THE HOPF-TSUJI-SULLIVAN DICHOTOMY IN HIGHER
RANK AND APPLICATIONS TO ANOSOV SUBGROUPS

MARC BURGER, OR LANDESBERG, MINJU LEE, AND HEE OH

ABSTRACT. We establish an extension of the Hopf-Tsuji-Sullivan di-
chotomy to any Zariski dense discrete subgroup of a semisimple real
algebraic group G. We then apply this dichotomy to Anosov subgroups
of GG, which surprisingly presents a different phenomenon depending on
the rank of the ambient group G.
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1. INTRODUCTION

Let G be a connected simple real algebraic group of rank one, (X, d) the
associated Riemannian symmetric space and d.X the geometric boundary of
X. We fix a base point 0 € X, and 7 : T}(X) — X denotes the canonical
projection of a vector to its basepoint. The Hopf parametrization of the
unit tangent bundle T!(X) maps a vector v € T}(X) to

(U+7 v, Bv+ (O? 7T('U)))

where v, v~ € X are respectively the forward and backward endpoints of
the geodesic determined by v and for £ € 90X and z,y € X, f¢(z,y) denotes
the Busemann function given by

Be(x,y) = llfé d(y,z) —d(z, 2).

This gives a homeomorphism

THX) ~ (0X x 0X — A(DX)) xR

Oh is partially supported by the NSF.
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where A(0X) denotes the diagonal embedding of 9X into 90X x 90X and the
geodesic flow G on T1(X) corresponds to the translation flow on R.

The Hopf-Tsuji-Sullivan dichotomy in rank one. Let I' < G be a
non-elementary discrete subgroup. A Borel probability measure v on 90X
is called a I'-conformal measure of dimension > 0 if for any v € I' and
£ e oX,
drysv
dv
where 7,0(Q) = v(y~1Q) for any Borel subset Q C 0X.

Each T'-conformal measure v on 0X determines a unique geodesic flow
invariant Borel measure m, on T1(I'\ X), which is locally equivalent to v ®
r®ds in the Hopf coordinates, where ds denotes the Lebesgue measure on R.
The following criterion known as the Hopf-Tsuji-Sullivan dichotomy relates
dynamical properties of the geodesic flow G! with respect to the measure
m,, the v-size of the conical® limit points of I' and the divergence property
of the Poincare series P(s) = > e~3d(190) at the dimension of v: we

¥
denote by Acon C 0X the set of all conical limit points of I'.

&) = e~ 98e(0,7(0))

Theorem 1.1. Let G be a connected simple real algebraic group of rank
one and I' < G a non-elementary discrete subgroup. Let v be a I'-conformal
measure on 0X of dimension §. The following are equivalent:
(1) v(Acon) > 0 (resp. v(Acon) =0);
(2) v(Acon) =1 (resp. v(Acon) =0);
(3) the geodesic flow G' is conservative (resp. completely dissipative)
with respect to my,;
(4) the geodesic flow G' is ergodic (resp. mnon-ergodic) with respect to
my;
(5) > rer e9d010) = o0 (resp. > ver e9U00) < o) where § is the
conformal dimension of v and o € X is any point.

Most equivalences are due to Sullivan for real hyperbolic spaces [30] (see
also [31], [3]) and to Burger-Mozes for proper CAT (-1) spaces [7, Sec. 6.3]
and its complete form can be found in Nicholl’s book [22, Ch. 8] when X
is a real hyperbolic space and in Roblin’s thesis [26, Thm. 1.7] for a proper
CAT (-1) spaces.

We denote by A C 0X the limit set of I', which is the unique I'-minimal
subset of 0X and by dr the critical exponent of I', that is, the abscissa of
the convergence of the Poincare series P(s) of I'. The group I' is called
a divergent type if P(dr) = oco. Patterson and Sullivan constructed a I'-
conformal measure, say, vpg, supported on the limit set A of dimension dr,
called the Patterson-Sullivan measure. Theorem 1.1 implies that whether
I" is of divergent type or not is completely determined by the positivity of
vps(Acon), and vice versa.

1A point & € 0X is called a conical limit point of T" if a geodesic ray toward £ accumu-
lates in I'\ X.
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The case of convex cocompact groups. A discrete group with A = Acon
is called a convexr cocompact subgroup. They are also characterized by
the property that I' acts cocompactly on the convex hull of A in X. For
a convex cocompact subgroup I', there exists a unique I'-conformal mea-
sure supported on the limit set A, namely the Patterson-Sullivan measure
vps. The associated geodesic flow invariant measure on TH(T'\X), called
the Bowen-Margulis-Sullivan measure, is known to be the measure of max-
imal entropy [30]. An immediate consequence of Theorem 1.1 for convex
cocompact groups is as follows:

Theorem 1.2. Let I' < G be a convexr cocompact subgroup. Then

(1) the geodesic flow Gt on TH\X) is conservative and ergodic with
respect to the Bowen-Margulis-Sullivan measure mBMS;
(2) T is of divergent type, i.e., Zver e 0rd(0,70) — .

The unit tangent bundle of I'\ X is a double quotient space I'\G /M where
M is a compact subgroup of G commuting with the one-parameter diagonal
subgroup {a;} which induces the geodesic flow. When I" is Zariski dense in
addition, the lifted Bowen-Margulis-Sullivan measure, considered as an M-
invariant measure on I'\ G, is also ergodic for the diagonal flow {a;} whenever
M is connected [32, Thm. 1.1]. The only case of M disconnected is when
G ~ SLy(R) and M = {=e}, in which case mPMS has at most two ergodic
components [20].

The Hopf-Tsuji-Sullivan dichotomy in higher rank. The main aim of
this article is to extend the Hopf-Tsuji-Sullivan dichotomy for discrete sub-
groups of higher rank semisimple real algebraic groups GG, while replacing
the geodesic flow of the rank one space with any one-parameter subgroup of
diagonal elements of G (Theorem 1.4). Each one-parameter subgroup of di-
agonal elements corresponds to a direction, say, u, in the positive Weyl cham-
ber of G. We introduce the u-directional conical limit set and u-directional
Poincare series, whose properties relative to a given I'-conformal density is
shown to determine ergodic properties of the action of the one-parameter
subgroup {exp(tu) : t € R} with respect to an associated measure on I'\G.
We then apply the dichotomy together with recent local mixing results of
Chow and Sarkar [9] to Anosov subgroups I We discover a surprising
phenomenon that the rank of the ambient group G dictates a completely
opposite behavior for I' as stated in Theorem 1.6. We also deduce recurrent
properties of the Burger-Roblin measures for each interior direction of the
limit cone of I' (Corollary 1.7), which plays an important role in the recent
measure classification result of Landesberg, Lee, Lindenstrauss and Oh [18,
Thm. 1.1].

In order to state these results precisely, we now let G be a connected,
semisimple real algebraic group. Let P be a minimal parabolic subgroup of
G with a fixed Langlands decomposition P = M AN. Here A is a maximal
real split torus of G, M is a compact subgroup commuting with A and
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N is a maximal horospherical subgroup. We fix a positive Weyl chamber
at C a = Lie(A) so that log N consists of positive root subspaces. We fix
a maximal compact subgroup K < G so that the Cartan decomposition
G = K(expa™)K holds, and denote by p : G — a™ the Cartan projection,
i.e., for g € G, u(g) € a™ is the unique element such that g € K exp u(g)K.

Let I' < G be a Zariski dense discrete subgroup of G. We denote by
Lr C a® the limit cone of T', which is the asymptotic cone of u(T"). Benoist
showed that Lr is a convex cone with non-empty interior [4]. Let F denote
the Furstenberg boundary G/P and A C F the limit set of I', which is the
unique I'-minimal subset. For a linear form ¢ € a*, a Borel probability
measure vy, on F is called a (I',1))-conformal measure if for any v € I' and
g 6 f7

Dy (o) _ b(Belen)

T €)= eV (1)
where /5 denotes the a-valued Busemann function (see Def. 2.1). Quint
showed in [24, Thm. 8.1] that a (I, ¢)-conformal measure may exist only
when ¢ > ¢r where ¢r : a — R denotes the growth indicator function of I
(Def. 5.1). Moreover, he constructed a (I, 1)-conformal measure supported
on A for every linear form 1 > vr satisfying ¢ (v) = v¢r(v) for some v €
Lr Ninta™ [24, Thm. 8.4].

Leti:a® — a® denote the opposition involution given by i(v) = — Ady, (v)
where wy is the longest Weyl element. In rank one groups, i is the identity
map. Letting F? denote the unique open diagonal G-orbit in F x F, the
quotient space G /M is homeomorphic to F ) x a via the Hopf parametriza-
tion which maps gM to (gP, gwoP, Byp(e, g)) for any g € G.

