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Abstract. We establish an extension of the Hopf-Tsuji-Sullivan di-
chotomy to any Zariski dense discrete subgroup of a semisimple real
algebraic group G. We then apply this dichotomy to Anosov subgroups
of G, which surprisingly presents a di↵erent phenomenon depending on
the rank of the ambient group G.
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1. Introduction

Let G be a connected simple real algebraic group of rank one, (X, d) the
associated Riemannian symmetric space and @X the geometric boundary of
X. We fix a base point o 2 X, and ⇡ : T1(X) ! X denotes the canonical
projection of a vector to its basepoint. The Hopf parametrization of the
unit tangent bundle T1(X) maps a vector v 2 T1(X) to

(v+, v�,�v+(o,⇡(v)))

where v
+
, v

� 2 @X are respectively the forward and backward endpoints of
the geodesic determined by v and for ⇠ 2 @X and x, y 2 X, �⇠(x, y) denotes
the Busemann function given by

�⇠(x, y) = lim
z!⇠

d(y, z)� d(x, z).

This gives a homeomorphism

T1(X) ' (@X ⇥ @X ��(@X))⇥ R
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where �(@X) denotes the diagonal embedding of @X into @X⇥@X and the
geodesic flow Gt on T1(X) corresponds to the translation flow on R.

The Hopf-Tsuji-Sullivan dichotomy in rank one. Let � < G be a
non-elementary discrete subgroup. A Borel probability measure ⌫ on @X

is called a �-conformal measure of dimension � � 0 if for any � 2 � and
⇠ 2 @X,

d�⇤⌫

d⌫
(⇠) = e

���⇠(o,�(o))

where �⇤⌫(Q) = ⌫(��1
Q) for any Borel subset Q ⇢ @X.

Each �-conformal measure ⌫ on @X determines a unique geodesic flow
invariant Borel measure m⌫ on T1(�\X), which is locally equivalent to ⌫ ⌦
⌫⌦ds in the Hopf coordinates, where ds denotes the Lebesgue measure on R.
The following criterion known as the Hopf-Tsuji-Sullivan dichotomy relates
dynamical properties of the geodesic flow Gt with respect to the measure
m⌫ , the ⌫-size of the conical1 limit points of � and the divergence property
of the Poincare series P(s) =

P
�2� e

�sd(�o,o) at the dimension of ⌫: we
denote by ⇤con ⇢ @X the set of all conical limit points of �.

Theorem 1.1. Let G be a connected simple real algebraic group of rank

one and � < G a non-elementary discrete subgroup. Let ⌫ be a �-conformal

measure on @X of dimension �. The following are equivalent:

(1) ⌫(⇤con) > 0 (resp. ⌫(⇤con) = 0);
(2) ⌫(⇤con) = 1 (resp. ⌫(⇤con) = 0);
(3) the geodesic flow Gt

is conservative (resp. completely dissipative)

with respect to m⌫ ;

(4) the geodesic flow Gt
is ergodic (resp. non-ergodic) with respect to

m⌫ ;

(5)
P

�2� e
��d(o,�o) = 1 (resp.

P
�2� e

��d(o,�o)
< 1) where � is the

conformal dimension of ⌫ and o 2 X is any point.

Most equivalences are due to Sullivan for real hyperbolic spaces [30] (see
also [31], [3]) and to Burger-Mozes for proper CAT (-1) spaces [7, Sec. 6.3]
and its complete form can be found in Nicholl’s book [22, Ch. 8] when X

is a real hyperbolic space and in Roblin’s thesis [26, Thm. 1.7] for a proper
CAT (-1) spaces.

We denote by ⇤ ⇢ @X the limit set of �, which is the unique �-minimal
subset of @X and by �� the critical exponent of �, that is, the abscissa of
the convergence of the Poincare series P(s) of �. The group � is called
a divergent type if P(��) = 1. Patterson and Sullivan constructed a �-
conformal measure, say, ⌫PS, supported on the limit set ⇤ of dimension ��,
called the Patterson-Sullivan measure. Theorem 1.1 implies that whether
� is of divergent type or not is completely determined by the positivity of
⌫PS(⇤con), and vice versa.

1A point ⇠ 2 @X is called a conical limit point of � if a geodesic ray toward ⇠ accumu-
lates in �\X.
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The case of convex cocompact groups. A discrete group with ⇤ = ⇤con

is called a convex cocompact subgroup. They are also characterized by
the property that � acts cocompactly on the convex hull of ⇤ in X. For
a convex cocompact subgroup �, there exists a unique �-conformal mea-
sure supported on the limit set ⇤, namely the Patterson-Sullivan measure
⌫PS. The associated geodesic flow invariant measure on T1(�\X), called
the Bowen-Margulis-Sullivan measure, is known to be the measure of max-
imal entropy [30]. An immediate consequence of Theorem 1.1 for convex
cocompact groups is as follows:

Theorem 1.2. Let � < G be a convex cocompact subgroup. Then

(1) the geodesic flow Gt
on T1(�\X) is conservative and ergodic with

respect to the Bowen-Margulis-Sullivan measure m
BMS

;

(2) � is of divergent type, i.e.,
P

�2� e
���d(o,�o) = 1.

The unit tangent bundle of �\X is a double quotient space �\G/M where
M is a compact subgroup of G commuting with the one-parameter diagonal
subgroup {at} which induces the geodesic flow. When � is Zariski dense in
addition, the lifted Bowen-Margulis-Sullivan measure, considered as an M -
invariant measure on �\G, is also ergodic for the diagonal flow {at} whenever
M is connected [32, Thm. 1.1]. The only case of M disconnected is when
G ' SL2(R) and M = {±e}, in which case m

BMS has at most two ergodic
components [20].

The Hopf-Tsuji-Sullivan dichotomy in higher rank. The main aim of
this article is to extend the Hopf-Tsuji-Sullivan dichotomy for discrete sub-
groups of higher rank semisimple real algebraic groups G, while replacing
the geodesic flow of the rank one space with any one-parameter subgroup of
diagonal elements of G (Theorem 1.4). Each one-parameter subgroup of di-
agonal elements corresponds to a direction, say, u, in the positive Weyl cham-
ber of G. We introduce the u-directional conical limit set and u-directional
Poincare series, whose properties relative to a given �-conformal density is
shown to determine ergodic properties of the action of the one-parameter
subgroup {exp(tu) : t 2 R} with respect to an associated measure on �\G.
We then apply the dichotomy together with recent local mixing results of
Chow and Sarkar [9] to Anosov subgroups �. We discover a surprising
phenomenon that the rank of the ambient group G dictates a completely
opposite behavior for � as stated in Theorem 1.6. We also deduce recurrent
properties of the Burger-Roblin measures for each interior direction of the
limit cone of � (Corollary 1.7), which plays an important role in the recent
measure classification result of Landesberg, Lee, Lindenstrauss and Oh [18,
Thm. 1.1].

In order to state these results precisely, we now let G be a connected,
semisimple real algebraic group. Let P be a minimal parabolic subgroup of
G with a fixed Langlands decomposition P = MAN . Here A is a maximal
real split torus of G, M is a compact subgroup commuting with A and
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N is a maximal horospherical subgroup. We fix a positive Weyl chamber
a+ ⇢ a = Lie(A) so that logN consists of positive root subspaces. We fix
a maximal compact subgroup K < G so that the Cartan decomposition
G = K(exp a+)K holds, and denote by µ : G ! a+ the Cartan projection,
i.e., for g 2 G, µ(g) 2 a+ is the unique element such that g 2 K expµ(g)K.

Let � < G be a Zariski dense discrete subgroup of G. We denote by
L� ⇢ a+ the limit cone of �, which is the asymptotic cone of µ(�). Benoist
showed that L� is a convex cone with non-empty interior [4]. Let F denote
the Furstenberg boundary G/P and ⇤ ⇢ F the limit set of �, which is the
unique �-minimal subset. For a linear form  2 a⇤, a Borel probability
measure ⌫ on F is called a (�, )-conformal measure if for any � 2 � and
⇠ 2 F ,

d�⇤⌫ 
d⌫ 

(⇠) = e
 (�⇠(e,�)) (1.1)

where � denotes the a-valued Busemann function (see Def. 2.1). Quint
showed in [24, Thm. 8.1] that a (�, )-conformal measure may exist only
when  �  � where  � : a ! R denotes the growth indicator function of �
(Def. 5.1). Moreover, he constructed a (�, )-conformal measure supported
on ⇤ for every linear form  �  � satisfying  (v) =  �(v) for some v 2
L� \ int a+ [24, Thm. 8.4].

Let i : a+ ! a+ denote the opposition involution given by i(v) = �Adw0(v)
where w0 is the longest Weyl element. In rank one groups, i is the identity
map. Letting F (2) denote the unique open diagonal G-orbit in F ⇥ F , the
quotient space G/M is homeomorphic to F (2)⇥a via the Hopf parametriza-
tion which maps gM to (gP, gw0P,�gP (e, g)) for any g 2 G.

For a given pair of �-conformal measures ⌫ and ⌫ �i on F with respect
to  and  � i respectively, one can use the Hopf parameterization to de-
fine a non-zero A-invariant Borel measure m(⌫ , ⌫ �i) on the quotient space
�\G/M , which is locally equivalent to d⌫ ⌦ d⌫ �i ⌦ db in the Hopf coor-
dinates, where db denotes the Lebesgue measure on a; we will call it the
Bowen-Margulis-Sullivan measure (or simply BMS-measure) associated to
the pair (⌫ , ⌫ �i) (Section 4). For simplicity, we write m for m(⌫ , ⌫ �i),
although the measure depends on the choice of conformal measures ⌫ and
⌫ �i, not only on  .

For u 2 int a+, we will say that m is u-balanced if

lim sup
T!1

R
T

0 m (O1 \O1 exp(tu)) dt
R
T

0 m (O2 \O2 exp(tu)) dt
< 1 (1.2)

for any bounded Borel subsets Oi ⇢ �\G/M with ⌦ \ intOi 6= ;, where
⌦ = {[g] 2 �\G/M : gP, gw0P 2 ⇤}.

