

u2T≠2

Ju \D

!

< c
∑§

m(T≠2 \D).
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Proof. By Lemma 4.12 and the fact that ≠2 Ω≠1, we have
[

u2T≠2

Ju \D ΩT≠̃\•\D.

By the choice of x0 satisfying the first inequality in Lemma 4.8, we have

m
°
T≠̃\•\D

¢
< c
∑§

m
°
T≠2 \D

¢
,

implying the claim.

These two lemmas yield a contradiction to the hypothesis (4.11) that ∏(g0) =
∏(hp

0 ) 62 StabG ([µ]). As p ∏ p0 was arbitrary, we deduce that ∏(h0) 2 StabG ([µ])
by Lemma 4.3. Therefore we have proved (4.2) and hence Theorem 4.1.

5. MEASURES SUPPORTED ON DIRECTIONAL RECURRENT SETS

Let G =Qr
i=1 Gi be a product of simple real algebraic groups of rank one. Let

°0 < G be a Zariski dense discrete subgroup of G , and ° be a Zariski dense
normal subgroup of °0.

For v 2 inta+, define

R
§
v =

©
°\°g 2 °\G : limsup

t!1
°0\°0g exp(tv) 6=;

™
.(5.1)

As ° is normal in °0, R
§
v is well-defined.

The main goal of this section is to deduce the following theorem and corollary
from Theorem 4.1:

THEOREM 5.1. For v 2 inta+, any N -invariant, ergodic measure µ supported on
R

§
v is P± quasi-invariant.

COROLLARY 5.2. Set R
§(inta+) := S

v2inta+ R
§
v . Any N -invariant, ergodic mea-

sure µ supported on R
§(inta+) is P± quasi-invariant.

We remark that any N -invariant, ergodic and P±-invariant measure on E is of
the form mBR

∫ |Y for some °-conformal measure ∫ on § and P±-minimal subset
Y Ω °\G (see (6.1) and [27, Prop. 7.2]).

Proposition 1.4 is a special case of Theorem 5.1 when ° = °0 and M is con-
nected. We recall that as long as none of Gi is isomorphic SL2(R), M is always
connected [43, Lem. 2.4].

Properties of Zariski dense groups. In the following Theorem 5.3, and Lemmas
5.4 and 5.5, we let ß be a Zariski dense discrete subgroup of any semisimple real
algebraic group G . Note that ß contains a Zariski dense subset of loxodromic
elements [3]. The following theorem can be deduced from the work of Guivarc’h
and Raugi [17].

THEOREM 5.3 ([27, Cor. 3.6]). Any closed subgroup of M A containing the gener-
alized Jordan projection ∏(ß) contains M±A.
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We denote by §(ß) Ω F the limit set of ß, which is the unique ß-minimal
subset.

We refer to [12, Def. 7.1] for the definition of a Schottky subgroup of G .

LEMMA 5.4. Let O be a Zariski open subset of F . Any Zariski dense subgroup ß
of G contains a Zariski dense Schottky subgroup ß1 with §(ß1) ΩO .

Proof. This can be proved similarly to the proof of [3, Prop. 4.3] (see also proof
of [12, Lem. 7.3]). First, we may assume that ß is finitely generated. Hence
there exists an integer n := nß ∏ 1 such that the subgroup h∞ni generated by ∞n

is Zariski connected for all ∞ 2ß [41].
Since O and F

(2) are Zariski open in F and F £F respectively, we can
choose open subsets b±

i , i = 1,2 whose closures are contained in O and which
are pairwise in general position.3 By [3, Lemma 3.6], for each i = 1,2, the subset

©
∞ 2ß : loxodromic, (y∞, y∞°1 ) 2 b+

i £b°
i

™

is Zariski dense. Hence there exists g1 2 ß such that ∞1 := g n
1 is loxodromic

and (y∞1 , y∞°1
1

) 2 b+
1 £b°

1 . By [41, Proposition 4.4], there exists a proper Zariski
closed subset F∞1 ΩG containing all proper Zariski closed and Zariski connected
subgroups of G containing ∞1. Hence we can find a loxodromic element g2 2
ß°F∞1 such that (yg2 , yg°1

2
) 2 b+

2 £b°
2 . Set ∞2 := g n

2 . By definition of n and F∞1 ,

the subgroup ßk := h∞k
1 ,∞k

2 i is Zariski dense for any k ∏ 1.
We can find open subsets B±

i Ω F , i = 1,2 such that
T2

i=1(B+
i \B°

i ) 6=; and
∞±k

i (B±
i ) Ω b±

i for all sufficiently large k ∏ 1. Fix one such k. If we take ª0 2
T2

i=1(B+
i \B°

i ), then ßkª0 is contained in the union
S

i=1,2(b+
i [b°

i ) Ω O . Since
the closure of ßkª0 contains §(ßk ), which is the minimal ßk -subset, it follows
that §(ßk ) ΩO .