For a given pair of I'-conformal measures vy, and vy.; on F with respect
to 1 and 1 o i respectively, one can use the Hopf parameterization to de-
fine a non-zero A-invariant Borel measure m(vy, y0i) on the quotient space
I'\G/M, which is locally equivalent to dvy ® divye ® db in the Hopf coor-
dinates, where db denotes the Lebesgue measure on a; we will call it the
Bowen-Margulis-Sullivan measure (or simply BMS-measure) associated to
the pair (v, Vyoi) (Section 4). For simplicity, we write my, for m(vy, Vo),
although the measure depends on the choice of conformal measures vy, and
Vyoi, DOt only on ).

For u € int a™, we will say that my, is u-balanced if

T
o1noO tu)) dt
lim sup fOT mw( ! Lexp(tu)) < 00
T—oo [ My (O2 N Ogexp(tu)) dt

for any bounded Borel subsets O; C T'\G/M with Q NintO; # 0, where
Q={[g] e \G/M : gP, gwoP € A}.

Each BMS measure my, on I'\G/M can be considered as an AM-invariant
measure on I'\G, which we will also denote by my, by abuse of notation.
While the set £ = {[g] € I'\G : gP € A} is the unique P-minimal subset of
I'\G, it breaks into finitely many P°-minimal subsets in general where P°

(1.2)
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denotes the identity component of P. For each P°-minimal subset Y C I'\G,
the restriction my|y gives an A-invariant measure.
The conical limit set Agon of I' is given by

Acon == {gP € F : limsup'gA™t # ()} (1.3)

where AT = exp a™ and lim sup denotes the topological limit superior, i.e. all
accumulation points of the given family of sets.

Definition 1.3 (Directional conical limit set). For each u € int a™, we define
the set of u-directional conical limit points as follows:

Ay :={gP € F : limsup'gexp(tu) # 0};
t——+o00

this is a dense Borel measurable subset of Acopn if non-empty.

It is easy to see that A, # () only when u € Lp.
For R > 0 and u € inta™, we define the following tube-like subset of T’
whose Cartan projection lies within distance R from the ray R u:

Fyr={yel:||u(y) —tul| <R for somet >0},

where || - || is an Euclidean norm on a. The following theorem extends
Theorem 1.1 to all Zariski dense subgroups of higher rank semisimple real
algebraic groups:

Theorem 1.4 (The Hopf-Tsuji-Sullivan dichotomy in higher rank). Let
G be a connected semisimple real algebraic group and I' < G be a Zariski
dense discrete subgroup. Fiz ¢ € a* and let vy, vyoi be a pair of (I',v) and
(T, 9 o i)-conformal measures respectively, and let my, = m(vy, vyoi) denote
the associated BMS measure on T'\G /M. For any u € inta™, the following
conditions (1)-(5) are equivalent and imply (6). If 1¥(u) > 0 and my is u-
balanced, then (6) implies (7). Moreover, the first cases of (1)-(7) can occur
only when ¥ (u) = ¢r(u).
) ma(e (Ao pio)) > 0 150 54 (0) =0 = o))
2) max(vy(Au), vyoi(Aiw))) =1 (resp. vyp(Au) = 0 = vyei(Aiw)) )i

) (T\G/M, {exp(tu)} ») 1s conservative (resp. totally dissipative);

) (T\G/M, {exp(tu)}, m¢) is ergodic (resp. mon-ergodic);

) For some (and hence for all) P°-minimal subset Y C T'\G, the sys-
tem (Y, {exp(tu)}, myly) is ergodic and conservative (resp. my(Y) =
0, or non-ergodic and totally dissipative);

(6) ZveFu, e VM) = 0o for some R > 0 (resp. >
oo for all R > 0);
(7) Vw(AU) =1= Vwoi(Ai(u)) (resp. Vw(Au) =0= Vzpoi(Ai(u)))'

Remark 1.5. (1) When G has rank one, 1) oi = 9 for any ¢ € a*, as the
opposition involution i is trivial. Moreover, the m,, being u-balanced
condition is not needed for the implication (6) = (7). For I' non-
elementary, (1)-(7) are all equivalent to each other, except for (5),
and for I' Zariski dense, these conditions imply (5).

(1
(
(3
(4
(5

T © e~ 1) <
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(2) When the rank of G is at least 2, we need I' to be Zariski dense for
the equivalence of (3) and (4). The reason is that, when T' is not
Zariski dense, the Jordan projection of I' may not generate a dense
subgroup of A while in the rank one case, the Jordan projection of
any non-elementary subgroup generates a dense subgroup of A [15].

(3) We emphasize here that although the implication (3) = (1) is a
direct consequence of the definition of my, the proof for (3) = (7)
under the further u-balanced condition of my, requires the discussion
of the directional Poincare series.

For discrete subgroups of a product of two rank one Lie groups whose pro-
jection to each factor is convex cocompact, Burger announced that v (Ay) =
1 for all ¢ € a* and u € int L such that ¢(u) = ¢p(u) [6, Thm. 3]. Indeed,
we show that this is a special case of a more general phenomenon which
holds for all Anosov subgroups whose ambient group has rank at most 3.

The case of Anosov subgroups. Although there are notions of Anosov
subgroups with respect to a general parabolic subgroup [13], we will restrict
our attention only to those Anosov subgroups with respect to a minimal
parabolic subgroup. Recall that a Zariski dense discrete subgroup I' < G is
an Anosov subgroup (with respect to a minimal parabolic subgroup P) if it
is a finitely generated word hyperbolic group which admits a I'-equivariant
embedding ¢ of the Gromov boundary 9" into F such that (¢(x),{(y)) €
F@ for all x # y in OT [13, Prop. 2.7 and Thm. 1.5]. We note that
Zariski dense images of representations of a surface subgroup in the Hitchin
component [17] as well as Schottky subgroups provide ample examples of
Anosov subgroups ([25, Prop. 3.3], see also [11, Lem. 7.2]). Let I be an
Anosov subgroup for the rest of the introduction. Set

Dy = {y € a* 1) > Yr,¥(v) = ¢r(v) for some v € Lr Ninta™}.

For each ¢ € D§, there exists a unique unit vector v € Lr Nint a™ such that
¥(v) = ¢¥r(v) and v necessarily belongs to int Lr ([21, Prop. 4.11] and [25,
Lem. 4.3(i)], see also [29, Lem. 4.3] and [8, Thm. A.2(3)]).

Moreover, for each ¢ € Df, there exists a unique (I, ¢)-conformal proba-
bility measure, say vy, supported on A and the map 1 — v, is a homeomor-
phism between Dy and the space Sr of all I'-conformal probability measures
supported on A; hence St is homeomorphic to the set of unit vectors of int Lp
(see [19, Thm. 1.3] and references therein). It was also shown in ([19], [20])
that for any ¢ € Dy and my, = m(vy, vy o),

o A= Acon;
e for any P°-minimal subset Y C I'\G, myl|y is A-ergodic;
Y er e~ Yk(M) = 0.

On the other hand, the divergence of the directional Poincare series (i.e.,
Y vely n e ¥ for some R > 0) turns out to depend on the rank of G-
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Theorem 1.6. Let I' < G be an Anosov subgroup. For any v € D} and
u € inta™, the following conditions are equivalent and the first cases of
(1)-(4) can occur only when u € int Lr:

(1) rank G < 3 and ¥ (u) = ¢Yr(u) (resp. rank G > 3 or ¢(u) # ¢¥r(u));

(2) vy(Au) =1 = vypoi(Aiq)) (resp. vy(Au) = 0 = vyoi(Aiy)) );

(3) For some (and hence for all) P°-minimal subset Y C T'\G, the
system (Y, {exp(tu)}, myly) is ergodic and conservative (resp. non-
ergodic and totally dissipative);

(4) Z')’GFU,R e V) = oo for some R > 0 (resp. S

oo for all R >0).

For ¢ € D} and u € int Lr with ¢ (u) = ¢r(u), Chow and Sarkar proved
in [9] the following local mixing result that for any fi, fo € C.(T'\G),

. lim ¢rankG=1)/2 fi(zexptu) fa(x)dmy(z) = Ky my(fi)my(f2) (1.4)
—+00 NG

ery, € <

for some constant k, > 0 depending only on u (see [27] where this is proved
for M-invariant functions for some special cases).

Using the shadow lemma (Lemma 3.4), we deduce from this local mixing
result (1.4) that the u-directional Poincare series EveFu,R e~ (M) diverges
if and only if rank G < 3. Together with Theorem 1.4, this implies Theorem
1.6.