Each BMS measure m on �\G/M can be considered as an AM -invariant
measure on �\G, which we will also denote by m , by abuse of notation.
While the set E = {[g] 2 �\G : gP 2 ⇤} is the unique P -minimal subset of
�\G, it breaks into finitely many P

�-minimal subsets in general where P
�
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denotes the identity component of P . For each P
�-minimal subset Y ⇢ �\G,

the restriction m |Y gives an A-invariant measure.
The conical limit set ⇤con of � is given by

⇤con := {gP 2 F : lim sup�gA+ 6= ;} (1.3)

where A+ = exp a+ and lim sup denotes the topological limit superior, i.e. all
accumulation points of the given family of sets.

Definition 1.3 (Directional conical limit set). For each u 2 int a+, we define
the set of u-directional conical limit points as follows:

⇤u := {gP 2 F : lim sup
t!+1

�g exp(tu) 6= ;};

this is a dense Borel measurable subset of ⇤con if non-empty.

It is easy to see that ⇤u 6= ; only when u 2 L�.
For R > 0 and u 2 int a+, we define the following tube-like subset of �

whose Cartan projection lies within distance R from the ray R+u:

�u,R := {� 2 � : kµ(�)� tuk < R for some t � 0},
where k · k is an Euclidean norm on a. The following theorem extends
Theorem 1.1 to all Zariski dense subgroups of higher rank semisimple real
algebraic groups:

Theorem 1.4 (The Hopf-Tsuji-Sullivan dichotomy in higher rank). Let

G be a connected semisimple real algebraic group and � < G be a Zariski

dense discrete subgroup. Fix  2 a⇤ and let ⌫ , ⌫ �i be a pair of (�, ) and

(�, � i)-conformal measures respectively, and let m = m(⌫ , ⌫ �i) denote

the associated BMS measure on �\G/M . For any u 2 int a+, the following

conditions (1)-(5) are equivalent and imply (6). If  (u) > 0 and m is u-
balanced, then (6) implies (7). Moreover, the first cases of (1)-(7) can occur

only when  (u) =  �(u).

(1) max(⌫ (⇤u), ⌫ �i(⇤i(u))) > 0 (resp. ⌫ (⇤u) = 0 = ⌫ �i(⇤i(u)));
(2) max(⌫ (⇤u), ⌫ �i(⇤i(u))) = 1 (resp. ⌫ (⇤u) = 0 = ⌫ �i(⇤i(u)));
(3) (�\G/M, {exp(tu)},m ) is conservative (resp. totally dissipative);

(4) (�\G/M, {exp(tu)},m ) is ergodic (resp. non-ergodic);

(5) For some (and hence for all) P
�
-minimal subset Y ⇢ �\G, the sys-

tem (Y, {exp(tu)},m |Y ) is ergodic and conservative (resp. m (Y ) =
0, or non-ergodic and totally dissipative);

(6)
P

�2�u,R
e
� (µ(�)) = 1 for some R > 0 (resp.

P
�2�u,R

e
� (µ(�))

<

1 for all R > 0);
(7) ⌫ (⇤u) = 1 = ⌫ �i(⇤i(u)) (resp. ⌫ (⇤u) = 0 = ⌫ �i(⇤i(u))).

Remark 1.5. (1) When G has rank one,  � i =  for any  2 a⇤, as the
opposition involution i is trivial. Moreover, the m being u-balanced
condition is not needed for the implication (6) ) (7). For � non-
elementary, (1)-(7) are all equivalent to each other, except for (5),
and for � Zariski dense, these conditions imply (5).
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(2) When the rank of G is at least 2, we need � to be Zariski dense for
the equivalence of (3) and (4). The reason is that, when � is not
Zariski dense, the Jordan projection of � may not generate a dense
subgroup of A while in the rank one case, the Jordan projection of
any non-elementary subgroup generates a dense subgroup of A [15].

(3) We emphasize here that although the implication (3) ) (1) is a
direct consequence of the definition of m , the proof for (3) ) (7)
under the further u-balanced condition of m requires the discussion
of the directional Poincare series.

For discrete subgroups of a product of two rank one Lie groups whose pro-
jection to each factor is convex cocompact, Burger announced that ⌫ (⇤u) =
1 for all  2 a⇤ and u 2 intL� such that  (u) =  �(u) [6, Thm. 3]. Indeed,
we show that this is a special case of a more general phenomenon which
holds for all Anosov subgroups whose ambient group has rank at most 3.

The case of Anosov subgroups. Although there are notions of Anosov
subgroups with respect to a general parabolic subgroup [13], we will restrict
our attention only to those Anosov subgroups with respect to a minimal
parabolic subgroup. Recall that a Zariski dense discrete subgroup � < G is
an Anosov subgroup (with respect to a minimal parabolic subgroup P ) if it
is a finitely generated word hyperbolic group which admits a �-equivariant
embedding ⇣ of the Gromov boundary @� into F such that (⇣(x), ⇣(y)) 2
F (2) for all x 6= y in @� [13, Prop. 2.7 and Thm. 1.5]. We note that
Zariski dense images of representations of a surface subgroup in the Hitchin
component [17] as well as Schottky subgroups provide ample examples of
Anosov subgroups ([25, Prop. 3.3], see also [11, Lem. 7.2]). Let � be an
Anosov subgroup for the rest of the introduction. Set

D
?

� := { 2 a⇤ :  �  �, (v) =  �(v) for some v 2 L� \ int a+}.

For each  2 D
?

�, there exists a unique unit vector v 2 L�\ int a+ such that
 (v) =  �(v) and v necessarily belongs to intL� ([21, Prop. 4.11] and [25,
Lem. 4.3(i)], see also [29, Lem. 4.3] and [8, Thm. A.2(3)]).

Moreover, for each  2 D
?

�, there exists a unique (�, )-conformal proba-
bility measure, say ⌫ , supported on ⇤ and the map  7! ⌫ is a homeomor-
phism between D

?

� and the space S� of all �-conformal probability measures
supported on ⇤; hence S� is homeomorphic to the set of unit vectors of intL�

(see [19, Thm. 1.3] and references therein). It was also shown in ([19], [20])
that for any  2 D

?

� and m = m(⌫ , ⌫ ,� i),

• ⇤ = ⇤con;
• for any P

�-minimal subset Y ⇢ �\G, m |Y is A-ergodic;
•
P

�2� e
� (µ(�)) = 1.

On the other hand, the divergence of the directional Poincare series (i.e.,P
�2�u,R

e
� (µ(�)) for some R > 0) turns out to depend on the rank of G:
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Theorem 1.6. Let � < G be an Anosov subgroup. For any  2 D
?

� and

u 2 int a+, the following conditions are equivalent and the first cases of

(1)-(4) can occur only when u 2 intL�:

(1) rankG  3 and  (u) =  �(u) (resp. rankG > 3 or  (u) 6=  �(u));
(2) ⌫ (⇤u) = 1 = ⌫ �i(⇤i(u)) (resp. ⌫ (⇤u) = 0 = ⌫ �i(⇤i(u)));
(3) For some (and hence for all) P

�
-minimal subset Y ⇢ �\G, the

system (Y, {exp(tu)},m |Y ) is ergodic and conservative (resp. non-

ergodic and totally dissipative);

(4)
P

�2�u,R
e
� (µ(�)) = 1 for some R > 0 (resp.

P
�2�u,R

e
� (µ(�))

<

1 for all R > 0).

For  2 D
?

� and u 2 intL� with  (u) =  �(u), Chow and Sarkar proved
in [9] the following local mixing result that for any f1, f2 2 Cc(�\G),

lim
t!+1

t
(rankG�1)/2

Z

�\G
f1(x exp tu)f2(x)dm (x) = um (f1)m (f2) (1.4)

for some constant u > 0 depending only on u (see [27] where this is proved
for M -invariant functions for some special cases).

Using the shadow lemma (Lemma 3.4), we deduce from this local mixing
result (1.4) that the u-directional Poincare series

P
�2�u,R

e
� (µ(�)) diverges

if and only if rankG  3. Together with Theorem 1.4, this implies Theorem
1.6.

Let mBR
 

denote the Burger-Roblin measure associated to ⌫ , that is, the
MN -invariant measure on �\G which is induced from a measure on G/M

locally equivalent to d⌫ ⌦dmo⌦db where mo is the K-invariant probability
measure on F (cf. [11, Sec. 3]). Lee and Oh proved that each mBR

 
is MN -

ergodic and its restrictions to P
�-minimal subsets of �\G yield all N -ergodic

components ([19, Thm. 10.1], [20, Thm. 1.3]). For u 2 int a+, we consider
the following directional recurrent set

Ru := {x 2 �\G : lim sup
t!+1

x exp(tu) 6= ;}.

Since u 2 int a+, this is a P -invariant dense Borel subset of E .
An immediate consequence of Theorem 1.6 is the following:

Corollary 1.7. For any  2 D
?

� and u 2 int a+, we have

(1) If rankG  3 and u 2 intL� with  (u) =  �(u), then

mBR
 (�\G�Ru) = 0.

(2) In all other cases, mBR
 

(Ru) = 0.

This corollary is one of the main ingredients of the recent measure classi-
fication result [18, Thm. 1.1].

Added after revision: Sambarino posted a preprint (arXiv:2202:02213)
showing ergodicity for rank G at most 2 and non-ergodicity for rank G at
least 4, with a di↵erent approach based on work of Guivarch.
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Organization. In section 2, we collect basic definitions. In section 3, we
show that the set of directional conical limit points is either null or conull for
any (�, )-conformal measure. In section 4, we prove that the conservativity
of the Bowen-Margulis-Sullivan measure for one parameter diagonal flow
implies its ergodicity, extending Hopf’s argument. In section 5, we relate
the directional Poincare series with respect to  and the correlation functions
of the BMS measures and provide the proof of Theorem 1.4. In section 6,
we specialize to Anosov groups and prove Theorem 1.6.