LEMMA 5.5. For any ª,¥ 2F , set

O(ª,¥) :=
©

g 2G : loxodromic, (yg ,ª), (yg°1 ,¥) 2F
(2)™.(5.2)

For any Zariski dense subgroup ß of G, the intersection ß\O(ª,¥) contains a
Zariski dense Schottky subgroup of G.

Proof. For ª 2 F , the subset Oª :=
©
ª0 2 F : (ª,ª0) 2 F

(2)™ is Zariski open. By
Lemma 5.4, ß contains a Zariski dense Schottky subgroup ß1 consisting of loxo-
dromic elements and with§(ß1) ΩOª. Now ß1 contains a Zariski dense Schottky
subgroup ß2 with §(ß2) ΩO¥. Then ß2 ΩO(ª,¥) since

©
y∞±1 2F : ∞ 2ß2

™
Ω§(ß2) ΩO¥\Oª.

Proof of Theorem 5.1. As µ is supported on R
§
v , there exists x = [g ] 2R

§
v such

that Sµ(v) = Sx (v). By the definition of R
§
v , there exist ∞i 2 °0 and ti ! +1

such that ∞i g exp(tiv) converges to some h0 2 G . Since ° is normal in °0, it
follows that Sx (v) contains ß := h°1

0 °h0, and hence

Sµ(v) æß.

3Two subsets A and B of F are in general position if A£B ΩF
(2).
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Hence by Theorem 4.1,

∏
°
ß\O(e+,e°)

¢
Ω StabG ([µ]).

Since ß is Zariski dense, by Lemma 5.5, the intersection ß\O(e+,e°) contains
a Zariski dense discrete subgroup, say ß0. Since the closure of the subgroup
generated by ∏(ß0) contains AM± by Theorem 5.3, we get AM± Ω StabG ([µ]),
proving the claim.

Proof of Corollary 5.2. By Theorem 5.1, it suffices to show the following lemma:

LEMMA 5.6. Any N -invariant, ergodic measure µ supported on R
§(inta+) is sup-

ported on R
§
v for some v 2 inta+.

Proof. For any subset U Ω inta+, we set

R
§(U ) :=

[

u2U
R

§
u Ω °\G .

Note that R
§(U ) is N -invariant, since R

§
u itself is N -invariant for each u 2 inta+.

Note that R
§(inta+) =S

u2S R
§
u , where S :=

©
u 2 inta+ : kuk= 1

™
. Let (°\G ,A ,µ)

be the completion of the measure space (°\G ,B,µ), where B is the Borel æ-
algebra of °\G .

CLAIM. For any open set U Ω S, the set R
§(U ) belongs to A and is either µ-null

or co-null.

Given U , denote XU = °\G £U equipped with the product æ-algebra B≠BU
with respect to the Borel æ-algebras on °\G and U . Define the function √ :
XU ! [0,1] by

√(x,u) = liminf
t!1

d°\G (x, x exp(tu)),

where d°\G is the metric induced from the left-invariant metric on G . The func-
tion √ is clearly B≠BU -measurable and therefore so is the set W :=√°1 ([0,1)).
Note that R

§(U ) =º°\G (W ) is the image of W under the projection map º°\G :
XU ! °\G . We would have liked to conclude that R

§(U ) is itself Borel measur-
able but this might not be true. Fortunately, we have the following Measurable
Projection Theorem [9, III.23]:

Let (Y ,F ) be a measure space and let (U ,BU ) be a Polish space, i.e., a separable
completely metrizable space, together with its Borel æ-algebra. Let X = Y £U
together with F≠BU be the product measure space. Then for any set W 2F≠BU ,
the projection ºY (W ) Ω Y is universally measurable, that is, ºY (W ) is contained
in the completion of F with respect to any probability measure ∫ on (Y ,F ).

The space U is clearly Polish whenever U is open in S. Since µ is equiva-
lent to a probability measure, say, f dµ for some 0 < f 2 L1(µ) of norm= 1, this
theorem implies that R

§(U ) = º°\G (W ) 2 A . By the properties of the comple-
tion æ-algebra, there exist Borel measurable sets Q1 Ω R

§(U ) Ω Q2 satisfying
µ(Q2 °Q1) = 0. Since R

§(U ) is N -invariant we have

Q1N ΩR
§(U )N =R

§(U ) ΩQ2
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and hence µ(Q1¢Q1N ) = 0, where ¢ denotes symmetric difference. By ergod-
icity, this implies that Q1, and hence also R

§(U ), are either µ-null or co-null,
proving the claim.