Let mER denote the Burger-Roblin measure associated to v, that is, the
M N-invariant measure on I'\G which is induced from a measure on G/M
locally equivalent to dvy, @ dm, ® db where m,, is the K-invariant probability
measure on F (cf. [11, Sec. 3]). Lee and Oh proved that each ng is M N-
ergodic and its restrictions to P°-minimal subsets of I'\G yield all N-ergodic
components ([19, Thm. 10.1], [20, Thm. 1.3]). For u € inta™, we consider
the following directional recurrent set

Ry :={x € T\G : limsup z exp(tu) # 0}.
t——+o00

Since u € int a™, this is a P-invariant dense Borel subset of &.
An immediate consequence of Theorem 1.6 is the following:

Corollary 1.7. For any v € D} and u € inta™, we have
(1) If rank G < 3 and u € int L with ¥ (u) = ¢r(u), then
mpR(M\G — Ry) = 0.
(2) In all other cases, ng(Ru) =0.

This corollary is one of the main ingredients of the recent measure classi-
fication result [18, Thm. 1.1].

Added after revision: Sambarino posted a preprint (arXiv:2202:02213)
showing ergodicity for rank G at most 2 and non-ergodicity for rank G at
least 4, with a different approach based on work of Guivarch.
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Organization. In section 2, we collect basic definitions. In section 3, we
show that the set of directional conical limit points is either null or conull for
any (I, 1)-conformal measure. In section 4, we prove that the conservativity
of the Bowen-Margulis-Sullivan measure for one parameter diagonal flow
implies its ergodicity, extending Hopf’s argument. In section 5, we relate
the directional Poincare series with respect to ¢ and the correlation functions
of the BMS measures and provide the proof of Theorem 1.4. In section 6,
we specialize to Anosov groups and prove Theorem 1.6.

2. PRELIMINARIES

Let G be a connected, semisimple real algebraic group. We decompose
g = LieG as g = ¢ @ p, where £ and p are the +1 and —1 eigenspaces
of a Cartan involution 6 of g, respectively. We denote by K the maximal
compact subgroup of G' with Lie algebra ¢, and by X = G/K the associated
symmetric space. Choose a maximal abelian subalgebra a of p and a closed
positive Weyl chamber a™ of a. Set A := expa and AT = expa™. The
centralizer of A in K is denoted by M. Consider the following pair of
opposite maximal horospherical subgroups:

N=N :={geG:a "ga" — e as n — +oo} and

Nt:={geG:a"ga™™ — e as n — 400}

for any a € int AT; this definition is independent of the choice of a € int A™.
We set

P=MAN, and Pt=MANT,

they are minimal parabolic subgroups of G and P N Pt = M A. The quo-
tient space F = G/ P is called the Furstenberg boundary of G, and via the
Iwasawa decomposition G = K P, F is isomorphic to K/M.

Let Ng(a) be the normalizer of a in K, and W := Ng(a)/M denote the
Weyl group. Fixing a left G-invariant and right K-invariant Riemannian
metric d on G induces a Riemannian metric on the associated symmetric
space X = G/K, which we also denote by d by abuse of notation. We denote
by (-,-) and || - || the associated W-invariant inner product and norm on a.

For R>0,set Ag ={a € A:|logal < R}, Af, = AgN A%, and

Gr:= KALK.

a-valued Buseman functions. The product map K x A x N — G is a
diffeomorphism, yielding the well-known Iwasawa decomposition G = K AN.
The Iwasawa cocycle o : G X F — a is defined as follows: for (g,§) € G x F
with £ = [k] for k € K, expo(g,§) is the A-component of gk in the KAN
decomposition, that is,

gk € K exp(o(g,§))N.
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Definition 2.1. The a-valued Busemann function 5 : F x G x G — a is
defined as follows: for £ € F and g,h € G,

Be(g,h) ==a(g™, &) —a(h,8).
Denote by wg € W the unique element of W such that Ad,, at = —at.
Definition 2.2 (Visual maps). For each g € G, we define
gt :=gP€G/P and g :=gwyP € G/P.
Note that for g € G, g = g(e™).
The opposition involution i : @ — a is defined by
i(v) = — Adyy, (v). (2.1)
When G is a product of rank one groups, i is trivial.

The set F? = {(gt,97) € Fx F:g € G} = G.(et,e™) is the unique
open G-orbit. The a-valued Gromov product on F?) is defined as follows:
for (gt,97) € F?,

G(g",97) = Byr(e,9) +1(By-(e,9))-
Lemma 2.3. [5, Prop. 8.12] There exist ¢,¢’ > 0 such that for all g € G,
¢ MG (g™, g7l < d(o,gAo) < cl|G(gF g7 + ¢

Definition 2.4 (Cartan projection). For g € G, there exists a unique ele-
ment p(g) € a™, called the Cartan projection of g, such that

g € Kexp(u(g))K.

When u(g) € inta™ and g = kyexp(u(g))ke, we write r1(g) := [ki1] €
K/M and k2(g) := ke € M\ K, which are well-defined.

In the whole paper, we fix the constant d = d(G) > 2 as in the following
lemma.

Lemma 2.5. [19, Lem. 5.8] There exists d > 2 such that for any R > 1
and any g € G,

w(GrgGR) C p(g) + aqr-

Definition 2.6. We say that a sequence g; — oo regularly in G if a(u(g;)) —
0o as i — oo for every simple root « corresponding to a™.

Definition 2.7. (1) A sequence g; € G is said to converge to £ € F, if
g; — oo regularly in G and lim x1(g;)" = €.
71— 00
(2) A sequence p; = g;(0) € X is said to converge to & € F if g; does.

Definition 2.8 (Limit set). For a Zariski dense discrete subgroup I' < G,
we define the limit set A of T as follows: fixing p € X,
A={ limypeF:yel |
1—r 00

By [19, Lem. 2.13], this definition is independent of the choice of p € X
and coincides with one given by Benoist [4, Def. 3.6]; in particular, it is the
unique I'-minimal subset of F.



10 MARC BURGER, OR LANDESBERG, MINJU LEE, AND HEE OH

We later use the fact that A is a Zariski dense subset of F [4, Lem. 3.6].
For any real-valued functions f(¢) and g(t), we write f(t) < g(t) if there
exists C' > 0 such that f(t) < Cg(t) for all ¢t > 1. We write f(t) < g(t) if

f(t) < g(t) and g(t) < f(1),

3. A ZERO-ONE LAW FOR vy (Ay)

Let I' < G be a Zariski dense discrete subgroup of G. Fix ¢ € a*, and a
(T, 9)-conformal measure vy, on F as defined in (1.1).

Recalling the notation A, from Definition 1.3, the goal of this section is
to prove the following dichotomy:

Proposition 3.1. For any u € inta™, we have
vp(Aw) =1 or  vy(Ay) =0.

The proof of this proposition is based on the study of shadows.

Shadows. For p,q € X = G/K and r > 0, the shadow of the r-ball around
q as seen from p is defined by

Or(p.q) :=={g" € F:go=p, gA 0N B(q,r) # 0},

where B(q,r) = {z € X : d(z,q) < r}.
Similarly, for £ € F, we define the shadow of the r-ball around ¢ as seen
from £ to be

O,(&,q) :={97 € F:g9g~ =& goe€ B(q,r)}.
Note the following G-equivariance property: for any g € G and r > 0,

90:(p,q) = Or(gp,g9q) and gO.(§,q) = O;(9€, 99)- (3.1)
Note that for any £ € F, g € X and R > 0,
Uoreg=neF:(&ner?} (3:2)
r>R

Lemma 3.2. [19, Lem. 5.7] There exists k > 0 such that for any r > 0 and
g € G, we have

sup  ||Be(e, g) — pu(g)ll < k.
£€0,(0,90)

The following lemma is an immediate consequence of [19, Lem. 5.6]:
Lemma 3.3. For any S > 0 and a sequence g; — oo reqularly in G, we have,

for all sufficiently large i, the closure of Og(o, gio) x Og(g;0,0) is contained
in F2),

The following shadow lemma plays an important role in our paper. It
was first presented in [2, Thm. 3.3] and then in [24, Thm. 8.2] in slightly
different forms.
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Lemma 3.4 (Shadow lemma). [19, Lem. 7.8] There exists So > 0 such that
c1 = infyer vy (Os(v0,0)) > 0. Moreover, there exists k > 0 such that for
all S > Sy, and for ally € T,

cre IS g=d k() < vy (05(0,70)) < eFlYlIS =¥ (p()) |
For any R > 0, set
Gur:={9€G:|plg) —tu]| <R for some ¢t > 0}. (3.3)
Lemma 3.5. Let R,S > 0. If g € Gy,r, then
Os(0,g0) C {kT € F : kexp(tu)o € B(go, R + 2dS) for some t > 0}.

Proof. For £ € Og(o,go), there exist k € K and a € AT such that kao €
B(go, S) and & = k™. Tt follows that g~ *ka € G, and hence ||u(g) —log a|| <
dS by Lemma 2.5. On the other hand, since g € G g, there exists t > 0
such that ||u(g) — tu]] < R, and hence

d(kexp(tu)o, go) < d(k exp(tu)o, kao) + d(kao, go)
< [tu —logal + 5 < [ltu — pu(g)|| + [ln(g) —logal + 5
<R+ (d+1)S.
This proves the lemma. ([

The following Vitali-covering type lemma is a key ingredient of the proof
of Proposition 3.1.