2. Preliminaries

Let G be a connected, semisimple real algebraic group. We decompose
g = LieG as g = k � p, where k and p are the +1 and �1 eigenspaces
of a Cartan involution ✓ of g, respectively. We denote by K the maximal
compact subgroup of G with Lie algebra k, and by X = G/K the associated
symmetric space. Choose a maximal abelian subalgebra a of p and a closed
positive Weyl chamber a+ of a. Set A := exp a and A

+ = exp a+. The
centralizer of A in K is denoted by M . Consider the following pair of
opposite maximal horospherical subgroups:

N = N
� := {g 2 G : a�n

ga
n ! e as n ! +1} and

N
+ := {g 2 G : anga�n ! e as n ! +1}

for any a 2 intA+; this definition is independent of the choice of a 2 intA+.
We set

P = MAN, and P
+ = MAN

+;

they are minimal parabolic subgroups of G and P \ P
+ = MA. The quo-

tient space F = G/P is called the Furstenberg boundary of G, and via the
Iwasawa decomposition G = KP , F is isomorphic to K/M .

Let NK(a) be the normalizer of a in K, and W := NK(a)/M denote the
Weyl group. Fixing a left G-invariant and right K-invariant Riemannian
metric d on G induces a Riemannian metric on the associated symmetric
space X = G/K, which we also denote by d by abuse of notation. We denote
by h·, ·i and k · k the associated W-invariant inner product and norm on a.

For R > 0, set AR = {a 2 A : k log ak  R}, A+
R
= AR \A

+, and

GR := KA
+
R
K.

a-valued Buseman functions. The product map K ⇥ A ⇥ N ! G is a
di↵eomorphism, yielding the well-known Iwasawa decompositionG = KAN .
The Iwasawa cocycle � : G⇥F ! a is defined as follows: for (g, ⇠) 2 G⇥F
with ⇠ = [k] for k 2 K, exp�(g, ⇠) is the A-component of gk in the KAN

decomposition, that is,

gk 2 K exp(�(g, ⇠))N.
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Definition 2.1. The a-valued Busemann function � : F ⇥ G ⇥ G ! a is
defined as follows: for ⇠ 2 F and g, h 2 G,

�⇠(g, h) := �(g�1
, ⇠)� �(h�1

, ⇠).

Denote by w0 2 W the unique element of W such that Adw0 a
+ = �a+.

Definition 2.2 (Visual maps). For each g 2 G, we define

g
+ := gP 2 G/P and g

� := gw0P 2 G/P.

Note that for g 2 G, g± = g(e±).

The opposition involution i : a ! a is defined by

i(v) = �Adw0(v). (2.1)

When G is a product of rank one groups, i is trivial.
The set F (2) = {(g+, g�) 2 F ⇥ F : g 2 G} = G.(e+, e�) is the unique

open G-orbit. The a-valued Gromov product on F (2) is defined as follows:
for (g+, g�) 2 F (2),

G(g+, g�) := �g+(e, g) + i
�
�g�(e, g)

�
.

Lemma 2.3. [5, Prop. 8.12] There exist c, c
0
> 0 such that for all g 2 G,

c
�1kG(g+, g�)k  d(o, gAo)  c kG(g+, g�)k+ c

0
.

Definition 2.4 (Cartan projection). For g 2 G, there exists a unique ele-
ment µ(g) 2 a+, called the Cartan projection of g, such that

g 2 K exp(µ(g))K.

When µ(g) 2 int a+ and g = k1 exp(µ(g))k2, we write 1(g) := [k1] 2
K/M and 2(g) := k2 2 M\K, which are well-defined.

In the whole paper, we fix the constant d = d(G) � 2 as in the following
lemma.

Lemma 2.5. [19, Lem. 5.8] There exists d � 2 such that for any R > 1
and any g 2 G,

µ(GRgGR) ⇢ µ(g) + adR.

Definition 2.6. We say that a sequence gi ! 1 regularly inG if ↵(µ(gi)) !
1 as i ! 1 for every simple root ↵ corresponding to a+.

Definition 2.7. (1) A sequence gi 2 G is said to converge to ⇠ 2 F , if
gi ! 1 regularly in G and lim

i!1
1(gi)+ = ⇠.

(2) A sequence pi = gi(o) 2 X is said to converge to ⇠ 2 F if gi does.

Definition 2.8 (Limit set). For a Zariski dense discrete subgroup � < G,
we define the limit set ⇤ of � as follows: fixing p 2 X,

⇤ :=
¶

lim
i!1

�ip 2 F : �i 2 �
©
.

By [19, Lem. 2.13], this definition is independent of the choice of p 2 X

and coincides with one given by Benoist [4, Def. 3.6]; in particular, it is the
unique �-minimal subset of F .
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We later use the fact that ⇤ is a Zariski dense subset of F [4, Lem. 3.6].
For any real-valued functions f(t) and g(t), we write f(t) ⌧ g(t) if there

exists C > 0 such that f(t)  Cg(t) for all t > 1. We write f(t) ⇣ g(t) if
f(t) ⌧ g(t) and g(t) ⌧ f(t).

3. A zero-one law for ⌫ (⇤u)

Let � < G be a Zariski dense discrete subgroup of G. Fix  2 a⇤, and a
(�, )-conformal measure ⌫ on F as defined in (1.1).

Recalling the notation ⇤u from Definition 1.3, the goal of this section is
to prove the following dichotomy:

Proposition 3.1. For any u 2 int a+, we have

⌫ (⇤u) = 1 or ⌫ (⇤u) = 0.

The proof of this proposition is based on the study of shadows.

Shadows. For p, q 2 X = G/K and r > 0, the shadow of the r-ball around
q as seen from p is defined by

Or(p, q) := {g+ 2 F : go = p, gA
+
o \B(q, r) 6= ;},

where B(q, r) = {x 2 X : d(x, q) < r}.
Similarly, for ⇠ 2 F , we define the shadow of the r-ball around q as seen

from ⇠ to be

Or(⇠, q) := {g+ 2 F : g� = ⇠, go 2 B(q, r)}.

Note the following G-equivariance property: for any g 2 G and r > 0,

gOr(p, q) = Or(gp, gq) and gOr(⇠, q) = Or(g⇠, gq). (3.1)

Note that for any ⇠ 2 F , q 2 X and R > 0,
[

r>R

Or(⇠, q) = {⌘ 2 F : (⇠, ⌘) 2 F (2)}. (3.2)

Lemma 3.2. [19, Lem. 5.7] There exists  > 0 such that for any r > 0 and

g 2 G, we have

sup
⇠2Or(o,go)

k�⇠(e, g)� µ(g)k  r.

The following lemma is an immediate consequence of [19, Lem. 5.6]:

Lemma 3.3. For any S > 0 and a sequence gi ! 1 regularly in G, we have,

for all su�ciently large i, the closure of OS(o, gio)⇥OS(gio, o) is contained

in F (2)
.

The following shadow lemma plays an important role in our paper. It
was first presented in [2, Thm. 3.3] and then in [24, Thm. 8.2] in slightly
di↵erent forms.
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Lemma 3.4 (Shadow lemma). [19, Lem. 7.8] There exists S0 > 0 such that

c1 := inf�2� ⌫ (OS(�o, o)) > 0. Moreover, there exists  > 0 such that for

all S > S0, and for all � 2 �,

c1e
�k kS

e
� (µ(�))  ⌫ (OS(o, �o))  e

k kS
e
� (µ(�))

.

For any R > 0, set

Gu,R := {g 2 G : kµ(g)� tuk < R for some t � 0}. (3.3)

Lemma 3.5. Let R,S > 0. If g 2 Gu,R, then

OS(o, go) ⇢ {k+ 2 F : k exp(tu)o 2 B(go,R+ 2dS) for some t > 0}.

Proof. For ⇠ 2 OS(o, go), there exist k 2 K and a 2 A
+ such that kao 2

B(go, S) and ⇠ = k
+. It follows that g�1

ka 2 GS , and hence kµ(g)�log ak 
dS by Lemma 2.5. On the other hand, since g 2 Gu,R, there exists t � 0
such that kµ(g)� tuk < R, and hence

d(k exp(tu)o, go)  d(k exp(tu)o, kao) + d(kao, go)

< ktu� log ak+ S  ktu� µ(g)k+ kµ(g)� log ak+ S

 R+ (d+ 1)S.

This proves the lemma. ⇤
The following Vitali-covering type lemma is a key ingredient of the proof

of Proposition 3.1.

Lemma 3.6 (Covering lemma). Fix R > 0 and consider {OR(o, �o) : � 2
�0} for some infinite subset �0 ⇢ �u,R. There exists a subset �00 ⇢ �0

such

that {OR(o, �o) : � 2 �00} consists of pairwise disjoint shadows and

[

�2�0

OR(o, �o) ⇢
[

�2�00

O10dR(o, �o). (3.4)

Proof. Enumerate �0 = {�i : i 2 N} so that kµ(�i)k is nondecreasing. Set
i0 = 0 and inductively define

in+1 := min{i > in : OR(o, �io)
\�

[jnOR(o, �ijo)
�
= ;}.

Set �00 := {�in : n 2 N} so that {OR(o, �o) : � 2 �00} consists of pairwise
disjoint shadows.

For each �i 2 �0, we claim that OR(o, �io) ⇢ O10dR(o, �o) for some � 2 �00.
We may assume that in < i < in+1 for some n. By definition of in+1, there
exists j  n such that OR(o, �io)\OR(o, �ijo) 6= ;. In particular, there exists
k1 2 K, ai, aij 2 A

+ such that k1aio 2 B(�io,R) and k1aijo 2 B(�ijo,R).