Now take a countable basis {U1,i } of S consisting of open balls of diameter
at most 1/2. By the claim above, the sets R

§(U1,i ) are either µ-null or co-null.
Since µ is supported on

R
§(inta+) =R

§(S) =
[

i∏1
R

§(U1,i ),

there exists some i1 for which R
§(U1,i1 ) is co-null. Take a countable basis {U2,i }

of U1,i1 consisting of open balls of diameter at most 1/4. Then there exists
U2,i2 Ω U1,i1 for which R

§(U2,i2 ) is co-null. Continuing inductively, we get a
decreasing sequence of balls U1,i1 æU2,i2 æ · · · of diameters diamUk,ik ∑ 2°k sat-
isfying that R

§(Uk,ik ) are µ-co-null. Hence
T

k Uk,ik = {v} for some v 2 S and
R

§
v =

T
k R

§(Uk,ik ) is co-null for µ.

6. UNIQUE ERGODICITY AND ANOSOV GROUPS

We begin by recalling the definition of Burger–Roblin measures given in [12].
Let ° be a Zariski dense discrete subgroup of a connected semisimple real al-
gebraic group G . Denote by √° : a!R[ {°1} the growth indicator function of
° defined by Quint [31]. Let √ be a linear form on a and ∫ a (°,√)-conformal
measure supported on the limit set §. This implies √ ∏ √° ([31, Thm. 1.2]).
When the rank of G is one, √ is simply a real number and √° is equal to the
critical exponent of °. The Burger–Roblin measure mBR

∫ associated to ∫ is the
M N -invariant Borel measure on °\G which is induced from the following mea-
sure m̃BR

∫ on G/M : using the Hopf parametrization G/M = F
(2) £ a given by

g M ! (g+, g°,Øg+(e, g )),

dm̃BR
∫ (g ) = e√(Øg+ (e,g ))+2Ω(Øg° (e,g )) d∫(g+)dmo(g°)db,(6.1)

where db is the Lebesgue measure on a, mo is the K -invariant probability mea-
sure on F and Øg+(e, g ) 2 a and Øg°(e, g ) 2 a are respectively given by the con-
ditions

g 2 K exp(Øg+(e, g ))N and g 2 K exp
°

Adw0 (Øg°(e, g ))
¢
N+.

Now, let ° be an Anosov subgroup of G , as defined in the introduction. For
each v 2 intL°, there exist a unique linear form √v 2 a§ such that √v ∏√° and
√v(v) = √°(v) and a unique (°,√v)-conformal probability measure supported
on the limit set §, which we denote by ∫v (see [35] and [12, Theorem 7.9]). We
set

mBR
v :=mBR

∫v .(6.2)

Note that if Rv=Ru, then √u =√v and hence mBR
v =mBR

u .
We recall the following result of Lee and Oh, which is based on their classifi-

cation of °-conformal measures on § [26, Thm. 7.7]:
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THEOREM 6.1 ([27, Prop. 7.2]). Any N -invariant ergodic and P±-quasi invariant
measure on E is of the form mBR

v |Y for some v 2 intL° and some P±-minimal
subset Y Ω °\G, up to proportionality.

Indeed in [26], it was also shown that each mBR
v |Y in the above theorem is

N -ergodic; however we will not need this result.
For v 2 inta+, set

Rv :=
n

x 2 E : limsup
t!+1

x exp tv 6=;
o

.

We also recall the following recent result obtained by Burger, Landersberg,
Lee and Oh:

THEOREM 6.2 ([8]). Let v 2 intL° and u 2 inta+.

• If rankG ∑ 3, then mBR
v (°\G °Rv) = 0.

• If rankG > 3 or Ru 6=Rv, then mBR
v (Ru) = 0.

Proof of Theorem 1.1. Let µ be an N -invariant measure supported on Ru for
some u 2 inta+. In view of the ergodic decomposition, we may assume without
loss of generality that µ is ergodic. By Proposition 1.4, µ is P quasi-invariant.
Since P = P± under the hypothesis that none of Gi is isomorphic to SL2(R), it
follows from Theorem 6.1 that µ =mBR

v for some v 2 intL°. By Theorem 6.2,
this implies that rankG ∑ 3 and Rv = Ru and hence u 2 intL°; in other cases,
such µ cannot exist. This proves the claim.

Proof of Corollary 1.2. By Corollary 5.2, any N -invariant ergodic measure sup-
ported on R is supported on Ru for some u 2 inta+. Hence the claim follows
from Theorem 1.1.

Acknowledgments. We would like to thank Emmanuel Breuillard and Amir Mo-
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