Lemma 3.6 (Covering lemma). Fiz R > 0 and consider {Og(o,7v0) : vy €
I} for some infinite subset I" C Ty g. There exists a subset I C I such
that {Og(0,7v0) : v € T} consists of pairwise disjoint shadows and

U Or(0,70) C U O10dr(0,70). (3.4)
yer’ ~yer”
Proof. Enumerate IV = {v; : i € N} so that ||u(y;)| is nondecreasing. Set
10 = 0 and inductively define
int+1 = min{i > i : Og(o,7;0) ﬂ (Uj<nORr(0,7i,0)) = 0}.

Set I := {~;, : n € N} so that {Ogr(0,v0) : v € T} consists of pairwise
disjoint shadows.

For each ; € T, we claim that Og(0,7;0) C O194r(0,y0) for some v € T”.
We may assume that i, < i < i1 for some n. By definition of 4,1, there
exists j < n such that Og(0,7;0)NORg(0,7;,0) # (. In particular, there exists
k1 € K, aj,ai; € AT such that kja;0 € B(v;0, R) and kiai;o € B(vi;0,R).
Since 'yi_lklai,fyizlklaij € G, we have

|1(7i) —logai|| < dR and [|u(vi;) —logai;|| < dR
by Lemma 2.5. On the other hand, there exists t;,¢;; > 0 such that
l1(7i) = tiul < R and [|pu(vi;) — ti;ull < R,
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as Vi, vi; € Lur- Observe that
|l(va)|l = d(o,~i0) < d(o, kiar,0) + d(kiat,0, k1a;0) + d(kia;o0,v;0)
< d(o, k1at,0) + dR + 2R = d(o, kiay,, 0) +dR+ 2R + (t; — t;;)
< d(O, klaijo) +2dR + 3R + (ti — tij) < d(O, %jo) + 2dR + 4R + (ti — tij)
= ||yl +2dR + 4R + (t; — ;) < ||p(vi) || + 2dR+ 4R + (t; — ti;),
and hence t; :=t; + 2dR + 4R > t;,.
Now let ki € Og(0,7:0) be arbitrary and b € A" be such that kebo €

B(v;0,R). We have ||u(y;) —logb|| < dR by Lemma 2.5. Since v; € I'y g,
there exists s > 0 such that ||u(y;) — su|| < R. Since

d(keaso, k:latgo) < d(kaaso, kabo)
+ d(kabo, vi0) + d(vi0, k1a;0) + d(k1a;0, k1at,0) + d(kiaz,0, klat;o)
< (dR+R)+ R+ R+ (dR+ R) + (2dR + AR) = 4dR + 8R,
there exists 0 < s’ < s such that d(ksag o, klatij 0) < 4dR + 8R by Lemma
3.7 below. Finally,
d(keag o, Vi 0) < d(kaag o, klatij 0) + d(klat,—j o, klaijo) + d(klaijo, Vi 0)
< (4dR+8R)+ (dR+ R) + R =5dR + 10R,

which implies that ky € Osar+10r(0,7i;0) C O104r(0,7i;0), since d > 2.
This finishes the proof. ([

Lemma 3.7. Let k1,ky € K, t1,to > 0 be arbitrary. For any 0 < s1 < t1,
there exists 0 < s9 < t9 such that

d(k1 exp(s1u)o, ko exp(sau)o) < d(ky exp(tiu)o, ko exp(tau)o).

Proof. This follows from the CAT(0) property of G/K (cf. [10]). Consider
the geodesic triangle A(pgr) in G/K with vertices p = o, ¢ = ki exp(tiu)o
and r = kj exp(tau)o. Let A(p'q’'r’) be the triangle in the Euclidean space
which has the same corresponding side length to Apqr. Let 0 < so < to
be arbitrary and r} be a point on the side p'r’ such that the segment p'r}
has length £(p'r}) = so. By a straightforward computation in Euclidean
geometry, we can find a point ¢ on the side p’q’ such that
Uqir)) < l(g'r") = £(qr) = d(k1 exp(t1u)o, ks exp(tau)o).
Set s1:=4(p'q}). Since G/K is a CAT(0) space, we get
d(kl eXp(81u)O, kQ eXp(SQU)O) S g(qllrll)a
from which the lemma follows. U

We may write Ay, = Ur>o Ay r Where

Ay = ﬂ U Or(0,7v0), whereI'y g : =T NGy r. (3.5)

m>1 ’YEFU,R’
letNIZm
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Lemma 3.8. If R > 1 is large enough, for any f € Ll(%) and for vy-a.e.
£ € Ay r, we have

o

L fdvy = £(€)
=0 VU)(OR(O? 720)> Ogr(0,v;0) v

for any sequence v; — oo in I'y g such that § € Og(o,;0).

We define a maximal operator Mg on L' (1) as follows: for all f € L' (1)
and all £ € Ay R, set

1
Mpf(§) := lim sup / fdvy;
~eTu milu(y)l—oo, Vi (OR(0,70)) Jog(0v0)
£€OR(O,’\/O)

this is well-defined by the definition of Ay g.

Note that Lemma 3.8 holds trivially for f € C'(A). Once the weak type
inequality for the maximal functions is established as in Lemma 3.9, Lemma
3.8 follows from a standard argument using the density of C(A) in L'(vy).

Lemma 3.9. If R > 1 is large enough, then Mg is of weak type (1,1); for
all f € L'(vy) and X > 0, we have

({6 € Aur s IMRA©O] > A < 11 i)

where the implied constant is independent of f.

Proof. Let R > 1 be large enough to satisfy Lemma 3.4. Let A > 0 be
arbitrary. By definition of Mg, there exists an infinite subset I C T'y g
such that

{¢ € Aur: IMRf(€)| > A} C | Or(0,70), and
~yer'

1
/ fdvy > Xforal yel”
OR(O7'YO)

V"/)(OR(Oa ’70))
By Lemma 3.6, there exists I C I” so that {Ogr(0,v0) : v € I} consists of
pairwise disjoint shadows and
L Or(o,70) ¢ | O10arl(o, o). (3.6)
yel’ yer”’
Hence, by Lemma 3.4,

vp({€ € Aur : IMRF(E)] > A}) < vy (| Orlo,70))

~er
< vy( | Ow0dr(0,70)) < Y v(O104r(0,70))
~er” ~er
1 1
= Y v(Or(0.70)) < 5 / fdvy < S llzy)-
~er U“/EF” ORr(o0,70)
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Proof of Proposition 3.1. Let R > 1 be large enough to satisfy Lemma
3.9. Suppose that v (Ay) > 0. Then for all sufficiently large R > 1, we have
vy(Au,r) > 0. By applying Lemma 3.8 with f = 1., there exists { € Ay g,
we obtain a sequence y; € I' such that £ € Og(o,7;0) and

i 22(OR(0,7i0) NAD)

imoo vy(Or(0,7i0))

Since vy, (Og(0,7;0)) < e ¥ by Lemma 3.4,
lim ew(“(%))1/11,(03(07 ~vi0) NAL) = 0. (3.7)

i—00

By Lemma 3.2,
vy (Or(0,710) N AS) = / Lotomoine (€) dis(€)

-1
B /HOR(’Yilo,o)ﬂAf. (5)61/1(/35(67%- 2 de(f)
= efw(“(%))yw(OR(’yi_lo, 0) NA;).
Hence as 1 — o0,
vp(Or(y; 0,0) N AS) = ¥ B0y (OR(0,v0) N AS) — 0.

Passing to a subsequence, we may assume that -, Lo converges to some
no € A. By [19, Lem. 5.6], for all sufficiently large i,

vy (Orya(n0;0) NAS) < vy (Or(y; H0,0) NAY).
Therefore
vy (ORy2(mo, 0) NAG) = 0.
Since R > 1 is an arbitrary large number, varying R, we get from (3.2) that
vp(Ng N {n € F: (n,m0) € F&}) = 0. (3.8)

We now claim that for any n € Af, there exists a neighborhood U, of n
such that vy (AS N T,) = 0. If (n,m0) € FP), this is immediate from (3.8).
Otherwise, by the Zariski density of I' and the fact that A is the unique
I-minimal subset of F, we can find v € I" such that (yn,n9) € F 2). The
claim follows again from (3.8), since vy, is I'-quasi-invariant. This finishes
the proof. [

4. HOPF’S ARGUMENT FOR HIGHER RANK CASES

Let I' < G be a Zariski dense discrete subgroup. We fix ¢ € a* and a pair
(4, Vapoi) Of (I',90) and (I, 9 o i)-conformal measures on F respectively.