Since ��1
i

k1ai, �
�1
ij

k1aij 2 GR, we have

kµ(�i)� log aik  dR and kµ(�ij )� log aijk  dR

by Lemma 2.5. On the other hand, there exists ti, tij � 0 such that

kµ(�i)� tiuk  R and kµ(�ij )� tijuk  R,
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as �i, �ij 2 �u,R. Observe that

kµ(�i)k = d(o, �io)  d(o, k1atio) + d(k1atio, k1aio) + d(k1aio, �io)

 d(o, k1atio) + dR+ 2R = d(o, k1atij o) + dR+ 2R+ (ti � tij )

 d(o, k1aijo) + 2dR+ 3R+ (ti � tij )  d(o, �ijo) + 2dR+ 4R+ (ti � tij )

= kµ(�ij )k+ 2dR+ 4R+ (ti � tij )  kµ(�i)k+ 2dR+ 4R+ (ti � tij ),

and hence t
0
i
:= ti + 2dR+ 4R � tij .

Now let k
+
2 2 OR(o, �io) be arbitrary and b 2 A

+ be such that k2bo 2
B(�io,R). We have kµ(�i) � log bk  dR by Lemma 2.5. Since �i 2 �u,R,
there exists s � 0 such that kµ(�i)� suk  R. Since

d(k2aso, k1at0io)  d(k2aso, k2bo)

+ d(k2bo, �io) + d(�io, k1aio) + d(k1aio, k1atio) + d(k1atio, k1at0io)

 (dR+R) +R+R+ (dR+R) + (2dR+ 4R) = 4dR+ 8R,

there exists 0  s
0  s such that d(k2as0o, k1atij o)  4dR + 8R by Lemma

3.7 below. Finally,

d(k2as0o, �ijo) < d(k2as0o, k1atij o) + d(k1atij o, k1aijo) + d(k1aijo, �ijo)

 (4dR+ 8R) + (dR+R) +R = 5dR+ 10R,

which implies that k
+
2 2 O5dR+10R(o, �ijo) ⇢ O10dR(o, �ijo), since d � 2.

This finishes the proof. ⇤
Lemma 3.7. Let k1, k2 2 K, t1, t2 � 0 be arbitrary. For any 0  s1  t1,

there exists 0  s2  t2 such that

d(k1 exp(s1u)o, k2 exp(s2u)o)  d(k1 exp(t1u)o, k2 exp(t2u)o).

Proof. This follows from the CAT(0) property of G/K (cf. [10]). Consider
the geodesic triangle 4(pqr) in G/K with vertices p = o, q = k1 exp(t1u)o
and r = k1 exp(t2u)o. Let 4(p0q0r0) be the triangle in the Euclidean space
which has the same corresponding side length to 4pqr. Let 0  s2  t2

be arbitrary and r
0
1 be a point on the side p

0
r
0 such that the segment p

0
r
0
1

has length `(p0r01) = s2. By a straightforward computation in Euclidean
geometry, we can find a point q01 on the side p

0
q
0 such that

`(q01r
0
1)  `(q0r0) = `(qr) = d(k1 exp(t1u)o, k2 exp(t2u)o).

Set s1 := `(p0q01). Since G/K is a CAT(0) space, we get

d(k1 exp(s1u)o, k2 exp(s2u)o)  `(q01r
0
1),

from which the lemma follows. ⇤
We may write ⇤u = [R>0 ⇤u,R where

⇤u,R :=
\

m�1

[

�2�u,R,

kµ(�)k�m

OR(o, �o), where �u,R := � \Gu,R. (3.5)
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Lemma 3.8. If R > 1 is large enough, for any f 2 L
1(⌫ ) and for ⌫ -a.e.

⇠ 2 ⇤u,R, we have

lim
i!1

1

⌫ (OR(o, �io))

Z

OR(o,�io)
f d⌫ = f(⇠)

for any sequence �i ! 1 in �u,R such that ⇠ 2 OR(o, �io).

We define a maximal operatorMR on L
1(⌫ ) as follows: for all f 2 L

1(⌫ )
and all ⇠ 2 ⇤u,R, set

MRf(⇠) := lim sup
�2�u,R,kµ(�)k!1,

⇠2OR(o,�o)

1

⌫ (OR(o, �o))

Z

OR(o,�o)
f d⌫ ;

this is well-defined by the definition of ⇤u,R.
Note that Lemma 3.8 holds trivially for f 2 C(⇤). Once the weak type

inequality for the maximal functions is established as in Lemma 3.9, Lemma
3.8 follows from a standard argument using the density of C(⇤) in L

1(⌫ ).

Lemma 3.9. If R > 1 is large enough, then MR is of weak type (1, 1); for
all f 2 L

1(⌫ ) and � > 0, we have

⌫ ({⇠ 2 ⇤u,R : |MRf(⇠)| > �}) ⌧ 1

�
kfkL1(⌫ )

where the implied constant is independent of f .

Proof. Let R > 1 be large enough to satisfy Lemma 3.4. Let � > 0 be
arbitrary. By definition of MR, there exists an infinite subset �0 ⇢ �u,R

such that

{⇠ 2 ⇤u,R : |MRf(⇠)| > �} ⇢
[

�2�0

OR(o, �o), and

1

⌫ (OR(o, �o))

Z

OR(o,�o)
f d⌫ > � for all � 2 �0

.

By Lemma 3.6, there exists �00 ⇢ �0 so that {OR(o, �o) : � 2 �00} consists of
pairwise disjoint shadows and

[

�2�0

OR(o, �o) ⇢
[

�2�00

O10dR(o, �o). (3.6)

Hence, by Lemma 3.4,

⌫ ({⇠ 2 ⇤u,R : |MRf(⇠)| > �})  ⌫ (
[

�2�0

OR(o, �o))

 ⌫ (
[

�2�00

O10dR(o, �o)) 
X

�2�00

⌫ (O10dR(o, �o))

⇣
X

�2�00

⌫ (OR(o, �o)) 
1

�

Z

[�2�00 OR(o,�o)
f d⌫  1

�
kfkL1(⌫ ).

⇤
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Proof of Proposition 3.1. Let R > 1 be large enough to satisfy Lemma
3.9. Suppose that ⌫ (⇤u) > 0. Then for all su�ciently large R > 1, we have
⌫ (⇤u,R) > 0. By applying Lemma 3.8 with f = ⇤c

u
, there exists ⇠ 2 ⇤u,R,

we obtain a sequence �i 2 � such that ⇠ 2 OR(o, �io) and

lim
i!1

⌫ (OR(o, �io) \ ⇤c
u)

⌫ (OR(o, �io))
= 0.

Since ⌫ (OR(o, �io)) ⇣ e
� (µ(�i)) by Lemma 3.4,

lim
i!1

e
 (µ(�i))⌫ (OR(o, �io) \ ⇤c

u) = 0. (3.7)

By Lemma 3.2,

⌫ (OR(o, �io) \ ⇤c

u) =

Z
OR(o,�io)\⇤c

u
(⇠) d⌫ (⇠)

=

Z
OR(��1

i o,o)\⇤c
u
(⇠)e (�⇠(e,�

�1
i ))

d⌫ (⇠)

⇣ e
� (µ(�i))⌫ (OR(�

�1
i

o, o) \ ⇤c

u).

Hence as i ! 1,

⌫ (OR(�
�1
i

o, o) \ ⇤c

u) ⇣ e
 (µ(�i))⌫ (OR(o, �io) \ ⇤c

u) ! 0.

Passing to a subsequence, we may assume that ��1
i

o converges to some
⌘0 2 ⇤. By [19, Lem. 5.6], for all su�ciently large i,

⌫ (OR/2(⌘0, o) \ ⇤c

u)  ⌫ (OR(�
�1
i

o, o) \ ⇤c

u).

Therefore
⌫ (OR/2(⌘0, o) \ ⇤c

u) = 0.

Since R > 1 is an arbitrary large number, varying R, we get from (3.2) that

⌫ (⇤
c

u \ {⌘ 2 F : (⌘, ⌘0) 2 F (2)}) = 0. (3.8)

We now claim that for any ⌘ 2 ⇤c
u, there exists a neighborhood U⌘ of ⌘

such that ⌫ (⇤c
u \ U⌘) = 0. If (⌘, ⌘0) 2 F (2), this is immediate from (3.8).

Otherwise, by the Zariski density of � and the fact that ⇤ is the unique
�-minimal subset of F , we can find � 2 � such that (�⌘, ⌘0) 2 F (2). The
claim follows again from (3.8), since ⌫ is �-quasi-invariant. This finishes
the proof. ⇤

4. Hopf’s argument for higher rank cases

Let � < G be a Zariski dense discrete subgroup. We fix  2 a⇤ and a pair
(⌫ , ⌫ �i) of (�, ) and (�, � i)-conformal measures on F respectively.

Definition 4.1 (Hopf parametrization of G/M). The map

gM 7! (g+, g�, b = �g+(e, g))

gives a homeomorphism between G/M and F (2) ⇥ a.
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Bowen-Margulis-Sullivan measures. Define the following A-invariant
Radon measure m̃ = m̃(⌫ , ⌫ �i) on G/M as follows: for g = (g+, g�, b) 2
F (2) ⇥ a,

dm̃(g) = e
 (G(g+,g

�))
d⌫ (g

+)d⌫ �i(g
�)db

where db is the Lebesgue measure on a. We note that this is a non-zero
measure; otherwise, ⌫ is supported on a proper Zariski subvariety of F
by Fubini’s theorem, but since � is Zariski dense and ⌫ is �-conformal,
that is not possible. The measure m̃ is left �-invariant, and hence induces a
measure on �\G/M , which we denote by m.

We fix u 2 int a+ and set for all t 2 R,
at := exp tu.

Recall the following definitions:

(1) A Borel subset B ⇢ �\G/M is called a wandering set for m if for
m-a.e. x 2 B, we have

R1
�1 B(xat) dt < 1.

(2) We say that (�\G/M,m, {at}) is conservative if there is no wander-
ing set B ⇢ �\G/M with m(B) > 0.

(3) We say that (�\G/M,m, {at}) is completely dissipative if �\G/M is
a countable union of wandering sets modulo m.

Proposition 4.2. The flow (�\G/M,m, {at = exp(tu)}) is conservative

(resp. completely dissipative) if and only if max(⌫ (⇤u), ⌫ �i(⇤i(u))) > 0
(resp. ⌫ (⇤u) = 0 = ⌫ �i(⇤i(u))).