Definition 4.1 (Hopf parametrization of G/M). The map
gM <g+7 g ,b= /BgJr (6, g))

gives a homeomorphism between G/M and F @ x a.
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Bowen-Margulis-Sullivan measures. Define the following A-invariant
Radon measure m = m(vy, Vyoi) on G/M as follows: for g = (97,97,b) €
F@ xq,
dm(g) = " €97 duy, (g7 )dvyoi (g7 )db
where db is the Lebesgue measure on a. We note that this is a non-zero
measure; otherwise, vy is supported on a proper Zariski subvariety of F
by Fubini’s theorem, but since I' is Zariski dense and v, is I'-conformal,
that is not possible. The measure m is left I'-invariant, and hence induces a
measure on I'\G /M, which we denote by m.
We fix u € int a™ and set for all ¢ € R,

a; = exptu.
Recall the following definitions:

(1) A Borel subset B C I'\G/M is called a wandering set for m if for
m-a.e. € B, we have [*_1p(za;)dt < co.

(2) We say that (I'N\G/M,m,{a;}) is conservative if there is no wander-
ing set B C I'\G/M with m(B) > 0.

(3) We say that (I'\G/M, m,{a;}) is completely dissipative if T\G/M is
a countable union of wandering sets modulo m.

Proposition 4.2. The flow (T\G/M,m,{a; = exp(tu)}) is conservative
(resp. completely dissipative) if and only if max(vy(Au), Vyoi(Aiw))) > 0
(resp. vyp(Au) = 0 = vyoi(Ajw)) )-
Proof. Suppose that (I'N\G/M,m,{a;}) is conservative. Let B be a com-
pact subset of T\G/M with m(B) > 0. If we set Bf := {x € B :
lim sup;_, 4 oo ¥ax N B # 0}, then m(Bg U By ) > 0. Since m is equivalent to
Uy ® Vypoi @ db, it follows that m(Bg) > 0 (resp. m(B;) > 0) if and only if
vyp(Au) > 0 (resp. vyoi(Ajyy) > 0). Hence max(vy (Ay), Vyoi (Aiw)) > 0.
Now suppose that v(Ay) > 0 (resp. vyoi(Ajw)) > 0). Then by Proposi-
tion 3.1, vy (Ay) = 1 (resp. vyoi(Aj)) = 1.) Hence for m a.e. [g], we have
g™ € Ay (resp. g~ € Ayy)), and hence [gay, is convergent for some sequence
t; — doo. It follows that for m a.e. x, there exists a compact subset B such
that [, 1p(xa;)dt = co. We claim that this implies that (I'\G /M, m, {a;})
is conservative. Assume in contradiction that there exists a wandering set
W c I'\G/M with 0 < m(W) < oo. By the o-compactness of I'\G/M,
there exists a compact subset B such that

m{zx € W: / I1p(zay)dt = oo} > m(W)/2. (4.1)
R
On the other hand, there exists an integer n > 1 for which the set
Wy = {w eW: / Ty (way) dt < n}

has m-measure strictly bigger than m(W)/2. Note that the set E := W, exp(Rv)
is {a;}-invariant and any w € E satisfies ffooo Ty (way) dt < n. Hence, for
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any R > 0, we get

/ / 1p(wag)dtdm —/ / 1p(wa)dmdt

[,

R

/ m((BNE)NWya)dt = / / 1w, (za—¢)dmdt
BNE

:/ / ]an ra— t)dtdm < /HWn(xa_t)dtdm
BNE

_/ ndt=n-mBNE) <
BNE

where finiteness follows from the fact that B is compact and m is Radon.
Hence [y, [p 1p(war)dtdm < oo; so

m B(Z N W, )dt / (B N Wnat)d
—R

m{zx € W: /R]lB(wat)dt < oo} >m(Wy,) > m(W)/2.

contradicting (4.1). The rest of the claims can be proven similarly. (]

Let m" denote the M-invariant lift of m to G and m’ the measure on I'\G
induced by m’. Since T" is Zariski dense, there exists a normal subgroup
Mr < M of finite index such that each P°-minimal subset of I'\G is Mp-
invariant and the collection of all P°-minimal subsets is parameterized by
M/Mr ([12, Thm. 1.9 and 2], see also [20, Sec. 3]).

We will need the following notion:

Definition 4.3 (Transitivity group). For g € G with gt € A, define the
subset H{(g) < AM as follows: am € H{(g) if and only if there exist v € T’
and a sequence h; € N~ UNT,i=1,...,k such that

(ghiha ... hr)i eA forall 1<r<k and ~vyghihs...hr = gam.

It is not hard to check that Hj.(g) is a subgroup (cf. [32, Lem. 3.1]); it is
called the strong transitivity subgroup.

The following was obtained in [20] using the work of Guivarch-Raugi [12,
Thm. 1.9].

Lemma 4.4. [20, Coro. 3.8] For any g € G with g© € A, the closure of
Hi(g) contains AMr.

We now prove the following higher rank version of the Hopf-dichotomy,
using Lemma 4.4.

Proposition 4.5. Let Y be a P°-minimal subset of T\G such that m'(Y) >
0. Then (m’|y,{a}) is conservative if and only if (m'|y,{a:}) is ergodic.
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Proof. Suppose that (m’|y,{a;}) is conservative. Fix xg € supp(m’|y) and
let B, C I'\G denote the ball of radius n centered at zy. Let r be a
positive function on [0,00) which is affine on each [n,n + 1] and r(n) =
1/(2"'m’(By41)). Then the function p(z) := r(d(zo,)) is a positive Lip-
schitz function on I'\G with a uniform Lipschitz constant. In particular, it
is uniformly continuous and p € L'(m’), since

o0

Iy jz/ <3 g™ ) <

By the definition of p, for all [g] € I'\G such that g7 € A, and g~ € Ai(),
we have

| otsaar= [ pliglacsyar = . (1.2)

Now let f € C.(I'\G) be arbitrary. By the Hopf ratio ergodic theorem, the
following fy and f_ are well-defined and equal m’-a.e.:

) dt ) dt
fO (way)dt . Fo(x) = w

fele) = Tﬁoof p(zay) dt THOO f p(za_y)dt

(4.3)

By the uniform continuity of f and p, (4.2) and the assumption that u €
intat, fi are N*-invariant respectively. Let fi : G — R be a left I-
invariant lift of fi. Let B denote the Borel g-algebra of G and set

¥ :={B e B:aw'(BAB*) =0 for some B € B such that TB* = BEN* }.
Let F : G — ]R~be a Y-measurable and left I'-invariant function such that
F(g9) = f+(9) = f-(g) for m" a.e g € G. Set

Flgam is measumble~ and
E:=< gAM : F(gam) = fi(gam) = f_(gam) p C G/AM.
for Haar a.e. am € AM

By Fubini’s theorem, E has full measure in G/AM ~ F (2) Witthespect to

the measure dvy, ®dvy.e;. For all small € > 0, define functions <, ff : G — R
by

F(6) = vork | Flat)dt, Jil0) = ok [ Fetotat
(AM)e (AM)e

where (AM). denotes the e-ball around e in AM and d¢ is the Haar measure
on AM. Note that if gAM € E, then F* and fft are continuous and identical
on gAM. Moreover, F*¢ is left I'-invariant and fi are N*-invariant, as AM
normalizes N*. Using the isomorphism between G/AM and F 2) given by
gAM — (g%, g7), we may consider E as a subset of F(2). We then define

ti={teAN: (&) EE for vygae n €A}
E-:={neA:(,n)€E foruygae ¢ €A}
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Then ET is vy-conull and E~ is vye-conull by Fubini’s theorem. By a
similar argument as in [20, Lem. 4.6], we can show that for any gAM € E
with ¢ € E*, and any ¢ > 0, F€lgam is AMp-invariant, using the fact
that the closure of H}.(g) contains AMr (Lemma 4.4). It follows that F' is
Y o-measurable where

Yo = {B eB:B= FBAMF}.

We claim that if f is M-invariant, then F is constant on the m’-conull
set BT := {9 € G : g* € E*}. Using Hopf’s ratio ergodic theorem once
more, this would in turn imply that m’ is M{a;}-ergodic. Assume f is
M-invariant. Since F' = lim._,o F* m’-a.e. by the Lebesgue differentiation
theorem, it suffices to show that F¢ is constant on ET. Since F€ is AM-
invariant on ET and F°(gh) = F¢(g) for all ¢ € ET and h € N* with
gh € E', it is again enough to show that for any g¢i,go € ET, there exist
hi,ho, hg € Nt UNT™ such that gihihohsg € goAM and gi1hi,grhihe € Ef.

We note that if (&,71),(€,72) € F®), then there exist ¢ € G,h € N
such that (&,m) = (¢7,¢97) and (&,m2) = ((gh)™,(gh)”). Similarly, if
(€1,m), (€2,m) € FP, then there exist g € G, h € N* such that (&,n) =
(97,97) and (&2,m) = ((gh) ", (gh)7).

Note that E7 is I'-invariant. Since the limit set A is the unique I'-minimal
subset of F, the closure of E* contains A, and in particular it is Zariski
dense. Therefore we can choose £ € ET such that (£,97),(§,95) € FO,
Let hq,ho,h3 € NTUN~ be such that

& 97) = (g1h] . q1hy)
(&,95) = (g1h1hg , g1hihy)
(95, 95) = (g1h1hahg, g1hihahy).

Hence the claim is proved. In particular, m’ is AM-ergodic.

Let Y C G be the I-invariant lift of Y. In order to show that m'|y is
{a¢}-ergodic, it suffices to show that F', associated to an arbitrary function
f € C.(T\G), is constant on Y. Tt follows from the AM-ergodicity of m’ that
Y is m’-equivalent to a finite o-algebra generated by {B.s : s € Mp\M} for
some B € ¥g. Since {Y.s:s € Mp\M} C % and the Y.s's are mutually
disjoint, it follows that ¥ = B.s mod m’ for some s € Mp\M.

Since F' is constant on B.s, being Yg-measurable, it implies that F' is
constant on Y, concluding that m’|y is {a;}-ergodic.

Now to show the converse, assume that (m’|y,{a:}) is ergodic. Since
the quotient map I'\G — T'\G/M is a proper map, it suffices to show
that (I'\G/M,m,{a;}) is conservative when it is ergodic. Assume that
(I\G/M,m,{a;}) is ergodic. Then it is either conservative or completely
dissipative by the Hopf decomposition theorem [16]. Suppose it is com-
pletely dissipative. Then it is isomorphic to a translation on R with respect
to the Lebesgue measure. This implies that the dimension of a must be
one, since M = M(Vy, Vyoi) gives measure zero on any one dimensional flow
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otherwise. It also implies that vy ® vy is supported on a single I'-orbit,
say, T'(€0,m0) in F@). Since vy (resp. vyo) must be an atomic measure
supported on I'¢y (resp. T'np), it follows that (I'¢y x T'ng) N FZ) = T'(&, mo).
This implies that I'ng C I'¢yno where I'¢y denotes the stabilizer of § in I
Since the limit set of T'¢, is finite (as we are in the rank one situation), this
is a contradiction as I' is non-elementary. This proves that m is conservative
for the {a;}-action. O

5. DIRECTIONAL POINCARE SERIES

Let I' < G be a Zariski dense discrete subgroup. We define the limit
cone Lr C a't as the asymptotic cone of u(T'). Then Lr coincides with the
smallest cone containing the Jordan projection of I' and is a convex cone
with non-empty interior [4].

Quint [23] introduced the following:

Definition 5.1. The growth indicator function ¢r : a* — R U {—oc} is
defined as a homogeneous function, i.e., ¢p(tu) = t¢p(u) for all ¢ > 0, such
that for any unit vector u € a™,

Yr(u) == inf TC

open cones CCa™t
uecC

where 7¢ is the abscissa of convergence of the series ) HllNI

veT,u(v)eC €
We consider ¢r as a function on a by setting yr = —oco outside a™.

Quint showed that ¢r is upper semi-continuous, ¢r > 0 on int Lr, ¢r > 0
on Lr and ¢r = —oo outside Lr [23, Thm. IV.2.2].

Lemma 5.2. Let 1) € a* and u € inta™ be such that 1(u) > r(u). Then

for any R > 0,
Z e M) £ 0.
'YEFU,R

Proof. Since 1(u) > tr(u), the upper-semi continuity of ¢r implies that
there exists a small open convex cone C containing u such that C C int at
and ¢ > ¢p on C. Since ¢ > t¢r on some open convex cone C' containing
C, we can choose a continuous homogeneous function 6 : a — R such that
Y >0 >p on C and @ > 9r on a’. Since 1r = —oo outside a™, we have
0 > 4r on a —{0}. Applying [23, Lem. II1.1.3] to the measure > 6, ()
on a®, we get
Z e M) < Ze—a(u(v)) < 00,
~el,u(y)eC vyel
Since #{y € Tu.r : u(7y) € C} < oo for any R > 0, the lemma follows. [J
Let ¢ € a* and fix a pair of (I',4) and (I', ¢ o i)-conformal measures (v,

Vyoi) on F respectively. We let m denote the BMS measure on I'\G/M
associated to (Vy, Vyoi)-
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We fix a unit vector u € int a™ such that ¢(u) > 0, and set
a; :=exp(tu) and ¢ :=(u).

For an interval I C R, we sometimes write a; = {a; : t € I'}. We make the
following simple observation: for any R > 0,

Z oY) — Z e~ V) = Z N (5.1)

Y€liw),r vy~ lely r v€l'u,r

Lemma 5.3. If max(vy(Ay), vgoi(Aiw))) > 0, then there exists R > 0 such

that
Z e VM) = 5o = Z e ¥ ()

v€ly R V€L, R

Proof. Without loss of generality, we may assume that vy (A,) > 0. Recall
that Ay = UpenAy,, where

Ay = m U On(0,70).

m=1||u(y)[|[>m,y€ly,n

Hence vy(Ayn) > 0 for some n. Now by Lemma 3.4, we have for all
m > 1,

0 < vy(Aun) < Z v (On(0,70)) < Z V()

l(y)l[2m, lu(y)[[2m,
VEFu,n ’YGFu,n

Since the implicit constant above is independent of m, it follows that the

series Y cp e~ ¥((M) diverges, which implies the claim by (5.1). O

The rest of this section is devoted to the proof of the following:

Proposition 5.4. Suppose that m is u-balanced as defined in (1.2). If

S e V) = oo for some R > 0, then
’YEFU,R

I/w(Au) =1= V’l/)oi(Ai(U))‘

Proof of this proposition involves investigating the relation between the
u-directional Poincare series and the correlation function of m for the as-
action.

Multiplicity of shadows.

Lemma 5.5. For any R > 0 and D > 0, we have

sup Z Lo (0,70) < 0.
>0 'YEFU,Rv
T<¢(u(v))<T+D
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Proof. Suppose that there exist vi,---,ym € I'ur and £ € K such that
kT € N2 Or(0,vi0) and T < 4(u(v;)) < T+ D. By Lemma 3.5, for all
1 < i < m, there exists t; > 0 such that ka;,0 € B(vy;0,(2d + 1)R). Since
v tkay, € G (2d+1)Rr, We have [|u(v;) — tiul| < d(2d + 1)R by Lemma 2.5. In
particular,
tip(u) < P(u(v) + [¥1d2d +1)R < T + D + |[¢[|d(2d + 1) R,
and similarly
tp(u) > T — []d(2d + 1)R.

Hence [1(u)(t; — t1)] < 2||¢]|d(2d + 1)R 4+ D. Note that as ¢(u) > 0, for all
1<1<m,

d(inO) ’Ylo) S d(’YZ'Oa katio) + d(ka’tioa katlo) + d(kat107 710)

< 2d(2d + 1)R + |t; — 1]

< 8 :=2d(2d + 1)R + (¢(u))"1(2||¢||d(2d + 1)R + D).

Since there are only finitely many ;0 in a bounded ball of radius S, it
follows that m is bounded above by a constant depending only on S. This
proves the claim. O

Corollary 5.6. For any large enough R > 0, we have, for any D > 0,

sup 3 VM) < oo

T>0
> 'VGFU,Ry

T<yp(u(v))<T+D

Proof. By Lemmas 3.4 and 3.5, there exists C' = C(1)) > 0 such that for all
R large enough, and any T > 0,

Z e~ V(M) < Z C - vy(ORr(0,70)) < o0

7€FU,R7 7€FU,R7
T<tp(p(v))<T+D T<tp(p(v))<T+D
by Lemma 5.5. O

Directional Poincare series. For r > 0 and g € GG, we set
Qr =GrA = KA.KA,, and (5.2)
L,(0,9(0)) :={(h*,h7) € F® :h e G, N gG,exp(R_u)}.
Lemma 5.7. For any r > 0, we have @, C Go,.

Proof. Let g € @Q, be arbitrary. By definition, ¢ = kjaikeas for some
ki,ko € K and aq,as € A,. Since

d(go,0) = d(aikeag0,0) < d(aiksago,a1kz0) + d(aike0,0)
= d(az0,0) + d(0,a; *0) < 2,
the lemma follows. O

The following is the main ingredient of the proof of Proposition 5.4:
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Proposition 5.8. Suppose that e V) = 0o for some R > 0. If r

'YGFU,R
is large enough, we have the following for any T > 1:

T rT
/ / Y (QiMQra—i ' Qray—s) dtds < DDA
0 0

777/€F ’YGFuAdr
P(u(y))<6T
(5.3)
T
/ > W(Qu NYQuay)dt> Y e VW) (5.4)
0 ser vl y.r
Y(u(y))<6T

where the implied constants are independent of T .

Lemma 5.9. If Q. NYyQra_y # 0 for vy €T and t,r > 0, then
() — tul| < 4dr.