Proof. Suppose that (�\G/M,m, {at}) is conservative. Let B be a com-
pact subset of �\G/M with m(B) > 0. If we set B

±
0 := {x 2 B :

lim supt!±1 xat \B 6= ;}, then m(B+
0 [B

�
0 ) > 0. Since m̃ is equivalent to

⌫ ⌦ ⌫ �i ⌦ db, it follows that m(B+
0 ) > 0 (resp. m(B�

0 ) > 0) if and only if
⌫ (⇤u) > 0 (resp. ⌫ �i(⇤i(u)) > 0). Hence max(⌫ (⇤u), ⌫ �i(⇤i(u))) > 0.

Now suppose that ⌫ (⇤u) > 0 (resp. ⌫ �i(⇤i(u)) > 0). Then by Proposi-
tion 3.1, ⌫ (⇤u) = 1 (resp. ⌫ �i(⇤i(u)) = 1.) Hence for m a.e. [g], we have
g
+ 2 ⇤u (resp. g� 2 ⇤i(u)), and hence [g]ati is convergent for some sequence

ti ! ±1. It follows that for m a.e. x, there exists a compact subset B such
that

R
R B(xat)dt = 1. We claim that this implies that (�\G/M,m, {at})

is conservative. Assume in contradiction that there exists a wandering set
W ⇢ �\G/M with 0 < m(W ) < 1. By the �-compactness of �\G/M ,
there exists a compact subset B such that

m{x 2 W :

Z

R
B(xat)dt = 1} � m(W )/2. (4.1)

On the other hand, there exists an integer n � 1 for which the set

Wn :=

ß
w 2 W :

Z 1

�1
W (wat) dt  n

™

hasm-measure strictly bigger thanm(W )/2. Note that the set E := Wn exp(Rv)
is {at}-invariant and any w 2 E satisfies

R1
�1 W (wat) dt  n. Hence, for
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any R > 0, we get
Z

Wn

Z
R

�R

B(wat)dtdm =

Z
R

�R

Z

Wn

B(wat)dmdt

=

Z
R

�R

m(Ba�t \Wn)dt =

Z
R

�R

m(B \Wnat)dt

=

Z
R

�R

m((B \ E) \Wnat)dt =

Z
R

�R

Z

B\E
Wn(xa�t)dmdt

=

Z

B\E

Z
R

�R

Wn(xa�t)dtdm 
Z

B\E

Z

R
Wn(xa�t)dtdm


Z

B\E
n dt = n ·m(B \ E) < 1

where finiteness follows from the fact that B is compact and m is Radon.
Hence

R
Wn

R
R B(wat)dtdm < 1; so

m{x 2 W :

Z

R
B(wat)dt < 1} � m(Wn) > m(W )/2.

contradicting (4.1). The rest of the claims can be proven similarly. ⇤

Let m̃0 denote the M -invariant lift of m̃ to G and m0 the measure on �\G
induced by m̃0. Since � is Zariski dense, there exists a normal subgroup
M� < M of finite index such that each P

�-minimal subset of �\G is M�-
invariant and the collection of all P �-minimal subsets is parameterized by
M/M� ([12, Thm. 1.9 and 2], see also [20, Sec. 3]).

We will need the following notion:

Definition 4.3 (Transitivity group). For g 2 G with g
± 2 ⇤, define the

subset Hs

�(g) < AM as follows: am 2 Hs

�(g) if and only if there exist � 2 �
and a sequence hi 2 N

� [N
+, i = 1, . . . , k such that

(gh1h2 . . . hr)
± 2 ⇤ for all 1  r  k and �gh1h2 . . . hk = gam.

It is not hard to check that Hs

�(g) is a subgroup (cf. [32, Lem. 3.1]); it is
called the strong transitivity subgroup.

The following was obtained in [20] using the work of Guivarch-Raugi [12,
Thm. 1.9].

Lemma 4.4. [20, Coro. 3.8] For any g 2 G with g
± 2 ⇤, the closure of

Hs

�(g) contains AM�.

We now prove the following higher rank version of the Hopf-dichotomy,
using Lemma 4.4.

Proposition 4.5. Let Y be a P
�
-minimal subset of �\G such that m0(Y ) >

0. Then (m0|Y , {at}) is conservative if and only if (m0|Y , {at}) is ergodic.
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Proof. Suppose that (m0|Y , {at}) is conservative. Fix x0 2 supp(m0|Y ) and
let Bn ⇢ �\G denote the ball of radius n centered at x0. Let r be a
positive function on [0,1) which is a�ne on each [n, n + 1] and r(n) =
1/(2n+1m0(Bn+1)). Then the function ⇢(x) := r(d(x0, x)) is a positive Lip-
schitz function on �\G with a uniform Lipschitz constant. In particular, it
is uniformly continuous and ⇢ 2 L

1(m0), since

k⇢kL1(m0) =
1X

n=1

Z

Bn�Bn�1

⇢ dm0 
1X

n=1

1

2nm0(Bn)
m0(Bn) < 1.

By the definition of ⇢, for all [g] 2 �\G such that g+ 2 ⇤u and g
� 2 ⇤i(u),

we have Z 1

0
⇢([g]at) dt =

Z 1

0
⇢([g]a�t) dt = 1. (4.2)

Now let f 2 Cc(�\G) be arbitrary. By the Hopf ratio ergodic theorem, the
following f+ and f� are well-defined and equal m0-a.e.:

f+(x) := lim
T!1

R
T

0 f(xat) dt
R
T

0 ⇢(xat) dt
and f�(x) := lim

T!1

R
T

0 f(xa�t) dt
R
T

0 ⇢(xa�t) dt
. (4.3)

By the uniform continuity of f and ⇢, (4.2) and the assumption that u 2
int a+, f± are N

±-invariant respectively. Let f̃± : G ! R be a left �-
invariant lift of f±. Let B denote the Borel �-algebra of G and set

⌃ := {B 2 B : m̃0(B4B
±) = 0 for some B

± 2 B such that �B± = B
±
N

± }.

Let F : G ! R be a ⌃-measurable and left �-invariant function such that
F (g) = f̃+(g) = f̃�(g) for m̃0 a.e g 2 G. Set

E :=

8
<

:gAM :
F |gAM is measurable and

F (gam) = f̃+(gam) = f̃�(gam)
for Haar a.e. am 2 AM

9
=

; ⇢ G/AM.

By Fubini’s theorem, E has full measure in G/AM ' F (2) with respect to
the measure d⌫ ⌦d⌫ �i. For all small " > 0, define functions F "

, f̃
"
± : G ! R

by

F
"(g) := 1

Vol(AM)"

Z

(AM)"

F (g`) d`, f̃
"

±(g) :=
1

Vol(AM)"

Z

(AM)"

f̃±(g`) d`

where (AM)" denotes the "-ball around e in AM and d` is the Haar measure
on AM . Note that if gAM 2 E, then F

" and f̃
"
± are continuous and identical

on gAM . Moreover, F " is left �-invariant and f̃
"
± are N

±-invariant, as AM
normalizes N±. Using the isomorphism between G/AM and F (2) given by
gAM 7! (g+, g�), we may consider E as a subset of F (2). We then define

E
+ : = {⇠ 2 ⇤ : (⇠, ⌘0) 2 E for ⌫ �i-a.e. ⌘

0 2 ⇤};
E

� : = {⌘ 2 ⇤ : (⇠0, ⌘) 2 E for ⌫ -a.e. ⇠
0 2 ⇤}.
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Then E
+ is ⌫ -conull and E

� is ⌫ �i-conull by Fubini’s theorem. By a
similar argument as in [20, Lem. 4.6], we can show that for any gAM 2 E

with g
± 2 E

±, and any " > 0, F ✏|gAM is AM�-invariant, using the fact
that the closure of Hs

�(g) contains AM� (Lemma 4.4). It follows that F is
⌃0-measurable where

⌃0 := {B 2 B : B = �BAM�}.

We claim that if f is M -invariant, then F is constant on the m0-conull
set E

† := {g 2 G : g± 2 E
±}. Using Hopf’s ratio ergodic theorem once

more, this would in turn imply that m0 is M{at}-ergodic. Assume f is
M -invariant. Since F = lim"!0 F

" m0-a.e. by the Lebesgue di↵erentiation
theorem, it su�ces to show that F

" is constant on E
†. Since F

" is AM -
invariant on E

† and F
"(gh) = F

"(g) for all g 2 E
† and h 2 N

± with
gh 2 E

†, it is again enough to show that for any g1, g2 2 E
†, there exist

h1, h2, h3 2 N
+ [N

� such that g1h1h2h3 2 g2AM and g1h1, g1h1h2 2 E
†.

We note that if (⇠, ⌘1), (⇠, ⌘2) 2 F (2), then there exist g 2 G, h 2 N

such that (⇠, ⌘1) = (g+, g�) and (⇠, ⌘2) = ((gh)+, (gh)�). Similarly, if
(⇠1, ⌘), (⇠2, ⌘) 2 F (2), then there exist g 2 G, h 2 N

+ such that (⇠1, ⌘) =
(g+, g�) and (⇠2, ⌘) = ((gh)+, (gh)�).

Note that E+ is �-invariant. Since the limit set ⇤ is the unique �-minimal
subset of F , the closure of E+ contains ⇤, and in particular it is Zariski
dense. Therefore we can choose ⇠ 2 E

+ such that (⇠, g�1 ), (⇠, g
�
2 ) 2 F (2).

Let h1, h2, h3 2 N
+ [N

� be such that

(⇠, g�1 ) = (g1h
+
1 , g1h

�
1 )

(⇠, g�2 ) = (g1h1h
+
2 , g1h1h

�
2 )

(g+2 , g
�
2 ) = (g1h1h2h

+
3 , g1h1h2h

�
3 ).