Proof. If Q, NyQra_; # 0, there exist qo,q) € Q. such that qo = vgja_¢.
By Lemma 2.5 and Lemma 5.7,

tu = p(ar) = p(gy '740) € () + aadr-
O

In order to prove Proposition 5.8, we will bound the integrals appearing in
the lemma from below and above using shadows, and then apply the shadow
lemma (Lemma 3.4). For this purpose, we observe several relations between
the sets defined in (5.2) and shadows.

Lemma 5.10. If g € Q. NYQra—_; fory €' and t,r > 0, then
(1) (97,97) € Lr(0,70);
(2) |P(G(gt,97))| < 2||¥|ler where ¢ is from Lemma 2.3;
(3) [Q]A NQrNyQra—t C [Q]Aer~

Proof. (1) is immediate from the definition of L£,(0,v0). Since g € Q,,
go € B(o,2r) and hence ||G(g",97 )| < 2¢r by Lemma 2.3 and (2) follows.
(3) follows from the stronger inclusion gA N Q, C gAsg which follows from
Lemma 2.5 and Lemma 5.7. U

Lemma 5.11. For any g € G and r > 0, we have
Lr(0,9(0)) C Our(0,9(0)) x Osr(g(0), 0).

Proof. Let (h*,h™) € L(0,9(0)); so h € B(o,2r) such that ha;o € B(g(0), 2r)
for some t > 0. Write o = hagngo for some agng € AN. Since the
Hausdorff distance between agngA*o and AT o is d(agngo, 0) [10, 1.6.6 (4)],
we can find ¢’ € hagnoAto such that d(¢’, ha;o) < d(hagnoo,ho) < 2r.
Hence, d(g(0),q') < d(g(0),hao) + d(hato,q') < 4r and it follows that
h* € O4-(0,9(0)). A similar argument shows that h™ € O4,-(g(0),0). O
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Lemma 5.12. For all large enough r > 1, we have for any t > 1,
M(Qr NYQra_y) < e~ ¥ (1)
where the implied constant is independent of t > 1.

Proof. If r is large enough, we get by Lemma 5.11, Lemma 3.4 and Lemma
5.10:

ﬁ](Qr N ’YQra—t)

- / 19, m@va_i ([90)e? 99" 9 N vy (g7 )dioi (g7) db

= [ ([ 10maa o) db) 0 g ity
r(0,70) A

< vy(04r(0,70)) Vol (A, eIV ller
< e M),

0

Lemma 5.13. If Q. NYQra_: N~ Qra—i—s # 0 for v, €T and r,t,s > 0,
then

(D) Nle(y) = tull, 1wy~ = sull, 1(y') = (¢ + s)ull < 4dr;

(2) (7)) +P(uly=9") < elp(y') + 12dr ||y
Proof. Note that from the hypothesis, the intersections

QrN ’YQra—ta QrN 771'7/Qra—57 QN ’Y/Qra—t—s

are all nonempty. By Lemma 5.9, we obtain (1).
(2) follows since

[ (u() + D (p(v™)) = ¥ (u(")]
= [ (u(y) = tu) +(p(y™1) = su) = p(u(y) = (t+ s)u)]
< Adr[||| + 4dr|[¢[| + 4dr||p]| = 12dr{|].

O

Proof of (5.3) in Proposition 5.8. Fix s,¢ > 0. Let r be large enough so
"
that > e %)) = oo, In the following proof, the notation 3 means

YEL 44r
the sum over all (7,7) € T'y 4qr x T satisfying:
v € Dyaar
(u(y)) € (6t — 4dr||¥]], 6t + 4dr[|[¢]]); and

D(u(y™)) € (85 — 4dr|[¢l], s + ddr||v])).
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Note that
Z m(Qr NYQra— N 'Y/Qra—t—s)

7' €l
"
= Z m(Q, NyQra—t Ny Qra_i—s) by Lemma 5.13(1)
"
< Z e ¥ (") by Lemma 5.12

"
< Z e~ () g=(u(y~19") by Lemma 5.13(2)

< Z e~ ¥ (7)) Z e~ ¥ ()

’YGFLIAdT? 7/€Fu,4dr»
P(p(v)) (St —co,6t+co) P (p(y"))E(8s—co,05+co)
where ¢y = 4dr|[¢]|.
Let I, denote the interval §~[t)(u(7)) — co,¥(u(7)) + co]. Note that
I,N[0,T] # 0 implies that ¢(u(y)) < 0T + ¢o. Hence

T
/ 3 ) | g
0

Aferu,éldr’
Y (1)) €(dt—co,0t+co)

T
= Y et / < Y e,
0

'YEFuA(ir 'YEFuAdm
P(p(v))<6T+co
Putting these two together along with Corollary 5.6, used in order to remove
co, concludes the proof of (5.3). O

Lemma 5.14. For any S > 0 and r > 0, there exists 0 < ¢(S,r) < oo such
that for any v € T' with ||u(y)|| > €(S,r), any point (&£,m) € Og(o,v0) X
Os(v0,0) satisfies |G(&,n)|| < £(S,r).

Proof. Suppose not. Then there exists a sequence 7; — oo in I'y, and
(&, mi) € Os(0,7i0) x Os(vi0,0) such that [|G(&;,m)|| — oo.

We may write v; = k;a;¢; in KAT K decomposition, and assume that k; —
ko after passing to a subsequence. It follows that & — k‘ar and n; — no for
some 19 € F such that (kg ,mo) € F@ as 4; — oo regularly, by Lemma 3.3.
Hence lim;_,o0[|G (&, mi)|| = |G (kg s m0)|| < oo, which is a contradiction. O

In the following, we fix a large number Sy which satisfies Lemma 3.4. For
each r > 1, let £, := ¢(Sp,r) > 0 be as provided by Lemma 5.14 so that for

any (&,1) € Uyer, . [u()>6 OSo(0,70) x Os, (0, 0), we have [|G(£,n)|| < £
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Lemma 5.15. Ifr > 1 is large enough, the following holds: for any (&,n) €
Os,(0,70) X Og,(v0,0) for some~y € Ty, with ||u(y)|| > £, there exist t € R
and g € Qo such that

gap—1,4+1 C YQ2r and (g%.97)=(&m).

Proof. Let (£,m) be as in the statement. Then by Lemma 3.5, there exists
t >0 and k € K such that £ = kT, kajo € B(yo,r + (d+1)S)). Let g € G
be such that (g%,97) = (&, 7). Since ||u(y)|| > &, by replacing g € G by an
element of gA, we may assume that d(go,0) < ¢, + ¢ where ¢ and ¢ are as
in Lemma 2.3. As gt = k™ and hence k~1g € P, it follows by [10, 1.6.6 (4)]
that d(gato, kato) < d(go, o) for all t > 0.

Hence for all s € [t — 1,¢+ 1],

d(gaso, kaio) < d(gaso, garo) + d(gaio, kaio) < 1+ d(go,0) < 1+ cl, + .
It follows that gaj_1441) € YGri(d41)So+ctr+e/+1- Now if 7 is large enough,

gaji-1,t+1) C 1Q2r-
Similarly, since go € Gy, 4/, we have g € QQ2,, which was to be shown. [

Lemma 5.16. Ifr > 1 is large enough, the following holds: for any g € G
such that (g%, g7) € Og,(0,70) x Og,(v0,0) for some v € Ty, and T > 0
satisfying

It > £ and 8dr[y]| +6 < ¢(u(v)) < 0T = 8dr||p] -6,

we have .
| [ toumoualoth dvde > 2vol( ). (5.5)
0

Proof. Note that replacing g with an element of gA does not affect the
validity of (5.5). Hence by Lemma 5.15, we may assume that g € @2, and
9a[to—1,t9+1] C YQ2r for some tp € R.