Hence the claim is proved. In particular, m0 is AM -ergodic.
Let Ỹ ⇢ G be the �-invariant lift of Y . In order to show that m0|Y is

{at}-ergodic, it su�ces to show that F , associated to an arbitrary function
f 2 Cc(�\G), is constant on Ỹ . It follows from the AM -ergodicity of m0 that
⌃0 is m̃0-equivalent to a finite �-algebra generated by {B.s : s 2 M�\M} for
some B 2 ⌃0. Since {Ỹ .s : s 2 M�\M} ⇢ ⌃0 and the Ỹ .s’s are mutually
disjoint, it follows that Ỹ = B.s mod m̃0 for some s 2 M�\M .

Since F is constant on B.s, being ⌃0-measurable, it implies that F is
constant on Ỹ , concluding that m0|Y is {at}-ergodic.

Now to show the converse, assume that (m0|Y , {at}) is ergodic. Since
the quotient map �\G ! �\G/M is a proper map, it su�ces to show
that (�\G/M,m, {at}) is conservative when it is ergodic. Assume that
(�\G/M,m, {at}) is ergodic. Then it is either conservative or completely
dissipative by the Hopf decomposition theorem [16]. Suppose it is com-
pletely dissipative. Then it is isomorphic to a translation on R with respect
to the Lebesgue measure. This implies that the dimension of a must be
one, since m̃ = m̃(⌫ , ⌫ �i) gives measure zero on any one dimensional flow
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otherwise. It also implies that ⌫ ⌦ ⌫ �i is supported on a single �-orbit,
say, �(⇠0, ⌘0) in F (2). Since ⌫ (resp. ⌫ �i) must be an atomic measure
supported on �⇠0 (resp. �⌘0), it follows that (�⇠0 ⇥ �⌘0)\F (2) = �(⇠0, ⌘0).
This implies that �⌘0 ⇢ �⇠0⌘0 where �⇠0 denotes the stabilizer of ⇠0 in �.
Since the limit set of �⇠0 is finite (as we are in the rank one situation), this
is a contradiction as � is non-elementary. This proves that m is conservative
for the {at}-action. ⇤

5. Directional Poincare series

Let � < G be a Zariski dense discrete subgroup. We define the limit
cone L� ⇢ a+ as the asymptotic cone of µ(�). Then L� coincides with the
smallest cone containing the Jordan projection of � and is a convex cone
with non-empty interior [4].

Quint [23] introduced the following:

Definition 5.1. The growth indicator function  � : a+ ! R [ {�1} is
defined as a homogeneous function, i.e.,  �(tu) = t �(u) for all t > 0, such
that for any unit vector u 2 a+,

 �(u) := inf
open cones C⇢a+

u2C

⌧C

where ⌧C is the abscissa of convergence of the series
P

�2�,µ(�)2C e
�tkµ(�)k.

We consider  � as a function on a by setting  � = �1 outside a+.

Quint showed that  � is upper semi-continuous,  � > 0 on intL�,  � � 0
on L� and  � = �1 outside L� [23, Thm. IV.2.2].

Lemma 5.2. Let  2 a⇤ and u 2 int a+ be such that  (u) >  �(u). Then

for any R > 0, X

�2�u,R

e
� (µ(�))

< 1.

Proof. Since  (u) >  �(u), the upper-semi continuity of  � implies that
there exists a small open convex cone C containing u such that C ⇢ int a+

and  >  � on C. Since  >  � on some open convex cone C0 containing
C, we can choose a continuous homogeneous function ✓ : a ! R such that
 � ✓ >  � on C and ✓ >  � on a+. Since  � = �1 outside a+, we have
✓ >  � on a � {0}. Applying [23, Lem. III.1.3] to the measure

P
�2� �µ(�)

on a+, we get
X

�2�,µ(�)2C

e
� (µ(�)) 

X

�2�
e
�✓(µ(�))

< 1,

Since #{� 2 �u,R : µ(�) 62 C} < 1 for any R > 0, the lemma follows. ⇤
Let  2 a⇤ and fix a pair of (�, ) and (�, � i)-conformal measures (⌫ ,

⌫ �i) on F respectively. We let m denote the BMS measure on �\G/M

associated to (⌫ , ⌫ �i).
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We fix a unit vector u 2 int a+ such that  (u) > 0, and set

at := exp(tu) and � :=  (u).

For an interval I ⇢ R, we sometimes write aI = {at : t 2 I}. We make the
following simple observation: for any R > 0,

X

�2�i(u),R

e
� (i(µ(�))) =

X

��12�u,R

e
� (µ(��1)) =

X

�2�u,R

e
� (µ(�))

. (5.1)

Lemma 5.3. If max(⌫ (⇤u), ⌫ �i(⇤i(u))) > 0, then there exists R > 0 such

that X

�2�u,R

e
� (µ(�)) = 1 =

X

�2�i(u),R

e
� (i(µ(�)))

.

Proof. Without loss of generality, we may assume that ⌫ (⇤u) > 0. Recall
that ⇤u = [n2N⇤u,n where

⇤u,n =
1\

m=1

[

kµ(�)k�m,�2�u,n

On(o, �o).

Hence ⌫ (⇤u,n) > 0 for some n. Now by Lemma 3.4, we have for all
m � 1,

0 < ⌫ (⇤u,n) 
X

kµ(�)k�m,

�2�u,n

⌫ (On(o, �o)) ⌧
X

kµ(�)k�m,

�2�u,n

e
� (µ(�))

.

Since the implicit constant above is independent of m, it follows that the
series

P
�2�u,n

e
� (µ(�)) diverges, which implies the claim by (5.1). ⇤

The rest of this section is devoted to the proof of the following:

Proposition 5.4. Suppose that m is u-balanced as defined in (1.2). IfP
�2�u,R

e
� (µ(�)) = 1 for some R > 0, then

⌫ (⇤u) = 1 = ⌫ �i(⇤i(u)).

Proof of this proposition involves investigating the relation between the
u-directional Poincare series and the correlation function of m for the at-
action.

Multiplicity of shadows.

Lemma 5.5. For any R > 0 and D > 0, we have

sup
T>0

X

�2�u,R,

T (µ(�))T+D

OR(o,�o) < 1.
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Proof. Suppose that there exist �1, · · · , �m 2 �u,R and k 2 K such that
k
+ 2 \m

i=1OR(o, �io) and T   (µ(�i))  T + D. By Lemma 3.5, for all
1  i  m, there exists ti � 0 such that katio 2 B(�io, (2d + 1)R). Since
�
�1
i

kati 2 G(2d+1)R, we have kµ(�i)� tiuk  d(2d+ 1)R by Lemma 2.5. In
particular,

ti (u)   (µ(�i)) + k kd(2d+ 1)R  T +D + k kd(2d+ 1)R,

and similarly
ti (u) � T � k kd(2d+ 1)R.

Hence | (u)(ti � t1)| < 2k kd(2d+ 1)R+D. Note that as  (u) > 0, for all
1  i  m,

d(�io, �1o)  d(�io, katio) + d(katio, kat1o) + d(kat1o, �1o)

 2d(2d+ 1)R+ |ti � t1|
 S := 2d(2d+ 1)R+ ( (u))�1(2k kd(2d+ 1)R+D).

Since there are only finitely many �io in a bounded ball of radius S, it
follows that m is bounded above by a constant depending only on S. This
proves the claim. ⇤
Corollary 5.6. For any large enough R > 0, we have, for any D > 0,

sup
T>0

X

�2�u,R,

T (µ(�))T+D

e
� (µ(�))

< 1.

Proof. By Lemmas 3.4 and 3.5, there exists C = C( ) > 0 such that for all
R large enough, and any T > 0,

X

�2�u,R,

T (µ(�))T+D

e
� (µ(�)) 

X

�2�u,R,

T (µ(�))T+D

C · ⌫ (OR(o, �o)) < 1

by Lemma 5.5. ⇤

Directional Poincare series. For r > 0 and g 2 G, we set

Qr := GrAr = KArKAr, and (5.2)

Lr(o, g(o)) := {(h+, h�) 2 F (2) : h 2 Gr \ gGr exp(R�u)}.

Lemma 5.7. For any r > 0, we have Qr ⇢ G2r.

Proof. Let g 2 Qr be arbitrary. By definition, g = k1a1k2a2 for some
k1, k2 2 K and a1, a2 2 Ar. Since

d(go, o) = d(a1k2a2o, o)  d(a1k2a2o, a1k2o) + d(a1k2o, o)

= d(a2o, o) + d(o, a�1
1 o) < 2r,

the lemma follows. ⇤
The following is the main ingredient of the proof of Proposition 5.4:
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Proposition 5.8. Suppose that
P

�2�u,R

e
� (µ(�)) = 1 for some R > 0. If r

is large enough, we have the following for any T > 1:

Z
T

0

Z
T

0

X

�,�02�
m̃(Qr\�Qra�t\�0Qra�t�s) dt ds ⌧

á
X

�2�u,4dr

 (µ(�))�T

e
� (µ(�))

ë2

;

(5.3)Z
T

0

X

�2�
m̃(Q4r \ �Q4ra�t) dt �

X

�2�u,r

 (µ(�))<�T

e
� (µ(�)) (5.4)

where the implied constants are independent of T .

Lemma 5.9. If Qr \ �Qra�t 6= ; for � 2 � and t, r > 0, then

kµ(�)� tuk  4dr.

Proof. If Qr \ �Qra�t 6= ;, there exist q0, q
0
0 2 Qr such that q0 = �q

0
0a�t.

By Lemma 2.5 and Lemma 5.7,

tu = µ(at) = µ(q�1
0 �q

0
0) 2 µ(�) + a4dr.

⇤
In order to prove Proposition 5.8, we will bound the integrals appearing in

the lemma from below and above using shadows, and then apply the shadow
lemma (Lemma 3.4). For this purpose, we observe several relations between
the sets defined in (5.2) and shadows.

Lemma 5.10. If g 2 Qr \ �Qra�t for � 2 � and t, r > 0, then

(1) (g+, g�) 2 Lr(o, �o);
(2) | (G(g+, g�))| < 2k kcr where c is from Lemma 2.3;

(3) [g]A \Qr \ �Qra�t ⇢ [g]A2dr.