It follows that Q2 N YQora—y # O for all ¢t € [tg — 1,tg + 1]. Note that
[Y(u(y)) — tod| < 8dr||¢|| by Lemma 5.9, and hence [tg — 1,9 + 1] C [0,7]]
by the hypothesis. Since g € QQ2, and hence g € G4, by Lemma 5.7, we have
gA N Qg D gAy. Consequently,

[ 1oumauaigav= [ 1o, (gbadyan. (50
A Ay

By definition of Q4 there is a uniform lower bound for (5.6), say Vol(As;),
whenever [ga;] N YQ4, # 0, in particular for all ¢ € [tg — 1,t9 + 1] by Lemma
5.15. Hence,

T
/ / HQ4rm'YQ4Ta7t([gb}) db dt
0 A

to+1
> [ [ 10umaua (gb) dba > 2Vol( ).
to—1 A

This proves the lemma. O
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Proof of (5.4) in Proposition 5.8. By definition of m, we have for any
veT and r,t >0,

m(QM N 7Q4ra7t)

:/ (/ ]]‘Q4rm’YQ4ra7t([gb]> db) el/l(Q(g*,g*))de(g-i-)dywoi(g—)
F2) A

> | (/ 2aumauadloth ) 90" (g a4
OSO (07’70) X OSO ('Yozo) A

Now Lemma 5.16 implies that if v € Ty, ||(7)|| > £ and (8dr||[¢]|+) <
P(p(v)) < OT — (8dr[|¢|| + 6), then

T
/0 r?1(6247" N 7Q4ra7t) dt

> 2V01(A2r)/ e¢(g(g+’g_))d%(g+)dV¢oi(g_)
OSO (0770) X OSO (7070)

> 2Vol(Az)e™ ¥, (05, (0,70)) w0 (Osi (70, 0)
> 2Vol(Ag,)e 110 81y )er e IS0 g =),

where the second inequality follows from the lower bound e¥@leT97)) >
e~ I¥ll& and the last inequality follows from Lemma 3.4. Therefore,

T T
A Z rﬁ(Q4r N 7Q4ra—t) dt 2 /(; Z rﬁ(Qélr N 7Q4ra—t) dt

’YEF 'Yeru,ra ||N(FY)II>ZT
S Z e~ (1)

YELu,r [[W(N)I>Lr,
Y (p(7))<8T—(8dr||9[|+6)

Since #{y € I' : ||ju(y)|| < ¢} is a finite set, this proves the lemma by
Corollary 5.6. O
Proposition 5.8 yields:

Corollary 5.17. Suppose that for any large r,s > 1, and T > 1,

T T
/0 Zrﬁ(@rﬂerat)dtx/o D m(QsNyQsay)dt  (5.7)

vyel el

with the implied constant independent of T'. If > e V(M) = o for some
’YEFU,R
R > 0, then for all sufficiently large v, we have for any T > 1:

T T
/ / Z m(Qr NYQra_y N Y Qra_y_s)dtds <
0 0 v,y €T
2

T
/0 Z m(Qr NYQra—¢)dt . (5.8)

vyel
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Proof. By Proposition 5.8, we get

/ / Z QTQVQT(L tm’YQra t— S)dtds <

vy el
2

/ > @ (Quedr N YQr6ara—t) dt |

~yel
which implies the claim in view of the hypothesis 5.7. U
Proof of Proposition 5.4. We will apply the following version of the

Borel-Cantelli lemma:

Lemma 5.18. [3, Lem. 2| Let (2, M) be a finite Borel measure space and
{Pt 1t >0} CQ be such that (t,w) — 1p,(w) is measurable. Suppose that

fo (P;)dt = oo, and
( ) there is a constant C > 0 such that

2
// (P; N Ps) dtds<0(/ M(Pt)dt) for allT > 1.

Then we have

M{wEQ:/ ]lpt(w)dt:oo} >l.
0 C

Suppose that ZweruRe*W”('m = oo for some R > 0. Let r > R be

large enough to satisfy Proposition 5.8, and consider @, = G,A,. As M
commutes with A and Q, = KA KA,, Q, is an M-invariant subset. Let
Q] =T\Q,/M C T\G/M. Set

M :=m|jg,) and P := '\T'(Q, NTQra—) C T\G/M.
We claim that

T T T 2
/ / M(P, N Ps)ds dt < (/ M(Pt)dt> . (5.9)
o Jo 0

Since m is assumed to be u-balanced, Corollary 5.17 applies, and hence

/OT/OTM(P,:HPHS)dsdt < </OTM(Pt)dt>2. (5.10)
/OT/O M(PtﬂP)dsdt_2// (P P dsdi

2

/ / (PN Prys) dsdt < </OTM(Pt)dt> ,

Therefore
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proving the claim. Applying Lemma 5.18 with M and P;, we conclude that

mils e Q] [ o (slodt = of >0.

It follows that v ({g™ € F : limsup[gla; # 0}) > 0 and hence v4(A,) > 0.
On the other hand, by (5.1), we have Z“/GFMU) Re_w"i(”(w) = 00. By the

same argument as above, this implies that

vyoi({gT € F : limsup[g] exp(ti(u)) # 0}) >0
and hence vy0i(Aj(y)) > 0. This finishes the proof by Proposition 3.1.

Proof of Theorem 1.4. . The equivalence (1) < (2) follows from Propo-
sition 3.1. The equivalence (2) < (3) follows from Proposition 4.2. The
equivalence (3) < (4) < (5) follows from Proposition 4.5. The implication
(1) = (6) is proved in Lemma 5.3, and the implication (6) = (7) follows
from Lemma 5.3 and Proposition 5.4.

Remark 5.19. The asymptotic inequality (5.9) shows that if m is u-balanced

and > e~ () = oo for some R > 0, then the measure preserving flow
’YEFU,R
(T\G/M,m,{a;}) is rationally ergodic and the following

1 T
Ar = m([Qr])Q/F\G/M/o Lo, (was)dtdm(z)

is the asymptotic type of the flow in the sense of [1] and [3, 5].

6. DICHOTOMY FOR ANOSOV GROUPS

Let I' < G be an Anosov subgroup defined as in the introduction. For
each v € int Ly, there exists a unique 1, € a* such that 1, > ¥p and
Py(v) = Yr(v), and a unique (I, ¢ )-conformal measure 1, supported on A
([28], [11]). Moreover, {u € inta™ : ¥, (u) = ¥r(u)} = Ryv ([25], [29]). The
assignments v — 1), and v — 14, give bijections among int Lr, D} and the
space of all I'-conformal measures supported on A [19, Prop. 4.4 and Thm.
7.7].

For each v € int Lr, we denote by m, the BMS measure on I'\G/M
associated to (1, v(y). Chow and Sarkar proved the following theorem for

f1, f2 € C.(T\G/M).

Theorem 6.1. [9] Let I' < G be an Anosov subgroup and let v € int Lr.
There exists ky > 0 such that for any fi1, fo € C.(I'\G/M),

rank(G)—1

lm ¢t 2 / fi(@) f2(z exp(tv)) dmy(z) = ry - my(f1)my(f2).
\G/M

t—+00

Since m, is A-invariant, the above is equivalent to:

tliin tmk(f)i1 / fi(x) fa(zexp(—tv)) dmy(x) = Ky - my(f1)my(f2).
T \G/M 6.1)
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In particular, for any v € int Lr, the measure m, is v-balanced.

Corollary 6.2. For anyv € int Lr and any bounded Borel subset QQ C G/M
with my(int Q) > 0, we have

o
/ Z my (Q NYQ exp(—tv)) dt = 0o if and only if rank(G) < 3.
0 ~yel
Proof. Choose f1, fa € C.(G/M) so that 0 < fi < Ig < fo and rﬁv(fl) > 0.
For each i = 1,2, let f; € Co(I'\G/M) be defined by fi([g]) = > . fi(79)-
By (6.1), we get

/ fi(lg] exp(tv) fi(g]) dma[g]
\G/M

- / Z filgexp(tv)) fi(g)drmy (g) = (- rank(@+1/2,
G/M

yel’
The claim follows since [ #(=rank(@+1/24t = o0 if and only if rank(G) < 3.
]

By Theorem 1.4, the following theorem implies Theorem 1.6:

Theorem 6.3. Letv € int Lr and u € intat. The following are equivalent:
(1) rank(G) < 3 and Ru = Rv;
(2) > oer, & e~ ™M) = o for some R > 0.

Proof. Suppose that rank(G) < 3 and u = v. Let a; = exp(tv). Let Q, C

G/M be as in (5.3) of Proposition 5.8. Then for § = ¢, (v) > 0, we have
2

T T
/ / Z My (QrMYQra_iNy Qra_i—s) dt ds < Z e~ Wv(n(7)
o Jo

v er €Ly 4dr
(pu(7))<6T
(6.2)
Set Q, = No<s<r/10@ra—s. We may assume that m,(int Q) > 0 by
increasing r. Note that

T
5 Ea@r naQraar <

vel

T
~V r T rl—g)ld— dsdt.
/0 /OSSST/lo'YZe;m (QrNY(@rNQra—s)a)dsdt

By (6.2), we get

T
/ Z my(Q, NYQ, a_y)dt <K Z e~ (p(7)

0 ’YGF 7€Fv,4dra
Pu(p())<6T
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Hence by Corollary 6.2, we get Z'yEF\, n e~ M) = 0.

Now suppose that Zweru R e~ W) = oo for some R > 0. By Lemma
5.2, ¥y (u) = ¢r(u). This implies Rv = Ru, as Rv is the unique line where v,
and ¢Yr are equal to each other. This also implies u € int L. By Proposition
5.8, it follows that [;° > ver Mv(Qr NyQra—y) dt = co. Hence rank(G) < 3
by Corollary 6.2. O

Remark 6.4. It follows from Theorem 6.3 that when rank G < 3 and v €
int Lr, the flow (I'\G/M, my, exp(tv)) is rationally ergodic by Remark 5.19.
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