Proof. (1) is immediate from the definition of Lr(o, �o). Since g 2 Qr,
go 2 B(o, 2r) and hence kG(g+, g�)k < 2cr by Lemma 2.3 and (2) follows.
(3) follows from the stronger inclusion gA \Qr ⇢ gA2dr which follows from
Lemma 2.5 and Lemma 5.7. ⇤
Lemma 5.11. For any g 2 G and r > 0, we have

Lr(o, g(o)) ⇢ O4r(o, g(o))⇥O4r(g(o), o).

Proof. Let (h+, h�) 2 Lr(o, g(o)); so h 2 B(o, 2r) such that hato 2 B(g(o), 2r)
for some t � 0. Write o = ha0n0o for some a0n0 2 AN . Since the
Hausdor↵ distance between a0n0A

+
o and A

+
o is d(a0n0o, o) [10, 1.6.6 (4)],

we can find q
0 2 ha0n0A

+
o such that d(q0, hato) < d(ha0n0o, ho) < 2r.

Hence, d(g(o), q0) < d(g(o), hato) + d(hato, q0) < 4r and it follows that
h
+ 2 O4r(o, g(o)). A similar argument shows that h� 2 O4r(g(o), o). ⇤
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Lemma 5.12. For all large enough r > 1, we have for any t > 1,

m̃(Qr \ �Qra�t) ⌧ e
� (µ(�))

where the implied constant is independent of t > 1.

Proof. If r is large enough, we get by Lemma 5.11, Lemma 3.4 and Lemma
5.10:

m̃(Qr \ �Qra�t)

=

Z
Qr\�Qra�t([gb])e

 (G(g+,g
�))

d⌫ (g
+)d⌫ �i(g

�) db

=

Z

Lr(o,�o)

ÅZ

A

Qr\�Qra�t([gb]) db

ã
e
 (G(g+,g

�))
d⌫ (g

+)d⌫ �i(g
�)

 ⌫ (O4r(o, �o))Vol(A2dr)e
2k kcr

⌧ e
� (µ(�))

.

⇤

Lemma 5.13. If Qr \ �Qra�t \ �0Qra�t�s 6= ; for �, �
0 2 � and r, t, s > 0,

then

(1) kµ(�)� tuk, kµ(��1
�
0)� suk, kµ(�0)� (t+ s)uk  4dr;

(2)  (µ(�)) +  (µ(��1
�
0))   (µ(�0)) + 12drk k.

Proof. Note that from the hypothesis, the intersections

Qr \ �Qra�t, Qr \ ��1
�
0
Qra�s, Qr \ �0Qra�t�s

are all nonempty. By Lemma 5.9, we obtain (1).
(2) follows since

| (µ(�)) +  (µ(��1
�
0))�  (µ(�0))|

= | (µ(�)� tu) +  (µ(��1
�
0)� su)�  (µ(�0)� (t+ s)u)|

 4drk k+ 4drk k+ 4drk k = 12drk k.

⇤

Proof of (5.3) in Proposition 5.8. Fix s, t > 0. Let r be large enough so

that
P

�2�u,4dr

e
� (µ(�)) = 1. In the following proof, the notation

00P
means

the sum over all (�, �0) 2 �u,4dr ⇥ � satisfying:

�
�1
�
0 2 �u,4dr;

 (µ(�)) 2 (�t� 4drk k, �t+ 4drk k); and
 (µ(��1

�
0)) 2 (�s� 4drk k, �s+ 4drk k).
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Note that
X

�,�02�
m̃(Qr \ �Qra�t \ �0Qra�t�s)

=
00X

m̃(Qr \ �Qra�t \ �0Qra�t�s) by Lemma 5.13(1)

⌧
00X

e
� (µ(�0)) by Lemma 5.12

⌧
00X

e
� (µ(�))

e
� (µ(��1

�
0)) by Lemma 5.13(2)

⌧

á
X

�2�u,4dr,

 (µ(�))2(�t�c0,�t+c0)

e
� (µ(�))

ëá
X

�
02�u,4dr,

 (µ(�0))2(�s�c0,�s+c0)

e
� (µ(�0))

ë

where c0 = 4drk k.
Let I� denote the interval ��1[ (µ(�)) � c0, (µ(�)) + c0]. Note that

I� \ [0, T ] 6= ; implies that  (µ(�))  �T + c0. Hence

Z
T

0

á
X

�2�u,4dr,

 (µ(�))2(�t�c0,�t+c0)

e
� (µ(�))

ë

dt

=
X

�2�u,4dr

e
� (µ(�))

Z
T

0
I� (t)dt ⌧

X

�2�u,4dr,

 (µ(�))�T+c0

e
� (µ(�))

.

Putting these two together along with Corollary 5.6, used in order to remove
c0, concludes the proof of (5.3). ⇤

Lemma 5.14. For any S > 0 and r > 0, there exists 0 < `(S, r) < 1 such

that for any � 2 � with kµ(�)k > `(S, r), any point (⇠, ⌘) 2 OS(o, �o) ⇥
OS(�o, o) satisfies kG(⇠, ⌘)k < `(S, r).

Proof. Suppose not. Then there exists a sequence �i ! 1 in �u,r and
(⇠i, ⌘i) 2 OS(o, �io)⇥OS(�io, o) such that kG(⇠i, ⌘i)k ! 1.

We may write �i = kiai`i inKA
+
K decomposition, and assume that ki !

k0 after passing to a subsequence. It follows that ⇠i ! k
+
0 and ⌘i ! ⌘0 for

some ⌘0 2 F such that (k+0 , ⌘0) 2 F (2) as �i ! 1 regularly, by Lemma 3.3.
Hence limi!1kG(⇠i, ⌘i)k = kG(k+0 , ⌘0)k < 1, which is a contradiction. ⇤

In the following, we fix a large number S0 which satisfies Lemma 3.4. For
each r > 1, let `r := `(S0, r) > 0 be as provided by Lemma 5.14 so that for
any (⇠, ⌘) 2

S
�2�u,r,kµ(�)k�`r OS0(o, �o)⇥OS0(�o, o), we have kG(⇠, ⌘)k < `r.
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Lemma 5.15. If r > 1 is large enough, the following holds: for any (⇠, ⌘) 2
OS0(o, �o)⇥OS0(�o, o) for some � 2 �u,r with kµ(�)k � `r, there exist t 2 R
and g 2 Q2r such that

ga[t�1,t+1] ⇢ �Q2r and (g+, g�) = (⇠, ⌘).

Proof. Let (⇠, ⌘) be as in the statement. Then by Lemma 3.5, there exists
t � 0 and k 2 K such that ⇠ = k

+, kato 2 B(�o, r + (d+ 1)S0). Let g 2 G

be such that (g+, g�) = (⇠, ⌘). Since kµ(�)k > `r, by replacing g 2 G by an
element of gA, we may assume that d(go, o) < c`r + c

0 where c and c
0 are as

in Lemma 2.3. As g+ = k
+ and hence k

�1
g 2 P , it follows by [10, 1.6.6 (4)]

that d(gato, kato)  d(go, o) for all t � 0.
Hence for all s 2 [t� 1, t+ 1],

d(gaso, kato) < d(gaso, gato) + d(gato, kato)  1 + d(go, o) < 1 + c`r + c
0
.

It follows that ga[t�1,t+1] 2 �Gr+(d+1)S0+c`r+c0+1. Now if r is large enough,

ga[t�1,t+1] ⇢ �Q2r.

Similarly, since go 2 Gc`r+c0 , we have g 2 Q2r, which was to be shown. ⇤
Lemma 5.16. If r > 1 is large enough, the following holds: for any g 2 G

such that (g+, g�) 2 OS0(o, �o) ⇥ OS0(�o, o) for some � 2 �u,r and T > 0
satisfying

kµ(�)k > `r and 8drk k+ � <  (µ(�)) < �T � 8drk k � �,

we have Z
T

0

Z

A

Q4r\�Q4ra�t([gb]) db dt � 2Vol(A2r). (5.5)

Proof. Note that replacing g with an element of gA does not a↵ect the
validity of (5.5). Hence by Lemma 5.15, we may assume that g 2 Q2r and
ga[t0�1,t0+1] ⇢ �Q2r for some t0 2 R.

It follows that Q2r \ �Q2ra�t 6= ; for all t 2 [t0 � 1, t0 + 1]. Note that
| (µ(�)) � t0�|  8drk k by Lemma 5.9, and hence [t0 � 1, t0 + 1] ⇢ [0, T ]
by the hypothesis. Since g 2 Q2r and hence g 2 G4r by Lemma 5.7, we have
gA \Q4r � gA4r. Consequently,Z

A

Q4r\�Q4ra�t([gb]) db �
Z

A4r

�Q4r([gbat]) db. (5.6)

By definition ofQ4r, there is a uniform lower bound for (5.6), say Vol(A2r),
whenever [gat]\ �Q4r 6= ;, in particular for all t 2 [t0 � 1, t0 +1] by Lemma
5.15. Hence,

Z
T

0

Z

A

Q4r\�Q4ra�t([gb]) db dt

�
Z

t0+1

t0�1

Z

A

Q4r\�Q4ra�t([gb]) db dt � 2Vol(A2r).

This proves the lemma. ⇤
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Proof of (5.4) in Proposition 5.8. By definition of m̃, we have for any
� 2 � and r, t > 0,

m̃(Q4r \ �Q4ra�t)

=

Z

F(2)

ÅZ

A

Q4r\�Q4ra�t([gb]) db

ã
e
 (G(g+,g

�))
d⌫ (g

+)d⌫ �i(g
�)

�
Z

OS0 (o,�o)⇥OS0 (�o,o)

ÅZ

A

Q4r\�Q4ra�t([gb]) db

ã
e
 (G(g+,g

�))
d⌫ (g

+)d⌫ �i(g
�).

Now Lemma 5.16 implies that if � 2 �u,r, kµ(�)k > `r and (8drk k+�) <
 (µ(�)) < �T � (8drk k+ �), then

Z
T

0
m̃(Q4r \ �Q4ra�t) dt

� 2Vol(A2r)

Z

OS0 (o,�o)⇥OS0 (�o,o)
e
 (G(g+,g

�))
d⌫ (g

+)d⌫ �i(g
�)

� 2Vol(A2r)e
�k k`r⌫ (OS0(o, �o))⌫ �i(OS0(�o, o))

� 2Vol(A2r)e
�k k`r�(⌫ �i)c1e

�k kS0e
� (µ(�))

,

where the second inequality follows from the lower bound e
 (G(g+,g

�)) �
e
�k k`r and the last inequality follows from Lemma 3.4. Therefore,
Z

T

0

X

�2�
m̃(Q4r \ �Q4ra�t) dt �

Z
T

0

X

�2�u,r, kµ(�)k>`r

m̃(Q4r \ �Q4ra�t) dt

�
X

�2�u,r kµ(�)k>`r,
 (µ(�))<�T�(8drk k+�)

e
� (µ(�))

.

Since #{� 2 � : kµ(�)k  `r} is a finite set, this proves the lemma by
Corollary 5.6. ⇤

Proposition 5.8 yields:

Corollary 5.17. Suppose that for any large r, s � 1, and T > 1,
Z

T

0

X

�2�
m̃(Qr \ �Qra�t) dt ⇣

Z
T

0

X

�2�
m̃(Qs \ �Qsa�t) dt (5.7)

with the implied constant independent of T . If
P

�2�u,R

e
� (µ(�)) = 1 for some

R > 0, then for all su�ciently large r, we have for any T > 1:
Z

T

0

Z
T

0

X

�,�02�
m̃(Qr \ �Qra�t \ �0Qra�t�s) dt ds ⌧

ÑZ
T

0

X

�2�
m̃(Qr \ �Qra�t) dt

é2

. (5.8)
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Proof. By Proposition 5.8, we get

Z
T

0

Z
T

0

X

�,�02�
m̃(Qr \ �Qra�t \ �0Qra�t�s) dt ds ⌧

ÑZ
T

0

X

�2�
m̃(Q16dr \ �Q16dra�t) dt

é2

,

which implies the claim in view of the hypothesis 5.7. ⇤

Proof of Proposition 5.4. We will apply the following version of the
Borel-Cantelli lemma:

Lemma 5.18. [3, Lem. 2] Let (⌦,M) be a finite Borel measure space and

{Pt : t � 0} ⇢ ⌦ be such that (t,!) 7! Pt(!) is measurable. Suppose that

(1)
R1
0 M(Pt) dt = 1, and

(2) there is a constant C > 0 such that

Z
T

0

Z
T

0
M(Pt \ Ps) dt ds  C

ÇZ
T

0
M(Pt) dt

å2

for all T � 1.

Then we have

M

ß
! 2 ⌦ :

Z 1

0
Pt(!) dt = 1

™
>

1

C
.

Suppose that
P

�2�u,R
e
� (µ(�)) = 1 for some R > 0. Let r > R be

large enough to satisfy Proposition 5.8, and consider Qr = GrAr. As M

commutes with A and Qr = KA
+
r KAr, Qr is an M -invariant subset. Let

[Qr] = �\Qr/M ⇢ �\G/M . Set

M := m|[Qr] and Pt := �\�(Qr \ �Qra�t) ⇢ �\G/M.

We claim that
Z

T

0

Z
T

0
M(Pt \ Ps) ds dt ⌧

ÇZ
T

0
M(Pt) dt

å2

. (5.9)

Since m is assumed to be u-balanced, Corollary 5.17 applies, and hence
Z

T

0

Z
T

0
M(Pt \ Pt+s) ds dt ⌧

ÇZ
T

0
M(Pt) dt

å2

. (5.10)

Therefore
Z

T

0

Z
T

0
M(Pt \ Ps) ds dt = 2

Z
T

0

Z
T

t

M(Pt \ Ps) ds dt

 2

Z
T

0

Z
T

0
M(Pt \ Pt+s) ds dt ⌧

ÇZ
T

0
M(Pt) dt

å2

,
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proving the claim. Applying Lemma 5.18 with M and Pt, we conclude that

m

ß
[g] 2 [Qr] :

Z 1

0
[Qr]([g]at)dt = 1

™
> 0.

It follows that ⌫ ({g+ 2 F : lim sup[g]at 6= ;}) > 0 and hence ⌫ (⇤u) > 0.
On the other hand, by (5.1), we have

P
�2�i(u),R

e
� �i(µ(�)) = 1. By the

same argument as above, this implies that

⌫ �i({g+ 2 F : lim sup[g] exp(t i(u)) 6= ;}) > 0

and hence ⌫ �i(⇤i(u)) > 0. This finishes the proof by Proposition 3.1.

Proof of Theorem 1.4. . The equivalence (1) , (2) follows from Propo-
sition 3.1. The equivalence (2) , (3) follows from Proposition 4.2. The
equivalence (3) , (4) , (5) follows from Proposition 4.5. The implication
(1) ) (6) is proved in Lemma 5.3, and the implication (6) ) (7) follows
from Lemma 5.3 and Proposition 5.4.

Remark 5.19. The asymptotic inequality (5.9) shows that if m is u-balanced
and

P
�2�u,R

e
� (µ(�)) = 1 for some R > 0, then the measure preserving flow

(�\G/M,m, {at}) is rationally ergodic and the following

AT =
1

m([Qr])2

Z

�\G/M

Z
T

0
[Qr](xat)dtdm(x)

is the asymptotic type of the flow in the sense of [1] and [3, 5].

6. Dichotomy for Anosov groups

Let � < G be an Anosov subgroup defined as in the introduction. For
each v 2 intL�, there exists a unique  v 2 a⇤ such that  v �  � and
 v(v) =  �(v), and a unique (�, v)-conformal measure ⌫v supported on ⇤
([28], [11]). Moreover, {u 2 int a+ :  v(u) =  �(u)} = R+v ([25], [29]). The
assignments v 7!  v and v 7! ⌫v give bijections among intL�, D?

� and the
space of all �-conformal measures supported on ⇤ [19, Prop. 4.4 and Thm.
7.7].

For each v 2 intL�, we denote by mv the BMS measure on �\G/M

associated to (⌫v, ⌫i(v)). Chow and Sarkar proved the following theorem for
f1, f2 2 Cc(�\G/M).

Theorem 6.1. [9] Let � < G be an Anosov subgroup and let v 2 intL�.

There exists v > 0 such that for any f1, f2 2 Cc(�\G/M),

lim
t!+1

t
rank(G)�1

2

Z

�\G/M

f1(x)f2(x exp(tv)) dmv(x) = v ·mv(f1)mv(f2).

Since mv is A-invariant, the above is equivalent to:

lim
t!+1

t
rank(G)�1

2

Z

�\G/M

f1(x)f2(x exp(�tv)) dmv(x) = v ·mv(f1)mv(f2).

(6.1)
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In particular, for any v 2 intL�, the measure mv is v-balanced.

Corollary 6.2. For any v 2 intL� and any bounded Borel subset Q ⇢ G/M

with m̃v(intQ) > 0, we have
Z 1

0

X

�2�
m̃v(Q \ �Q exp(�tv)) dt = 1 if and only if rank(G)  3.

Proof. Choose f̃1, f̃2 2 Cc(G/M) so that 0  f̃1  Q  f̃2 and m̃v(f̃1) > 0.
For each i = 1, 2, let fi 2 Cc(�\G/M) be defined by fi([g]) =

P
�2� f̃i(�g).

By (6.1), we get
Z

�\G/M

fi([g] exp(tv))fi([g])dmv[g]

=

Z

G/M

X

�2�
f̃i(g exp(tv))f̃i(g)dm̃v(g) ⇣ t

(� rank(G)+1)/2
.

The claim follows since
R1
1 t

(� rank(G)+1)/2
dt = 1 if and only if rank(G) 3.

⇤
By Theorem 1.4, the following theorem implies Theorem 1.6:

Theorem 6.3. Let v 2 intL� and u 2 int a+. The following are equivalent:

(1) rank(G)  3 and Ru = Rv;
(2)

P
�2�u,R

e
� v(µ(�)) = 1 for some R > 0.

Proof. Suppose that rank(G)  3 and u = v. Let at = exp(tv). Let Qr ⇢
G/M be as in (5.3) of Proposition 5.8. Then for � =  v(v) > 0, we have

Z
T

0

Z
T

0

X

�,�02�
m̃v(Qr\�Qra�t\�0Qra�t�s) dt ds ⌧

á
X

�2�v,4dr

 (µ(�))�T

e
� v(µ(�))

ë2

.

(6.2)
Set Q

�
r := \0sr/10Qra�s. We may assume that mv(intQ�

r ) > 0 by
increasing r. Note that

r

10

Z
T

0

X

�2�
m̃v(Q

�
r \ �Q�

r a�t) dt 

Z
T

0

Z

0sr/10

X

�2�
m̃v(Qr \ �(Qr \Qra�s)a�t) ds dt.

By (6.2), we get

Z
T

0

X

�2�
m̃v(Q

�
r \ �Q�

r a�t) dt ⌧

á
X

�2�v,4dr,

 v(µ(�))<�T

e
� v(µ(�))

ë2

.
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Hence by Corollary 6.2, we get
P

�2�v,R
e
� v(µ(�)) = 1.

Now suppose that
P

�2�u,R
e
� v(µ(�)) = 1 for some R > 0. By Lemma

5.2,  v(u) =  �(u). This implies Rv = Ru, as Rv is the unique line where  v

and  � are equal to each other. This also implies u 2 intL�. By Proposition
5.8, it follows that

R1
0

P
�2� m̃v(Qr \ �Qra�t) dt = 1. Hence rank(G)  3

by Corollary 6.2. ⇤
Remark 6.4. It follows from Theorem 6.3 that when rankG  3 and v 2
intL�, the flow (�\G/M,mv, exp(tv)) is rationally ergodic by Remark 5.19.
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